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Abstract
In this paper we present a novel view point independent

range image segmentation and recognition approach. We
generate a library of 3D models off-line and represent each
model with our tensor-based representation. Tensors repre-
sent local surface patches of the models and are indexed by
a 4D hash table. During the online phase, a seed point is
randomly selected from the range image and its neighbour-
ing surface is represented with a tensor. This tensor is simul-
taneously matched with all the tensors of the library models
using a voting scheme. The model which receives the most
votes is hypothesized to be present in the scene. The model
from the library is then transformed to the range image co-
ordinates. If the model aligns accurately with a portion of
the range image, that portion is recognized, segmented and
removed. Another seed point is picked from the remaining
range image and the matching process is repeated until the
entire scene is segmented or no further library objects can
be recognized in the scene. Our experiments show that this
novel algorithm is efficient and it gives accurate results for
cluttered and occluded range images.

1. Introduction
The aim of range image segmentation is to accurately

identify the boundaries of 3D objects or regions of inter-
est and separate them from the rest of the dataset. However,
the problem of segmentation is ill posed and the existing
definitions of segmentation do not guarantee a unique seg-
mentation of an image. A major application of range im-
age segmentation includes object recognition and classifi-
cation. In another paradigm, object recognition in a clut-
tered scene can be used for 3D segmentation of a range im-
age. We adopt this paradigm in our approach which results
in the simultaneous segmentation of a range image and the
recognition of free-form [3] objects. The main challenges in
3D object recognition and range image segmentation are the
presence of occlusions (including self occlusions and occlu-
sions caused by other objects) and clutter (due to noise and
unwanted objects) which are usually present in real scenes.
The following is a brief review of some of the existing

segmentation techniques. Deformable models [5][14][19]

based segmentation techniques are computationally expen-
sive and require a manual interaction to position an initial
model in the dataset. These techniques also require the man-
ual selection of their initial parameters. Moreover, to the
best of our knowledge, deformable models have been used
for 2D and 3D volumetric image segmentation only and
have not been applied to range image segmentation. Atlas
guided segmentation techniques, for instance [7][24], have
only been used in the case of 3D volumetric medical im-
ages. The range image segmentation algorithm of Pulli and
Pietikainen [25] is limited to planar and smoothly curved
objects. 3D edge detection based segmentation techniques
[2] suffer from the difficulty of extracting the regions of
interest from the detected edge maps. Moreover, these al-
gorithms do not perform well in case of low depth varia-
tions between regions. LEGION (Locally Excitory Glob-
ally Inhibitory Oscillator Networks) [30] based segmenta-
tion techniques [18] are computationally expensive. Math-
ematical morphology [26] based segmentation algorithms
[1][27] are not automatic and require a user defined criterion
to control the erosion and dilation operations. Region grow-
ing segmentation algorithms [16] are sensitive to the selec-
tion of seed points and occlusions. Different seed points
may result in different segmentations of the same range im-
age and occlusions can cause the segmented region to in-
clude false holes. Most of these techniques have not been
tested on scenes containing free form objects [3]. Moreover,
these techniques only perform segmentation and are not ap-
plicable to object recognition.

A brief review of existing work in the area of 3D object
recognition includes the following. Dorai’s COSMOS rep-
resentation [8] does not work in occluded scenes and calcu-
lates the principle curvatures which are sensitive to noise.
Stein’s structural indexing algorithm [28] is not applicable
to free-form objects. SAI matching [11] is only applicable
to objects which are topologically equivalent to a sphere.
B-Spline curve matching techniques [6][29] suffer from the
knot problem i.e. the positions of knots for a given B-Spline
curve are not unique. HOT curves [15] based recognition
is not robust to noise as it relies on the accurate localiza-
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Figure 1. First row: High resolution models. The number of faces of each model in the first row is
written on its top. Second row: Low resolution models at 1200 faces per model.

tion of inflection points which are themselves sensitive to
noise. Moreover, all these techniques assume the presence
of a single object in the scene and have not been tested un-
der clutter. Johnson’s recognition algorithm [13] works well
in cluttered and occluded scenes however it requires a uni-
form mesh resolution for the library models and the scene.
Moreover, most of these algorithms use a one-to-one match-
ing strategy in which case the recognition time grows lin-
early with the size of the model library.
In this paper, we present a novel automatic 3D recog-

nition based segmentation algorithm applicable to complex
range images containing clutter and occlusions. The algo-
rithm is fully automatic and does not require any manual in-
tervention. Briefly our algorithm proceeds as follows. Dur-
ing an offline phase a 3D model library of objects is built
along with their tensor representations [20]. A 4D hash ta-
ble (variant of [17]) is also constructed from the model ten-
sors for quick indexing. During the online phase, a seed ten-
sor is generated at a randomly selected point in the range
image. The seed tensor is used along with the hash table
to cast votes to matching tensors in the model library. The
model receiving maximum votes is transformed to the co-
ordinates of the range image. If the model aligns accurately
with a portion of the range image, that portion is recognized
and segmented. The segmented portion is removed and the
process is repeated for further segmentation and recogni-
tion of the remaining range image.

2. Construction of the Model Library
3D models of objects which are likely to be present in

the scene are stored in a model library along with their ten-
sor representations. Our algorithm is equally effective with
high and low resolution models. Therefore, in order to gain

memory and computational efficiency, models are stored at
a significantly low resolution in the database. Fig. 1 shows
the high resolution models and their corresponding low res-
olution models which are obtained by applying a mesh sim-
plification algorithm [10] to the high resolution models. The
high resolution models were built with our automatic 3D
modeling algorithm [20][21] (range data courtesy of the
University of Stuttgart [12]). Only the low resolution mod-
els were stored in our model library. The high resolution
models are shown only for illustration purposes.
Along with the 3D models, their tensor representations

(Section 2.1) and a hash table (Section 2.2) are also stored
in the model library. Each tensor represents a local surface
patch of a model by quantizing the surface area into a 3D
cubic grid. These tensors are then used to build a 4D hash
table for quick indexing. [22] contains all the necessary de-
tails of our tensor representation and the construction of the
hash table used in the context of multiview correspondence
for 3D modeling. However, we still believe that a brief dis-
cussion is also necessary here for completeness and in order
to fully describe our algorithm.

2.1. The Tensor Representation
First, normals are calculated for each vertex of a model

(which is in the form of a triangular mesh Fig. 2(a)). Next,
its vertices are paired such that two vertices in any pair sat-
isfy the following two constraints. First, their mutual dis-
tance should be between dmin and dmax. Second, the angle
θdef between their normals should be less than 60o. There
are two advantages to these constraints. First, they ensure
that the vertices in any pair are visible from a single view-
ing angle. Second, they avoid the Cn

2 combinatorial explo-
sion of vertices (where n is the total number of vertices in a
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Figure 2. A 103 grid defined on the head of
the dinosaur of Fig. 1. Only the visible trian-
gular faces contribute toward the tensor cor-
responding to this grid.

mesh). dmin should be selected large enough to reduce the
sensitivity of the tensor computation to noise. In our exper-
iments we selected dmin equal to twice, and dmax equal to
three times the average resolution of the models.
A vertex is allowed to participate in a maximum of three

pairs and a total of nt = 800 vertex pairs per model are se-
lected such that they uniformly cover the 3D model. Each
pair is then used to define a local 3D basis at their middle
point (the origin). The average of the normals of the two ver-
tices makes the z-axis, their cross product makes the x-axis
and the cross product of the z-axis with the x-axis makes
the y-axis. This basis is used to define a 3D grid centered at
the origin (see Fig. 2(b)). Two parameters need to be cho-
sen for this purpose: the number of bins in the grid and the
size of each bin. Choosing more bins will enclose more sur-
face inside the grid. The size of an individual bin governs
the level of granularity at which the surface is represented.
We selected a 103 grid based on an extensive number of sur-
face matching experiments [21]. The bin size was set to half
the mean resolution of the library models.
Next, the surface area of the mesh crossing each bin of

the grid is computed and stored in a third order tensor. Each
element of the tensor is equal to the mesh surface area that
is present inside its corresponding bin in the 3D grid (Fig.
2(b)). The area of intersection of the mesh with the grid
bins is calculated using Hodgman’s polygon clipping algo-
rithm [9]. A polygon inside the grid is considered for con-
tributing toward the computation of a tensor only if its nor-
mal makes an angle of less than 90o with the z-axis of the
grid. Most of the elements of the tensors are zeros there-
fore these tensors are reduced to sparse arrays in order to
reduce memory utilization by approximately 85%.

2.2. Hash Table Construction
The tensors of the models are used to fill up a 4D geo-

metric hash table (variant of [17]). Three dimensions of the
hash table correspond to the i, j, k indices of the tensor el-

ements whereas the fourth dimension is defined by θdef of
the tensors. θdef is quantized into bins of ∆θdef . Choosing
a lower ∆θdef will reduce the number of possible matches
for a tensor but will also increase the risk of missing a cor-
rect match due to noise and sampling errors in θdef . During
our multiview correspondence experiments [23] we found
that a ∆θdef = 5o gives good results. The 4D hash table is
filled up as follows. For each tensor of every model, the tu-
ple (tensor number, model number) entry is made in all the
bins of the hash table corresponding to the i, j, k indices of
the non-zero elements of the tensor and its θdef .

3. 3D Recognition and Segmentation
During the online phase, the range image of the scene

is converted into a triangular mesh and normals are calcu-
lated for all its vertices. A list of seed points (approx. 500) is
then selected from the scene on a uniform 2D grid. Next, a
seed point is picked up at random from this list and is paired
with another seed point which satisfies the distance and an-
gle constraints of Section 2.1. A tensor Ts is then calcu-
lated from these points and the i, j, k indices of its occupied
bins and its θdef are used to cast votes to the tuples present
at the i, j, k,θdef index position in the 4D hash table. The tu-
ples that receive less votes than half the total occupied bins
of Ts are discarded. Next, the correlation coefficient Cc of
the tensors of the remaining tuples withTs is calculated us-
ing Eqn. 1. Cc is calculated in the region of overlap of Tm

and Ts to cater for occlusions.

Cc = correl coeff(Tm(Ims),Ts(Ims)) (1)

In Eqn. 1, Ims is the intersection of the non-zero ele-
ments of the model tensor Tm and the scene tensor Ts.
Tm(Ims) and Ts(Ims) are the values of the model and
scene tensors respectively, in their region of overlap. The
tuples whose tensors’ Cc are below a threshold tc are dis-
carded and the remaining tuples are then sorted according to
their decreasing values of Cc with the Ts. tc can either be
calculated dynamically from the Cc values of the tuples or
chosen to be a constant value. We experimented with both
a fixed value of tc = 0.5 as well as calculated it dynami-
cally (mean Cc of all tuples). The latter approach gave bet-
ter results by eliminating many false positives at this stage.
The remaining list of tuples are hypothesized as the pos-

sible matches of the scene tensor and verified one by one as
follows. The model tensorTm (in each tuple) and the scene
tensorTs are used to transform the corresponding model to
the scene coordinates using the rotation matrix R (Eqn. 2)
and the translation vector t (Eqn. 3).

R = B�
mBs (2)

t = Os − OmR (3)
In Eqn. 2, Bx is the matrix of coordinate basis of the

model or scene tensor. In Eqn. 3, Ox is the origin vector of
tensor Tx. After transforming the model to the scene coor-
dinates, the surface match is verified by refining the regis-
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Figure 3. Trace of the automatic 3D segmentation and recognition algorithm. First the dragon is rec-
ognized and its model (shown in dark shade) is transformed from the model library and aligned with
the dragon in the scene. This results in the 3D segmentation of the dragon. Its data points are re-
moved from the scene in the next iteration. Then the isis and finally the dog are recognized and seg-
mented in the range image.

tration with the ICP algorithm [4]. If the model and scene
surfaces have a significant overlap, the algorithm proceeds
to the next verification step otherwise the next hypothesis is
tested. In case all the hypotheses fail, another seed point is
randomly selected from the list and the above process is re-
peated. In the next verification step, the number of model
points that are transformed in the region between the scene
surface and the sensor or into the free space of the sensor are
counted. If a significant number of such points are found,
the hypothesis is rejected. If the number of such points is
small, the hypothesis is accepted. This results in the 3D seg-
mentation of the object in the scene as well as its recogni-
tion. Additionally, the pose (location and orientation) of the
object in the scene is also calculated fromR and t.
After the recognition and segmentation of an object in

the range image, all its data points are removed and another
set of seed points is picked up from the remaining scene.
This process is repeated until the range image is completely
segmented or no further library objects can be recognized in
the scene. Fig. 3 shows the trace of our algorithm for a range
image of three objects namely the dragon, the isis and the
dog. The recognized model (shown in dark shade) from the
library is aligned with the object in the scene. This results in
the 3D segmentation of the object in the scene. The data re-
lated to a segmented object is removed from the range im-
age in the next iteration in order to facilitate the recognition
of the remaining objects in the scene.

4. Results
We used the low resolution model library of Fig. 1 (sec-

ond row) in our experiments. We generated synthetic scenes
by placing different views of the models in a z-buffer. We
were able to generate scenes with varying topologies in-
cluding disjoint objects, touching objects, objects occluding
other objects etc. Next, we applied our automatic segmen-
tation algorithm to these objects. Fig. 3 and Fig. 4 show the
results of our algorithm when applied to a typical cluttered
scene. The segmented objects are shown in dark shade.

All the objects are accurately segmented in each case by
transforming and aligning their corresponding 3D models
(shown in dark shade) from the library. Notice that the seg-
mentation is performed in 3D i.e. the boundaries of objects
are identified in 3D. These figures also illustrate that the
range images of the scenes have missing data due to self oc-
clusions and occlusions caused by other objects, however
after the segmentation using our approach, this missing data
is completed by super-imposing the 3D models over their
corresponding objects in the scene. To illustrate the 3D seg-
mentation, the segmented range images have been shown
from three different angles in Fig. 4 (row 2, 3 and 4).
In addition to high resolution range images (Fig. 4), we

also tested our algorithm at a low resolution (Fig. 3 and Fig.
5). The resolution of the models in the library was also dif-
ferent from the range images in each case. The results show
that our algorithm is independent of the resolution and sur-
face sampling of the range images.

5. Conclusion
We presented a novel 3D recognition and segmentation

algorithm. Our algorithm is memory efficient as it requires
models at a significantly low resolution. Efficiency in terms
of time is achieved by matching a single tensor simultane-
ously with all the tensors in the database using a hash ta-
ble. Our algorithm is independent of the surface sampling
and resolution of the range images since it matches surface
patches (represented with tensors) as opposed to data points.
We performed 3D segmentation of the range images as op-
posed to a 2D segmentation. The algorithm was tested on
complex scenes containing clutter and occlusions and our
results show that it is accurate, efficient, applicable to free-
form objects and is robust to clutter and occlusions.
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Figure 4. Two different range images to be segmented (first row). Each segmented range image is
shown from three different angles (row 2, 3 and 4).
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Figure 5. (a) A scene range image at low res-
olution (1200 faces). (b) The models (shown
in dark shade) from the library are accu-
rately aligned with their corresponding ob-
jects (shown in light shade) in the scene.
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