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Abstract— Multiple-input multiple-output (MIMO) wireless ~ the mean squared error (MSE) [5], [6], maximizing the receive
systems obtain large diversity and capacity gains by employing minimum distance (with receive distance defined as the two-
multi-element antenna arrays at both the transmitter and re- norm of the difference between two unique symbol vectors

ceiver. The theoretical performance benefits of MIMO systems, ft ltinlication by the ch N7 imizing th ..
however, are irrelevant unless low error rate, spectrally efficient after multiplication by the channel) [7], maximizing the mini-

signaling techniques are found. This paper proposes a new Mum singular value [22], and maximizing the mutual informa-
method for designing high data-rate spatial signals with low error tion assuming Gaussian signaling [4], [17], [20], [26]. These
rates. The basic idea is to use transmitter channel information precoding methods provide probability of error improvements

to adaptively vary the transmission scheme for a fixed data-rate. ; ; ; ; :
This adaptation is done by varying the number of substreams compared with unprecoded spatial multiplexing [2], buear

and the rate of each substream in a precoded spatial multiplexing precoding .does not guarantee full d'V?rS'ty order and full rate
system. We show that these substreams can be designed t(grOWth This follows from the fact that linear pl’eCOdeI’S Usua”y
obtain full diversity and full rate gain using feedback from the limit the number of substreams transmitted in order to obtain
receiver to transmitter. We model the feedback using a limited improved error rate performance [2].

feedback scenario where only finite sets, or codebooks, of possible The full rate and full diversity problem was first discussed
precoding configurations are known to both the transmitter and

receiver. Monte Carlo simulations show substantial performance in space-time code design in [27], [28]. These open-loop

gains over beamforming and spatial multiplexing. (i.,e. no channel knowledge at the transmitter) space-time
Index Terms-Diversity methods, MIMO systems, Quantized codes use spatial and temporal redundancy combined with
precoding, Rayleigh channels, Spatial multiplexing. sphere decoding at the receiver. Unfortunately, these codes

are difficult to decode even using the low-complexity sphere
decoder. Given these results, the natural question is whether
full rate and full diversity gain transmission can be obtained
Wireless systems employing multi-element antenna arrayisa more practical solution at the expense of feedback from
at both the transmitter and receiver, known as multiplghe receiver to transmitter.
input multiple-output (MIMO) systems, promise large gains in This problem was also addressed for the special case of
capacity and quality compared with single antenna links [ldntenna subset selection precoding in [29], [30]. These papers
Spatial multiplexing is a simple MIMO signaling approach thadtudied systems where the size of the antenna subset, along
achieves large spectral efficiencies with only moderate trangith the spatial multiplexing constellation, could be varied
mitter complexity. Receivers for spatial multiplexing rangen order to guarantee full diversity performance for a fixed
from the high complexity, low error rate maximum likelihoocyata-rate. Various selection criteria were proposed for both
decoding to the low complexity, moderate error rate linegfual-mode (i.e. selecting between spatial multiplexing and
receivers [2], [3]. Unfortunately, rank deficiency of the matrixelection diversity) and multi-mode antenna selection. These
channel can cause all spatial multiplexing receivers to suffgfethods provided substantial performance improvements com-
increases in the probability of error [2]-[4]. pared with traditional spatial multiplexing. Antenna subset
Linear transmit precoding, where the transmitted data veci¥lection, however, is quite limited because the precoding
is premultiplied by a precoding matrix that is adapted to somgatrices are restricted to columns of the identity matrix.
form of channel information, adds resiliency against channel|n this paper, we propose a modified version of linear
ill-conditioning. Linear precoded spatial multiplexing has beegrecoding callednulti-mode precodingViulti-mode precoding
proposed for transmitter’'s with full channel state infOI’matiOOaries the number of substreams contained in the precoded
(CSI) [5]-[7], channel first-order statistics [8]-[10], channedpatial multiplexing vector assuming that tinensmitted data-
second order statistics [11]-[15], partial subspace knowledgge is independent of the number of substreams chosen
[16], or limited feedback from the receiver (which includesor transmission This allows the transmitter to adapt the
antenna subset selection) [4], [17]-[26]. Optimization teclignal using a combination of linear precoding and adaptive
niques for choosing the precoding matrix include minimizinghodulation. This substream selection has been studied inde-

. . . endently in related work [31], [32]. We present methods
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of precoder matrices, for each of the supported substream 1. SYSTEM OVERVIEW

numbers. These codebooks are designed offline and storegthe 77, transmit andMz, (with M, < M,) receive antenna
precoder is then conveyed from the receiver to transmitter OVer For each channel use} bits are demultiplexed intal/

a limited capacity feedback channel using a small number gfferent bit streams. Each bit stream is modulated using the
bits. same constellatios, producing a vectos,, at thek" channel

e. This means thatach substream carrie®/M bits of

Multi-mode precoding represents a new approach : tion. Th ial ltinlexi bol fors, —
diversity-multiplexing tradeoff in MIMO wireless systems.In ormation. The SQ"’? al muitiplexing symbol vectoss, =
[sk,1 Sk,2 ... sk,M]" IS assumed to have power constraints so

Previous work in diversity-multiplexing tradeoff, see for ex o e .
ample [27], [28], [35]-[37], emphasized that every spatidn@t £s. [stsi] = Fila. Note that this means thaverage of
e total transmitted poweat any channel use isdependent

k ; ) . .1h
temporal signaling method has an accompanying dlversn%-
multiplexing gain tradeoff curve. Diversity systems, such a the number of substreardd.

orthogonal space-time block codes or transmit beamforming,

maximize the diversity gain for a fixed rate, while spatial _ T Spatial
multiplexing maximizes the multiplexing gain. Our system— Mjﬁit&,j Fy L H Multploxing | =
actually “adapts” the transmission scheme between different e FMSK\/ ‘
diversity-multiplexing curves by varying the number of sub- w#susreams ~ Fufes o H‘

streams for transmission. This allows multi-mode precoding + b lowesdeckpan @
to maximize the multiplexing gain if the rate is allowed to selector
vary with SNR and maximize the diversity gain if the rate i's_i 1
held constant. This adaptation is in the spirit of that studie

in [36] but is more general because we are not restricted toan 37, x M/ linear precoding matrixF,; mapss;, to

only two transmission types (such as Alamouti coding angh ,7,-dimensional spatial signal that is transmitted bf
spatial multiplexing as in [36]). Unlike [36], we do not switchyansmit antennas. The transmitted signal vector encounters
between space-time coding and spatial multiplexing but rathgs M, x M, matrix channelH before being added with an
vary the number of spatial multiplexing substreams and “}Qr-dimensional white Gaussian noise vectgr. Assuming
precoder. perfect pulse-shaping, sampling, and timing, this formulation
(y_ields an input-output relationship

Block diagram of a limited feedback precoding MIMO system.

Limited feedback multi-mode precoding is also one s
lution to the important problem of covariance optimization y=HFys+v Q)

for' transmitters withogt any form of C.SI 'besides feedba.cbvhere the channel use indéhas been suppressed because we
This problem has previously been studied in [38}-{41]. Unhkg e interested in vector-by-vector detectionsgf We assume

[38], we are concerned with maximizing the average MUtUgly, 11 hag jjd. entries with each distributed according to

information rather than obtaining a better quantized estim ?\/(0 1). We employ a block-fading model where the channel
of the optimal waterfilling covariance matrix. Our approac constant over multiple frames before independently taking

also uses fixed codebooks known to both the transmitter q\ew realization. As well. the noise vectoris assumed to
receiver as opposed to the random vector quantization (R\?gave iid entries.distributéd accordingdav(0, Ny)

technique described in [39], [40]. Most importantly, we do \ye 555 me that the receiver has perfect knowledd® and
not require that the codebook be redesigned when the Swﬁ The matrixHF,; can be thought of as affective chan-

changes as is assumed ink[38]%f I['41]. V\r/]e give a techknqugL and the receiver decodgsusing this effective channel and
that can generate codebooks off-line. These codebooks ¢agyaiia multiplexing decoder. Spatial multiplexing decoders
then be used regardless of the operating SNR. Practica,

h’clude ML, sub-optimal ML, linear, and V-BLAST receivers.

this is a Iarge_z Savings comp_areq to the_algorlthms in [38,/len ML receiver decodes to an estimated signal vegtosing
[41] that require vector quantization algorithms that generate

~ . 2
thousands of channel realizations and then perform iterative s = argmin ||y — HF ys'[[; . 2)

optimizations to be run given an SNR value. _ sest
Sub-optimal ML receivers, such as the sphere decoder [42],

This paper is organized as follows. Section Il introducgg3], solve the optimization in (2) by performing reduced com-
the multi-mode precoded spatial multiplexing system modedlexity ML decoding over a reduced set of candidate vectors.
Criteria for choosing the optimal matrix from the codebook are 9 o

d in Secti L. Multi d di . limit We useCA(0,02) to denote the complex Gaussian distribution with
presented in Section lll. Multi-mode precoding using limi eﬁz’jdependent real and imaginary parts distributed accordiny'to, o2 /2),
feedback from the receiver to the transmitter is considered-iror conjugate for transpose* for conjugate transpose; for the matrix
Section IV. The relationship between limited feedback multflse“‘_jo"”"efseIM for the M x M identity matrix, log, is the base two

d di d . tizati . | d oégianthm,ln is the natural logarithm; {H} to denote the'" largest singular
mo e preco |ng. an c_ovarlance quantization 1S e>§p 0red Mlye of a matrixH, ¢r( ) for the trace operator that gives the sum of the
Section V. Section VI illustrates the performance improvefiagonal elements of a matrif; |- for the matrix two-norm||- ||  to denote
ments over previously proposed techniques using Monte Calfie matrix Frobenius normia| to denote the absolute value of a complex
imulati f the svmbol error rate and mutual informatio numbera, |M| to denote the cardinality of a set, A\B denotes the
simulations o Yy lements in the setl that are not inB, and [ to denote expectation with

Conclusions are presented in Section VII. respect to random variable



A linear receiver applies aM x M, matrix transformation I1l. M ULTI-MODE PRECODERSELECTION
G to y and then independently detects each entryGgf. If
a zero-forcing (ZF) linear receiver is use@ = (HF,)™.
Minimum mean squared error (MMSE) decoding uses=
[FX{H*HF]V[ + (NQM/(S‘S)I]\,[]_lF*MH*. V-BLAST decod-
ing uses successive cancellation with ordering using ZF

The selection of the mode and precoder matrix will deter-
mine the performance of the entire system. Because we are
interested in constructing a high-rate signaling scheme with
Ic())w error rates, we will present bounds on the probability
MMSE receivers. An overview of the V-BLAST algorithmo{ vector symbol error (i.e. th_e probability thgt the recei_ver
can be found in [44]. returns at_ least one symbol in error). We vv_|II also review

) ) the capacity results for MIMO systems both with and without

Note that the total instantaneous transmitted power for tfﬂ%nsmitter Csl.
system is given bg*F7;,F ss. The precoder matri¥ 5, must
therefore be constrained in order to limit the transmitted power.

We will restrict \2{F,} < 1 (i.e. the largest squared singulaiA. Performance Discussion

value of Fj,) in order to limit the peak-to-average ratio. This The selection criterion used to chookg andF, must tie
means thatls [s"F;,F s < & regardless of the rnOCIUIat'ondirectly to the resulting performance of the precoded spatial

scheme or the value al/. It was shown in [5], [24] that multiplexing system. We will address selection details based

matrices t.hat optimize MSE' Ca.pa.c|ty, the minimum effectlvgn two different performance measures: probability of error
channel singular value (i.e. maximi2é,;, {HF,}), and total and capacity.

effective channel power (i.e. maximiz@lF || ) over the set 1) Probability of Error: The probability of error analysis
will be broken down into the three different receiver cate-

of all matrices
M, M 9 gories: ML, linear, and V-BLAST. Note that the ML bounds
L(My, M) = {L e CT= | A{L} <1} () can also be employed for the popular sphere decoder [42],
[43] which provides ML performance using a low-complexity

are all members of the set search. In order to provide a fair tradeoff, we will use the
probability of vector symbol error as the probability of error
UMy, M) ={UeCMM | UU =1y} metric. This choice was made to provide a fair comparison

between modes that transmit symbol vectors of different

For this reason, we will further restrict tht,, € U(M;, M) dimensionality.
for any chosen value of/. Intuitively, this means that the Maximum Likelihood Receiver
precoding attempts to diagonalize the channel without aML performance is commonly characterized as a function of
form of power pouring among the spatial parallel channelsthe receive minimum distance defined as

The key differencébetween multi-mode precoding and pre-
viously proposed linear precoders is thdt is adapted using
current channel conditiondy allowing M to vary between
1 and M;. We refer to the value of\/ as themodeof the
precoder. Usually, only a subset of thé possible modes can
be chosen. For example, a necessary condition that motivat@snd (NNUB) as
using only a subset ofl, ..., M,} is that R/M is an integer 2
fo_r only a few .of the mode; betwednand M,;. As w.eII, |t. P,(H, &,/Ny) < MN,(M,R)Q Es  Umin,rec
might be practical from an implementation complexity point- MNy 2
of-view to support only a small subset of modeshif; is
large. We will denote the set of supported mode valuesfas Where N.(M, R) is a nearest neighbor scale factor for the
For example, ifR = 8 bits andM; = 4 then only modes in constellationS. Thus to minimize this bound, the receive
the setM = {1,2,4} can be supported. Another example isninimum distance must be maximized. The minimum receive

d? =
min,rec ~_

min  [[HFy(s' —s")[5. (4

s/ ,S” ESM s’ #S”

Using the receive minimum distance, the probability of vector
symbol error can be bounded using the nearest neighbor union

(®)

dual-mode precodingvhere M = {1, M;}. distance, however, can be bounded as
We assume that a selection functign: CM->M: . A 2\
picks the “best” mode according to some criterion, and we set @i ree > (uegl(i]\r} N HFMqu) drin (M, R)

M = g(H). After M is chosen, the precoddt,, is selected

from a setF,, C U(M, M) using a selection functioffiy; :

CMrxM: _, j-‘M_, Therefore,Fy, = fM(.H)' Th|s.means that where dpin (M, R) = miny . |s' — s”| denotes the min-

there are|M| different precoder selection functions. imum distance for the constellatiofi used whenR/M bits
We assume that the transmitter has no prior knowledge gle modulated per substream.

the matrixH and thatF,, is designed using data sent from jnear Receiver

the receiver over a limited capacity feedback channel. This\yas shown in [22] that the effective SNR of theh

assumption of zero prior channel knowledge approximatess@pstream after linear processing is given by
frequency division duplexing (FDD) system where the forward

and reverse frequency bands are separated by a frequency SNRZE) (Fu) = Es @)
bandwidth much larger than the channel coherence bandwidth. b M Ny [F’;\,{H*HFM],;}C

= My {HF )y, (M, R) (6)

min




for ZF decoding and The notationCyr is used because this is commonly called
< the uninformed transmitter (UT) capacity (i.e. no transmitter
2 —1 CSI) [2]. Note that this is not really a “capacity” expression
in the sense of distribution maximization because we assume
a fixed distribution [45]. We will, however, refer to (13) as
- 2 the capacity of the effective channHIF,; when there is no
minimum substream SNR, given by form of CSI at the transmitter in order to follow existing
SNRpmin(Far) = min SNRy(Fay), (9) terminology in the MIMO literature. When transmitter and
1sksM receiver both have perfect knowledge Bf and F,;, the
is an important parameter that will be used to characterigapacity is found by waterfilling [1]-[3].
performance. For ZF and MMSE decodin§N R, (Far)
can be bounded by [22]

SNR’&MMSE)(FM)

~ MN,[F},HHF, + 2Ny, | T
’ " (8)
for MMSE decoding whera&,;}C is entry (k, k) of A=1. The

B. Selection Criteria

SNRpin(Far) > )\?\/,{HFM}];]SV . (20) We will present probability of error and capacity selection.
0 The probability of error selection is based on the previous
Thereforethe minimum singular value of the effective channglork in [22], [29], [30] while the capacity selection is similar
is often an important parameter in linear precoded MIMQo work presented in [17], [22].
systems. Probability of Error Selection
We are more interested, however, in tight bounds on ta&suming a probability of error selection criterion, the optimal
probability of vector symbol error. Given a matrix channedelection criterion would obviously be to choose the mode and
H, the conditional probability of vector symbol error can b@recoder that provide the lowest probability of vector symbol
bounded by the NNUB as error. Selection using this criterion, however, is unrealistic
2 (LR because closed-form expressions for the probability of vector
P,(H,E,/No) < MN.(M,R)Q <\/5N3mmmin’) symbol error conditioned on a channel realization are not
2 available to the authors’ knowledge. The NNUB can be suc-
< MN.(M,R) - cessfully employed in place of this bound for asymptotically
tight selection. Using the NNUB results in Section IlI-A, the

Q A2 {HF )} & dpi (M, R) following selection criterion is obtained.
M M Ny 2 Probability of Error Selection Criterion:ChooseM and

(11) F,s such that

where SN R,,.;, is computed for the given linear receiver. /\E,L{Hf}(nsv)(H)}d2

(5V) _ ‘
V-BLAST Receiver g (H) = argmax m min(m, ) (14)
Similarly to linear receivers, the V-BLAST receiver probability  .(sv) H) — A2, (HF' 15
of error can be bounded using the SNR of the weakest’V (FD e M HE. (13)
substream after cancellation and before detection. Combiningr . . )
the NNUB with the results in [32], this gives he functl_on (15) co_rre_sponds to finding the optimal pre-
coding matrix from a limited feedback codebodk,; con-
P.(H,E/Ny) < MN.(M,R) - ditioned on a specific mode numb@d. This optimization,
5 thus, corresponds to a fixed mode limited feedback codebook
2 s dpin (M, R) matrix selection. The mode number is determined in (14) using
Q | \/ M HF M} : ’ .
M Ny 2 the optimal codebook precoder matrix for each mode. Thus

(12) the receiver would send both the chosen mode number (i.e.

. o . ~¢g®V)(H)) and the optimal precoder given that mode (i.e.
Once again, the minimum singular value of the effectlv?(SV)(H)) back to the transmitter.

channelF,; plays an important role in system performance.]\/f-l-hiS

_ . : criterion is computed by first searching for the pre-
Relation to Unitary Precoding

| b d1th h . h ‘ coder (denoted byfﬁfv)(H)) in each mode’s codebook
t must be noted that each receiver uses the same performapiee Fm) that maximizes the effective channel minimum

bhound thzt (;elz;tes bl""Ck to thiﬂr?mlmbmdsmgr]lular value Qp o req singular value. The optimal mode is then deter-
the precoded channel matri, {HF/ }. Under the assump- mined by computing the receive minimum distance bound

tion of maximum singular value constrained precoders (i.iQ{Hf(SV)(H)}dQ (m, R)/m for each mode inM and
?\nli‘r{nFmA?z}iné tlh)é ;?:g;)éiﬁt?g?zrnr%r'i;ﬂgnal with respect toreturning the mode with the largest bound. These optimizations
. . . ' correspond to multiple brute force searches.
2) Capacity: The mutual information of the channHF b P

assuming uncorrelated Gaussian signaling on each substr Gapacity Selection
g : 9 9 Shile capacity selection is not optimal from a probability of
denotedCyr, is known to be

error point-of-view, it can provide insight into the attainable
spectral efficiencies given the multi-mode precoding system

58 * *
Cur(Far) = log, det <IM + mH HFM> - (13) model when an ML or V-BLAST receiver is used. Because

MN,



the uninformed transmitter capacity is evaluated in closedhere the codebook is explicitly a function of the SNR.
form given a matrix channel, the following criterion can b®ur approach will be based on maximizing the asymptotic
succinctly stated. performance measures of diversity gain and multiplexing gain.
Capacity Selection CriterionChooseM andF,; such that  Diversity gain is a fundamental performance parameter
(Cap) (] — o (Cap) (g in MIMO communications that has been given a variety

9 ( )*affg\jx vr(fr " (H)) of definitions. For probability of error selection, we will

define diversity as the negative of the probability of error
curve's asymptotic slope. Following [26], [46], [47], we define
diversity gain for capacity selection as the negative of the prob-

IV. LIMITED FEEDBACK MULTI-M ODE PRECODING ability of outage curve’'s asymptotic slope. Mathematically, a
MIMO wireless system is said to have diversity géifi35] if

z(v?ap) (H) = argmax Cy(F'). (16)
FeFu

We now consider the implementation of multi-mode preco

ing when the transmitter haso form of channel knowledge —limg, log(Pe (£:/No)) if probability of
, : : : : s/No—00 “log(E./No) ’
besides feedback. This design makes multi-mode precoding error selection:
practical even in systems that do not meet the assumptiondf= y log(Pouc (R(E./No)) i . ’
full transmitter CSI. — Mg, /No—oo Toa(e./Ng) > IT capacity
selection.
A. Codebook Model The diversity gain is always bounded above by the product of

The design of an adaptive modulator in a system withotft€ number of transmit and receive antenrids)\/,.. Diversity
transmitter CSI is daunting because we must find a simg&in, or diversity order, is one of_ the_ fundamenta_l parameters
method that allows the transmitter to adapttorentchannel for MIMO systems. Therefore, it will be essential that we
conditions. We will overcome the lack of transmitter CSI byn@ximize the diversity gain using as few bits of feedback as
using alow-rate feedback channehat can carry a limited Possible. _ _ _
number of information bits, denoted by, from the receiver  AS in [35], let = denote exponential equality. This means

to the transmitter. that f(E,/No)=(Es/No)* if

In this limited feedback scenario, the precofigy is chosen i log f(Es/No) p a7
from a finite set, orcodebook of N, different M; x M £ /Nomoo log(€s/No)
precoder matricesFy; = {Far1,Far2s- ., Farvy, b Thus,

we assume that there is a codebook for each supported mc')l'he following lemma addresses the conditions sufficient to

value.Because there are a total of 0 ?ain full diversity order.
’ Lemma 1.A If N; > M, and the rate is fixed, multi-mode

Niotal = Z N, precoding provides full diversity order.
meM Proof: Each selection criterion will be treated separately.
Probability of Error Selection
Combining the probability of error results in Section IlI-A
N >-‘ reveals that the probability of vector symbol error with an
Z m ML, linear, or V-BLAST receiver can be bounded as

codeword matrices, a total of

B = [logy(Niotar) | = ’VIOgQ <
meM
bits is required for feedback. Feedback can thus be kept to &e(Es/No) = Eu [P.(H, & /No)]
reasonable amount by varying the sizeNdf; for each mode.
There are two main problems associated with this codebook- < Eu
based limited feedback system. First, we must determine how
to distribute theN,,, codewords among the modes .. ) & d2,, (M,R)
The second problem is how to desifn,; given M and N;. Q /\M{HFM}MNO >
We present solutions for both of these problems in Sections
IV-B and IV-C. (18)
Bounding this by the transmit diversity case gives

MN.(M,R) -

B. Diversity-Multiplexing Codeword Distribution P.(E5/No)
The feedback amouri is often specified offline by general

system design constraints. For example, aBlipits of control < By |Ne(1,R)Q \/max A2{Hf}

overhead might be available in the reverselink frames. For this fer

reason, we will assume thd is a fixed system parameter.

Thus, we wish to understand how to distribu¥g,; = 25 < Fyg [Ne(l,R) .

codeword matrices among th&1| modes.
In most standardized wireless scenarios, the system can )\ & M W2, (1, R)

support a wide range of different SNR values. Because we Q (mathk,lb) No oM M,

do not want to redesign the codebooks each time the SNR 7 o

changes, we will take a different approach than [38], [41]

No

(19)



where W = [f; f, --- f),] is constructed by takingl/; channel realization by
vectors fromF;. The upper-bound in (19) rolls off with full

diversity if the vectors inF; spanC™:. This condition was Pe(&s/No)
shown in [48] to be satisfied whefv; > M, and F; is a (M, R)
non-trivial codebook design. < MyN.(M;, R)Q mm{H} %
Capacity Selection No t
We need to show that < M;N.(M;,R) - (25)
— 1 M,
P,.+(R) = Pr (mjax Jmax Cur(F) < R) (20) 0 min édmm( +, R)
1SK<M 73 [(H*H)fl}k ) Ny 2

rolls off with full diversity. Note that (26)

P,.(R) < Pr (maxlog2 (1 + 53||Hf|§) < R> . (21) Lets assume thak — rlo_g(Ss/NO) with » < M;. Fol-
No lowing the technique used in [35], we will obtain an upper-

bound using a QAM signaling assumption. This means that we
can choose the constellation such that the minimum distance
satisfiesd,nin (M, R) > a(£,/Ny)~"/ (M) wherea is a real
R
)

Rearranging gives

Py:(R) < Pr (max||Hf||2 (22) constant. Using this assumption, the probability of error can

fer be bounded as
This is bounded further as (&, /No)
W} &, < MyNe(My, R) - (27)
Pout(R) S PT Mfg{ 2} || HF ( 1)
M M? o2 £\ 1mr/M
= (E;/Ng)~ MM 23 E min ()
(€s/No) (23) H |Q 1k, {(H*H)ilhk No
with W defined as before. This is simply the outage proba- (Mo Mot 1)(1r /) ’
bility of orthogonal space-time block codes with an SNR shift =(Es/No) ™™ ' (28)
32, AW} o .

of =5z and was shown to possess full diversity order iynere (28) follows from the results in [49]. Thus multi-mode
[35]. B precoding with probability of error selection can achieve a

The achievability of full diversity gain is a substantiamultiplexing gain of M.
benefit. Spatial multiplexing has limited diversity order percapacity Selection
formance (ex. achieves diversity ordef,. for overly complex For the capacity case, we will use the outage probability
maximum likelihood decoding), so a large diversity increasgssuming thalk = rlog(Es/No) with r < M.
such as this adds considerable error rate improvements.
Just as diversity order is often used to characterize prodgut(r10g(€s/No))
bility of error performancemultiplexing gaincan be used to Es .
cha)r/acterize srg)ectral efficiency. ICI)_Ié(S g/J]\?O) = rlog(&,/No) < br (log (det (IMt + MtNOH H)) = rlog(ES/No)>

denote the supported data rate as a function of SNR. A MIMO _._ = (&,/Np)~Mr(Mi=r) (29)

wireless system is said to have a multiplexing gain: ¢85] ’

if Thus, we have shown that capacity selection yields a multi-
e lim R(Es/No) (24) plexing gain ofM,. ]

£, /No—oo log(Es/No)’ In order to satisfy the conditions in Lemma 1, we will
require thatN,; > M; and Np;, = 1 when Ny > M, + 1.
and this rate is the supremum of all rates that can be trap®ilowing the uninformed transmitter results in [1], [50], when
mitted with a non-zero diversity order. Multiplexing gain isp < log, (M, + 1) we will first set Ny;, = 1 and allocate
a fundamental property and, in our system, will be boundge remaining2? — 1 matrices toN;. Thus we can state the
from above bymin(M;, M) = M. following allocation criterion.
The next lemma addresses multiplexing gain. Probability of Error and Capacity Allocation Criterion for
Lemma 1.B If Ny, > 0 and the rate is allows to grow with B < log,(M; + 1): SetNy;, = 1 andN; =28 — 1.
SNR, multi-mode precoding provides full multiplexing gain.  When B > log,(M; + 1), the first step in assigning
Proof: We know that the multiplexing gain is upper-codewords is the determination of a distortion function. The
bounded bymin(M;, M) = M;. Thus we need to find a distortion function must be specific to the selection function
suitable lower-bound on multiplexing gain for each selectiomsed in order to maximize performance. We will design the
scenario. distortion function by attempting to force the quantized multi-
Probability of Error Selection mode precoder to perform identically to an unquantized (or
We can bound the probability of error conditioned on thperfect CSI) multi-mode precoder.



To determine the allocation of matrix codewords among tAé,, H*HV 5, = 3,3, and
modal codebooks, we will use rate-distortion theory. Each se-
lection criteria will motivate a different definition of distortion.
Using the defined distortion, the distortion-rate function is thg _ ;.
minimum obtainable distortion for a given feedback rate. We  FeFu
will upper-bound the distortion-rate function for each mode in
order to determine an allocation scheme.
Let the channel’s singular value decomposition be given byLet M = {m1,ma,...,mrq} denote the set of possible
modes. We will allocate the codewords to minimize the total
H=V_ YV} (30) distortion-rate function assuming a uniform mode distribution
which is given by

2 1
< —
det (V MF)‘ 5 rém}w

. 2
ViV —FF||

whereVy, is an M, x M, unitary matrix,V g is an M; x M;

unitary matrix, andX is a diagonal matrix with\;{H} at

position (i,7). We will define the probability of error design M|

distortion to be the average loss of the mode selection functiof. (10g; Ny, , . . . ;1085 N ) = Z MD(W,, logy Nim,)
This can be expressed as i=

(34)
D(Pe)(M, log, Nas) using the appropriate distortion. By plugging (31) into (34)
9 and removing the common scale factors among all modes, the
dz...(M,R) . _ ) .
= min Eg |min "7 probability of error selection is equivalent to minimizing the
- FaelFul=Nu M allocation cost function

2

2 X7 2
A {HV iy} — max Ay {HF}

Ml
2 Pe mvn ml? 2 M (Mi+1
< dmzn(M’R) min - [HH”%] . Al )( mis - m\M\ Z / ( ).
2M Fari|Far|=Nu ) (35)
Eg [ min va}k\/[ _ FF* ] Similarly, the capacity selection allocation should minimize
FeFm F the cost function
< d%nzn (M, R) MTMENA—/[Q/Mt(Mt+1) (31)
M
| M|
where V) is the matrix taken from the first/ columns of ACD) (N Ny ) = Y N 2D (36)
Vi and (31) follows from the fact that a Gaussian random i=1

variable gives the worst possible distortion-rate function (i.e.

the largest minimum achievable distortion for a given rate o )

and given variance) with a mean squared error [51]. RCth (35) and (36) must be minimized subject to
particular the bound results from dividing up thg, matrices

(or equivalentlylog, N, bits) among theMt(Mt + 1) real M

parameters in th@/, x M, complex matrixV’ 2wV s for scalar Z N, = Ny 37)
guantization. The capacity selection will use the conditional ’ ’

distortion-rate function given by

D) (M log, Nas) Np, = N1 > My, and N, ,,, = Ny, = 1. Thus, this
Es distortion-rate function based on a uniform mode distribution
= B ||logy | det { Ins + MN. OVMH HV y will allow the codeword allocation to be doriedependently
of the SNR.
— max lo det | Ins + £s F*H*HF : i i i i ill minimi
pere g | aet | 1ns MN, (3(I5t) is easily seen that the following allocation will minimize
1 Ca ;atcit Allocation Criterion for B > logy(M; + 1): If
< By ldet (Iy + —=-5,,5 - pacity 82 (M -
= 2(n(2))2 ™ { ( M MN, M Mﬂ B < logy(M;(|M] = 1) + 1), setNy, = 1, Ny = M,, and
_25_Mm—1
Fu [ min ||V V', — FF* } (32) N, = Frty for 1 <i < [M]. If B > logy (M:(|M| —
FeFum F 1) +1), setNy, =1 and N, = ﬁwfl for 1 <i < |M].
M? Es M, 2/ My (My+1) In the cases where this yields non-integer allocations, the
< (111(2))2EH ( A {H}> N allocation can be adjusted by giving any extra matrices to the

33) lower order modes.

- Eg. (35) can be minimized by a numerical search or convex
whereX,, is the matrix constructed from the fir8f columns optimization techniques. LeV,,, = Ny — M, and N,,,, =
of X. Note that (32) follows by usingn(z) — In(y)| < |x—y|, N, for ¢ > 1. Using this notation, we can reformulate (35)



as Probability of Error

1(Pe) (% - Following Section I1V-B, we will define the distortion as
A © (lea R NWL‘M‘,g)
2
- —2/M,(M;+1) Fu Dnin (M, 1) A2 {HF,,} — max A2, {HF,}
= 2,1, (1, ) (N, + M) M min R ept ] e Tmin an
1
|M|—2 & (my, R) ) where F,,,, is the precoder in{(M,;, M) that maximizes
+ Z s Non; A2 {HF,,:}. This can be bounded as
i=2 ¢
d? . (m|M|,1 R) |:d2 ‘L(MvR) ( 2 2
man ’ ) Eg |2 (A2, {HF,,;} — max X\, {HF;
* mM| -1 M ) P Rer { }
- t t 3 M?
Niot — My — 1 — Z N, (38)
1= 1— 2 IVIF.
2 EH |:( gg‘é)‘mm{vR l}>:|
where we have omitted theV), term. The values of 4. (M,R) )
Nonys -y N, that minimizeA can be easily determined < WTEH [N {H}] -
with wa_l = Ny — 1 — M, + z}fﬁ le. These 82
values can be used to determidé,,, ..., Ny, _, With p4 L Aproj (Oproj) + (1 = Aproj (Sproj))
Ninjn, = 1. Therefore, the following criterion can be used

for codeword allocation. (42)

Probability of Error Allocation Criterion for B > where

log, (M + 1): Minimize (35) such thatV; > M;, Ny, = 1, Sproj = min dproj(F1,F2) (43)
and>"MI N, = N,,;. This minimization can be done using 1 F2 € a Fa R

a numerical search or by using convex optimization techniquasd A,,,;(d,r0;) IS N times the normalized volume of a
on (38). metric ball inG(M,, M) of radiusdp,q; /2.

It should be noted that the assumption of a uniform mode Using metric ball arguments similar to [33] and the asymp-
distribution is a rough approximation. In general, environmetetic metric ball volumes derived in [52], the bound in (42)
tal effects such as spatial correlation will play a large role igan be approximately minimized by thinking of the s&t;
the notion of an “optimal” mode. As well, the probability ofas a set of subspaces rather than as a set of matrices. The
mode selection is inherently dependent on the rate at which theund can thus be minimized by maximizing the minimum
system transmits. Based on simulations, the uniform allocatiprojection two-norm subspace distangg,;.
tends to be overly conservative in that it biases codewoRtobability of Error Design Criterion: DesignF,, such that
distribution to the lower mode numbers.

dproj (Fh FQ) (44)

Oproj = min
Fi FocFr:F1#F,

C. Codebook Criterion Given the Number of Substreams is maximized.

Now that we have determined an algorithm that gives &rPacity _
allocation of the possible codebook matrices among the mod&8€ capacity distortion is defined as
it is now imperative to present the design &%, for each
mode. En

For a given mode, the codebodk,,; is a set of matrices
in U(My, M). Each matrix inF), defines an\/-dimensional whereF,,, is the precoder id{(M;, M) that maximize< 7.
subspace ifC"¢. The set of allM-dimensional subspaces inThe distortion cost function can be bounded as
CM: is the Grassmann manifold(M;, M). A finite set of )
subspaces in the Grassmann manifold can be thought of as g, (1cy (Fopt) — max Cyr(F)
a subspace code [52]. A large variety of different subspaces Fe

2
(45)

Cur(Fopt) — max Cuyr(F;)

distances can be used for subspace coding [53]. These include ) E —r—
the projection two-norm distancgiven by < (1/1In(2))°En [det (IM + MNoz 2)] :
* * =k 2
dproj(F1, F) = ||[F1F] — FoFj (39) (1 - s B Udet (V3F) D (46)
i€
and theFubini-Study distancgiven by o

Es -
< (1/In(2))*En {det <IM + MNOE 2)} .
, . . 1 —cos® (6rs/2) Ars(6 47
The codebooks will be designed by choosing and then ( cos” (O /2) Ars( FS)) “7)
minimizing a distortion function. We will break the presenwhere érs and A(érg) are defined using the Fubini-Study
tation into the two different selection cases following thdistance. Using the metric ball volume approximations from
development in [54]. [52] and differentiating the resulting bound tells us that we

drs(F1,F3) = arccos |det (F1F3)]. (40)



want to maximizedrg in order to approximately minimize In addition, multi-mode precoding uses a set of the form in

the distortion. (50) that only requires a multiplicative scale factor when the
Capacity Design Criterion: DesignFy, such that SNR changes. In contrast, [41] uses the Lloyd algorithm. The
) Lloyd algorithm, described in [64], uses a set of test channels
OFs = F1 Fac FosiFy£Fs drs(F1, F2) (48) (usually numbering in the thousands to hundred of thousands)
is maximized. and then repean th'e tvvp steps of generating a codebook
for each Voronoi region (i.e. the subset of the test channels
Discussion that map to the same covariance matrix) and redefining the

Note that the column vectors ifi, correspond to beamformingvorono' regions for the generated codebook. The algorithm

vectors [33], [34]. The design of limited feedback beamfornﬁo?\/ﬂ?esﬁrathsr quickl)t/h[64] tg a Ioc(':\l!y ; ptimal soltgtiodn_
ing was explored in [33], [34], [55]-[58]. In particular, it ut still suffers because the random matrix being quantized is

was shown in [33], [34] that the set of vectors should b%ighly dependent on the SNR.

designed by thinking of the vectors as representing lines in
CM:. The lines can then be optimally spaced by maximizing VI. SIMULATIONS
the minimum angular separation between any two lines. ThisLimited feedback multi-mode precoding was simulated to
is seen by noting that whei = 1 both 6,,,; anddrg are exhibit the available decrease in probability of error and
maximized by minimizingf; f,| for any two distinct vector§, ~ the increase in capacity. The capacity results are compared
andf, in . The setF,,, is trivially designed because we will With the results in [38], [41]. We also consider both full
require thatF,;, = {I,;, }. This precoder matrix correspondschannel knowledge [2], [3], [65] and limited feedback [33],
to sending a standard spatial multiplexing vector. [34], [58] beamforming. Probability of error simulations used
For M < M,, codebooks can be designed using the matrtke probability of error selection criterion, while capacity
codebook design algorithms for non-coherent constellationsSinulations used the capacity selection criterion.
[59]. The only modification needed is to use the correct sub-Experiment 1:This experiment addresses the probability of
space distance when performing the optimization. In additiovector symbol error oft x 4 dual-mode precoding with a ZF
algebraic design techniques can be used for certain valuedeseiver. The results are shown in Fig. 2. The rate is fixed at
M and N, [60], [61]. Numerical design techniques have als& = 8 bits per channel use with QAM constellations. Because

been studied in [62], [63]. the system is dual-mode, the set of supported moded is
{1,4}. Four bits of feedback is assumed to be available.
V. RELATION TO COVARIANCE QUANTIZATION This means thatF; contains 15 vectors andy, = {I4}.

Limited feedback beamforming using four bits (see [33], [34])
€ind spatial multiplexing are simulated for comparison. Multi-

mode precoding provides approximately a 0.6 dB performance

improvement over limited feedback beamforming. These gains
y=Hx+v are modest because of the restriction to dual-mode precoding.

The capacity analysis for MIMO systems with transmitt
CSI relies onoptimizing the transmit covariance matriA
MIMO system has a general input-output relationship

with H and v defined as in (1). The mutual information is

T T
—— Spatial Multiplexing

maximized by optimizing the covariance matrix > Beamforming

—©- MM Precode

Q = By [xx7]. (49)

Covariance quantization, proposed in [38], [41], choo®es "
from a codebook® = {Q1,Qq,...,Qxn}. Assuming thats
in (1) consists of independent entries distributed according
CN(0,&/M), the covariance matrix will béEs /M)F yF,.
Thus multi-mode precoding quantizes the set of covarian
matrices assuming a rank constrairhtet

Qum = {(&/M)FF* | VF € Fun}. (50)

This allows multi-mode precoding to be reformulated as
covariance quantization with a codebook

o= J Qm.
6 7 8 9 10 11 12 13 14

meM Eg/No
Multi-mode precoding is arank constrainedcovariance 2. Probabilty of vect bol . for limited feedback
. . . - . 9. 2. ropapliity ot vector sympol error perrormance tor imited reedoac

quantization. V_Vh”e the cgdebook r_natrlces n [38]' [41]_ aGual—mode precoding, limited feedback beamforming, and spatial multiplex-
tempt to quantize a waterfilling solution, chooses a covarianigg.
rank and then allocates equal power among each mode.
This avoids the power allocation problems associated withExperiment 2:In contrast to the first experiment, this
waterfilling. experiment considers & x 4 MIMO system transmitting

(o}

ckeF Error

e

Prob. of Sgmbol Ve

=
o
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R = 8 bits per channel use withM = {1,2,4}. Codebooks four bits of feedback. Interestingly, multi-mode precoding
were designed using® = 5 bits of feedback. This resulted outperforms multi-mode antenna selection by 0.4dB using
in Ny = 7, N, = 24, and N, = 1. Constellations were the same amount of feedback. Unlike multi-mode antenna
restricted to be QAM and the receiver was a ZF decodselection, multi-mode precoding can use more feedback to
Fig. 3 presents the simulation results. Spatial multiplexingdd additional array gain as the eight bit curve demonstrates.
unquantized beamforming (i.e. perfect CSI at the transmitteerfect CSI beamforming is also shown to demonstrate the
using maximum ratio transmission/maximum ratio combiningiulti-mode precoding gain.

[2], [65]), and unquantized MMSE precoding are shown for

comparison. MMSE precoding is implemented by transmit-1" : o Bearomig
ting two 16-QAM symbol streams using linear transmit and —o- MM Ant Select (4 bi)
receive processing (i.e. precoding and a linear receiver). The T

MMSE precoding was implemented as in [5] with the sum
power constraint and the trace cost function. This means that
the unquantized MMSE simulation is using power aIIocatiogw'l
among the modes. Note that all of the selection criteria
provide approximately the same probability of vector symbdgl
error performance. Five bit multi-mode precoding provide;é
approximately a 5dB gain over full CSI beamforming. Theré

is more than an 8.5dB gain over spatial multiplexing at af”
error rate of10~!. Interestingly, MMSE precoding with full
transmit channel knowledge, a less restrictive power constraint,
and a superior receiver gives only a 1.2dB gain over limited
feedback multi-mode precoding.

—=- MM Precode (4 bit)
—4— MM Precode (8 bit)
—+— MM Precode (e bit)

10°

T T T
10° | —&— Spatial Multiplexing H

—t+— Beamforming (Perfect CSI)
—%— MM Precode
—+- MMSE

Fig. 4. Probability of vector symbol error performance comparison for
limited feedback and perfect CSI multi-mode precoding, multi-mode antenna
selection, and beamforming.

Experiment 4:As mentioned in Section Ill, multi-mode
precoding can be employed with ML, V-BLAST, and linear
receivers. Fig. 5 compares the performance of limited feedback
multi-mode precoding with ML, V-BLAST, and ZF decoding.
We simulated at x 4 MIMO system transmittingR? = 8 bits
per channel use with QAM signaling antt = {1,2,4}.

The feedback bit total was set B8 = 5 with a codeword
allocation of Ny = 7, Ny = 24, and N, = 1. All receivers
perform very closely with ZF within 0.5dB of ML decoding.
V-BLAST decoding performs approximately 0.1dB away from
ML decoding.

Experiment 5The capacity gains available with the capacity
Fig. 3. Probability of vector symbol error performance for limited feedba\cﬁelecuon (.:nterlon are illustrated in Fig. 6 for2ax 2 MIMQ
multi-mode precoding, beamforming, and spatial multiplexing. system with B = 2,3, and 4 averaged over a spatially

uncorrelated Rayleigh fading channel. The codewords were

Experiment 3:The third experiment, shown in Fig. 4,allocated asN; = 2% — 1 and N, = 1. The plot shows
compares the performance of limited feedback multi-modke ratio of the computed mutual information with the ca-
precoding with various amounts of feedback. Again, we copacity of a transmitter with perfect CSI using waterfilling
sidered a4 x 4 MIMO system transmittingR = 8 bits per [1]. The capacity of an uninformed transmitter (UT) and the
channel use withtM = {1,2,4}. We used a ZF receiver andlimited feedback covariance optimization mutual information
QAM constellations. Feedback amounts Bf= 4, B = 8, results published in [38] are shown for comparison. Note that
andoo bits were simulated. ThB = 4 bit codeword allocation limited feedback multi-mode precoding outperforms limited
used Ny = 4, N, = 11, and N, = 1. The B = 8 feedback covariance optimization for both two and three bits
bit allocation wasN; = 54, N, = 201, and N, = 1. of feedback. This result is striking because, unlike covariance
Note that four bits of feedback performs within 1dB of the@ptimization, multi-mode precodindoes not require any form
infinite feedback scenario. Adding four more bits of feedbaa¥f waterfilling. Thus our scheme, on average, always transmits
adds approximately @6dB gain. For comparison, multi-modewith the same power on each symbol substream. The high-rate
antenna selection [29] using the probability of error selectideedback performance difference between limited feedback
criterion is presented. Multi-mode antenna selection requiresvariance optimization and multi-mode precoding can be

Prob. of Symbol Vector Error

N
Ow

10"
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N Precode @B) benefit of only requiring a few bits of feedback.

—— MM Precode (VBLAST)
—~ MM Precode (ML)

11 T
- UT

—«— MM Precode (4 bit)
—&— MM Precode (5 bit)
—=— MM Precode ( bit)

—E B T = R * — = P

A

&
o

Prob. of Symbol Vector Error

,_\
CJ‘
T

Normalized Capacity

10°F
-3

05 L L L L L
Fig. 5.  Probability of vector symbol error performance comparison of ~°
different receivers with multi-mode precoding. °

Fig. 7. Capacity comparison of multi-mode precoding with an infinite amount

. . . . of feedback, multi-mode precoding with four and five feedback bits, and an
most likely attributed to this power-pouring. uninformed transmitter.

1

4 Experiment 7:This experiment, shown in Fig. 8, compares
limited feedback multi-mode precoding with the feedback
technique proposed in [41] ondx 4 MIMO system. Again,

the mutual informations are normalized by the waterfilling
capacity. Multi-mode precoding was restricted the modes
M ={1,2,4}, and both schemes used three bits of feedback.
Multi-mode precoding performs within approximately 1.5dB
of the algorithm in [41] for all SNRs. Note that the algorithm

in [41] used a feedback codebook that was redesigned for each
SNR while the multi-mode codebooks are fixed for all SNRs.

Normalized Capacity

1

e - uT )
. —— Lau et al (3 bit)

—— MM Precode (2bit) L i = i
5 MM Precode (3bit) 0.9571 5= MMode (3 bit =
—+— MM Precode (4bit) [ _—

—%— Blum (2bit) ool i
~A- Blum (3bit) -

—%— Blum (4bit) A

T

0.6 L L L L -
-10 -5 0 5 10 15 20 0851 7
EJN,
S o0s8f : e
/

Fig. 6. Capacity comparison of multi-mode precoding, limited feedbas
covariance optimization [38], and the uninformed transmitter.

0.65

075 : 8

rmalized %paclty
\
\
K
\
\

Experiment 6:The sixth experiment compares infinite res? T
olution multi-mode precoding, limited feedback multi-mode osst .
precoding, and the UT capacity fo3a 3 MIMO system. The
capacities have been normalized by the optimal waterfilling “r
capacity at each SNR. The results are shown in Fig. 7. Wess;, .
considered supported modes #ft = {1,2,3} with four

and five feedback bits. We designed the limited feedback ™o E 0 E%’N 10 i5 20
codebook using techniques from Section IV. The codeword o
matrices were allocated WitW:1| = {(28 - 1)/21 ) ‘-7'—2‘ = Fig. 8. Capacity comparison of multi-mode precoding and the covariance

|(28 —1)/2], and |F3| = 1. The infinite resolution multi- feedback technique designed in [41].

mode precoder obtains withi®8.5% of the system capacity

when the channel is known to both the transmitter and receiverExperiment 8:The final experiment examines the diversity
The limited feedback case obtains more th&t¥, of the vs. multiplexing performance using the outage probability.
perfect transmitter CSI system capacity with four feedbadk 4 x 4 multi-mode precoding system witlv; = 4 and
bits and87.8% with five feedback bits. This comes with theN, = 1 was simulated. Various rate growths were considered
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including a fixed ratg R = 30), R = 3log,(&s/No), R of feedback and a moderate number of transmit antennas, the
3.5log,(Es/Noy), R 3.7510og,(Es/Ny), and R computational complexity will quickly scale to unacceptable
3.91og,(Es/Np). The results are shown in Fig. 9. Tlie= 30 levels. A possible sub-optimal solution might be to analytically
outage probability curve shows the full diversity rate perfodetermine the mode and/or precoder matrix for an unquantized
mance of multi-mode precoding. The other curves demonstratestem and then restrict the brute force optimization to candi-
that the growth can get arbitrarily close b= 41log,(€s;/Ny) date multi-mode configurations around the unguantized case.
with a non-zero asymptotic slope of the outage curve. An interesting area for future research is the distribution
of the codebook matrices among the different modes. In our
derivation, we assumed that the modes were equiprobable.
This assumption will be unrealistic in most environments.
It may be possible to compute an approximate closed-form
solution of the number of matrices to be allocated to each
mode given i.) the number of feedback bits, ii.) channel
correlation, and iii.) rate.

The ideas behind the relationship between multi-mode pre-
coding and covariance quantization [38], [41] are also of
interest. Future research is needed to obtain a more definitive
capacity analysis when the transmitter is only constrained to
vary the rank of the covariance matrix. We conjecture that
the losses relative to waterfilling with a trace constraint (as
discussed in [1]) will always be minimal.

Outage Probability

R e For practical implementation, the effect of delay and errors
S RS in the feedback channel on system performance is something
< R=3dogsNR) 75, that should be studied. These effects will lead to degradation

in the obtainable bit error rate and spectral efficiency. This
analysis would provide interesting knowledge into the benefits

Outage probability analysis for multi-mode precoding with various

Fig. 9. . . . - .
of multi-mode precoding in practical wireless systems.

transmission rates.
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