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Minimum Error Probability Cooperative Relay Design

Bin Liu, Biao Chen and Rick S. Blum

Abstract— In wireless networks, user cooperation has been
proposed to mitigate the effect of multipath fading channels.
Recognizing the connection between cooperative relay withfinite
alphabetsources and the distributed detection problem, we design
relay signaling via channel aware distributed detection theory.
Focusing on a wireless relay network composed of a single source-
destination pair with L relay nodes, we derive the necessary
conditions for optimal relay signaling that minimizes the error
probability at the destination node. The derived conditions are
person-by-person optimal: each local relay rule is optimized by
assuming fixed relay rules at all other relay nodes and fixed
decoding rule at the destination node. An iterative algorithm
is proposed for finding a set of relay signaling approaches that
are simultaneously person-by-person optimal. Numerical exam-
ples indicate that the proposed scheme provides performance
improvement over the two existing cooperative relay strategies,
namely amplify-forward and decode-forward.

Index Terms— Wireless relay network, cooperative relay, finite
alphabet, decentralized detection.

I. I NTRODUCTION

In wireless networks, a severe limiting factor is multipath
induced channel fading. One of the most effective meth-
ods in mitigating fading is to exploit diversity. Examples
include spatial diversity when multiple antennas are used at
the transceivers, multipath diversity in frequency selective
channels, and temporal diversity in time selective fading
channels through the use of coding/interleaving. More recently,
a new diversity resource has attracted considerable attention,
especially in the context of wirelessad hoc networks [1]–
[3]. There, multiple nodes collaborate in transmitting their
information, thus providing diversity by exploiting the in-
dependence of the fading channels of different users. This
is generally referred to as the cooperative diversity, and the
collection of cooperating nodes, including the source and the
destination nodes, are referred to as a relay network.

Historically, study of relay networks has focused on the
capacity issue, e.g., achievable rates. The classical three-node
relay network was first introduced by van der Meulen [4]
and its capacity was extensively studied by Cover and El
Gamal [5]. Gastpar and Vetterli [6] considered the capacityof
wireless networks with multiple relay nodes and showed that
the lower and upper bounds became the same asymptotically
as the number of nodes in the network goes to infinity.
Sendonariset al [1], [2] were the first to introduce the concept
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of user cooperation diversity where the mobile users shared
their antennas and other resources to obtain diversity gain
through distributed transmission. Focusing on a two user case,
it was shown that user cooperation results in an increase in
capacity for both users. In addition, the achievable rates are
less susceptible to channel variations, making the cooperative
network a more robust system. Krameret al considered several
coding strategies for various relay networks in [7] and showed
that a strategy that mixes decode-forward and compress-
forward achieves capacity if the terminals form two closely-
spaced clusters.

The performance of wireless relay networks has also been
evaluated by diversity gain and outage probability. By con-
straining the nodes to half-duplex mode, Lanemanet al
[3] developed various cooperative transmission protocolsand
showed that most of the protocols achieve full diversity order
(equal to the number of cooperative nodes). Space-time code-
based cooperative transmission protocols were developed in
[8] and were also shown to achieve full diversity. In [9], [10],
symbol error probabilities were derived in the high signal-
to-noise ratio (SNR) regime for the general multi-hop, multi-
branch wireless relay model using the amplify-forward (AF)
scheme; the result provides insight on the optimum placement
of relay nodes. Chen and Laneman [11] focused on the decode-
forward (DF) scheme and developed a general framework
for maximum likelihood (ML) demodulation in cooperative
wireless communication systems.

In this paper, we focus on a relay network consisting of a
single source-destination pair andL relay nodes. As illustrated
in Fig. 1, each relay node receives the signal from the source
node and generates a processed signal based on its received
signal. The processed signals from all the relay nodes are
sent to the destination node using orthogonal channels. The
destination node uses the relay signals along with the signal
sent directly from the source node to determine the source
signal. Novel in the current work is the attempt to find channel
aware processing thatminimizes the error probability at the
destination node. The proposed design approach exploits the
finite-alphabet (FA) property of the source message, thereby
enabling us to pose the cooperative relay design as a dis-
tributed multiple hypotheses testing problem. Notice thatthis
FA property is ubiquitous in almost all wireless systems. A
similar idea has been explored in [12] to study a diversity
combining scheme using the quantized outputs from multiple
antennas with independently faded binary frequency shift
keying (BFSK) signals. Distinctive in the current work, in
addition to considering a general FA source instead of BFSK,
is that the relay outputs are assumed to also go through general
non-ideal channels. Our approach is to generalize the channel
aware distributed signaling design for binary hypothesis testing
problem [13], [14] to this cooperative relay problem and derive
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a numerical procedure to compute the optimal local relay rules
for minimum error probability at the fusion center.

While DF also utilizes the FA property, the proposed
approach is based optimum detection theory and thus pro-
vides superior error probability performance. To motivateour
proposed idea, we consider a simple relay network with one
source-destination pair and two relay nodes. We also assume
a parallel relay scheme where there is no direct transmission
between the source node and the destination node. The source
is binary with repetition coding; i.e., one transmits“ + 1 +
1 + 1 + 1” or “ − 1 − 1 − 1 − 1” where the redundancy is
used to combat channel impairment. We also restrict each relay
node to send a four-bit sequence to the destination node. If
we adopt a DF idea, each relay node attempts to recover the
original binary source and resends it to the destination node.
However, for this simple example, it will be seen that the
optimum relay rule amounts to quantizing the local likelihood
ratio; and better performance may result if one uses all possible
output alphabet at the relay for the quantization. Contrasting
this to the DF approach, one can consider our approach as
using ‘soft’ information from the relays as opposed to hard
decisions for DF. As such, applying the distributed detection
theory allows us to fully exploit the redundancy in the FA
sources for improved detection performance.

Even without the redundancy in the FA sources, jointly
designing the relay and destination signaling can still result in
improved performance compared with DF. Consider, for ex-
ample, a simple case that the source signals are either“+1” or
“−1”. The relay nodes are also restricted to transmit a binary
(“+1” or “− 1”) signal to the destination node. Assume that
the channels between the source and the two relay nodes have
identical channel SNRs, while SNRs of the channels between
the two relays and the destination differ significantly fromeach
other. One natural question is: how do we jointly determine the
relay and destination processing/signaling that may minimize
the error probability at the destination node? Clearly, if one
resorts to the DF idea, each relay will try to recover the original
signal and retransmit it to the destination node. As such, one
can immediately conclude that this idea leads to identical
relay rules at the two relay nodes. On the other hand, as the
channels between the relays and the destination have different
SNRs, should one design the processing/signaling differently
for better performance. As demonstrated in Section IV, the
optimum relaying for minimum error probability indeed uses
different signaling at the two relays. Our goal is to come up
with a mechanism to find out the optimal relay signaling.

The proposed cooperative relay signaling design assumes a
clairvoyant case, i.e., the designer knows the global channel
state information (CSI). While this is unrealistic, it provides
important benchmark performance and reveals a significant
gap in terms of error probability performance between what is
achievable with the existing schemes and what is achievable
theoretically. More importantly, the insight one draws from
this clairvoyant case study may prove critical in devising
cooperative signaling scheme under a more realistic setting
with only distributed CSI knowledge (i.e., each relay node
knows only its own CSI).

The rest of the paper is organized as follows: Section II

describes the system model and the problem formulation. The
problem setting allows us to derive, in Section III, the neces-
sary conditions for optimal cooperative relay strategies at relay
nodes to minimize the error probability at the destination node.
In the same section, we also consider several special models
and including the three-node relay network, the parallel relay
model, and the singular relay network. Numerical examples are
presented in Section IV to show the substantial performance
gain of our approach over two existing relay strategies. We
conclude in Section V.

II. STATEMENT OF THE PROBLEM

Consider a wireless relay network which includes one
source node,L relay nodes and one destination node (Fig. 1).
The data transmission is divided into two steps. In the first
step, the source node broadcasts a signalS to all the relay
nodes as well as the destination node. In the second step, the
relay nodes then transmit the relay signals to the destination
node in orthogonal channels. We assume thatS is drawn
from an FA setS = {s0, · · · , sM−1} with prior probabilities
{π0, · · · , πM−1}. Further, the received signalsX1, · · · ,XL

at the relays and the received signalZ at the destination,
which describe the broadcast channel during the first step, are
characterized by

p(X1, · · · ,XL, Z|S) = p(Z|S)

L
∏

l=1

p(Xl|S), (1)

i.e.,Xl andZ are conditionally independent givenS. Here the
transmitted signalS can be a vector, and the received signal
Xl andZ would have a similar structure. Thelth relay node
sends a relay signalUl to the destination node based on its
received signalXl,

Ul = γl(Xl) l = 1, · · · , L. (2)

We assume that, without loss of generality,Ul belongs to
a FA set T = {u0, u1, · · · , uN−1}. While it may appear
natural to requireN = M , as in the case of DF, we can
accommodateN 6= M in the proposed scheme. Indeed, as to
be seen later, allowingN 6= M is advantageous as it provides
flexibility in the relay signaling design. We note here that
the conditionN 6= M need not necessarily mean that the
source sequence and the relay message have different lengths.
Redundancy is typically built into the source sequence (e.g.,
channel coding), while the relay node may exploit all possible
alphabets, as illustrated in the example in Section I. The relay
outputsU1, · · · , UL are also sent through parallel transmission
channels characterized by

p(Y1, · · · , YL|U1, · · · , UL) =
L

∏

l=1

p(Yl|Ul) (3)

Note that all the signals, includingS, Z, Xl, Yl and Ul, are
assumed to be vectors.

Upon collecting the channel outputs from the relay nodes,
y = {Y1, · · · , YL}, and from the source node,Z, the destina-
tion node makes a final decision

U0 = γ0(y, Z) (4)
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whereU0 ∈ {s0, · · · , sM−1} indicates which signal was sent
from the source node.

An error happens ifU0 6= S. The goal is, therefore, to
jointly design the local relay schemesγl(·), l = 1, · · · , L and
the decoding ruleγ0(·) such that the overall error probability
at the destination node,P (U0 6= S), is minimized. From
the distributed detection point of view, this relay system can
be regarded as anM -ary hypotheses testing system with
each hypothesis corresponding to one of the input alphabet
symbols; i.e.,Hi : S = si. Given independence among the
transmission channels, the signals received at relay nodesare
independent conditioned on the input source, or equivalently,
a given hypothesis. Thus, the joint probability density function
(pdf ) of the signals received at the relays becomes

p(X1, · · · ,XL|Hi) =
L

∏

l=1

p(Xl|Hi), i = 0, · · · ,M − 1.

(5)
Similarly, for the signals received at the destination node, the
joint pdf conditioned on the decision made at the relays is

p(Y1, · · · , YL, Z|U1, · · · , UL,Hi) = p(Z|Hi)

L
∏

l=1

p(Yl|Ul), i = 0, · · · ,M−1.

(6)
We point out here that integrating the transmission channels

into the decoding rule design has been investigated before in
the context of decision fusion in fading channels for wireless
sensor networks (WSN) [15]–[17]. The optimal decoding rule
in the Bayesian sense amounts to the maximuma posteriori
probability (MAP) decision; i.e.,

U0 = γ0(y, Z) = arg max
si:i∈{0,1,···,M−1}

πip(y, Z|Hi). (7)

Given a specified set of local relay strategies and the channel
characteristics, this MAP decision rule can be obtained in a
straightforward manner. As such, in the next section, we will
focus on the local relay signaling design.

We close this section with a summary of the cooperative
relay design problem.
Problem statement

In a wireless relay network as described in Fig. 1, given
• a FA sourceS = {s0, · · · , sM−1} with prior probabilities

{π0, · · · , πM−1},
• the channels from the source to relay nodes described by

p(Xl|S) for l = 1, · · · , L,
• the channels from the relay nodes to the destination node

described byp(Yl|Ul) for l = 1, · · · , L,
• the channel from the source to destination node described

by p(Z|S),
• and a decoding ruleγ0(·) at the destination node,

design the local relay rulesγl(·) for l = 1, · · · , L that minimize
the overall error probability at the destination nodePr(U0 6=
S).

III. O PTIMAL LOCAL RELAY STRATEGIES

This is a joint optimization problem. In order to obtain a
globally optimal scheme, we should simultaneously optimize
the local relay schemes at all the relay nodes. This joint

optimization, however, is not feasible due to the distributed
nature of the problem [18]. In this paper, we adopt a person-
by-person optimal (PBPO) approach, i.e., we optimize the
local relay rule γl(·) for the lth relay node given fixed
relay rules at all other relay nodes and a fixed decoding
rule γ0(·) at the destination node. As such, the conditions
obtained are necessary, but not sufficient, for optimality.This
PBPO approach has been widely adopted in various distributed
inference problems (see, e.g., [19], [20]).

Define

u = [U1, U2 · · · , UL],

x = [X1,X2, · · · ,XL],

so that the error probability at the destination node can be
written as

Pe
△
= 1 − PD = 1 −

∫

Xl

N−1
∑

j=0

P (Ul = uj |Xl)DljdXl (8)

where, forl = 1, · · · , L, j = 0, · · · , N − 1

Dlj =

M−1
∑

i=0

πiP (U0 = si|Ul = uj ,Hi)p(Xl|Hi) (9)

and

P (U0 = si|Ul = uj ,Hi) =

∫

Z

∫

y

P (U0 = si|y, Z)p(Z|Hi)p(y|Ul = uj ,H

(10)
Equations (8) - (10) can be obtained by expanding the

error probability with respect to thelth relay ruleγl(·). The
derivation is straightforward and follows the same spirit as that
in [13], hence we skip the details.

Thus, to minimizePe, or equivalently maximizePD, we set
P (Ul = uj∗ |Xl) = 1 where j∗ is the index that maximizes
Dlj(Xl). Hence we have,

Theorem 1: The optimal relay rule for thelth relay node
must satisfy

Ul = γl(Xl) = arg max
uj :j∈{0,1,···,N−1}

Dlj(Xl) (11)

for Dlj(·) defined in (9).
The major issue of Theorem 1 is to evaluateDlj(·). While

it is possible to evaluate it analytically for some special cases,
in general it requires numerical evaluation which is fairly
straightforward.

As expressed in (9) and (10), given the fixed local relay
rules of the other relay nodes,p(y|Ul = uj ,Hi), and the
decoding rule at the destination node,P (U0 = si|y, Z),
Dlj(·) only depends on the local observations at thelth relay
node and is a linear combination of the likelihood function of
the local observations. Following the definition of likelihood
ratio quantizer (LRQ) for multiple hypotheses testing [21], the
optimal local relay rule as described in Theorem 1 is a LRQ.

An important distinction between the current work and
that of [22] is that we are considering anM -ary hypotheses
testing problem with general input (e.g., vector input suchas
a packet). As such, one does not have the luxury of equating
the local relay rule to a scalar quantization problem; instead,
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one needs to quantize a (M−1)-dimensional sufficient statistic
[23]. Thus convergence checking by comparing relay rules is
generally not viable.

The fact that we use the PBPO criterion implies that the
derived conditions are only necessary but not sufficient condi-
tions for optimality. Recognizing that the necessary conditions
for the relay functionγl(·) is coupled with the decoding rule,
we propose the following iterative algorithm to find the relay
and decoding rules that are at least locally optimum.
Iterative algorithm

1) Initialize the local relay strategies for each relay node
γ

(0)
l , l = 1, · · · , L and set the iteration indexr = 1;

2) Obtain the optimal decoding ruleγ(r)
0 using (7) for fixed

local relay rulesγ(r−1)
l , l = 1, · · · , L;

3) For eachl, obtain the PBPO local relay ruleγ(r)
l of lth

relay node using (11) given the fixed local relay rules
for the other relay nodes and fixed decoding rule;

4) Evaluate the error probabilityP (r)
e at the destination

node given the relay rulesγ(r) = {γ
(r)
1 , · · · , γ

(r)
L }

and decoding ruleγ(r)
0 , and compare it withP (r−1)

e .
If the difference is less than a prescribed value, stop.
Otherwise, setr = r + 1 and go to Step 2.

For each iteration, we optimize one rule given that the other
rules are fixed. Therefore, the error probability is guaranteed to
be non-increasing after each step. Thus the algorithm always
converges as the error probability is lower bounded by zero.

A. Special cases

The relay network described in Fig. 1 is rather general; it
encompasses many special cases. For example, settingL = 1
reduces it to the classical three-node relay network; and the
corresponding optimum decoding rule and optimal local relay
rule can be obtained by lettingL = 1 in (7) and (11). While
this three-node network is not materially different from the
general case, it does significantly reduces the computational
complexity. Since there is a single relay node, there is no
iteration among the relay rules. Instead, one only needs to
iterate between the decoding rule and the relay rule.

Another interesting case is the parallel relay network where
there is no direct transmission from the source node to the
destination node. Following the same spirit of the derivation
in Section III, we can easily get the optimal decoding rule and
optimal relay rule which are similar to (7) and (11) except that
Z is omitted from the expression.

We now consider the simplest possible relay system: there
is only a single (L = 1) relay node and there is no direct link
between the source and the destination node. Notice that this
simple model can be considered as a special case of either
the three-node relay model or the parallel network. We term
this as asingular relay network. In the context of channel
optimized quantizer design for WSN, we have shown in [14],
[22] that forM = 2 (i.e., a binary source), the optimum relay
rule for a singular relay network is channel-blind; i.e., the local
relay rule will remain unchanged when the relay-destination
channel characteristics change. For this special case, thelocal
relay rule is the same as that in the case with ideal relay-
destination channel as this ideal channel can be treated as a

limiting case of the fading channel. We show in the following
that it is not true for the general case ofM > 2; that is, for
a singular relay network with a general FA source, the relay
signaling should always be channel aware.

By settingL = 1 in (7) and (11) and omittingZ, we can
easily obtain the decoding rule

U0 = γ0(Y ) = arg max
si:i∈{0,1,···,M−1}

πip(Y |Hi) (12)

and local relay rule

u = γ(X) = arg max
uj :j∈{0,1,···,N−1}

Dj(X) (13)

where

Dj(X) =
M−1
∑

i=0

πiP (U0 = si|U = uj)p(X|Hi). (14)

Define

Zjl(X) = {X : Dj(X) < Dl(X)}

which specifies a set such that a lower probability of error will
result when the members of the set are assigned to indexj

instead ofl. Define

Pijl = P (U0 = si|U = uj) − P (U0 = si|U = ul) (15)

and

Li(X) =
p(X|Hi)

p(X|H0)
.

Since
M−1
∑

i=0

Pijl = 0

we have

Dj − Dl =

M−1
∑

i=0

πip(X|Hi)Pijl

=

M−1
∑

i=1

πip(X|Hi)Pijl −

M−1
∑

i=1

π0p(X|H0)Pijl

=

M−1
∑

i=1

πip(X|H0)Pijl

(

Li(X) −
π0

πi

)

From (15), the change of channel characteristics may alter
the value ofPijl, which will result in a different region for
deciding indexj instead ofl. In other words, the optimum
relay rule for the singular relay network needs to be channel
aware whenM > 2.

IV. PERFORMANCEEVALUATION

In this section, through a number of numerical examples,
we demonstrate the performance advantage of our approach
over some existing relay strategies, namely DF and AF, for
the relay network defined in Fig 1. For DF, each relay node
makes its own decision using an MAP rule:

Ul = arg max
si:i∈{0,···,M−1}

πip(Xl|Hi) l = 1, · · · , L (16)

and re-encodes it and sends it to the destination node. This is
different from the relay signaling specified in Theorem 1, i.e.,
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Eqs. (11) and (9), where all the relay rules are coupled with
each other. We remark here that the DF approach considered
in this paper is the vanilla version discussed in [8], [11]. We
assume that the relay node always forwards its best estimate
to a destination node.

For AF, the output of the relay node is simply a scaled
version of the received signal, i.e.,

Ul = clXl l = 1, · · · , L

where the scaling factorcl is determined so that all schemes
have the same average power constraint. For fading channels,
we have

c2
l =

Ps

Ps|α1l|2 + σ2
1l

wherePs is the power constraint which is assumed to be the
same for all the relay nodes as well as the source node,α1l

is the channel coefficient andσ2
1l is the variance of channel

noise. At the destination node, all the schemes implement the
MAP rule to obtain the final decision.

Throughout our simulations, we assume that the channels
between the source and the relay nodes are identically and
independently distributed (i.i.d.) Rayleigh fading channels
with average SNR denoted bySNRsr. Similarly, the channels
between the relay and destination node are also assumed to be
i.i.d. Rayleigh fading channels with average SNR denoted by
SNRrd (except for the first example where both relay nodes
experience differentSNRrd). Notice that this is a somewhat
simplifying assumption: In a homogeneous environment where
the path loss exponent is a constant, the above assumption
amounts to requiring that the relay nodes are equidistant to
the source node as well as to the destination node. We will
vary one of these two SNR with the other fixed; this captures
the change in the placement of the relay nodes in terms of their
distances to the source and to the destination nodes. The SNR
for the direct link between the source and the destination node
is denoted asSNRsd. Further, all the channels are assumed
to be slow fading channels so that the channel coefficients
remain unchanged during the transmission of one symbol or
a packet.

The signal sent from the source node is assumed to be a
K-bit codeword drawn from aM -ary codebook with equal
probability. HenceM ≤ 2K . Each bit is assumed to use BPSK
modulation. We also assume that the local decision at each
relay node isK bits, thus the relay output has a maximum
alphabet size ofN = 2K .

A. Parallel Relay Network

We first consider an example that we discussed in Section
I, the parallel relay network withK = 1, M = N = 2 and
L = 2, i.e., a single BPSK symbol is sent from the source and
is to be relayed to the destination node using two relay nodes.
We assume that the BPSK signal has equal prior probability,
i.e.,

P (S = −1) = P (S = +1) = 0.5.

We also assume thatSNRsr is identical for both relay nodes
but SNRrd may be different. In this case, the relay rule used

by DF for thelth relay node can be easily obtained from (16),

SST
△
= Re{α∗

l X} <
>

+ 1

−1

0

whereαl is the channel coefficient for the channel between
the source node and thelth relay node andRe{·} means real
part. Application of Theorem 1 and our iterative algorithm
show that our approach also comparesSST to a threshold
but our threshold is obtained by jointly designing the relay
rules and the decoding rule, which leads to performance
gains. In table I, with identicalSNRsr for both relay nodes
and differentSNRrd for each relay node, we compare the
thresholds ofSST and overall error probability between DF
and the proposed approach. As one can see, the proposed
approach has better performance than DF and the thresholds
of SST are different for the different relays for our approach.

We then consider a little different case whereSNRrd is
identical for both relay nodes. Fig. 2 and Fig. 3 plot the
error probability at the destination node as a function of
SNRsr andSNRrd, respectively. From Fig. 2, whereSNRrd

is fixed at 5dB, the proposed approach provides the best
performance among all three relay schemes. In Fig. 3 where
SNRsr is fixed at 5dB, the AF outperforms the proposed
method at highSNRrd values. This is not surprising since the
optimum performance is achieved with centralized processing,
i.e., when all local observations are accessible by the decoder.
With high SNRrd, the analog signal can be received at
the destination almost noiselessly, hence it amounts to the
centralized processing. The proposed scheme attempts to find
the optimum relay scheme among all possibleK-bit quantizers
to minimizes the error probability at the destination node.
The AF apparently does not belong to the class of theK-
bit quantizers.

We next consider a special case that we also discussed in
Section I, the repetition coded binary source. This is equivalent
to a binary hypotheses testing with soft (multi-bit) output. To
alleviate the computational burden, one can approximate the
fading channel using a binary symmetric channel (BSC) where
the crossover probability can be properly calculated usingthe
channel SNR. The BSC provides a reasonable,albeit coarse,
approximation of the fading channel; more ever, one can
apply directly the distributed detection algorithm developed
in [22] to find the optimal relay rules. We thus compare the
BSC approximation with our approach using the actual fading
channel model and the two existing relay strategies (i.e., AF
and DF). Consider the system withL = 2 relay nodes and
K = 4 bit source input. We generate the error probability
plots as a function ofSNRsr andSNRrd, respectively. From
Fig. 4 where we varySNRsr but fix SNRrd = 0dB, one
can see that the proposed approach provides uniformly better
performance compared with the other alternatives. Notice
that all the error probabilities level off asSNRsr increase.
This is not unexpected: with largeSNRsr, the channels
between the source and the relay nodes can be considered
as ideal. Thus the error probability performance is limitedby
the finite and fixedSNRrd. We also notice that the BSC
approximation provides a reasonable performance compared
with the proposed approach.
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Fig. 5 is the error probability plot as a function ofSNRrd

with fixed SNRsr = 0dB. Again, one observes error proba-
bility floor as SNRrd increases due to the fact thatSNRsr

is fixed. Furthermore, the AF eventually outperforms all other
schemes asSNRrd gets large – this is again because at very
high channel SNR between the relays and the destination, AF
essentially amounts to a centralized processing. On the other
hand, the DF is the first to level off in the error probability
performance. This is because the DF uses a hard decision
relaying – this is clearly not optimal at high SNR for the
channel between the relays and the destination.

We also consider a more practical scenario where the packet
is coded with a(7, 4) Hamming code [24] withL = 2 relay
nodes and the generator matrix we use is

G =







1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1







As shown in Fig. 6 and Fig. 7, the proposed approach again
has the best performance.

B. Three-node Relay Network

We compare the performance of the proposed scheme with
two existing relay schemes for the classical three-node model.
In generating the error probability plots, we vary one channel
SNR and fix the other two. As shown in Figs. 8 - 10, the
proposed approach still has the best performance. When we
vary SNRsr or SNRrd, the plots we obtain are similar to
previous examples: the proposed scheme is uniformly better
than others for varyingSNRsr and the advantage of the
proposed scheme over DF diminishes at low SNR for varying
SNRrd. Since we have a direct transmission from source to
destination node, when we varySNRsd and fix the other two,
the performance gain of the proposed scheme diminishes to
zero at high SNR, as shown in Fig. 10.

V. CONCLUSION

In this work, a novel cooperative relay signaling that applies
channel aware decentralized detection theory was proposedto
fully exploit the FA property of the source message. Aimed
at minimizing the error probability at the destination node,
we derived the necessary conditions for an optimal distributed
signaling scheme for a FA source. An iterative algorithm
was presented to find distributed relay schemes that are at
least locally optimum. We further examined some special
cases, including the classical three-node relay network and
the parallel relay network. For the special case of a single
relay node with no direct link between the source and the
destination node, i.e., the singular relay network, we pointed
out the significant difference between a binary source and a
generalM -ary source (M > 2), that is, while the optimal
relay rule is channel blind for the singular relay network with
a binary source, it is channel aware whenM > 2. Performance
comparison with two existing relay strategies, namely AF and
DF, was conducted numerically. In almost all cases of practical
interest, the proposed approach exhibits notable advantages

over existing relay schemes that do not exploit the redundancy
in FA sources.

One drawback of the proposed scheme is that the optimal
signaling design requires global channel information. Dis-
tributed signaling design that only uses local channel infor-
mation is more practical and will be investigated in the future.
Similar work has been carried in the context of distributed
detection for sensor networks [25] and can be extended to
the cooperative relay signaling design. Another drawback is
that the relay rule design of all relay nodes arecoupled in
the proposed design approach. This significantly increasesthe
complexity of the design algorithm which typically scales
exponentially in the number of nodes. One remedy is to resort
to the large system regime to optimize the error exponent
instead of the error probability, thereby circumventing the
iterative algorithm that is needed to achieve the person-by-
person optimality in error probability performance.
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Fig. 1. A wireless relay network withL relay nodes and a direct link
connecting the source and the destination nodes.
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Fig. 2. Error probability versus SNR of source-relay channel for L =
2, M = 2, K = 1 (SNRrd = 5dB).
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Fig. 3. Error probability versus SNR of relay-destination channel forL =
2, M = 2, K = 1 (SNRsr = 5dB).

−10 −5 0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR of source−relay channel SNR
sr

 (dB)

P
ro

b
a

b
ili

ty
 o

f 
E

rr
o

r 
P

e

Proposed Approach
Amplify and Forward
Decode and Forward
BSC Approximation

Fig. 4. Error probability versus SNR of source-relay channel for L =
2, M = 2, K = 4 (SNRrd = 0dB).
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Fig. 5. Error probability versus SNR of relay-destination channel forL =
2, M = 2, K = 4 (SNRsr = 0dB).
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TABLE I

THE COMPARISON OF THRESHOLDS OFSST AND ERROR PROBABILITY BETWEENDF AND PROPOSED APPROACH(SNRsr = 5dB)

SNRrd for the SNRrd for the threshold at the threshold at the
first relay node second relay node

Relay scheme
first relay node second relay node

Pe

DF 0 0 0.00805dB 0dB
Proposed approach 0.0005 -0.0063 0.0073

DF 0 0 0.00635dB 5dB
Proposed approach -0.0599 -0.0599 0.0045

DF 0 0 0.00605dB 10dB
Proposed approach -0.0786 -0.0512 0.0038
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Fig. 6. Error probability versus SNR of source-relay channel for the case
usingL = 2 and (7, 4) code as source input (SNRrd = 5dB).
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Fig. 7. Error probability versus SNR of relay-destination channel for the
case usingL = 2 and (7, 4) code as source input (SNRsr = 5dB).
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Fig. 8. Error probability versus SNR of source-relay channel for classical
model withM = 3, K = 3 (SNRrd = 5dB, SNRsd = 5dB).
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Fig. 9. Error probability versus SNR of relay-destination channel for classical
model withM = 3, K = 3 (SNRsr = 5dB, SNRsd = 5dB).
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Fig. 10. Error probability versus SNR of source-destination channel for
classical model withM = 3, K = 3 (SNRsr = 5dB, SNRrd = 5dB).


