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Abstract— Multiple-input multiple-output (MIMO) wireless
systems obtain large diversity and capacity gains by employing
multi-element antenna arrays at both the transmitter and re-
ceiver. The theoretical performance benefits of MIMO systems,
however, are irrelevant unless low error rate, spectrally efficient
signaling techniques are found. This paper proposes a new
method for designing high data-rate spatial signals with low error
rates. The basic idea is to use transmitter channel information
to adaptively vary the transmission scheme for a fixed data-rate.
This adaptation is done by varying the number of substreams
and the rate of each substream in a precoded spatial multiplexing
system. We show that these substreams can be designed to
obtain full diversity and full rate gain using feedback from the
receiver to transmitter. We model the feedback using a limited
feedback scenario where only finite sets, or codebooks, of possible
precoding configurations are known to both the transmitter and
receiver. Monte Carlo simulations show substantial performance
gains over beamforming and spatial multiplexing.

Index Terms-Diversity methods, MIMO systems, Quantized
precoding, Rayleigh channels, Spatial multiplexing.

I. I NTRODUCTION

Wireless systems employing multi-element antenna arrays
at both the transmitter and receiver, known as multiple-
input multiple-output (MIMO) systems, promise large gains in
capacity and quality compared with single antenna links [1].
Spatial multiplexing is a simple MIMO signaling approach that
achieves large spectral efficiencies with only moderate trans-
mitter complexity. Receivers for spatial multiplexing range
from the high complexity, low error rate maximum likelihood
decoding to the low complexity, moderate error rate linear
receivers [2], [3]. Unfortunately, rank deficiency of the matrix
channel can cause all spatial multiplexing receivers to suffer
increases in the probability of error [2]–[4].

Linear transmit precoding, where the transmitted data vector
is premultiplied by a precoding matrix that is adapted to some
form of channel information, adds resiliency against channel
ill-conditioning. Linear precoded spatial multiplexing has been
proposed for transmitter’s with full channel state information
(CSI) [5]–[7], channel first-order statistics [8]–[10], channel
second order statistics [11]–[15], partial subspace knowledge
[16], or limited feedback from the receiver (which includes
antenna subset selection) [4], [17]–[26]. Optimization tech-
niques for choosing the precoding matrix include minimizing
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the mean squared error (MSE) [5], [6], maximizing the receive
minimum distance (with receive distance defined as the two-
norm of the difference between two unique symbol vectors
after multiplication by the channel) [7], maximizing the mini-
mum singular value [22], and maximizing the mutual informa-
tion assuming Gaussian signaling [4], [17], [20], [26]. These
precoding methods provide probability of error improvements
compared with unprecoded spatial multiplexing [2], butlinear
precoding does not guarantee full diversity order and full rate
growth. This follows from the fact that linear precoders usually
limit the number of substreams transmitted in order to obtain
improved error rate performance [2].

The full rate and full diversity problem was first discussed
in space-time code design in [27], [28]. These open-loop
(i.e. no channel knowledge at the transmitter) space-time
codes use spatial and temporal redundancy combined with
sphere decoding at the receiver. Unfortunately, these codes
are difficult to decode even using the low-complexity sphere
decoder. Given these results, the natural question is whether
full rate and full diversity gain transmission can be obtained
in a more practical solution at the expense of feedback from
the receiver to transmitter.

This problem was also addressed for the special case of
antenna subset selection precoding in [29], [30]. These papers
studied systems where the size of the antenna subset, along
with the spatial multiplexing constellation, could be varied
in order to guarantee full diversity performance for a fixed
data-rate. Various selection criteria were proposed for both
dual-mode (i.e. selecting between spatial multiplexing and
selection diversity) and multi-mode antenna selection. These
methods provided substantial performance improvements com-
pared with traditional spatial multiplexing. Antenna subset
selection, however, is quite limited because the precoding
matrices are restricted to columns of the identity matrix.

In this paper, we propose a modified version of linear
precoding calledmulti-mode precoding. Multi-mode precoding
varies the number of substreams contained in the precoded
spatial multiplexing vector assuming that thetransmitted data-
rate is independent of the number of substreams chosen
for transmission. This allows the transmitter to adapt the
signal using a combination of linear precoding and adaptive
modulation. This substream selection has been studied inde-
pendently in related work [31], [32]. We present methods
for choosing the multi-mode precoder based on minimizing
the probability of error and maximizing the mutual informa-
tion assuming independent and identically distributed (i.i.d.)
Gaussian signaling. Because it is often impractical to assume
perfect channel information at the transmitter, we present a
limited feedback multi-mode precoder using limited feedback
approaches developed in [23]–[25], [33], [34]. Limited feed-
back multi-mode precoders use precoder codebooks, finite sets
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of precoder matrices, for each of the supported substream
numbers. These codebooks are designed offline and stored
at both the transmitter and receiver. The chosen multi-mode
precoder is then conveyed from the receiver to transmitter over
a limited capacity feedback channel using a small number of
bits.

Multi-mode precoding represents a new approach to
diversity-multiplexing tradeoff in MIMO wireless systems.
Previous work in diversity-multiplexing tradeoff, see for ex-
ample [27], [28], [35]–[37], emphasized that every spatio-
temporal signaling method has an accompanying diversity-
multiplexing gain tradeoff curve. Diversity systems, such as
orthogonal space-time block codes or transmit beamforming,
maximize the diversity gain for a fixed rate, while spatial
multiplexing maximizes the multiplexing gain. Our system
actually “adapts” the transmission scheme between different
diversity-multiplexing curves by varying the number of sub-
streams for transmission. This allows multi-mode precoding
to maximize the multiplexing gain if the rate is allowed to
vary with SNR and maximize the diversity gain if the rate is
held constant. This adaptation is in the spirit of that studied
in [36] but is more general because we are not restricted to
only two transmission types (such as Alamouti coding and
spatial multiplexing as in [36]). Unlike [36], we do not switch
between space-time coding and spatial multiplexing but rather
vary the number of spatial multiplexing substreams and the
precoder.

Limited feedback multi-mode precoding is also one so-
lution to the important problem of covariance optimization
for transmitters without any form of CSI besides feedback.
This problem has previously been studied in [38]–[41]. Unlike
[38], we are concerned with maximizing the average mutual
information rather than obtaining a better quantized estimate
of the optimal waterfilling covariance matrix. Our approach
also uses fixed codebooks known to both the transmitter and
receiver as opposed to the random vector quantization (RVQ)
technique described in [39], [40]. Most importantly, we do
not require that the codebook be redesigned when the SNR
changes as is assumed in [38], [41]. We give a technique
that can generate codebooks off-line. These codebooks can
then be used regardless of the operating SNR. Practically,
this is a large savings compared to the algorithms in [38],
[41] that require vector quantization algorithms that generate
thousands of channel realizations and then perform iterative
optimizations to be run given an SNR value.

This paper is organized as follows. Section II introduces
the multi-mode precoded spatial multiplexing system model.
Criteria for choosing the optimal matrix from the codebook are
presented in Section III. Multi-mode precoding using limited
feedback from the receiver to the transmitter is considered in
Section IV. The relationship between limited feedback multi-
mode precoding and covariance quantization is explored in
Section V. Section VI illustrates the performance improve-
ments over previously proposed techniques using Monte Carlo
simulations of the symbol error rate and mutual information.
Conclusions are presented in Section VII.

II. SYSTEM OVERVIEW

The Mt transmit andMr (with Mt ≤ Mr) receive antenna
MIMO wireless system studied in this paper is shown in Fig.
1. For each channel use,R bits are demultiplexed intoM
different bit streams. Each bit stream is modulated using the
same constellationS, producing a vectorsk at thekth channel
use. This means thateach substream carriesR/M bits of
information. The spatial multiplexing symbol vector1 sk =
[sk,1 sk,2 . . . sk,M ]T is assumed to have power constraints so
that Esk

[sks∗k] = Es

M IM . Note that this means theaverage of
the total transmitted powerat any channel use isindependent
of the number of substreamsM .

Spatial
Multiplexer

+

+

v
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 Mr,k yksk

M

M: # substreams FM chosen from
codebook M FM sk

bits sk

H
Mode
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Low-rate feedback path
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Fig. 1. Block diagram of a limited feedback precoding MIMO system.

An Mt × M linear precoding matrixFM maps sk to
an Mt-dimensional spatial signal that is transmitted onMt

transmit antennas. The transmitted signal vector encounters
an Mr × Mt matrix channelH before being added with an
Mr-dimensional white Gaussian noise vectorvk. Assuming
perfect pulse-shaping, sampling, and timing, this formulation
yields an input-output relationship

y = HFMs + v (1)

where the channel use indexk has been suppressed because we
are interested in vector-by-vector detection ofsk. We assume
that H has i.i.d. entries with each distributed according to
CN (0, 1). We employ a block-fading model where the channel
is constant over multiple frames before independently taking
a new realization. As well, the noise vectorv is assumed to
have i.i.d. entries distributed according toCN (0, N0).

We assume that the receiver has perfect knowledge ofH and
FM . The matrixHFM can be thought of as aneffective chan-
nel, and the receiver decodesy using this effective channel and
a spatial multiplexing decoder. Spatial multiplexing decoders
include ML, sub-optimal ML, linear, and V-BLAST receivers.
An ML receiver decodes to an estimated signal vectorŝ using

ŝ = argmin
s′∈SM

‖y −HFMs′‖22 . (2)

Sub-optimal ML receivers, such as the sphere decoder [42],
[43], solve the optimization in (2) by performing reduced com-
plexity ML decoding over a reduced set of candidate vectors.

1We useCN (0, σ2) to denote the complex Gaussian distribution with
independent real and imaginary parts distributed according toN (0, σ2/2),
∗ for conjugate,T for transpose,∗ for conjugate transpose,+ for the matrix
pseudo-inverse,IM for the M × M identity matrix, log2 is the base two
logarithm,ln is the natural logarithm,λj{H} to denote thejth largest singular
value of a matrixH, tr( ) for the trace operator that gives the sum of the
diagonal elements of a matrix,‖·‖2 for the matrix two-norm,‖·‖F to denote
the matrix Frobenius norm,|a| to denote the absolute value of a complex
number a, |M| to denote the cardinality of a setM, A\B denotes the
elements in the setA that are not inB, andEs[·] to denote expectation with
respect to random variables.
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A linear receiver applies anM × Mr matrix transformation
G to y and then independently detects each entry ofGy. If
a zero-forcing (ZF) linear receiver is used,G = (HFM )+.
Minimum mean squared error (MMSE) decoding usesG =
[F∗MH∗HFM + (N0M/Es)IM ]−1F∗MH∗. V-BLAST decod-
ing uses successive cancellation with ordering using ZF or
MMSE receivers. An overview of the V-BLAST algorithm
can be found in [44].

Note that the total instantaneous transmitted power for this
system is given bys∗F∗MFMs. The precoder matrixFM must
therefore be constrained in order to limit the transmitted power.
We will restrictλ2

1{FM} ≤ 1 (i.e. the largest squared singular
value ofFM ) in order to limit the peak-to-average ratio. This
means thatEs [s∗F∗MFMs] ≤ Es regardless of the modulation
scheme or the value ofM. It was shown in [5], [24] that
matrices that optimize MSE, capacity, the minimum effective
channel singular value (i.e. maximizeλ2

min{HFM}), and total
effective channel power (i.e. maximize‖HFM‖F ) over the set
of all matrices

L(Mt,M) = {L ∈ CMt,M | λ2
1{L} ≤ 1} (3)

are all members of the set

U(Mt, M) = {U ∈ CMt,M | U∗U = IM}.

For this reason, we will further restrict thatFM ∈ U(Mt,M)
for any chosen value ofM. Intuitively, this means that the
precoding attempts to diagonalize the channel without any
form of power pouring among the spatial parallel channels.

The key differencebetween multi-mode precoding and pre-
viously proposed linear precoders is thatM is adapted using
current channel conditionsby allowing M to vary between
1 and Mt. We refer to the value ofM as themodeof the
precoder. Usually, only a subset of theMt possible modes can
be chosen. For example, a necessary condition that motivates
using only a subset of{1, . . . , Mt} is thatR/M is an integer
for only a few of the modes between1 and Mt. As well, it
might be practical from an implementation complexity point-
of-view to support only a small subset of modes ifMt is
large. We will denote the set of supported mode values asM.
For example, ifR = 8 bits andMt = 4 then only modes in
the setM = {1, 2, 4} can be supported. Another example is
dual-mode precodingwhereM = {1, Mt}.

We assume that a selection functiong : CMr×Mt → M
picks the “best” mode according to some criterion, and we set
M = g(H). After M is chosen, the precoderFM is selected
from a setFM ⊆ U(Mt,M) using a selection functionfM :
CMr×Mt → FM . Therefore,FM = fM (H). This means that
there are|M| different precoder selection functions.

We assume that the transmitter has no prior knowledge of
the matrixH and thatFM is designed using data sent from
the receiver over a limited capacity feedback channel. This
assumption of zero prior channel knowledge approximates a
frequency division duplexing (FDD) system where the forward
and reverse frequency bands are separated by a frequency
bandwidth much larger than the channel coherence bandwidth.

III. M ULTI -MODE PRECODERSELECTION

The selection of the mode and precoder matrix will deter-
mine the performance of the entire system. Because we are
interested in constructing a high-rate signaling scheme with
low error rates, we will present bounds on the probability
of vector symbol error (i.e. the probability that the receiver
returns at least one symbol in error). We will also review
the capacity results for MIMO systems both with and without
transmitter CSI.

A. Performance Discussion

The selection criterion used to chooseM andFM must tie
directly to the resulting performance of the precoded spatial
multiplexing system. We will address selection details based
on two different performance measures: probability of error
and capacity.

1) Probability of Error: The probability of error analysis
will be broken down into the three different receiver cate-
gories: ML, linear, and V-BLAST. Note that the ML bounds
can also be employed for the popular sphere decoder [42],
[43] which provides ML performance using a low-complexity
search. In order to provide a fair tradeoff, we will use the
probability of vector symbol error as the probability of error
metric. This choice was made to provide a fair comparison
between modes that transmit symbol vectors of different
dimensionality.
Maximum Likelihood Receiver
ML performance is commonly characterized as a function of
the receive minimum distance defined as

d2
min,rec = min

s′,s′′∈SM :s′ 6=s′′
‖HFM (s′ − s′′)‖22 . (4)

Using the receive minimum distance, the probability of vector
symbol error can be bounded using the nearest neighbor union
bound (NNUB) as

Pe(H, Es/N0) ≤ MNe(M, R)Q




√
Es

MN0

d2
min,rec

2


 (5)

where Ne(M, R) is a nearest neighbor scale factor for the
constellationS. Thus to minimize this bound, the receive
minimum distance must be maximized. The minimum receive
distance, however, can be bounded as

d2
min,rec ≥

(
min

u∈U(M,1)
‖HFMu‖22

)
d2

min(M, R)

= λ2
M{HFM}d2

min(M, R) (6)

where dmin(M,R) = mins′ 6=s′′ |s′ − s′′|2 denotes the min-
imum distance for the constellationS used whenR/M bits
are modulated per substream.
Linear Receiver
It was shown in [22] that the effective SNR of thekth

substream after linear processing is given by

SNR
(ZF )
k (FM ) =

Es

MN0[F∗MH∗HFM ]−1
k,k

(7)
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for ZF decoding and

SNR
(MMSE)
k (FM ) =

Es

MN0[F∗MH∗HFM + MN0
Es

IM ]−1
k,k

−1

(8)
for MMSE decoding whereA−1

k,k is entry(k, k) of A−1. The
minimum substream SNR, given by

SNRmin(FM ) = min
1≤k≤M

SNRk(FM ), (9)

is an important parameter that will be used to characterize
performance. For ZF and MMSE decoding,SNRmin(FM )
can be bounded by [22]

SNRmin(FM ) ≥ λ2
M{HFM} Es

MN0
. (10)

Therefore,the minimum singular value of the effective channel
is often an important parameter in linear precoded MIMO
systems.

We are more interested, however, in tight bounds on the
probability of vector symbol error. Given a matrix channel
H, the conditional probability of vector symbol error can be
bounded by the NNUB as

Pe(H, Es/N0) ≤ MNe(M,R)Q

(√
SNRmin

d2
min(M,R)

2

)

≤ MNe(M,R) ·

Q




√
λ2

M{HFM} Es

MN0

d2
min(M, R)

2


 .

(11)

whereSNRmin is computed for the given linear receiver.
V-BLAST Receiver
Similarly to linear receivers, the V-BLAST receiver probability
of error can be bounded using the SNR of the weakest
substream after cancellation and before detection. Combining
the NNUB with the results in [32], this gives

Pe(H, Es/N0) ≤ MNe(M,R) ·

Q




√
λ2

M{HFM} Es

MN0

d2
min(M, R)

2


 .

(12)

Once again, the minimum singular value of the effective
channelHFM plays an important role in system performance.
Relation to Unitary Precoding
It must be noted that each receiver uses the same performance
bound that relates back to the minimum singular value of
the precoded channel matrixλ2

M{HFM}. Under the assump-
tion of maximum singular value constrained precoders (i.e.
λ1{FM} ≤ 1), unitary precoding is optimal with respect to
minimizing the probability of error bound.

2) Capacity: The mutual information of the channelHFM

assuming uncorrelated Gaussian signaling on each substream,
denotedCUT , is known to be

CUT (FM ) = log2 det

(
IM +

Es

MN0
F∗MH∗HFM

)
. (13)

The notationCUT is used because this is commonly called
the uninformed transmitter (UT) capacity (i.e. no transmitter
CSI) [2]. Note that this is not really a “capacity” expression
in the sense of distribution maximization because we assume
a fixed distribution [45]. We will, however, refer to (13) as
the capacity of the effective channelHFM when there is no
form of CSI at the transmitter in order to follow existing
terminology in the MIMO literature. When transmitter and
receiver both have perfect knowledge ofH and FM , the
capacity is found by waterfilling [1]–[3].

B. Selection Criteria

We will present probability of error and capacity selection.
The probability of error selection is based on the previous
work in [22], [29], [30] while the capacity selection is similar
to work presented in [17], [22].

Probability of Error Selection
Assuming a probability of error selection criterion, the optimal
selection criterion would obviously be to choose the mode and
precoder that provide the lowest probability of vector symbol
error. Selection using this criterion, however, is unrealistic
because closed-form expressions for the probability of vector
symbol error conditioned on a channel realization are not
available to the authors’ knowledge. The NNUB can be suc-
cessfully employed in place of this bound for asymptotically
tight selection. Using the NNUB results in Section III-A, the
following selection criterion is obtained.

Probability of Error Selection Criterion:ChooseM and
FM such that

g(SV )(H) = argmax
m∈M

λ2
m{Hf

(SV )
m (H)}
m

d2
min(m,R) (14)

f
(SV )
M (H) = argmax

F′∈FM

λ2
M{HF′}. (15)

The function (15) corresponds to finding the optimal pre-
coding matrix from a limited feedback codebookFM con-
ditioned on a specific mode numberM. This optimization,
thus, corresponds to a fixed mode limited feedback codebook
matrix selection. The mode number is determined in (14) using
the optimal codebook precoder matrix for each mode. Thus
the receiver would send both the chosen mode number (i.e.
g(SV )(H)) and the optimal precoder given that mode (i.e.
f

(SV )
M (H)) back to the transmitter.
This criterion is computed by first searching for the pre-

coder (denoted byf (SV )
m (H)) in each mode’s codebook

(i.e. Fm) that maximizes the effective channel minimum
squared singular value. The optimal mode is then deter-
mined by computing the receive minimum distance bound
λ2{Hf

(SV )
m (H)}d2

min(m,R)/m for each mode inM and
returning the mode with the largest bound. These optimizations
correspond to multiple brute force searches.

Capacity Selection
While capacity selection is not optimal from a probability of
error point-of-view, it can provide insight into the attainable
spectral efficiencies given the multi-mode precoding system
model when an ML or V-BLAST receiver is used. Because
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the uninformed transmitter capacity is evaluated in closed-
form given a matrix channel, the following criterion can be
succinctly stated.

Capacity Selection Criterion:ChooseM andFM such that

g(Cap)(H) = argmax
m∈M

CUT (f (Cap)
m (H))

f
(Cap)
M (H) = argmax

F′∈FM

CUT (F′). (16)

IV. L IMITED FEEDBACK MULTI -MODE PRECODING

We now consider the implementation of multi-mode precod-
ing when the transmitter hasno form of channel knowledge
besides feedback. This design makes multi-mode precoding
practical even in systems that do not meet the assumption of
full transmitter CSI.

A. Codebook Model

The design of an adaptive modulator in a system without
transmitter CSI is daunting because we must find a simple
method that allows the transmitter to adapt tocurrent channel
conditions. We will overcome the lack of transmitter CSI by
using a low-rate feedback channelthat can carry a limited
number of information bits, denoted byB, from the receiver
to the transmitter.

In this limited feedback scenario, the precoderFM is chosen
from a finite set, orcodebook, of NM different Mt × M
precoder matricesFM = {FM,1,FM,2, . . . ,FM,NM

}. Thus,
we assume that there is a codebook for each supported mode
value.Because there are a total of

Ntotal =
∑

m∈M
Nm

codeword matrices, a total of

B = dlog2(Ntotal)e =

⌈
log2

( ∑

m∈M
Nm

)⌉

bits is required for feedback. Feedback can thus be kept to a
reasonable amount by varying the size ofNM for each mode.

There are two main problems associated with this codebook-
based limited feedback system. First, we must determine how
to distribute theNtotal codewords among the modes inM.
The second problem is how to designFM givenM andNM .
We present solutions for both of these problems in Sections
IV-B and IV-C.

B. Diversity-Multiplexing Codeword Distribution

The feedback amountB is often specified offline by general
system design constraints. For example, onlyB bits of control
overhead might be available in the reverselink frames. For this
reason, we will assume thatB is a fixed system parameter.
Thus, we wish to understand how to distributeNtot = 2B

codeword matrices among the|M| modes.
In most standardized wireless scenarios, the system can

support a wide range of different SNR values. Because we
do not want to redesign the codebooks each time the SNR
changes, we will take a different approach than [38], [41]

where the codebook is explicitly a function of the SNR.
Our approach will be based on maximizing the asymptotic
performance measures of diversity gain and multiplexing gain.

Diversity gain is a fundamental performance parameter
in MIMO communications that has been given a variety
of definitions. For probability of error selection, we will
define diversity as the negative of the probability of error
curve’s asymptotic slope. Following [26], [46], [47], we define
diversity gain for capacity selection as the negative of the prob-
ability of outage curve’s asymptotic slope. Mathematically, a
MIMO wireless system is said to have diversity gaind [35] if

d =





− limEs/N0→∞
log(Pe(Es/N0))

log(Es/N0)
, if probability of

error selection;

− limEs/N0→∞
log(Pout(R(Es/N0)))

log(Es/N0)
, if capacity

selection.

The diversity gain is always bounded above by the product of
the number of transmit and receive antennas,MtMr. Diversity
gain, or diversity order, is one of the fundamental parameters
for MIMO systems. Therefore, it will be essential that we
maximize the diversity gain using as few bits of feedback as
possible.

As in [35], let =̇ denote exponential equality. This means
that f(Es/N0)=̇(Es/N0)d if

lim
Es/N0→∞

log f(Es/N0)
log(Es/N0)

= d. (17)

The following lemma addresses the conditions sufficient to
obtain full diversity order.
Lemma 1.A If N1 ≥ Mt and the rate is fixed, multi-mode
precoding provides full diversity order.

Proof: Each selection criterion will be treated separately.
Probability of Error Selection
Combining the probability of error results in Section III-A
reveals that the probability of vector symbol error with an
ML, linear, or V-BLAST receiver can be bounded as

Pe(Es/N0) = EH [Pe(H, Es/N0)]

≤ EH

[
MNe(M, R) ·

Q




√
λ2

M{HFM} Es

MN0

d2
min(M,R)

2





 .

(18)

Bounding this by the transmit diversity case gives

Pe(Es/N0)

≤ EH


Ne(1, R)Q




√
max
f∈F1

λ2
1{Hf} Es

N0

d2
min(1, R)

2





 .

≤ EH

[
Ne(1, R) ·

Q




√(
max
k,l

|hk,l|22
) Es

N0

λ2
Mt
{W}d2

min(1, R)
2MrMt







(19)
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where W = [f1 f2 · · · fMt ] is constructed by takingMt

vectors fromF1. The upper-bound in (19) rolls off with full
diversity if the vectors inF1 spanCMt . This condition was
shown in [48] to be satisfied whenN1 ≥ Mt and F1 is a
non-trivial codebook design.
Capacity Selection
We need to show that

Pout(R) = Pr

(
max
M

max
F∈FM

CUT (F) < R

)
(20)

rolls off with full diversity. Note that

Pout(R) ≤ Pr

(
max
f∈F1

log2

(
1 +

Es

N0
‖Hf‖22

)
≤ R

)
. (21)

Rearranging gives

Pout(R) ≤ Pr

(
max
f∈F1

Es

N0
‖Hf‖22 ≤

(
2R − 1

))
. (22)

This is bounded further as

Pout(R) ≤ Pr

(
λ2

Mt
{W}

M2
t M2

r

Es

N0
‖H‖2F ≤ (

2R − 1
))

=̇ (Es/N0)−MtMr (23)

with W defined as before. This is simply the outage proba-
bility of orthogonal space-time block codes with an SNR shift

of
λ2

Mt
{W}

M2
t M2

r
and was shown to possess full diversity order in

[35].
The achievability of full diversity gain is a substantial

benefit. Spatial multiplexing has limited diversity order per-
formance (ex. achieves diversity orderMr for overly complex
maximum likelihood decoding), so a large diversity increase
such as this adds considerable error rate improvements.

Just as diversity order is often used to characterize proba-
bility of error performance,multiplexing gaincan be used to
characterize spectral efficiency. LetR(Es/N0) = r log(Es/N0)
denote the supported data rate as a function of SNR. A MIMO
wireless system is said to have a multiplexing gain ofc [35]
if

c = lim
Es/N0→∞

R(Es/N0)
log(Es/N0)

, (24)

and this rate is the supremum of all rates that can be trans-
mitted with a non-zero diversity order. Multiplexing gain is
a fundamental property and, in our system, will be bounded
from above bymin(Mt, Mr) = Mt.

The next lemma addresses multiplexing gain.
Lemma 1.B If NMt > 0 and the rate is allows to grow with
SNR, multi-mode precoding provides full multiplexing gain.

Proof: We know that the multiplexing gain is upper-
bounded bymin(Mt,Mr) = Mt. Thus we need to find a
suitable lower-bound on multiplexing gain for each selection
scenario.
Probability of Error Selection
We can bound the probability of error conditioned on the

channel realization by

Pe(Es/N0)

≤ MtNe(Mt, R)Q




√
λ2

min{H}
Es

N0

d2
min(Mt, R)

2Mt




≤ MtNe(Mt, R) · (25)

Q




√√√√ min
1≤k≤Mt

1

M3
t

[
(H∗H)−1

]
k,k

Es

N0

d2
min(Mt, R)

2


 .

(26)

Lets assume thatR = r log(Es/N0) with r < Mt. Fol-
lowing the technique used in [35], we will obtain an upper-
bound using a QAM signaling assumption. This means that we
can choose the constellation such that the minimum distance
satisfiesdmin(Mt, R) ≥ α(Es/N0)−r/(2Mt) whereα is a real
constant. Using this assumption, the probability of error can
be bounded as

Pe(Es/N0)
≤ MtNe(Mt, R) · (27)

EH


Q




√√√√√ min
1≤k≤Mt

α2

2M3
t

[
(H∗H)−1

]
k,k

( Es

N0

)1−r/Mt







=̇(Es/N0)−(Mr−Mt+1)(1−r/Mt) (28)

where (28) follows from the results in [49]. Thus multi-mode
precoding with probability of error selection can achieve a
multiplexing gain ofMt.

Capacity Selection
For the capacity case, we will use the outage probability
assuming thatR = r log(Es/N0) with r < Mt.

Pout(r log(Es/N0))

≤ Pr

(
log

(
det

(
IMt

+
Es

MtN0
H∗H

))
≤ r log(Es/N0)

)

=̇ (Es/N0)−Mr(Mt−r). (29)

Thus, we have shown that capacity selection yields a multi-
plexing gain ofMt.

In order to satisfy the conditions in Lemma 1, we will
require thatN1 ≥ Mt and NMt = 1 when Ntot ≥ Mt + 1.
Following the uninformed transmitter results in [1], [50], when
B < log2(Mt + 1) we will first set NMt = 1 and allocate
the remaining2B − 1 matrices toN1. Thus we can state the
following allocation criterion.
Probability of Error and Capacity Allocation Criterion for
B ≤ log2(Mt + 1): SetNMt = 1 andN1 = 2B − 1.

When B > log2(Mt + 1), the first step in assigning
codewords is the determination of a distortion function. The
distortion function must be specific to the selection function
used in order to maximize performance. We will design the
distortion function by attempting to force the quantized multi-
mode precoder to perform identically to an unquantized (or
perfect CSI) multi-mode precoder.
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To determine the allocation of matrix codewords among the
modal codebooks, we will use rate-distortion theory. Each se-
lection criteria will motivate a different definition of distortion.
Using the defined distortion, the distortion-rate function is the
minimum obtainable distortion for a given feedback rate. We
will upper-bound the distortion-rate function for each mode in
order to determine an allocation scheme.

Let the channel’s singular value decomposition be given by

H = VLΣV∗
R (30)

whereVL is anMr ×Mr unitary matrix,VR is anMt×Mt

unitary matrix, andΣ is a diagonal matrix withλi{H} at
position (i, i). We will define the probability of error design
distortion to be the average loss of the mode selection function.
This can be expressed as

D(Pe)(M, log2 NM )

= min
FM :|FM |=NM

EH

[
d2

min(M, R)
M

·
∣∣∣∣λ2

M{HVM} − max
F∈FM

λ2
M{HF}

∣∣∣∣
2
]

≤ d2
min(M, R)

2M
min

FM :|FM |=NM

EH

[‖H‖2F
] ·

EH

[
min

F∈FM

∥∥∥VMV
∗
M − FF∗

∥∥∥
2

F

]

≤ d2
min(M, R)

M
MrM

3
t N

−2/Mt(Mt+1)
M (31)

whereVM is the matrix taken from the firstM columns of
VR and (31) follows from the fact that a Gaussian random
variable gives the worst possible distortion-rate function (i.e.
the largest minimum achievable distortion for a given rate
and given variance) with a mean squared error [51]. In
particular the bound results from dividing up theNM matrices
(or equivalentlylog2 NM bits) among theMt(Mt + 1) real
parameters in theMt×Mt complex matrixVMV

∗
M for scalar

quantization. The capacity selection will use the conditional
distortion-rate function given by

D(Cap)(M, log2 NM )

= EH

[∣∣∣∣log2

(
det

(
IM +

Es

MN0
V
∗
MH∗HVM

))

− max
F∈FM

log2

(
det

(
IM +

Es

MN0
F∗H∗HF

))∣∣∣∣
2
]

≤ 1
2(ln(2))2

EH

[
det

(
IM +

Es

MN0
Σ

T

MΣM

)]
·

EH

[
min

F∈FM

∥∥∥VMV
∗
M − FF∗

∥∥∥
2

F

]
(32)

≤ M2
t

(ln(2))2
EH

[(
1 +

Es

N0
λ2

1{H}
)Mt

]
N
−2/Mt(Mt+1)
M

(33)

whereΣM is the matrix constructed from the firstM columns
of Σ. Note that (32) follows by using|ln(x)− ln(y)| ≤ |x−y|,

V
∗
MH∗HVM = Σ

T

MΣM , and

1− max
F∈FM

∣∣∣det
(
V
∗
MF

)∣∣∣
2

≤ 1
2

min
F∈FM

∥∥∥VMV
∗
M − FF∗

∥∥∥
2

F
.

Let M = {m1,m2, ..., m|M|} denote the set of possible
modes. We will allocate the codewords to minimize the total
distortion-rate function assuming a uniform mode distribution
which is given by

D
(
log2 Nm1 , . . . , log2 Nm|M|

)
=
|M|∑

i=1

1
|M|D(mi, log2 Nmi

)

(34)
using the appropriate distortion. By plugging (31) into (34)
and removing the common scale factors among all modes, the
probability of error selection is equivalent to minimizing the
allocation cost function

A(Pe)
(
Nm1 , . . . , Nm|M|

)
=
|M|∑

i=1

d2
min(mi, R)

mi
N−2/Mt(Mt+1)

mi
.

(35)
Similarly, the capacity selection allocation should minimize
the cost function

A(Cap)
(
Nm1 , . . . , Nm|M|

)
=
|M|∑

i=1

N−2/Mt(Mt+1)
mi

. (36)

Both (35) and (36) must be minimized subject to

|M|∑

i=1

Nmi = Ntot, (37)

Nm1 = N1 ≥ Mt, and Nm|M| = NMt = 1. Thus, this
distortion-rate function based on a uniform mode distribution
will allow the codeword allocation to be doneindependently
of the SNR.

It is easily seen that the following allocation will minimize
(36).
Capacity Allocation Criterion for B > log2(Mt + 1): If
B ≤ log2(Mt(|M| − 1) + 1), set NMt = 1, N1 = Mt, and
Nmi = 2B−Mt−1

|M|−2 for 1 < i < |M|. If B > log2(Mt(|M| −
1) + 1), setNMt = 1 andNmi = 2B−1

|M|−1 for 1 ≤ i < |M|.
In the cases where this yields non-integer allocations, the
allocation can be adjusted by giving any extra matrices to the
lower order modes.

Eq. (35) can be minimized by a numerical search or convex
optimization techniques. Let̃Nm1 = N1 − Mt and Ñmi =
Nmi for i > 1. Using this notation, we can reformulate (35)
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as

Ã(Pe)
(
Ñm1 , . . . , Ñm|M|−2

)

= d2
min(1, R)

(
Ñm1 + Mt

)−2/Mt(Mt+1)

+
|M|−2∑

i=2

d2
min(mi, R)

mi
Ñ−2/Mt(Mt+1)

mi

+
d2

min(m|M|−1, R)
m|M|−1

·

Ntot −Mt − 1−

|M|−2∑

l=2

Ñml



−2/Mt(Mt+1)

(38)

where we have omitted theN|M| term. The values of
Ñm1 , . . . , Ñm|M|−1 that minimizeÃ can be easily determined

with Ñm|M|−1 = Ntot − 1 − Mt +
∑|M|−2

l=2 Ñml
. These

values can be used to determineNm1 , . . . , Nm|M|−1 with
Nm|M| = 1. Therefore, the following criterion can be used
for codeword allocation.
Probability of Error Allocation Criterion for B >
log2(Mt + 1): Minimize (35) such thatN1 ≥ Mt, NMt = 1,

and
∑|M|

i=1 Nmi = Ntot. This minimization can be done using
a numerical search or by using convex optimization techniques
on (38).

It should be noted that the assumption of a uniform mode
distribution is a rough approximation. In general, environmen-
tal effects such as spatial correlation will play a large role in
the notion of an “optimal” mode. As well, the probability of
mode selection is inherently dependent on the rate at which the
system transmits. Based on simulations, the uniform allocation
tends to be overly conservative in that it biases codeword
distribution to the lower mode numbers.

C. Codebook Criterion Given the Number of Substreams

Now that we have determined an algorithm that gives an
allocation of the possible codebook matrices among the modes,
it is now imperative to present the design ofFM for each
mode.

For a given mode, the codebookFM is a set of matrices
in U(Mt,M). Each matrix inFM defines anM -dimensional
subspace inCMt . The set of allM -dimensional subspaces in
CMt is the Grassmann manifoldG(Mt,M). A finite set of
subspaces in the Grassmann manifold can be thought of as
a subspace code [52]. A large variety of different subspaces
distances can be used for subspace coding [53]. These include
the projection two-norm distancegiven by

dproj(F1,F2) = ‖F1F∗1 − F2F∗2‖2 (39)

and theFubini-Study distancegiven by

dFS(F1,F2) = arccos |det (F∗1F2)| . (40)

The codebooks will be designed by choosing and then
minimizing a distortion function. We will break the presen-
tation into the two different selection cases following the
development in [54].

Probability of Error
Following Section IV-B, we will define the distortion as

EH

[
d2

min(M,R)
M

(
λ2

min{HFopt} − max
Fi∈F

λ2
min{HFi}

)]

(41)
where Fopt is the precoder inU(Mt,M) that maximizes
λ2

min{HFopt}. This can be bounded as

EH

[
d2

min(M, R)
M

(
λ2

min{HFopt} − max
Fi∈F

λ2
min{HFi}

)]

≤ d2
min(M, R)

M
EH

[
λ2

M{H}
] ·

EH

[(
1− max

Fi∈F
λ2

min{V
∗
RFi}

)]

≤ d2
min(M, R)

M
EH

[
λ2

M{H}
] ·

(
δ2
proj

4
∆proj(δproj) + (1−∆proj(δproj))

)

(42)

where
δproj = min

F1,F2∈FM :F1 6=F2
dproj(F1,F2) (43)

and ∆proj(δproj) is N times the normalized volume of a
metric ball inG(Mt,M) of radiusδproj/2.

Using metric ball arguments similar to [33] and the asymp-
totic metric ball volumes derived in [52], the bound in (42)
can be approximately minimized by thinking of the setFM

as a set of subspaces rather than as a set of matrices. The
bound can thus be minimized by maximizing the minimum
projection two-norm subspace distanceδproj .
Probability of Error Design Criterion: DesignFM such that

δproj = min
F1,F2∈FM :F1 6=F2

dproj(F1,F2) (44)

is maximized.
Capacity
The capacity distortion is defined as

EH

[∣∣∣∣CUT (Fopt)− max
Fi∈F

CUT (Fi)
∣∣∣∣
2
]

(45)

whereFopt is the precoder inU(Mt,M) that maximizesCUT .
The distortion cost function can be bounded as

EH [|CUT (Fopt) − max
Fi∈F

CUT (Fi)
∣∣∣∣
2
]

≤ (1/ ln(2))2EH

[
det

(
IM +

Es

MN0
Σ

T
Σ

)]
·

(
1− max

Fi∈F
EH

[∣∣∣det
(
V
∗
RFi

)∣∣∣
2
])

(46)

≤ (1/ ln(2))2EH

[
det

(
IM +

Es

MN0
Σ

T
Σ

)]
·

(
1− cos2 (δFS/2)∆FS(δFS)

)
(47)

where δFS and ∆(δFS) are defined using the Fubini-Study
distance. Using the metric ball volume approximations from
[52] and differentiating the resulting bound tells us that we
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want to maximizeδFS in order to approximately minimize
the distortion.
Capacity Design Criterion: DesignFM such that

δFS = min
F1,F2∈FM :F1 6=F2

dFS(F1,F2) (48)

is maximized.

Discussion
Note that the column vectors inF1 correspond to beamforming
vectors [33], [34]. The design of limited feedback beamform-
ing was explored in [33], [34], [55]–[58]. In particular, it
was shown in [33], [34] that the set of vectors should be
designed by thinking of the vectors as representing lines in
CMt . The lines can then be optimally spaced by maximizing
the minimum angular separation between any two lines. This
is seen by noting that whenM = 1 both δproj and δFS are
maximized by minimizing|f∗1 f2| for any two distinct vectorsf1
andf2 in F1. The setFMt

is trivially designed because we will
require thatFMt = {IMt}. This precoder matrix corresponds
to sending a standard spatial multiplexing vector.

For M < Mt, codebooks can be designed using the matrix
codebook design algorithms for non-coherent constellations in
[59]. The only modification needed is to use the correct sub-
space distance when performing the optimization. In addition,
algebraic design techniques can be used for certain values of
M andNM [60], [61]. Numerical design techniques have also
been studied in [62], [63].

V. RELATION TO COVARIANCE QUANTIZATION

The capacity analysis for MIMO systems with transmitter
CSI relies onoptimizing the transmit covariance matrix.A
MIMO system has a general input-output relationship

y = Hx + v

with H and v defined as in (1). The mutual information is
maximized by optimizing the covariance matrix

Q = Ex [xx∗] . (49)

Covariance quantization, proposed in [38], [41], choosesQ
from a codebookQ = {Q1,Q2, . . . ,QN}. Assuming thats
in (1) consists of independent entries distributed according to
CN (0, Es/M), the covariance matrix will be(Es/M)FMF∗M .
Thus multi-mode precoding quantizes the set of covariance
matrices assuming a rank constraint.Let

QM = {(Es/M)FF∗ | ∀ F ∈ FM}. (50)

This allows multi-mode precoding to be reformulated as
covariance quantization with a codebook

Q =
⋃

m∈M
Qm.

Multi-mode precoding is arank constrainedcovariance
quantization. While the codebook matrices in [38], [41] at-
tempt to quantize a waterfilling solution, chooses a covariance
rank and then allocates equal power among each mode.
This avoids the power allocation problems associated with
waterfilling.

In addition, multi-mode precoding uses a set of the form in
(50) that only requires a multiplicative scale factor when the
SNR changes. In contrast, [41] uses the Lloyd algorithm. The
Lloyd algorithm, described in [64], uses a set of test channels
(usually numbering in the thousands to hundred of thousands)
and then repeats the two steps of generating a codebook
for each Voronoi region (i.e. the subset of the test channels
that map to the same covariance matrix) and redefining the
Voronoi regions for the generated codebook. The algorithm
converges rather quickly [64] to a locally optimal solution
but still suffers because the random matrix being quantized is
highly dependent on the SNR.

VI. SIMULATIONS

Limited feedback multi-mode precoding was simulated to
exhibit the available decrease in probability of error and
the increase in capacity. The capacity results are compared
with the results in [38], [41]. We also consider both full
channel knowledge [2], [3], [65] and limited feedback [33],
[34], [58] beamforming. Probability of error simulations used
the probability of error selection criterion, while capacity
simulations used the capacity selection criterion.

Experiment 1:This experiment addresses the probability of
vector symbol error of4× 4 dual-mode precoding with a ZF
receiver. The results are shown in Fig. 2. The rate is fixed at
R = 8 bits per channel use with QAM constellations. Because
the system is dual-mode, the set of supported modes isM =
{1, 4}. Four bits of feedback is assumed to be available.
This means thatF1 contains 15 vectors andF4 = {I4}.
Limited feedback beamforming using four bits (see [33], [34])
and spatial multiplexing are simulated for comparison. Multi-
mode precoding provides approximately a 0.6 dB performance
improvement over limited feedback beamforming. These gains
are modest because of the restriction to dual-mode precoding.
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Fig. 2. Probability of vector symbol error performance for limited feedback
dual-mode precoding, limited feedback beamforming, and spatial multiplex-
ing.

Experiment 2: In contrast to the first experiment, this
experiment considers a4 × 4 MIMO system transmitting
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R = 8 bits per channel use withM = {1, 2, 4}. Codebooks
were designed usingB = 5 bits of feedback. This resulted
in N1 = 7, N2 = 24, and N4 = 1. Constellations were
restricted to be QAM and the receiver was a ZF decoder.
Fig. 3 presents the simulation results. Spatial multiplexing,
unquantized beamforming (i.e. perfect CSI at the transmitter
using maximum ratio transmission/maximum ratio combining
[2], [65]), and unquantized MMSE precoding are shown for
comparison. MMSE precoding is implemented by transmit-
ting two 16-QAM symbol streams using linear transmit and
receive processing (i.e. precoding and a linear receiver). The
MMSE precoding was implemented as in [5] with the sum
power constraint and the trace cost function. This means that
the unquantized MMSE simulation is using power allocation
among the modes. Note that all of the selection criteria
provide approximately the same probability of vector symbol
error performance. Five bit multi-mode precoding provides
approximately a 5dB gain over full CSI beamforming. There
is more than an 8.5dB gain over spatial multiplexing at an
error rate of10−1. Interestingly, MMSE precoding with full
transmit channel knowledge, a less restrictive power constraint,
and a superior receiver gives only a 1.2dB gain over limited
feedback multi-mode precoding.
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Fig. 3. Probability of vector symbol error performance for limited feedback
multi-mode precoding, beamforming, and spatial multiplexing.

Experiment 3: The third experiment, shown in Fig. 4,
compares the performance of limited feedback multi-mode
precoding with various amounts of feedback. Again, we con-
sidered a4 × 4 MIMO system transmittingR = 8 bits per
channel use withM = {1, 2, 4}. We used a ZF receiver and
QAM constellations. Feedback amounts ofB = 4, B = 8,
and∞ bits were simulated. TheB = 4 bit codeword allocation
used N1 = 4, N2 = 11, and N4 = 1. The B = 8
bit allocation wasN1 = 54, N2 = 201, and N4 = 1.
Note that four bits of feedback performs within 1dB of the
infinite feedback scenario. Adding four more bits of feedback
adds approximately a0.6dB gain. For comparison, multi-mode
antenna selection [29] using the probability of error selection
criterion is presented. Multi-mode antenna selection requires

four bits of feedback. Interestingly, multi-mode precoding
outperforms multi-mode antenna selection by 0.4dB using
the same amount of feedback. Unlike multi-mode antenna
selection, multi-mode precoding can use more feedback to
add additional array gain as the eight bit curve demonstrates.
Perfect CSI beamforming is also shown to demonstrate the
multi-mode precoding gain.
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Fig. 4. Probability of vector symbol error performance comparison for
limited feedback and perfect CSI multi-mode precoding, multi-mode antenna
selection, and beamforming.

Experiment 4:As mentioned in Section III, multi-mode
precoding can be employed with ML, V-BLAST, and linear
receivers. Fig. 5 compares the performance of limited feedback
multi-mode precoding with ML, V-BLAST, and ZF decoding.
We simulated a4× 4 MIMO system transmittingR = 8 bits
per channel use with QAM signaling andM = {1, 2, 4}.
The feedback bit total was set toB = 5 with a codeword
allocation ofN1 = 7, N2 = 24, and N4 = 1. All receivers
perform very closely with ZF within 0.5dB of ML decoding.
V-BLAST decoding performs approximately 0.1dB away from
ML decoding.

Experiment 5:The capacity gains available with the capacity
selection criterion are illustrated in Fig. 6 for a2× 2 MIMO
system with B = 2, 3, and 4 averaged over a spatially
uncorrelated Rayleigh fading channel. The codewords were
allocated asN1 = 2B − 1 and N2 = 1. The plot shows
the ratio of the computed mutual information with the ca-
pacity of a transmitter with perfect CSI using waterfilling
[1]. The capacity of an uninformed transmitter (UT) and the
limited feedback covariance optimization mutual information
results published in [38] are shown for comparison. Note that
limited feedback multi-mode precoding outperforms limited
feedback covariance optimization for both two and three bits
of feedback. This result is striking because, unlike covariance
optimization, multi-mode precodingdoes not require any form
of waterfilling.Thus our scheme, on average, always transmits
with the same power on each symbol substream. The high-rate
feedback performance difference between limited feedback
covariance optimization and multi-mode precoding can be
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Fig. 5. Probability of vector symbol error performance comparison of
different receivers with multi-mode precoding.

most likely attributed to this power-pouring.
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Fig. 6. Capacity comparison of multi-mode precoding, limited feedback
covariance optimization [38], and the uninformed transmitter.

Experiment 6:The sixth experiment compares infinite res-
olution multi-mode precoding, limited feedback multi-mode
precoding, and the UT capacity for a3×3 MIMO system. The
capacities have been normalized by the optimal waterfilling
capacity at each SNR. The results are shown in Fig. 7. We
considered supported modes ofM = {1, 2, 3} with four
and five feedback bits. We designed the limited feedback
codebook using techniques from Section IV. The codeword
matrices were allocated with|F1| =

⌈
(2B − 1)/2

⌉
, |F2| =⌊

(2B − 1)/2
⌋
, and |F3| = 1. The infinite resolution multi-

mode precoder obtains within98.5% of the system capacity
when the channel is known to both the transmitter and receiver.
The limited feedback case obtains more than84% of the
perfect transmitter CSI system capacity with four feedback
bits and87.8% with five feedback bits. This comes with the

benefit of only requiring a few bits of feedback.
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Fig. 7. Capacity comparison of multi-mode precoding with an infinite amount
of feedback, multi-mode precoding with four and five feedback bits, and an
uninformed transmitter.

Experiment 7:This experiment, shown in Fig. 8, compares
limited feedback multi-mode precoding with the feedback
technique proposed in [41] on a4× 4 MIMO system. Again,
the mutual informations are normalized by the waterfilling
capacity. Multi-mode precoding was restricted the modes
M = {1, 2, 4}, and both schemes used three bits of feedback.
Multi-mode precoding performs within approximately 1.5dB
of the algorithm in [41] for all SNRs. Note that the algorithm
in [41] used a feedback codebook that was redesigned for each
SNR while the multi-mode codebooks are fixed for all SNRs.
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Fig. 8. Capacity comparison of multi-mode precoding and the covariance
feedback technique designed in [41].

Experiment 8:The final experiment examines the diversity
vs. multiplexing performance using the outage probability.
A 4 × 4 multi-mode precoding system withN1 = 4 and
N4 = 1 was simulated. Various rate growths were considered
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including a fixed rate(R = 30), R = 3 log2(Es/N0), R =
3.5 log2(Es/N0), R = 3.75 log2(Es/N0), and R =
3.9 log2(Es/N0). The results are shown in Fig. 9. TheR = 30
outage probability curve shows the full diversity rate perfor-
mance of multi-mode precoding. The other curves demonstrate
that the growth can get arbitrarily close toR = 4 log2(Es/N0)
with a non-zero asymptotic slope of the outage curve.
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Fig. 9. Outage probability analysis for multi-mode precoding with various
transmission rates.

VII. SUMMARY AND CONCLUSIONS

We presented limited feedback multi-mode precoding for
spatial multiplexing MIMO wireless systems. This allows
the MIMO system to adaptively vary both the number of
substreams and the precoder using current channel conditions.
Because only a limited number of feedback bits are used,
the algorithm can be successfully implemented in MIMO
systems without transmitter CSI. We showed how to design
the codebooks needed for the multi-mode precoding. We found
that multi-mode precoding provides full diversity gain for a
fixed rate and full multiplexing gain when the rate varies with
SNR.

A point of future work is to investigate a more specific
multi-mode framework that relates to each kind of receiver.
The probability of error derivations in this paper used ML,
linear, and V-BLAST bounds that all relate to the minimum
singular value of the channel. While this may provide high
performance for a linear receiver, it is a rather loose perfor-
mance metric for both V-BLAST and ML. Future research is
needed into i.) tight, but computationally simple, performance
bounds for MIMO receivers and ii.) improved precoder design
for non-linear receivers. We speculate that the performance
of a multi-mode system could be greatly improved by more
judiciously designing the mode selection framework using
tight probability of error expressions.

Another point of future work is in the computation of the
optimal precoder matrix from the codebook given a mode
number. This paper assumes they are computed via a brute
force search. While this is reasonable given a small amount

of feedback and a moderate number of transmit antennas, the
computational complexity will quickly scale to unacceptable
levels. A possible sub-optimal solution might be to analytically
determine the mode and/or precoder matrix for an unquantized
system and then restrict the brute force optimization to candi-
date multi-mode configurations around the unquantized case.

An interesting area for future research is the distribution
of the codebook matrices among the different modes. In our
derivation, we assumed that the modes were equiprobable.
This assumption will be unrealistic in most environments.
It may be possible to compute an approximate closed-form
solution of the number of matrices to be allocated to each
mode given i.) the number of feedback bits, ii.) channel
correlation, and iii.) rate.

The ideas behind the relationship between multi-mode pre-
coding and covariance quantization [38], [41] are also of
interest. Future research is needed to obtain a more definitive
capacity analysis when the transmitter is only constrained to
vary the rank of the covariance matrix. We conjecture that
the losses relative to waterfilling with a trace constraint (as
discussed in [1]) will always be minimal.

For practical implementation, the effect of delay and errors
in the feedback channel on system performance is something
that should be studied. These effects will lead to degradation
in the obtainable bit error rate and spectral efficiency. This
analysis would provide interesting knowledge into the benefits
of multi-mode precoding in practical wireless systems.
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