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Abstract—We present a fully automatic face recognition algorithm and demonstrate its performance on the FRGC v2.0 data. Our

algorithm is multimodal (2D and 3D) and performs hybrid (feature based and holistic) matching in order to achieve efficiency and

robustness to facial expressions. The pose of a 3D face along with its texture is automatically corrected using a novel approach based

on a single automatically detected point and the Hotelling transform. A novel 3D Spherical Face Representation (SFR) is used in

conjunction with the Scale-Invariant Feature Transform (SIFT) descriptor to form a rejection classifier, which quickly eliminates a large

number of candidate faces at an early stage for efficient recognition in case of large galleries. The remaining faces are then verified

using a novel region-based matching approach, which is robust to facial expressions. This approach automatically segments the eyes-

forehead and the nose regions, which are relatively less sensitive to expressions and matches them separately using a modified

Iterative Closest Point (ICP) algorithm. The results of all the matching engines are fused at the metric level to achieve higher accuracy.

We use the FRGC benchmark to compare our results to other algorithms that used the same database. Our multimodal hybrid

algorithm performed better than others by achieving 99.74 percent and 98.31 percent verification rates at a 0.001 false acceptance rate

(FAR) and identification rates of 99.02 percent and 95.37 percent for probes with a neutral and a nonneutral expression, respectively.

Index Terms—Biometrics, face recognition, rejection classifier, 3D shape representation.

Ç

1 INTRODUCTION

BIOMETRICS are physiological (for example, fingerprints and
face) and behavioral (for example, voice and gait)

characteristics used to determine or verify an individual’s
identity [6]. Verification is performed by matching an
individual’s biometric with the template of the claimed
identity only. Identification, on the other hand, is performed
by matching an individual’s biometric with the template of
every identity in the database.

The human face is an easily collectible, universal, and
nonintrusive biometric [19], which makes it ideal for applica-
tions in scenarios where fingerprinting or iris scanning are
impractical (for example, surveillance) or undesirable due to
problems of social acceptance [20]. However, face recognition
is a challenging problem because of the diversity in faces and
variations caused by expressions, gender, pose, illumination,
and makeup. Considerable work has been done in this area
resulting in a number of face recognition algorithms [50].
These algorithms are categorized from two different perspec-
tives, namely, the type of data and the type of approach they
use. From the first perspective, face recognition algorithms
are divided into 1) 2D face recognition (which use 2D gray-
scale or color images), 2) 3D face recognition (which use
3D range images or pointclouds of faces), and 3) multimodal
face recognition algorithms (which use both 2D and 3D facial
data), for example, [28].

Appearance-based (2D) face recognition algorithms were
the first to be investigated due to the wide spread availability
of low-cost cameras. However, 2D face recognition is
sensitive to illumination, pose variations, facial expressions
[50], and makeup. A comprehensive survey of 2D face
recognition algorithms is given by Zhao et al. [50]. They also
categorize face recognition from the second perspective into
1) holistic, 2) feature based (referred to as region based1 in this
paper), and 3) hybrid-matching face recognition algorithms.
Holistic algorithms match the faces as a whole for recognition.
Examples of this method include the eigenfaces of Turk and
Pentland [44] that use the Principal Component Analysis
(PCA), the Fisherfaces [4] that use Linear Discriminant
Analysis (LDA), methods based on the Independent Compo-
nent Analysis (ICA) [3], Bayesian methods [37], and Support
Vector Machine (SVM) methods [40]. Neural networks [25]
have also been used for holistic face recognition. The region-
based methods extract regions like the eyes, nose, and mouth
and then match these for face recognition. These methods are
based on the distances/angles between facial regions or their
appearances. Examples of this category include [14], [43]. The
graph-matching approach [47] is one of the most successful
region-based approaches [50]. Region-based methods can
prove useful in case of variations (for example, illumination
and expression) in the images [50]. Hybrid methods use a
combination of the holistic and feature-based matching for
improved recognition performance. An example of hybrid
method combines the eigenfaces, eigeneyes, and eigennose
[39]. Other examples include the flexible appearance model-
based method in [23] and [17].

A detailed survey of 3D and multimodal face recognition is
given by Bowyer et al. [7]; however, a brief survey is included
here for completeness. Chua et al. [13] extracted point
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signatures [12] of the rigid parts of the face for expression-
invariant face recognition. They reported 100 percent
recognition results but on a small gallery of six subjects. Xu
et al. [48] performed automatic 3D face recognition by
combining global geometric features with local shape
variation and reported 96.1 percent and 72.6 percent recogni-
tion rates when using a gallery of 30 and 120 subjects,
respectively. Notice the 23.5 percent drop in recognition rate
when the gallery size is increased four times. Medioni and
Waupotitsch [30] also used a variant to the Iterative Closest
Point (ICP) algorithm for 3D face recognition and reported a
recognition rate of 98 percent on a gallery of 100 subjects. The
above results have been achieved using very small databases
and their scalability to large databases is highly questionable.

Fortunately, the FRGC v2.0 data is now publicly available
and results achieved on this database are more compelling as
there are more subjects and greater quantity of images in this
database (see Section 2 for details). An example of results
achieved on the FRGC v2.0 database is the Adaptive Rigid
Multiregion Selection (ARMS) approach of Chang et al. [11]
who report a recognition rate of 92 percent. Another example
is the annotated deformable model approach of Passalis et al.
[38] who achieved an average verification rate of 85.1 percent
at a 0.001 false acceptance rate (FAR) on the FRGC v2.0 data.
The performance of both these approaches is significantly
affected by facial expressions. The rank-one recognition rate
of ARMS [11] drops from approximately 98 percent to
88 percent as a result of nonneutral facial expressions.
Likewise, the verification rate at 0.001 FAR of the deformable
model approach [38] drops from approximately 94.9 percent
to 79.4 percent in the presence of nonneutral expressions. For
a summary of more results achieved on the FRGC v2.0
database, the interested reader is referred to [42].

Existing approaches to multimodal face recognition
generally perform separate matching on the basis of 2D and
3D faces and then fuse the results at the metric level. Chang
et al. [9] used a PCA-based approach for separate 2D and
3D face recognition and fused the matching scores. They
reported a recognition rate of 93 percent and 99 percent for
3D and multimodal face recognition, respectively, using a
gallery of 275 subjects. Wang et al. [46] used Gabor Wavelet
filters in the 2D domain and the point signatures [12] in the
3D domain and fused the results using SVM. They reported a
recognition rate of above 90 percent on a gallery of 50 subjects.

Bronstein et al. [8] proposed an expression-invariant
multimodal face recognition algorithm. They assume the
3D facial surface to be isometric and remove the effects of
expressions by finding an isometry-invariant representation
of the face. The downside of this approach is that it also
attenuates some important discriminating features like the
3D shape of the nose and the eye sockets. They used a
database of only 30 subjects and did not discuss how an open
mouth expression is handled by their algorithm.

Lu et al. [28] used feature detection and registration with
the ICP [5] algorithm in the 3D domain and LDA in the
2D domain for multimodal face recognition. They handle
pose variations by matching partial scans of the face to
complete face models. The gallery 3D faces are also used to
synthesize novel appearances (2D faces) with pose and
illumination variations in order to achieve robustness during
2D face matching. They achieved a multimodal recognition
rate of 99 percent for neutral faces and 77 percent recognition
rate for smiling faces using a database of 200 gallery and
598 probe faces. The performance on neutral-expression faces

is quite impressive. However, the recognition rate drops by
22 percent in the case of smiling faces. Besides this drop in the
recognition rate, there are two points to be noted here. First,
the database used is smaller than the FRGC v2.0. Second, only
smiling faces are tested. It would be interesting to see how this
system performs on the FRGC v2.0 data, which is not only
larger but also contains more challenging nonneutral facial
expressions like blown cheeks and open mouth.

Examples of multimodal face recognition algorithms that
have been tested on the FRGC v2.0 database include Maurer
et al. [29] who measure the performance of the Geometrix
ActiveID [15] on the FRGC v2.0 data and achieved a
multimodal verification rate of 99.2 percent at 0.001 FAR for
faces with a neutral expression. Maurer et al. [29] do not
report separate results for all nonneutral-expression faces;
however, their combined results (neutral versus all) show a
drop of 3.4 percent in the verification rate. Huskën et al. [18]
use a hierarchical graph-matching approach and achieve a
verification rate of 96 percent at 0.001 FAR for neutral
versus all faces using the FRGC v2.0 data. However, they do
not report separate results for faces with nonneutral
expressions. The survey of Bowyer et al. [7] concludes that
there is still a need for improved sensors, recognition
algorithms, and experimental methodology.

Bowyer et al. [7] state that multimodal face recognition
outperforms both 2D and 3D face recognition alone. Zhao
et al. [50] argue that the hybrid-matching methods “could
potentially offer the best of the two types of methods” (that is,
feature-based and holistic matching). In this paper, we
combine these two thoughts and present a fully automatic
multimodal hybrid face recognition algorithm, which re-
quires no user intervention at any stage. Using the FRGC v2.0
data (which is the largest available of its kind), we demon-
strate that by exploiting multimodal hybrid-matching tech-
niques, very high face recognition performance can be
achieved both in terms of efficiency and accuracy.

Fig. 1 illustrates the current research in the area of face
recognition by plotting the different categories along
orthogonal axes. The various matching approaches are
plotted along the x-axis, whereas different modalities are
plotted along the y-axis. Another dimension could be the
temporal one, that is, recognition from single images or video
sequences. Video-based recognition has mainly been per-
formed on 2D holistic faces. However, it is not discussed here
as it is outside the scope of this paper. Examples of some
research groups working along each dimension are also
given in Fig. 1, and the areas where there is a lack of adequate
research are marked by a “?”. Note that Fig. 1 gives only a few
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Fig. 1. Illustration of current research in the area of face recognition. This

figure contains only a few examples for illustration and is far from being

exhaustive. The areas where there is a lack of adequate research are

marked by a “?”.



examples of each category and is far from being exhaustive.
In Fig. 1, it is clear that there is a lack of research in the area of
3D hybrid and multimodal feature-based face recognition.
This paper covers both these areas and presents a multi-
modal hybrid face recognition algorithm. This paper also
addresses two major problems in 3D face recognition. The
first problem is of facial expressions. Although 3D face
recognition has the potential to achieve higher accuracy, it is
more sensitive to facial expressions compared to its
2D counterpart. The second problem addressed in this paper
is of computational efficiency. Three-dimensional face
recognition is computationally expensive, and a brute force
matching approach does not scale well to large galleries such
as the FRGC v2.0 (Section 2).

An advantage of 3D data is that it can be used to correct
the pose of both the 3D and its corresponding 2D face, which
is the first contribution of our paper. We present a fully
automatic algorithm for the pose correction of a 3D face, and
its corresponding 2D colored image. Existing techniques
typically require the manual identification of multiple
landmarks on a face for pose correction (for example, [10]).
Our approach is based on the automatic detection of a single
point (the nose tip) on the face. It then iteratively corrects the
pose using the Hotelling transform [16]. The pose correction
measured from the 3D face is also used to correct the 3D pose
of its corresponding 2D face.

The second contribution of our paper (which is a major
one) is a novel holistic 3D Spherical Face Representation
(SFR). SFR is efficiently calculated and used in conjunction
with the Scale-Invariant Feature Transform (SIFT) descrip-
tor [26] to form a rejection classifier, which quickly
eliminates a large number of ineligible candidate faces
from the gallery at an early stage. SFR is a low-cost global
3D face descriptor. SIFTs are 2D local descriptors and have
been successfully used for object recognition under occlu-
sions. In this paper, the utility of SIFT for face recognition
under illumination and expression variations has been
explored using the FRGC v2.0 database (Section 2).

Recently, Lin and Tang [24] proposed a SIFT-Activated
Pictorial Structure (SAPS) and combined it with three other
classifiers for face recognition. There are three major
differences of our work from SAPS. First, SAPS requires
more than one training face, whereas we use only one face.
Second, SAPS computes SIFTs at only those keypoints that
contain irregular details of a face, whereas we compute
SIFTs at all keypoints (see Section 4.2). Third, the individual
performance of SAPS classifier is not reported in [24],
whereas we report the individual performance of our SIFT
classifier in Fig. 15.

After rejection, the remaining faces are verified using a
novel region-based matching [32], [33] approach, which is our
third major contribution. Our region-based matching approach
is robust to facial expressions as it automatically segments
those regions of the face that are relatively less sensitive to
expressions, that is, the eyes-forehead and the nose. These
regions are separately matched using a modified ICP algo-
rithm, which exploits the dissimilarities between faces [32].
The motivation behind our region-based 3D matching
approach comes from three important findings in the 2D face
recognition survey by Zhao et al. [50]. One, that the upper part
of the face is more significant for recognition compared to the
lower part. Two, that region-based matching can prove useful
in the case of expression and illumination variations. Three,
that the eyes, the forehead, and the nose are less sensitive to

facial expressions compared to the mouth and the cheeks.
Our approach simply extends these ideas to the 3D face
recognition case. Note that prior attempts have been made to
recognize 3D faces using regions or segments. However, a
curvature-based segmentation was used in those cases (see
[7] for details) as opposed to the region-based segmentation
in our case. Moreover, the component-based face recognition
proposed by Huang et al. [17] performs recognition on the
basis of 2D components. Our 3D segmentation is different
from the 2D case because the segmented regions need not be
rectangular and can also vary in size. Moreover, a pixel-to-
pixel correspondence or 100 percent overlap is not required
between the segmented regions for matching.

Each matching engine (SFR-SIFT, eyes-forehead, and
nose) results in a similarity matrix. The similarity matrices
are normalized and fused using a confidence weighted
summation rule to achieve better recognition performance.
This results in a single similarity matrix that is used to
compile the identification and verification performance of
our algorithm.

This paper is an extension of our work presented in [32],
[33], [34] and is organized as follows. In Section 2, we give
some information regarding the FRGC v2.0 data and
Experiment 3. Section 3 explains our automatic 3D face
detection and normalization algorithm along with qualita-
tive and quantitative results. Section 4 gives details of our
novel SFR. It also explains the SFR-SIFT-based rejection
classifier along with results on the FRGC v2.0 data. Section 5
gives details of our automatic face segmentation and region-
based matching algorithm. Section 6 lists and compares the
recognition results of our novel multimodal hybrid algo-
rithm with and without using the rejection classifier. In
Section 7, we give the limitations of our pose correction and
recognition algorithms and give directions for improve-
ments. Finally, in Section 8, we conclude our findings.

2 THE FRGC V2.0 DESCRIPTION

We performed our experiments on the FRGC version 2.0 [41]
data set.2 The FRGC lists a number of experiments; however,
we focus on Experiment 3, that is, matching 3D faces (shape
and texture) to 3D faces (shape and texture) in this paper. The
FRGC v2.0 data for Experiment 3 comprise 4,950 3D faces
along with their corresponding texture maps acquired with
the Minolta Vivid scanner [36]. The spatial resolution of the
scanner is 480� 640. However, the resolution of faces in the
database varies because they were scanned at different
distances from the scanner and possibly using different
lenses. The data consists of frontal views of subjects mostly
acquired from the shoulder level up. The subjects include
males and females aged 18 years and above. Some of the
subjects have facial hair, but none of them is wearing glasses.
There are minor pose variations and major illumination, as
well as expression variations, in the database. More detailed
statics on the database are given by Phillips et al. [41].

The 3D faces (shape) in the FRGC data are available in the
form of four matrices, each of size 480� 640. The first matrix
is a binary mask indicating the valid pixels (or points) in the
remaining three matrices that respectively contain the x, y,
and z-coordinates of the pixels. The 2D faces (texture maps)
are 480� 640 color images having a one-to-one correspon-
dence to their respective 3D face. The texture maps are
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correctly registered to the 3D faces in most cases, however,
some examples of incorrect registration can be found in the
database. The 3D faces are noisy and contain spikes, as well as
holes (Fig. 4). In this paper, we represent a 3D face as a three-
dimensional vector ½xi; yi; zi�> of the x, y, and z-coordinates of
the pointcloud of a face (i ¼ 1 . . .n, where n is the number of
points). For the purpose of pose correction, we represent a
2D face as a five-dimensional vector ½ui; vi; Ri; Gi; Bi�>, where
u and v are the pixel coordinates, and R, G, and B are their
corresponding red, green, and blue components. Since the
3D and 2D faces are registered in most cases, the pixel
coordinates u and v of the 2D face can be replaced with the
absolute coordinates x and y of its corresponding 3D face. For
the purpose of matching, we represent the 2D face as a gray-
scale image.

Finally, the data is divided into three sets (based on
acquisition time), namely, Spring2003, Fall2003, and
Spring2004. The FRGC explicitly specifies that Spring2003
be used for training and the remaining two sets be used for
validation. Although our algorithms do not have a training
phase like the PCA, we used the training data for setting our
thresholds and for tuning. The validation set contains
4,007 3D faces along with their texture maps. The number of
subjects in the validation set is 466. We chose one 3D face
along with its texture to make a gallery of 466 individuals for
our identification experiments. The FRGC also gives a target
and a query set of 4,007 images each. According to the FRGC
protocol, each query face must be matched with each target
face, which amounts to 16 million similarity scores. The
results reported in Section 6 are obtained using the validation
set only so that they are compatible with the FRGC.

3 3D AND 2D FACE NORMALIZATION

Fig. 2 shows the block diagram of our automatic 3D and
2D face normalization algorithm. Details of the different
components of the block diagram are given below.

3.1 Face Localization and Denoising

Since the FRGC data contains faces mostly acquired from the
shoulder level up, an important preprocessing step was to
localize the face. Since processing 3D data is computationally
expensive, we detect the nose tip in the first step in order to
crop out the required facial area from the 3D face for further
processing. The nose tip is detected using a coarse to fine
approach as follows: Each 3D face is horizontally sliced
(Fig. 3a) at multiple steps dv. Initially, a large value is selected
for dv to improve speed, and once the nose is coarsely located,
the search is repeated in the neighboring region with a smaller
value of dv. The data points of each slice are interpolated at
uniform intervals to fill in any holes. Next, circles centered at
multiple horizontal intervalsdh on the slice are used to select a
segment from the slice, and a triangle is inscribed using the
center of the circle and the points of intersection of the slice
with the circle, as shown in Fig. 3a. Once again, a coarse to fine
approach is used for selecting the value of dh for performance
reasons. The point that has the maximum altitude triangle
associated with it is considered to be a potential nose tip on
the slice and is assigned a confidence value equal to the
altitude. This process is repeated for all slices resulting in one
candidate point per slice along with its confidence value.
These candidate points correspond to the nose ridge and
should form a line in the xy-plane. Some of these points may
not correspond to the nose ridge. These are outliers and are
removed by robustly fitting a line to the candidate points
using Random Sample Consensus (RANSAC) [22]. Out of the
remaining points, the one that has the maximum confidence
is taken as the nose tip, and the above process is repeated at
smaller values of dv and dh in the neighboring region of the
nose tip for a more accurate localization.

A sphere of radius r centered at the nose tip is then used
to crop the 3D face (see Fig. 3) and its corresponding
registered 2D face. A constant value of r ¼ 80 mm was
selected in our experiments. This process crops an elliptical
region (when viewed in the xy-plane) from the face with
vertical major axis and horizontal minor axis. The aspect
ratio (major axis to minor axis ratio) of the ellipse varies
with the curvature of the face. For example, the narrower a
face is, the greater is its aspect ratio. Fig. 5a shows a
histogram of the aspect ratios of 466 different faces. Once
the face is cropped, the outlier points causing spikes (see
Fig. 4a) in the 3D face are removed. We defined outlier
points as the ones whose distance is greater than a
threshold dt from any one of its 8-connected neighbors. dt
is automatically calculated using dt ¼ �þ 0:6� (where � is
the mean distance between neighboring points, and � is its
standard deviation). After removing spikes, the 3D face and
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Fig. 2. Block diagram of the face normalization. V is a rotation matrix
given in (4).

Fig. 3. (a) Nose tip detection. (b) A sphere centered at the nose tip of a

3D pointcloud of a face is used to crop the face.

Fig. 4. (a) A pointcloud of a face shows spikes. (b) A shaded view of the
same face shows noise. Spike removal has also resulted in holes.
(c) Shaded view of the face after complete preprocessing (that is,
cropping, hole filling, denoising, and resampling).



its corresponding 2D face are resampled on a uniform
square grid at 1 mm resolution. The removal of spikes may
result in holes (see Fig. 4b) in the 3D face, which are filled
using cubic interpolation. Resampling the 2D face on a
similar grid as the 3D face ensures that a one-to-one
correspondence is maintained between the two. Since noise
in 3D data generally occurs along the viewing direction
(z-axis) of the sensor, the z-component of the 3D face (range
image) is denoised using median filtering (see Fig. 4c).

3.2 Pose Correction and Resampling

Once the face is cropped and denoised, its pose is corrected
using the Hotelling transform [16], which is also known as the
Principle Component Analysis (PCA). Let P be a 3� nmatrix
of the x, y, and z-coordinates of the pointcloud of a face (1)

P ¼
x1 x2 . . . xn
y1 y2 . . . yn
z1 z2 . . . zn

2
4

3
5: ð1Þ

The mean vector m and the covariance matrix C of P are
given by

m ¼ 1

n

Xn
k¼1

Pk; and ð2Þ

C ¼ 1

n

Xn
k¼1

PkP
T
k �mmT ; ð3Þ

where Pk is the kth column of P. Performing PCA on the
covariance matrix C gives us a matrix V of eigenvectors
and a diagonal matrix D of eigenvalues such that

CV ¼ DV: ð4Þ

V is also a rotation matrix that aligns the pointcloud P on
its principal axes, that is, P0 ¼ VðP�mÞ.

Pose correction may expose some regions of the face
(especially around the nose), which are not visible to the 3D
scanner. These regions have holes that are interpolated using
cubic interpolation. The face is resampled once again on a
uniform square grid at 1 mm resolution and the above
process of pose correction and resampling is repeated until V

converges to an identity matrix (see block diagram in Fig. 2).
The faces with small aspect ratio (Fig. 5b) are prone to
misalignment errors along the z-axis. Therefore, after pose

correction along the x and y-axes, a smaller region is cropped
from the face using a radius of 50 mm (centered at the nose
tip) and a depth threshold equal to the mean depth of the face
(with r ¼ 80 mm). This results in a region with a considerably
higher aspect ratio (Fig. 5c), which is used to correct the facial
pose along the z-axis.

Resampling the faces on a uniform square grid has another
advantage that all the faces end up with equal resolution. This
is very important for the accuracy of the 3D matching
algorithm (Section 5.1), which is based on measuring point-
to-point distances. Difference in the resolution of the faces can
bias the similarity scores in favor of faces that are more
densely sampled. This makes sense because, for a given point
in a probe face, there are more chances of finding a closer
point in a densely sampled gallery face compared to a rarely
sampled one.

V is also used to correct the 3D pose of the 2D face
corresponding to the 3D face. The R, G, and B pixels are
mapped onto the pointcloud of the 3D face and rotated using
V. This may also result in missing pixels, which are
interpolated using cubic interpolation. To maintain a one-
to-one correspondence with the 3D face, as well as for scale
normalization, the 2D colored image of the face is also
resampled in exactly the same manner as the 3D face. Fig. 6
shows a sample face (2D and 3D) before and after normal-
ization. It is important to note that this scale normalization of
the 2D face is different from the one found in the existing
literature. Previous methods (for example, [10]) are based on
manually identifying two points on the face (generally, the
corners of the eyes) and normalizing their distance to a
prespecified number of pixels. As a result, the distance
(measured in pixels) between the eyes of all individuals end
up the same irrespective of the absolute distance. This brings
the faces closer in face feature space, hence making classifica-
tion more challenging. On the other hand, with our 3D-based
normalization algorithm, the distance between the eyes of
each individual may be different as it is a function of the
absolute distance between the eyes. Thus, the faces remain
comparatively far in face space, which results in a more
accurate classification.

3.3 Pose Correction Results

Fig. 7 shows some sample 3D and their corresponding
2D faces from the FRGC v2.0 data set after pose correction. A
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Fig. 5. (a) Histogram of the aspect ratios of 466 individuals. (b) A shaded view of a sample 3D face with low aspect ratio. (c) The aspect ratio
considerably increases when a smaller region is cropped from the face using a combination of radius and depth thresholds.



qualitative analysis of these results shows that our algorithm

is robust to facial expressions and hair that covers the face.

For quantitative analysis, the pose of each face must be

compared with some ground truth. Since ground truth was

not available, we pairwise registered the 3D faces belonging

to the same identities with each other (all possible combina-

tions Cn
2 , where n is the number of 3D faces belonging to the

same identity) using the ICP [5] algorithm. The translation

and rotation errors between these faces are presented in

Figs. 8 and 9, respectively. The maximum absolute mean

translation and rotation errors between the faces were

0:48 mm and 0.99 degrees, respectively. Note that the

translation error is the error in nose-tip localization.

4 A LOW-COST REJECTION CLASSIFIER

A rejection classifier is defined as one that quickly
eliminates a large percentage of the candidate classes with
high probability [2]. A rejection classifier is “an algorithm  

that given an input, x � S, returns a set of class labels  ðxÞ
such that x � Wi ) i �  ðxÞ” [2], where x is a measurement
vector, S ¼ <d is a classification space of d measurements,
and Wi is the ith class such that Wi � S. The effectiveness
Effð Þ of a rejection classifier is the expected cardinality of
the rejector output Ex�Sðj  ðxÞ jÞ divided by the total
number of classes M (5) [2]

Effð Þ ¼ Ex�Sðj  ðxÞ jÞ
M

: ð5Þ

In our case, M is the size of the gallery. The smaller the
value of Effð Þ, the better is the rejection classifier. A rejection
classifier is necessary to perform efficient recognition when
using large databases. For example, in our case, there were
3,541 probes and 466 faces in the gallery. A brute force
matching approach would have required 466� 3; 451 ¼
16; 08; 166 comparisons. A rejection classifier of Effð Þ ¼
0:03 would reduce this to only 48,245 comparisons. Fig. 10
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Fig. 6. A 3D face and its corresponding 2D face (colored) before and
after pose correction and normalization.

Fig. 7. Sample 3D faces and their corresponding 2D (colored) faces after pose correction and normalization. All these faces were also correctly
recognized using our algorithm explained in Section 5 (even though some of them had hair) except for the second last face in the last column.

Fig. 8. Translation errors between the 3D faces of the same identities
after automatic pose correction. The errors are less than 0:5mm, which
is half the spatial resolution of the 3D faces.



shows the block diagram of our complete 3D face recognition
algorithm including the rejection classifier.

4.1 Spherical Face Representation (SFR)

We present a novel SFR and compare it to two existing
3D representations, that is, the spin images [21] and the tensor
representation [31], [35]. A spin image is generated by
spinning an image (for example, of size 6� 6 in Fig. 11b)
around the normal of a point (the nose tip in our case) and
summing the face points as they pass through the bins of the

image. The tensor representation [31], [35] is the quantization
of the surface area of a face into a 3D grid. Fig. 11c shows a
10� 10� 10 tensor over a facial pointcloud.

Intuitively, an SFR can be imagined as the quantization
of the pointcloud of a face into spherical bins centered at the
nose tip. Fig. 11a graphically illustrates an SFR of three bins.
To compute an n bin SFR, the distance of all points from the
origin is calculated. These distances are then quantized into
a histogram of nþ 1 bins. The outermost bin is then
discarded since it is prone to errors (for example, due to
hair). An SFR can be efficiently computed by exploiting
Matlab functionality. In our experiments, we used a 15 bin
SFR. Fig. 12a shows eight SFRs each of two individuals
(under a neutral expression) plotted on the y-axis. The SFRs
belonging to the same individual follow a similar curve
shape, which is different from that of a different identity.
Fig. 12b shows the SFR variation of an identity under
nonneutral expressions. The bold line represents the SFR
under a neutral expression, whereas the thin ones represent
the SFRs under a nonneutral expression. The similarity
between a probe and gallery face is computed by measuring
the pointwise euclidean distance between their SFRs.

The tensor representation has higher discriminating
capability [31] compared to a spin image. The recognition
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Fig. 9. Rotation errors between the 3D faces of the same identities after
automatic pose correction. All errors are less than 1 degree.

Fig. 10. Block diagram of our recognition algorithm ðMMHeÞ. The dotted line separates the online and offline phases, whereas the dashed line

shows the representations included in the gallery.

Fig. 11. Illustration of the (a) SFR, (b) spin image, and (c) tensor representation.



performance of a representation is directly related to its
descriptiveness [35]. However, on the downside, higher
descriptiveness of a representation makes it more sensitive to
nonrigid deformations. Therefore, as a consequence of its
higher descriptiveness, the tensor representation is more
sensitive to facial expressions and is therefore not considered
here. The descriptiveness of the SFR intuitively appears to be
the lowest of the three, which should make it less sensitive to
facial expressions (see Fig. 12b). Moreover, in terms of
computational complexity, the SFR is the most efficient.
Therefore, for use as a rejector, the SFR appears to be the best
choice. A brief comparison of the SFR and the spin images is
given in Section 4.3, whereas a more detailed experimental
comparison can be found in our earlier work [34].

4.2 SIFT-Based Matching Engine

The SIFTs [26] are local 2D features calculated at keypoint
locations. The interested reader is referred to Lowe’s paper
[26] for the details of the keypoint localization and the SIFT
feature extraction. A brief description is provided here for
completeness. A cascaded filtering approach (keeping the
most expensive operation to the last) is used to efficiently
locate the keypoints, which are stable over scale space. First,
stable keypoint locations in scale space are detected as the
scale space extrema in the Difference-of-Gaussian function
convolved with the image. A threshold is then applied to
eliminate keypoints with low contrast followed by the
elimination of keypoints, which are poorly localized along
an edge. Finally, a threshold on the ratio of principal
curvatures is used to select the final set of stable keypoints.
For each keypoint, the gradient orientations in its local
neighborhood are weighted by their corresponding gradient
magnitudes and by a Gaussian-weighted circular window
and put in a histogram. Dominant gradient directions, that is,
peaks in the histogram, are used to assign one or more
orientations to the keypoint.

At every orientation of a keypoint, a feature (SIFT) is
extracted from the gradients in its local neighborhood. The
coordinates of the feature and the gradient orientations are
rotated relative to the keypoint orientation to achieve
orientation invariance. The gradient magnitudes are
weighted by a Gaussian function giving more weight to
closer points. Next, 4� 4 sample regions are used to create
orientation histograms, each with eight orientation bins
forming a 4� 4� 8 ¼ 128 element feature vector. To achieve
robustness to illumination changes, the feature vector is
normalized to unit length, large gradient magnitudes are then

thresholded so that they do not exceed 0.2 each, and the vector
is renormalized to unit length.

SIFTs have been successfully used for object recognition
under occlusions, which is an intraclass recognition problem.
We explore their use for face recognition using the FRGC v2.0
data (Experiment 3 texture only), which is challenging
because it is an interclass recognition problem, and there
are extensive illumination and expression variations in this
data. Since SIFT is a local feature, we believe that it will be
more robust to these variations compared to the PCA baseline
performance. The SIFT descriptors were extracted from the
2D texture maps of faces after normalization with respect to
pose and scale as described in Section 3.2. It is possible to
normalize the illumination of the 2D faces using their
corresponding 3D faces; however, this is not the focus of
our paper. Therefore, we converted the colored images to
gray scale and performed histogram equalization for illumi-
nation normalization. Fig. 13 shows the effect of histogram
equalization on a sample face. The SIFT descriptors for these
faces were then computed using Lowe’s code [27]. The
number of descriptors varied for each face with an average of
80 descriptors per image.

To calculate the similarity between a gallery and probe
face, their SIFT descriptors were matched using the
euclidean distance. Since the faces were registered, only
those descriptors were considered, which were closely
located. Moreover, only one-to-one matches were estab-
lished, that is, a SIFT from the gallery was allowed to be a
match to only one SIFT from the probe (see Fig. 14). The
similarity score was taken as the mean euclidean distance
between the best matching pairs of descriptors.

4.3 Rejection Classification Results

In our earlier work [34], we quantitatively compared the
performance of the SFR (15 bins) to the spin images
(size 15� 15) [21] when used as rejection classifiers. For
probes with a neutral expression, the spin images performed
slightly better, whereas for probes with a nonneutral
expression, the SFR performed better. This supported our
argument that representations with lower descriptiveness
are less sensitive to facial expressions, as discussed in
Section 4.1. However, the SFR-based classifier is computa-
tionally much more efficient than the spin image classifier. A
Matlab implementation on a 2.3-GHz Pentium IV machine
took 6.8 ms to construct an SFR of a probe, match it with the
557 SFRs in the gallery, and reject a subset of the gallery,
whereas the spin images took 2,863 ms for the same purpose.

In this paper, we fused (see Section 5.2 for details) the
similarity scores of the SFR and the SIFT descriptors using a
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Fig. 12. (a) SFRs of two individuals (under a neutral expression) plotted
on the y-axis (in different shades). Notice that the SFRs belonging to the
same identity are quite similar, whereas those of different identities are
dissimilar. (b) SFR variation of an identity under nonneutral expressions.
The bold line represents the SFR under a neutral expression.

Fig. 13. A sample gray-scale 2D image of a face before (a) and after

(b) histogram equalization.



weighted sum rule to achieve better rejection results (see
Fig. 15). At the 98 percent verification rate, the effectiveness of
our SFR-SIFT-based rejection classifier as per (5) is 0.036 for
the entire database (that is, neutral versus all). Put another
way, our rejection classifier will eliminate 97 percent of the
gallery faces leaving only 3.6 percent to be verified at a later
stage (out of 466, only 17 faces will be left for verification). A
Matlab implementation of the SFR-SIFT rejection classifier on
a 2.3-GHz Pentium IV machine takes 4 seconds for matching a
probe with a gallery of 466 faces and rejecting a subset of the
gallery. Note that the SIFT generation code was in C++ [27].

5 FACE SEGMENTATION AND RECOGNITION

Fig. 10 shows the block diagram of our complete 3D face
recognition algorithm including the rejection classifier and
the final recognition process. During offline processing, the
gallery is constructed from raw 3D faces. A single 3D face per
individual is used. Each input 3D face is normalized, as
described in Section 3. During online recognition, a probe
from the test set is first preprocessed, as described in Section 3.
Next, its SFR and SIFT features are computed and matched
with those of the gallery to reject unlikely faces. The SFR-SIFT
matching engine results in a vector of similarity scores s of
size M (where M is the size of the gallery). The scores are
normalized to a scale of 0 to 1 (0 being the best similarity)
using (6)

s ¼ s�minðsÞ
maxðs�minðsÞÞ �minðs�minðsÞÞ : ð6Þ

The only case when the denominator in (6) can be equal to
zero is the highly unlikely case of the maximum similarity
being equal to the minimum similarity. Gallery faces whose
similarity is above a threshold are rejected. Selecting a
threshold is a trade-off between accuracy and efficiency (or
Effð Þ). In our experiments, we used a threshold (equal to
0.29) so that the verification rate is 98 percent (neutral versus
all case). The effectiveness Effð Þ of the rejection classifier
was 0.036 at the 98 percent verification rate.

The remaining gallery faces are then verified using a more
accurate matching engine. This matching engine is based on
our modified ICP [5] algorithm (see Section 5.1 for details). To
illustrate the sensitivity of the different regions of the 3D face
to expressions, we register faces with a nonneutral expression
to their respective 3D faces with a neutral expression and
measure the variance in the depth of the corresponding
pixels. Fig. 16 shows some sample 3D faces (first row), their
variance due to facial expressions (second row), and a mask
derived for each face (third row). The bright pixels in the
second row correspond to greater facial expressions. In the
third row, each mask represents a set of pixels of the face
whose variance is less than the median variance of all the
pixels. It is noticeable that, generally, the forehead, the region
around the eyes, and the nose are the least affected by
expressions (in 3D), whereas the cheeks and the mouth are the
most affected. It is possible to derive a unique expression
insensitive mask for each identity in the gallery and use it
during the recognition process. This mask can be binary or it
can assign a confidence value to each pixel depending upon
its sensitivity to expressions. However, this approach is not
possible using the FRGC v2.0 data as the data does not contain
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Fig. 14. SIFT matches between probe and gallery faces belonging to (a) the same identity and (b) different identities (lower value of similarity means

a better match). The number and quality of matches are better in the case of (a).

Fig. 15. Rejection classification results. At the 98 percent verification rate, (a) Effð Þ ¼ 0:036 for all faces, (b) Effð Þ ¼ 0:002 for neutral versus neutral
faces, and (c) Effð Þ ¼ 0:09 for neutral versus nonneutral faces.



faces with nonneutral expressions for every identity. Pre-
liminary results using this approach are reported in our
earlier work [34].

Given that the nose, the forehead, and the region around
the eyes are the least sensitive to facial expressions in 3D faces
(see Fig. 16), we segmented these features by automatically
detecting the inflection points (see Fig. 17) around the nose
tip. These inflection points are used to automatically segment
the eyes-forehead and the nose regions from the face, as
shown in Fig. 18. In our earlier work [32], [33], we segmented
these regions from only the gallery faces and matched them to
the complete probe face during recognition. This was mainly
because the offline segmentation in [32], [33] was performed
by manually selecting control points, and the online recogni-
tion process was meant to be fully automatic. However, in this
paper, we have automated the segmentation process, and
therefore, both the gallery and probe faces are segmented
before matching.

The gallery faces were automatically segmented during
offline processing. During online recognition, a part of the
gallery is rejected using the SFR-SIFT rejection classifier.
Next, the eyes-forehead and nose regions of the probe are
segmented and individually matched with those of the
remaining gallery faces using our modified ICP algorithm
(see Section 5.1).

5.1 Matching

Matching is performed using a modified ICP algorithm [5].
ICP establishes correspondences between the closest points of
two sets of 3D pointclouds and minimizes the distance error
between them by applying a rigid transformation to one of the
sets. This process is repeated iteratively until the distance error
reaches a minimum saturation value. It also requires a prior
coarse registration of the two pointclouds in order to avoid
local minima. We use our automatic pose correction

algorithm (Section 3.2) for this purpose. Our modified version
of the ICP algorithm follows the same routine except that the
correspondences are established along the z-axis only. The
two pointclouds are mapped onto the xy-plane before
correspondences are established between them. This way,
points that are close in the xy-plane but far in the z-axis are
still considered corresponding points. The distance error
between such points provides useful information about the
dissimilarity between two faces. However, points whose
2D distance in the xy-plane is more than the resolution of the
faces (1 mm) are not considered as corresponding points.
Once the correspondences are established, the pointclouds
are mapped back to their 3D coordinates, and the 3D distance
error between them is minimized. This process is repeated
until the error reaches a minimum saturation value.

Let P ¼ ½xk; yk; zk�> (where k ¼ 1 . . .nP ) and G ¼
½xk; yk; zk�> (where k ¼ 1 . . .nG) be the pointcloud of a
probe and a gallery face, respectively. The projections of P
and G on the xy-plane are given by bP ¼ ½xk; yk�> andbG ¼ ½xk; yk�>, respectively. Let F be a function that finds
the nearest point in bP to every point in bG:

ðc;dÞ ¼ FðbP; bGÞ; ð7Þ

where c and d are vectors of size nG each such that ck and dk
contain, respectively, the index number and distance of the
nearest point of bP to the kth point of bG. For all k, find gk 2 G
and pck 2 P such that dk < dr (where dr is the resolution of the
3D faces, equal to 1 mm in our case). The resulting gi
correspond to pi, for all i ¼ 1 . . .N (where N is the number
of correspondences between P and G). The distance error e to
be minimized is given in (8). Note that e is the 3D distance
error between the probe and the gallery as opposed to
2D distance. This error e is iteratively minimized and its final
value is used as the similarity score between the probe and
gallery face. To avoid local minima, a coarse to fine approach
is used by initially setting a greater threshold for establishing
correspondences and later bringing the threshold down to dr.
A higher initial threshold allows correspondences to be
established between distant points in case the pose correction
performed during normalization was not accurate

e ¼ 1

N

XN
i¼1

kRgi þ t� pik: ð8Þ

The rotation matrix R and the translation vector t in (8) can
be calculated using a number of approaches including
Quaternions and the classic SVD (Singular Value Decom-
position) method [1]. An advantage of the SVD method is that
it can easily be generalized to any number of dimensions and
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Fig. 16. Top: sample 3D faces. Center: variance of the 3D faces with

expressions. Bottom: the expression insensitive binary mask of the

3D faces. Note that the nose and eyes-forehead regions are the least

sensitive to expressions.

Fig. 17. Inflection points identified in (a) a horizontal slice and (b) a

vertical slice of a 3D face.

Fig. 18. A 3D face (a) is automatically segmented into the (b) eyes-

forehead and (c) nose regions based on the inflection points around the

nose.



is presented here for completeness. The mean of pi and gi is
given by

�p ¼
1

N

XN
i¼1

pi and ð9Þ

�g ¼
1

N

XN
i¼1

gi; respectively: ð10Þ

The cross correlation matrix K between pi and gi is given by

K ¼ 1

N

XN
i¼1

ðgi � �gÞðpi � �pÞ>: ð11Þ

Performing a Singular Value Decomposition of K

UAV> ¼ K ð12Þ

gives us two orthogonal matrices U and V and a diagonal
matrix A. The rotation matrix R can be calculated from the
orthogonal matrices as

R ¼ VU>; ð13Þ

whereas the translation vector t can be calculated as

t ¼ �p �R�g: ð14Þ

R is a polar projection of K. If detðRÞ ¼ �1, this implies a
reflection of the face in which case R is calculated using (15).

R ¼ V
1 0 0
0 1 0
0 0 detðUV>Þ

2
4

3
5U>: ð15Þ

5.2 Fusion

Each matching engine results in a similarity matrix Si (where
i denotes a modality) of size P �M (where P is the number
of tested probes, andM is the number of faces in the gallery).
An element src (at row r and column c) of a matrix Si denotes
the similarity score between probe number r and gallery face
number c. Each row of an Si represents an individual
recognition test of probe number r. All the similarity
matrices have a negative polarity in our case, that is, a
smaller value of src means high similarity. The individual
similarity matrices are normalized before fusion. Since none
of the similarity matrices had outliers, a simple min-max rule
(16) was used for normalizing each row (recognition test) of a
similarity matrix on a scale of 0 to 1

S0ir ¼
Sir �minðSirÞ

maxðSir �minðSirÞÞ �minðSir �minðSirÞÞ
; ð16Þ

S ¼
Yn
i¼1

S0i; ð17Þ

where i ¼ 1 . . .n (the number of modalities) and r ¼ 1 . . .P
(the number of probes). Moreover, maxðSirÞ and minðSirÞ,
respectively, represent the minimum and maximum value
(that is, a scalar) of the entries of matrix Si in row r. The
normalized similarity matrices S0i are then fused to get a
combined similarity matrix S. Two fusion techniques were
tested, namely, multiplication and weighted sum. The
multiplication rule (17) resulted in a slightly better

verification rate but a significantly lower rank-one recogni-
tion rate. Therefore, we used the weighted sum rule (18) for
fusion as it produced overall good verification and rank-one
recognition results

Sr ¼
Xn
i¼1

�i�irS
0
ir; ð18Þ

�ir ¼
meanðS0irÞ �minðS0irÞ
meanðS0irÞ �min2ðS0irÞ

: ð19Þ

In (18), �i is the confidence in modality i, and �ir is the
confidence in recognition test r for modality i. In (19),
min2ðS0irÞ is the second minimum value of S0ir. The final
similarity matrix S is once again normalized using the min-
max rule (20) resulting in S0, which is used to calculate the
combined performance of the used modalities

S0r ¼
Sr �minðSrÞ

maxðSr �minðSrÞÞ �minðSr �minðSrÞÞ
: ð20Þ

When a rejection classifier is used, the resulting similarity
matrices are sparse since a probe is matched with only a
limited number of gallery faces. In this case, the gallery faces
that are not tested are given a value of 1 in the normalized
similarity matrix. Moreover, the confidence weight �ir is also
set to 1 for every recognition trial. In some recognition trials,
all faces are rejected but one. Since there is only one face left, it
is declared as identified with a similarity of zero.

6 RESULTS AND ANALYSIS

We present the results of three different variants of our
algorithm. The first one is the multimodal hybrid face
recognition (hereafter referred to as MMHe) algorithm, as
described in Fig. 10. The second variant comprises only the
3D eyes-forehead and nose matching engines and does not
include the rejection classifier. This variant is referred to as
the R3D algorithm. The third variant fuses the 3D eyes-
forehead and nose matching engines with the SFR-SIFT
matching engine. This variant is referred to as the MMHa

algorithm. MMHe is the most efficient, whereas MMHa is
the most accurate variant. The verification and identifica-
tion results are presented in Sections 6.1 and 6.2 for
comparison. Moreover, a comparison of MMHa with
existing algorithms is also provided in Section 6.3.

6.1 Verification Results

Fig. 19 shows the verification results of theMMHe algorithm.
Note that these results include the errors propagated from the
rejection classifier. The verification rates at 0.001 FAR are
99.43 percent and 94.80 percent for probes with a neutral and
a nonneutral expression, respectively. In the case of neutral
versus neutral, the nose performs slightly better compared to
the eyes-forehead because the latter is affected by hair. In the
neutral versus nonneutral case, the results are the other way
around, which is mainly because the eyes-forehead is
comparatively less sensitive to expressions. Note that the
nose region performed significantly better compared to our
earlier experiments [33] because of our improved preproces-
sing techniques. These results also show that the human nose
is an important and independent biometric, just like the
human ear [49]. Its major advantages over the ear are that it
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can be observed from frontal, as well as profile, views and is
unlikely to be occluded by hair.

Fig. 20 shows the verification results of the R3D algorithm.
In this case, the verification rates at 0.001 FAR are
99.38 percent and 97.00 percent for probes with a neutral
and a nonneutral expression, respectively. Note that the
verification results, with or without using a rejection
classifier, for faces with neutral expressions are almost equal
because at Effð Þ ¼ 0:036, the verification rate of the rejection
classifier is very high (that is, 99.6 percent, see Fig. 15b). For
faces with a nonneutral expression, the verification rate
drops from 97.0 percent to 94.8 percent (by 2.2 percent) as a
result of using the rejection classifier. There are many
circumstances where a loss of 2 percent accuracy will be
more than justified in order to achieve a nearly 30 fold
improvement in runtime. An interesting point to note is that
the individual performances of the eyes-forehead and the
nose increase when the rejection classifier is used. For
example, the verification rate of the eyes-forehead increases
from 92.74 percent to 95.62 percent with rejection (Figs. 19a
and 20a). This is because the rejection classifier increases the
odds of recognition by reducing the effective gallery size.
However, there is a probability that the classifier may also
reject the correct identity, which is why the combined
performance is deteriorated. The accuracy of the combined
case is higher than the individual modalities, and therefore,
the increase in odds of recognition is not of much use.

Fig. 21 shows the verification results of the MMHa

algorithm. The verification rate at 0.001 FAR in this case is

99.74 percent and 98.31 percent for faces with a neutral and
a nonneutral expression, respectively.

Fig. 22 shows the performance of our R3D algorithm for the
FRGC Experiment 3 (shape only), that is, when the query set
(4,007 faces) is matched with the target set (4,007 faces). This
amounts to 16 million comparisons each for the nose and
eyes-forehead regions. The resulting two (4; 007� 4; 007)
similarity matrices are fused using a sum rule. As opposed to
the remaining experiments in this paper, this is a one-to-one
matching experiment and, therefore, the similarity matrices
are not normalized in this case. The verification rates at
0.001 FAR of the eyes-forehead and the nose regions are
72.55 percent and 74.31 percent, respectively. The combined
verification rate at 0.001 FAR is 86.6 percent, which is
comparable to the best verification rate reported in [42] for
Experiment 3 shape. The results of MMHe and MMHa for
FRGC Experiment 3 are not reported due to the following
reason. Recall that a rejection classifier quickly eliminates a
large percentage of unlikely classes, and the accuracy
required for rejection classifiers is less constraining compared
to recognition classifiers [2]. The FRGC Experiment 3 is a one-
to-one matching experiment, and hence, there is no need for a
prior rejection phase.

6.2 Identification Results

Fig. 23 shows the results of the MMHe algorithm. The
identification rates in this case are 98.20 percent and
93.74 percent, respectively, for probes with a neutral and a
nonneutral expression. These results are similar to the
verification results in the sense that the nose performs slightly
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Fig. 19. Receiving operator characteristic (ROC) curves of the MMHe algorithm, as shown in Fig. 10. The step in ROC curves is due to the use of a
rejection classifier. The combined verification rate at 0.001 FAR for neutral versus all faces is 97.54 percent.

Fig. 20. ROC curves of the R3D algorithm. The combined verification rate at 0.001 FAR for neutral versus all faces is 98.5 percent.



better in the neutral versus neutral case and the eyes-forehead

performs better in the neutral versus nonneutral case.
Fig. 24 shows the identification results of the

R3D algorithm. The identification rates in this case are

98.82 percent and 92.36 percent, respectively, for probes

with a neutral and a nonneutral expression. The neutral

versus neutral expression results are almost identical to

Fig. 23b, whereas the identification rate drops from

93.74 percent to 92.36 percent (by 1.38 percent) as a

result of using the rejection classifier. Fig. 25 shows the

identification results of the MMHa algorithm. The

identification rates in this case are 99.02 percent and

95.37 percent for probes with neutral and nonneutral

expressions, respectively.

6.3 Comparison with Other Algorithms

Table 1 compares the verification results of the MMHa

algorithm to others (including the baseline PCA perfor-

mance), which used the FRGC v2.0 data. The FRGC bench-

mark is used for comparison, that is, the verification rate at

0.001 FAR. Note that our algorithm has the best 3D and

multimodal performance and is the least sensitive to facial

expressions. The results of Chang et al. [11] are not included

in Table 1 since they did not report their verification rates.

They reported a rank-one recognition rate of 91.9 percent for

3D faces (neutral versus all), which is lower than the

96.2 percent rank-one recognition rate of our algorithm

(Fig. 24a).

7 LIMITATIONS AND FUTURE WORK

Our nose detection and pose correction algorithms assume
that the input data contains a front view of a single face with
small pose variations (�15 degrees) along the x-axis and the
y-axis. However, pose variation along the z-axis can be
between �90 degrees. The accuracy of our nose detection
algorithm is 98.3 percent (only 85 failures out of 4,950). The
failures were mainly due to hair covering part of the face (see
Fig. 26a) and, in a few cases, due to exaggerated expressions
(for example, widely open mouth and inflated cheeks). Using
a face detection algorithm (for example, [45]) in combination
with a skin detection algorithm on the 2D colored images
prior to nose detection can make the subsequent 3D nose
detection simple and more accurate. The pose correction
algorithm failed to correct the pose of 0.16 percent of the faces
(only eight out of 4,950) along the z-axis. Hair was also a
source of error during pose correction, as shown in Fig. 26b.
Hair also caused problems in calculating the SFR and during
the final verification process. Most of the false positives
during the eyes-forehead and nose matching occurred due to
hair and exaggerated expressions. Fig. 27 shows six example
probes and their corresponding gallery faces, which could not
be recognized by our algorithm. Examples of challenging
faces correctly recognized by our algorithm can be seen in
Fig. 7 (except for the second last face in the third row). A skin
detection algorithm could be useful to overcome the limita-
tions due to hair [33]. However, applying it before pose
correction will result in missing regions from the face
(because they were covered by hair) leading to an incorrect
pose. Another source of error was the inherent coregistration
error between the 2D and 3D faces in the FRGC v2.0 data,
which resulted in an incorrect region being cropped from the
2D face (see Fig. 26c).

In our future work, we intend to use skin detection in our
algorithm and fill in the missing regions by using morph-
able models and facial symmetry. We also intend to use a
more robust illumination normalization algorithm to im-
prove the recognition performance on 2D images. Finally,
we aim to extend our algorithms to be able to automatically
detect profile views and perform fully automatic face
recognition on them.

8 CONCLUSION

We presented a fully automatic multimodal hybrid face
recognition algorithm and demonstrated its performance on
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Fig. 22. ROC curves for all versus all case.

Fig. 21. ROC curves of the MMHa algorithm, that is, when the region-based matching engines are combined with the SFR-SIFT-based matching
engine. No rejection is performed in this case. The combined verification rate at 0.001 FAR for neutral versus all faces is 99.32 percent.



the FRGC v2.0 data set. Several novelties were presented
while addressing major problems in the area of 3D and
multimodal face recognition. Our contributions include

1. a fully automatic pose correction algorithm,
2. an SFR for 3D faces,
3. a novel SFR-SIFT-based rejection classifier, and
4. a region-based matching algorithm for expression

robust face recognition.

Although these algorithms have been applied to 3D face
recognition, they can easily be generalized to other 3D shapes.
In addition to these novelties, we, for the first time in the
literature, successfully used the 3D nose as an independent
biometric. Furthermore, we also presented the first ever

comprehensive study (that is, using a large database) on the
use of SIFT descriptors for 2D face recognition under
illumination and expression variations. We addressed three
major challenges, namely, automation, efficiency, and ro-
bustness to facial expressions. The performance of our
algorithms was demonstrated on the largest publicly avail-
able corpus of 3D face data. The performance of the SFR-SIFT
rejection classifier was 0.036, which amounts to 27.78 times
improvement in recognition time. Our multimodal hybrid
recognition algorithms achieve 99.74 percent and 98.31 per-
cent verification rates at 0.001 FAR for faces with a neutral
and a nonneutral expression, respectively. The identification
rates for the same were 99.02 percent and 95.37 percent. In
terms of accuracy, these results are slightly better than any
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Fig. 23. Identification results of the MMHe algorithm, as shown in Fig. 10. The combined rank-one identification rate for neutral versus all faces is

95.91 percent.

Fig. 24. Identification results of the R3D algorithm. The combined rank-one identification rate for neutral versus all faces is 96.2 percent.

Fig. 25. Identification results of the MMHa algorithm, that is, when the region-based matching engines are combined with the SFR-SIFT-based

matching engine. No rejection is performed in this case. The combined rank-one identification rate for neutral versus all faces is 97.37 percent.



previously published results. This is quite understandable

as there was little room for improvement. The individual

verification rate at 0.001 FAR of our 3D region-based

matching algorithm alone is 98.5 percent (Fig. 20a), which is

a strong indicator of the potential of 3D face recognition. Our

results show that the eyes-forehead and nose regions of a face

contain the maximum discriminating features important for

the expression of robust face recognition.
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TABLE 1
Verification Rates at 0.001 FAR Using the FRGC v2.0 Data

Our algorithm has the best 3D and multimodal performance and is the least sensitive to facial expressions (NA: Not Available).

Fig. 26. An example of (a) incorrect nose detection, (b) incorrect pose correction due to hair, and (c) registration error in the FRGC data.

Fig. 27. Example probes that could not be recognized correctly (top) and their corresponding gallery faces (bottom).
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