
Trace Signal Selection to Enhance Timing and Logic Visibility

in Post-Silicon Validation

Hamid Shojaei, and Azadeh Davoodi
University of Wisconsin

1415 Engineering Drive, Madison WI 53706

Email: {shojaei, adavoodi}@wisc.edu

Abstract—Trace buffer technology allows tracking the values of a few

number of state elements inside a chip within a desired time window,

which is used to analyze logic errors during post-silicon validation. Due to

limitation in the bandwidth of trace buffers, only few state elements can
be selected for tracing. In this work we first propose two improvements

to existing “signal selection” algorithms to further increase the logic

restorability inside the chip. In addition, we observe that different
selections of trace signals can result in the same quality, measured as a

logic visibility metric. Based on this observation, we propose a procedure

which biases the selection to increase the restorability of a desired set

of critical state elements, without sacrificing the (overall) logic visibility.
We propose to select the critical state elements to increase the “timing

visibility” inside the chip to facilitate the debugging of timing errors

which are perhaps the most challenging type of error to debug at the
post-silicon stage. Specifically, we introduce a case when the critical state

elements are selected to track the transient fluctuations in the power

delivery network which can cause significant variations in the delays

of the speedpaths in the circuit in nanometer technologies. This paper
proposes to use the trace buffer technology to increase the timing visibility

inside the chip, without sacrificing the logic visibility.

I. INTRODUCTION

Post-silicon validation of VLSI chips has become significantly

time-consuming in nanometer technologies and impacting the product

time-to-market. Due to the high complexity of modern day electronic

systems, logic bugs may escape the pre-silicon validation stage.

However, at this stage, the lack of visibility to the signals inside

the chip makes the validation a cumbersome task.

Trace buffer technology has been recently used in order to track

few internal state elements (i.e., signals) during the operation of a

chip. These signals are selected for tracing at the design stage and

the traces are analyzed at the post-silicon stage to debug logic errors.

Many recent works have focused on the trace selection problem

in order to maximize the chip logic visibility [4], [5], [6], where

visibility is the metric used to reflect the degree of restoring the

remaining state elements in the chip using the selected trace signals.

In this work, we first present two enhancements to the existing

trace selection algorithms:

1. During computation of the visibility corresponding to a set of

candidate trace signals, we show the ordering of state elements

is very important. We discuss an ordering which results in more

accurate computation of visibility during trace selection.

2. We propose a Pareto-algebriac procedure which in effect defers

the selection of multiple trace signals, compared to existing

greedy techniques which select one trace at each step. As a

result, we can obtain a solution of higher visibility.

Furthermore, we observe that due to the limited bandwidth of the

trace buffer, many alternatives for selecting (the same number of)

trace signals can result in the same degree of visibility. We use

this observation to extend the definition of trace selection problem

such that a desired set of critical state elements are more likely

to be restored, while maximizing the logic visibility. We propose

a procedure by extending the visibility computation algorithm in [5].

We then consider the case when the critical state elements are

selected in order to increase the “timing visibility” inside the chip

which can be useful to debug timing errors. Timing errors refer to

those malfunctions which are due to failure on the speedpaths to

meet a target operation frequency of the chip. Although small in

number, debug of timing errors can take the majority of the post-

silicon validation cycle.

Timing errors may manifest at a specific operating and workload

condition. Recent case studies on industrial microprocessors have

shown timing errors can be highly sensitive to internal signal tran-

sitions. Specifically those transitions which cause fluctuations in the

power delivery network (i.e., power-droop) can significantly impact

the path delays in nanometer technologies and thus cause timing

errors [3]. Upon detecting a timing error, determining if the root-cause

is power-droop is quite challenging because of the combination of

the following factors: 1) the actual input patterns (e.g., instructions in

a microprocessor) which result in excitation of an internal speedpath

and subsequently in a timing error may not be known easily; 2)

transient simulation of power delivery network is time-consuming;

3) low frequency droops may cause timing errors which are detected

many cycles after the switching has occurred.

In this paper, we introduce a method for determining the critical

state elements (fed to the trace selection procedure) in order to build

and update a spatial map of the chip’s power-droop for a window

of time corresponding to the trace buffer size. Using simulation, we

demonstrate that by restoring these critical state elements, a more

accurate map of power-droop can be obtained, compared to traditional

trace selection procedures which do not pay attention to critical state

elements. This is without any sacrifice in the chip logic visibility.

In the remainder of the presentation we first discuss necessary

background in Section II. In Section III, we discuss our trace selection

algorithm. In Section IV we discuss our procedure to track power-

droop. Simulation results are presented in Section V.

II. PRELIMINARIES

In this section, we first review how a visibility metric is defined

and computed for an arbitrary gate inside the chip, for a given set of

trace signals. We then review the trace selection algorithm of [5].

We consider a graph model of the circuit in which each gate

and state element is represented by a node and each interconnect is

represented by a directed edge from a node to (one of) its fanout(s).

Given a node ni, we define its “1-visibility” (denoted by vi1) to be

the probability that logic value 1 will be (correctly) restored at the

output of the corresponding gate or state element, from the few trace

signals. The “0-visibility” of node ni (denoted by vi0) is similarly

defined. The expression of vi1 is given using the following equation

(generalized from [5]).

vi1 =

{

Pi1; if ni is a trace signal.

Pi1 · f(vj1, vj0); if ∀nj ∈ neighborhood ni.

Algorithm 1: Computing visibility V o for a given set of trace signals.

1: Set vj0=vj1=0 (∀gj and sj not traced), vk0=Pk0,vk1=Pk1 (∀sk traced).
2: repeat
3: repeat

4: for all sk with vk 6= 0 do

5: for next node gj ∈ Gout(k) do
6: if dj = B then

7: Continue;
8: end if

9: dj = F ; Update vj0 and vj1 ;
10: Update vl0 and vl1 if sl connected to gj ;
11: end for

12: end for
13: until V o =

∑

∀sj
vj converges

14: repeat

15: for all sk with vk 6= 0 do

16: for next node gj ∈ Gin(k) do
17: if dj = F then

18: Continue;
19: end if
20: dj = B; update vj0 and vj1;
21: Update vl0 and vl1 if sl connected to gj ;
22: end for

23: end for
24: until V o =

∑

∀sj
vj converges

25: until V o =
∑

∀sj
vj converges

where Pi1 is the probability that ni takes logic value 1. If ni is a

state element which is selected as a trace signal, then vi1 is equal

to Pi1. The value Pi1 can be computed, for example via simulation

for a given set of input patterns. Otherwise, if ni is not traced, then

vi1 is a function of vj1 and vj0 of any node nj in the neighborhood

of ni. These neighborhood nodes in the general case may be the

fanin and fanout nodes of ni, or they may be the other fanins of

a fanout node of ni. If ni is a logic gate, then the function f() in

the equation and the neighborhood nodes are specified based on the

logic function corresponding to ni. For example, the authors in [5]

provide expressions for f() for few types of logic gates. If ni is a

state element, then f() is equal to vj1 for its input nj .

The expression for vi0 is defined using a similar equation. We

further define the visibility of node ni as the summation of its 1-

visibility and its 0-visibility: vi = vi1 + vi0.

As can be inferred from the above discussion, the 1(or 0)-

visibilities of ni and of a (fanin or fanout) neighbor nj can be inter-

dependent. They should be computed only from the few selected trace

signals. The authors in [5] propose an iterative procedure to contin-

uously compute and update the node visibilities until convergence is

achieved on a defined metric which reflects the overall visibility.

The procedure is described using Algorithm 1. Here, if ni is a

logic gate, we denote it by gi, and otherwise it is denoted by si for

a state element. Starting from any state element sk with vk 6= 0 (i.e.,

initially a traced node), the algorithm starts with a “forward pass”,

where the nodes (gates) in the fanout cone of sk are visited in a

breadth-first manner. We denote the gates in the fanout cone of sk

which are ordered topologically, by the ordered set Gout(k). When a

node gj ∈ Gout(k) is visited for the first time, a “direction flag” (dj)

will be set to “forward” (F), indicating that gj is initially reached

through a forward pass. For each node gj ∈ Gout(k), if dj = F ,

then the quantities vj0 and vj1 will get computed (using the current

visibilities of the nodes in its neighborhood).

During a forward pass, it may be possible to restore a new state

element. (See line 10). At each step of forward pass, the “overall

visibility” given by V o =
∑

∀sj
vj is computed. The forward pass

repeats until the value of V o converges.

Next, a set of iterative “backward passes” are done similar to the

forward pass. Here for a state element sk with vk 6= 0, a backward

pass reaches the gates in its fanin cone. The gates in the fanin cone

of sk which are ordered topologically are denoted by the ordered set

Gin(k) in Algorithm 1. Once a node is reached during a backward

pass, its direction flag will be checked and the node visibility will be

updated only if the node was not reached before through a forward

pass. This restriction ensures that a node is restored either through

its fanin or its fanout nodes throughout the entire procedure. It is one

way to ensure redundant information is not used which may result

in incorrect computation of the visibilities.

Once a set of iterative forward passes followed by a set of iterative

backward passes finish, the entire procedure repeats itself to update

V o. This process continues until the value of V o converges.

Algorithm 1 is used to drive a trace selection procedure. Specifi-

cally, for a trace buffer of bandwidth b, we should select b signals such

that the overall visibility V o is maximized. Typically the following

greedy procedure is used for trace selection. To select b trace signals,

Algorithm 1 is evoked b times. Each time, one trace signal is selected

and added to the set of already-selected trace signals.

III. TRACE SELECTION FOR ENHANCING TIMING VISIBILITY

In this work, we would like to extend the trace selection problem

so that during maximization of V o, we further increase the visibility

of a set of specified critical state elements. We later discuss how the

critical state elements are specified to track power-droop.

A. Problem Definition

For a given set of critical state elements denoted by Sc, we define

“timing visibility” as
V

t =
∑

∀si∈Sc

vi (1)

The visibility on the remaining state elements is then given by

V
r =

∑

∀si /∈Sc

vi (2)

Given a trace buffer bandwidth of b, our goal is to provide a set of

possibilities for selecting b trace signals which represent a tradeoff

curve between the overall visibility (V o = V r + V t) and the timing

visibility (V t). This tradeoff information may be used in different

ways; for example, the b traces with the highest V t within a target

V o can be selected. We discuss more details later in Section IV.

B. Our Procedure for Visibility Computation

Consider Algorithm 1. In computing visibility of each node, either

forward or backward direction encoding is used for the node which

remains the same throughout the algorithm. This procedure ensures

redundant information is not used. In addition during a forward or

a backward pass, state elements with non-zero visibility may be

selected in any order (in lines 4 and 15). Both of these two factors

can significantly impact the computed visibility of the nodes and are

important when considering the timing visibility for the critical state

elements. We propose a revised version of Algorithm 1. Our method

returns both V t and V r (instead of just V o in Algorithm 1). Our

goal is to improve Algorithm 1 by two means: 1) identifying a more

effective ordering of the state elements with non-zero visibility; 2)

appropriately imposing F or B direction during each pass.

Algorithm 2 gives our visibility computation procedure. First, for

each state element sk we compute a forward reachability weight W F
k .

This weight reflects the reachability of sk to critical state elements

in Sc, if we decide to forward propagate from sk. Similarly we

define a backward reachability weight W B
k if we decide to backward

propagate from sk. These are given in lines 2-5 of the algorithm.After

computing the weights, we sort them in descending order (line 6).

Algorithm 2: Computing V t and V r for a given set of trace signals.

1: Set vj0=vj1=0 (∀gj and sj not traced), vk0=Pk0,vk1=Pk1 (∀sk traced).
2: for all sk do

3: W F
k = compute reachability weight (sk , F); //use Algorithm 3

4: W B
k = compute reachability weight(sk , B); //use Algorithm 3

5: end for

6: Sort all W F
k and W B

k values in descending order (∀sk).
7: repeat
8: Select Wk , the weight with the next largest value in the ordered list
9: if vk 6= 0 then

10: dk = (Wk == W F
k)?F : B.

11: Set G(k) = (dk == F)?Gout(k) : Gin(k);
12: for next node gj ∈ G(k) do

13: if dj 6= dk then

14: Continue;
15: end if

16: dj = dk ; update vj0 and vj1 ;
17: Update vl0 and vl1 for sl connected to gj ;
18: end for
19: end if

20: until updated V t and V r converge

Next an iterative procedure begins. At each iteration, a state

element sk with non-zero visibility is identified together with a

propagation direction (lines 7-10). We first identify the highest

forward or backward weight value in the sorted list (and restart

from beginning of the list, when we reach the end). Then the state

element which has the highest weight is identified. Next, if the state

element has a non-zero visibility, then we select it for propagation.

The propagation direction corresponds to its weight type in line 10

(e.g., forward direction for forward weight).

Next, based on direction dk, we identify an ordered set of gates

G(k) which are either in the fanin or the fanout cone of sk (see line

11). If direction is forward propagation, then the set is Gout(k) (i.e.,

the fanout cone of k as defined in the previous section). Similarly,

if the direction is backward propagation, the set is Gin(k). For each

gate gj ∈ G(k), we check if its direction dj is same as dk. We update

the node visibilities only if the directions are the same. Otherwise, we

move to the next node in G(k). These steps are shown in lines 12-18.

We update both V t and V r values after one forward or backward

propagation ends for the considered state element sk.

In our algorithm, the direction of each node is marked only once

and will never change again. This ensures the visibility of the node

will be computed (correctly) only through forward or backward

propagation. Otherwise, the use of redundant information may result

in over-estimation of a node visibility. Our procedure allows more

flexibility in reaching the nodes. It furthermore will try to reach

the critical state elements through the state elements (of non-zero

visibility) which have the highest reachability weights. As we shortly

discuss, these weights are reflective of “reachability” to critical state

elements. The algorithm terminates when both values of V t and V r

have converged.

C. Computing the Reachability Weights

We are given sk and a direction dk of either F or B. The

objective is to find a corresponding weight (W F
k or W B

k) reflecting

the reachability to the critical state elements. Algorithm 3 describes

our procedure. First, define a “state fanin cone” for sk which is only

composed of state elements and is denoted by Sin(k). We form this

set by recursively traversing the fanin cones of each state element as

they are visited, starting from sk until reaching the primary inputs.

All the state elements that are visited in this traversal are added to

the set Sin(k) as shown in Figure 1. We similarly define a “state

fanout cone” for sk and denote it by Sout(k).

FFCFF1 FF2

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF1 FF2

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF
FFC

(a) (b)

Fig. 1. Estimated visibility of critical state element is higher using the
ordering in (b) compared to (a).

Algorithm 3: Reachability weight computation given sk and dk .

1: Set S(k) = (dk == F)?Sout(k) : Sin(k);
2: for all sj ∈ S(k) do
3: if sj ∈ Sc then

4: Djk=Lmax-|Li − Lj |.
5: W +=Djk .
6: end if
7: end for

8: Return W

Given sk and direction dk, we first identify a set of state elements

denoted by S(k), corresponding to either Sin(k) or Sout(k) (line 1).

We then go through each sj ∈ S(k) which can be in arbitrary order.

If sj is a critical state element, we update the weight of sk.

The weight update is by summing a factor which we found to be

very helpful to increase timing visibility. This factor is a distance

Djk between sj and sk given by line 4. It is computed using the

levels of state elements sj and sk (denoted by Lj and Lk), and a

maximum level Lmax = max∀si
(Li). The level of a state element

is the maximum number of state elements required to reach from

any primary input to it. As can be seen from line 4, if sk is closer

to critical state element sj , then Djk is a larger value implying a

higher reachability of sk to the critical sj . We update the weight of

sk, every time a critical state element is reached in S(k).

Figure 1 illustrates the benefits of our visibility computation

algorithm which impacts the trace selection, compared to the one

explained in Section II. Consider a critical state element FFC∈ Sc.

Figure 1(a) represents the case when the visibility of FFC is computed

using Algorithm 1. In this case, the visibility of FFC is computed

from the nodes in the fanout cone of FF1 and fanin cone of FF2.

However, using Algorithm 2 and by incorporating the reachability

weights to order the state elements, we can estimate a much higher

visibility for FFC by using all the state elements (see Figure 1(b)).

D. Trace Selection Algorithm

Algorithm 4 for trace signal selection replaces the greedy heuristic

of [5]. The inputs of the algorithm are the number of trace signals

(b), and the number of trace signal selection alternatives (N). The

algorithm generates N trace selection possibilities such that they

provide a tradeoff between V t and V o using concepts from Pareto

algebra [2]. We denote C as a set of configurations where the kth

configuration, ck, is represented as a triple given by (Tk, V o
k , V t

k).

Here Tk is a set of selected trace signals for configuration ck with

corresponding V t
k and V o

k .

In Algorithm 4, we initially generate |FF | number of configura-

tions, where |FF | is the number of state elements. Each configuration

only has one of the state elements as a trace signal (lines 1-5).

Algorithm 4 then follows b steps. At the beginning of step i, each

configuration ck in C has i trace signals in its Tk field. Then a new

trace signal is added to each of the configurations. The result is a

new configuration set Ctmp in which each configuration has i + 1
trace signals (lines 7-13).

Algorithm 4: Generating N alternatives of selecting b trace signals.

1: C = ∅;
2: for i = 0 to |FF | do
3: (V o

i , V t
i)= compute visibility if si is trace signal; //use Algorithm 2

4: C = C
⋃

(Ti = {si}, V
o
i , V t

i);
5: end for
6: for i = 0 to b do

7: for all ck ∈ C do

8: for all sj ∈ {FF − Tk} do
9: add sj to Tk

10: (V o
j , V t

j) = compute visibility, given trace signals Tk
⋃

sj ;

11: Ctmp = C
⋃

(Tk
⋃

{sj}, V o
j , V t

j);

12: end for

13: end for

14: Ctmp.min(); //min operation extracts Pareto points

15: Ctmp.reduce(N); //reduce operation samples N Pareto points

16: C = Ctmp;
17: end for

The set Ctmp is then reduced in size to store only N configurations

which provide a tradeoff between their V t and V o fields. This is done

by examining the set in the two dimensional space of V t and V o and

first extracting the Pareto points using the min operation of Pareto

algebra [2] (line 14). We then apply a reduce procedure to sample

N Pareto points (line 15). This is done by uniform sampling of the

2-dimensional V o—V t space. In the end of step i, configuration C
is updated to Ctmp. In the end, C will include N configurations, each

with b trace signals which provide a tradeoff between V o and V t.

Consider the run-time complexity of Algorithm 4. In each step,

N configurations are combined with the remaining state elements of

the design (O(|FF |)). Consequently, the complexity of each step is

O(N×|FF |). The overall complexity for b steps is O(b×N×|FF |).

IV. CRITICAL STATE ELEMENT SELECTION

Power droop which is the transient fluctuations in the power

delivery network is an important cause of post-silicon timing errors

[3]. Each logic cell or state element draws current from the power

delivery network proportional to its size when it is switching. The

power droop at each instance of time is highly proportional to the

switching map of the logic cells and state elements at that time. In

addition to the temporal dependence, the amount of droop at a specific

location also depends on the localized switching activity for the logic

cells and state elements at that location [1]. Upon observing a timing

error, it is usually very difficult to understand if the root-cause of

failure is due to power droop.

Selection Process: Our procedure to select critical state elements

helps build a spatial map of switching activity of the chip at each

instance of time and for a fairly large timing window corresponding

to the trace buffer size. We divide the chip uniformly based on a

coarse grid into M bins and select one critical state element per bin

which can best restore the states of the sequential elements of that

region. Our procedure is enumerated below.

1. For each grid bin, identify all state elements falling in the bin

from the placement information. We denote the set of state

elements in bin i by Si.

2. Apply Algorithm 1 for the state elements in Si (∀i = 1, .., M).

For each bin select only one critical state element.

The M state elements selected in the M bins compose Sc. The

set Sc is provided to Algorithm 4 which generates multiple trace

selection scenarios and provides a tradeoff between V t and V o. To

use the tradeoff curve, for a target overall visibility V o
tar, e.g., based

on estimate using Algorithm 1, we select the solution with V o which

is closest to V o
tar to get the highest corresponding timing visibility

V t. Note after applying Algorithm 2, the critical state elements may

or may not be selected as a trace signal.

Debug Process: During post-silicon validation, upon observing a bug,

one can detect the corresponding input patterns (e.g., instruction in a

microprocessor) at that instance. Appropriate events should then be

triggered to allow the system to run back within a timing window of

T instructions, corresponding to the trace buffer size, before the bug

was observed. This time the trace signals will be stored in the trace

buffer and extracted for analysis to determine if the cause of timing

failure is power droop. Specifically, the states of many sequential

elements and logic gates will be restored for each cycle. Then a

spatial map of power droop is computed for each cycle where the

droop at each location is proportional to the switching activity of the

cells and the sizes of the switching cells at that location.

V. SIMULATION RESULTS

A. Evaluation of Restorability

We implement the procedure of [5] which uses Algorithm 1 for

visibility computation and a greedy procedure for trace selection.

We also implement Algorithm 2 which is provided a set of critical

state elements and Algorithm 4 for trace selection. All codes are

implemented using C++. In our experiments we consider 6 large cases

from ISCAS’89 benchmarks. The benchmarks are synthesized using

Synopsys Design Compiler and a 90nm TSMC library. They were

placed using Cadence Encounter for the power droop experiment.

To compute the functional probability of each signal (Pi1 and

Pi0 defined in Section II), we simulate each benchmark for 10000

cycles with random values for primary inputs using an event-driven

simulator. We also use our event-driven simulator to generate logic

values at all the nodes to be used as golden reference—both for trace

generation, and for evaluation of restorability in the remaining nodes.

This is done by generating 1000 randomly-generated primary input

patterns and computing logic values for all the nodes at each cycle.

We select 16 critical state elements to monitor the power droop using

a 4×4 grid based on the procedure given in Section IV.

After selecting the trace signals (using either of the algorithms),

their logic values are taken from the golden reference at the cor-

responding nodes. We then implement a forward and a backward

X-simulator to restore as many untraced state elements as possible

using the trace values. We start by assuming all the untraced state

elements have a value of X. Then we iteratively apply the forward

and backward X-simulators. At each iteration we propagate forward

(and then backward) using the trace values from the golden simulator

only from the traced state elements, and try to restore the logic values

of the remaining state elements. We repeat the process iteratively

until no further restoration is possible. We compute two restorability

factors: 1) Ro: number of state elements (critical or non-critical)

which could be fully or partially restored; 2) Rt: number of critical

state elements which could be partially or fully restored. We consider

trace buffer bandwidths of 16 and 32 and compare three cases.

• Greedy-Vo: The greedy trace selection approach of [5]. It uses

Algorithm 1 to compute (only) V o;

• Greedy-Vt: Algorithm 4 with N=1 is used for trace selection

and Algorithm 2 is used to compute V t and V o;

• Pareto-Vt: Same as Greedy-Vt but we use N=4.

In the second case by setting N=1 we force selection of only one

Pareto-point at each step of trace selection which was the state

element providing the maximum overall visibility V o. This strategy

was equivalent to a greedy selection of trace signals similar to [5].

But unlike [5] we maximized V t within the visibility computation.

In Pareto-Vt, for N=4 we generate four different trace selection

possibilities. We then report two scenarios: (a) We select the solution

which has the closest visibility V o to the one in Greedy-Vo; (b) We

select the solution which has the maximum timing visibility V t.

TABLE I
COMPARISON OF Ro AND Rt FOR TWO CASES OF TRACE SIGNAL SELECTION.

b=16

Testbench |FF |
Greedy-Vo [5] Greedy-Vt

Pareto-Vt

(a) (b)
runtime (sec)

R
o

R
t runtime (sec) R

o
R

t runtime (sec) R
o

R
t

R
o

R
t

S15850 137 132 13 16 137 16 18 137 16 137 16 97

S35932 1728 302 14 242 313 16 239 315 16 313 16 1561

S38417 1564 202 10 3214 213 15 3352 210 14 210 15 9253

S38584 1166 209 8 1472 199 13 887 213 15 211 16 2997

S5378 163 130 12 10 129 10 15 129 13 128 16 52

S9234 145 65 10 12 69 10 10 69 10 64 11 39

b=32

Testbench |FF |
Greedy-Vo [5] Greedy-Vt

Pareto-Vt

(a) (b)
runtime (sec)

R
o

R
t runtime (sec) R

o
R

t runtime (sec) R
o

R
t

R
o

R
t

S15850 137 137 16 51 137 16 59 137 16 137 16 141

S35932 1728 350 16 1400 380 16 1423 380 16 377 16 6354

S38417 1564 222 8 5124 221 16 5021 320 16 312 16 15421

S38584 1166 210 9 4510 214 15 2313 225 14 210 16 3215

S5378 163 145 13 31 147 16 40 146 15 146 16 168

S9234 145 90 10 35 90 10 41 90 10 89 15 110

Table 1 shows the results. Column 2 shows the number of state

elements for each benchmark (|FF |). First, we observe a higher value

of Ro in Greedy-Vt compared to Greedy-Vo (columns 3 and 6). Note,

both techniques use the same greedy trace selection mechanism while

ours is only different in visibility computation. We obtain a better

solution only by imposing ordering of state elements and appropriate

forward or backward direction during the visibility computation.

Considering Pareto-Vt(a) in column 9 we show further improvement

in Ro by deferring the trace selection decision.

Second, comparing Rt for the 16 critical state elements, we observe

Pareto-Vt(a) is better than Greedy-Vt which is in turn better than

Greedy-Vo (columns 4, 7, 10). When considering picking the solution

with maximum V t in Pareto-Vt(b), we observe more improvement

in Rt compared to Pareto-Vt(a) and Greedy-Vt. Notice, Ro is also

comparable in Greedy-Vt and Pareto-Vt.

Comparing runtimes, Greedy-Vt does not result in any additional

runtime overhead over Greedy-Vo. The runtimes of Pareto-Vt(a) and

(b) are similar so one runtime is reported. It is larger than Greedy-Vt

since now four alternatives are generated.

B. Enhancing the Power Droop Visibility

In this experiment we consider the following three cases.

• Golden: In this case all the primary inputs patterns are known.

We simulate the design for 1000 cycles to compute the switching

activity of all the gates and state elements.

• Greedy-Vo: We take the solution of Greedy-Vo for b = 32 from

the previous experiment. We use the values only at the selected

state elements using the same patterns of the Golden case. At

each cycle we use forward and backward simulations to restore

the values for all gates and state elements. For the unrestored

nodes at a clock cycle, we (pessimistically) assume switching.

• Greedy-Vt: We take the solution of Greedy-Vt from the previ-

ous experiment (i.e., for the same 16 critical state elements to

uniformly cover a grid of 4x4). Again, at each clock cycle we

apply forward and back simulations to restore all possible states

of combinational and sequential nodes and for the unrestored

nodes, we assume the pessimistic case of switching.

Spatial Comparison: To build the spatial map at a given clock cycle,

we consider a resolution of 8×8. For each of the 64 bins, we estimate

power droop as follows. We add the weighted switching activities of

all gates and state elements in a region where a weight corresponds

to the area of that component. We denote this estimate by SW .

We compute the error in SW in Greedy-Vo and Greedy-Vt against

Golden for each bin. We report the average of the errors over all the

bins at clock cycle 500 in columns 2 and 3 of Table 2.

TABLE II
COMPARISON OF ERROR OF WEIGHTED SWITCHING ACTIVITY

Bench
Spatial Temporal

Greedy-Vo Greedy-Vt Greedy-Vo Greedy-Vt

S15850 13% 8% 25% 11%

S35932 47% 41% 48% 42%

S38417 33% 23% 32% 19%

S38584 31% 30% 34% 21%

S5378 17% 10% 28% 19%

S9234 21% 20% 17% 11%

Ave 27.0% 22.0% 30.7% 20.5%

���
���
���
���
���
���
�
���

���
��	

�
���

���
�
�

���
���

������ ������	
� ������	��

���
���
���
���
���
���

� � �� �� �� �� �� �� �� ��

�
���

���
��	

�
���

���
�
�

���
���

�����������
� � �� �� �� �� �� �� �� ��

�����������

Fig. 2. Temporal profiling of the weighted switching activity.

The error in Greedy-Vt is smaller than Greedy-Vo.

Temporal Comparison: Here, we consider the summation of SW

for all the 64 bins at each clock cycle. We compute the error at each

clock cycle for Greedy-Vo and Greedy-Vt against Golden, and report

the average error over the 1000 clock cycles in columns 4 and 5 of

Table 2. The error in Greedy-Vt is smaller than Greedy-Vo. Figure

2 plots this quantity for 50 clock cycles in benchmark S9234.

VI. CONCLUSIONS

We introduced a new variation of trace signal selection problem to

also enhance visibility on a set of pre-specified critical state elements.

We discussed a case when critical state elements are selected to track

transient fluctuations in the power delivery network which can be used

to analyze timing errors. We also proposed two enhancements to the

conventional trace selection algorithms to improve logic visibility.

REFERENCES
[1] E. Alpaslan, et al. NIM - A noise index model to estimate delay

discrepancies between silicon and simulation. In DATE, 2010.
[2] M. Geilen, T. Basten, B. Theelen, and R. Otten. An algebra of Pareto

points. Fundam. Inf., 78(1):35–74, 2007.
[3] K. Killpack, et. al, Case study on speed failure causes in a microprocessor.

IEEE Design & Test of Computers, 25:224–230, 2008.
[4] H. Ko and N. Nicolici. Algorithms for state restoration and trace-signal

selection for data acquisition in silicon debug. TCAD, 28:285–297, 2009.
[5] X. Liu and Q. Xu. Trace signal selection for visibility enhancement in

post-silicon validation. In DATE, 2009.
[6] J.-S. Yang and N. Touba. Automated selection of signals to observe for

efficient silicon debug. In VTS, IEEE, 2009.

