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Abstract. This paper describes a feature point matching strategy and motion recovery applied 
to vehicle navigation. A transformation of the image plane is used that keeps the motion of the 
vehicle parallel to the transformed plane. These allows us to define linear tTacking filters to 
estimate the real-world positions of the features. The correspondences between features are 
first selected by similarity, taking into account the smoothness of motion and rigidity of the 
scene. Further processing brings out the rest of correspondences. The method is applied to a 
real application consisting of an autonomous vehicle navigating in a crop field. 

1 Introduction 
The general problem of motion analysis from image sequences can be stated as to 
finding the motion parameters that the camera co-ordinate system has to undergo in 
two consecutive images in order to match the projection of the scene viewed in both 
images [1,2,3]. Recovering a general 3D motion is an ill-defined problem and, due to 
the speed-scale ambiguity, only the direction of the translation can be recovered if no 
a-priori knowledge is applied. The computation of the motion parameters is based on 
a former computation of the projected motion, that is, the motion of the projected 
scene on the image plane, which is approached by either the computation of the 
optical flow, basically using differences in the intensity of two consecutive images, or 
by the computation of feature correspondences [1,4]. This latter method seems more 
reliable for real-time applications since, once the features have been selected, the 
amount of data to process is significantly reduced. 

In real-world applications some constrains are usually applied to the general 
problem: for example, if the motion is known, then a 3D map of the scene can be 
recovered; or there exist some landmarks on the scene whose real-world positions are 
known; or some of the motion parameters are fixed, a rotation angle or a component 
of the translation vector. The latest situation is usually the case in autonomous 
vehicle navigation, Fig. 1. The camera height, v, and tilt angle, q~, are fixed. Also the 
roll angle is fixed and set to zero, since the vehicle is assumed not to roll. It is often 
assumed that the features lie on the ground plane. This configuration can be found in 
applications like road-following and indoor or outdoor navigation. Feature tracking 
is a usual approach to motion estimation although the nature of the extracted features 
depends on the type of scenes we deal with. Feature point tracking is a common 
approach, where the points are usually extracted from grey-level images by some 
corner detector. This is the configuration that will be followed in the present work. 

2Problem Statement ~ ; < ; ; . . i l  i .......... ] . . . . .  

The relation between the camera and the world co- i ~ ........... 
ordinate systems can be seen in Fig. 2. At time instant ~ 2'~ 
0 (first frame) the Xw axis is defined to be aligned with - ~ v v h~b, 
the xc axis, in further frames this alignment will no 

Fig. 1. Camera on a vehicle 
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longer exist (in general), given that the vehicle rotates and 
translates over the ground. With this camera configuration 
the vehicle 2D motion is expressed as a 3D motion in the 
camera co-ordinate system. To avoid this, and constrain 
the camera motion to be two-dimensional, we introduce 
the virtual image plane, Fig. 3, parallel to the plane of 
motion. The co-ordinate system of this virtual camera is 
defined by applying a rotation of angle ~0 around the x~ 
axis. The advantage of using the virtual image plane is 
that there will be no translation along the z,~ direction, this 
will be convenient when finding the feature 
correspondences and tracking the features through a 
sequence of images, since it allows us to define linear 
Kalman filters to estimate the real-world positions of the 
feature points. Features can be detected on the original 
image, then they are transferred to the virtual image plane, 
so one does not have to transfer the whole image, but just 
the selected features, saving processing time. Once the 
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Fig .  2. Camera  and wor ld  
co-ordinates 

xox~, "",.,~ 

Fig. 3. Virtual camera 

camera is calibrated [5] the transformation is fixed and it can be performed by a 
look-up table. The co-ordinates of the two planes are related by: 

(xw y~c zvc)T=(f X, fycCOs~o_fsinq~ )r (1) 
y sin ~0 -k f cos tp  y sin(o + fcos~0 f 

Let rk,k-1 and tk,k-I express the real-world frame-to-frame motion, rk,k_ 1 is a 2D 
rotation matrix and tk,k-1 a 2D translation vector. These motion parameters relate the 
projections, in two consecutive flames, of a pair of matched features on the virtual 
image plane: 

,,o, 1 I Ly~4)k ..proj [yprO; I =r~.k-H| p,o;/ -- ' f ' f tkkl  (3) 

where the superscript proj indicates co-ordinates of the projected features, and z~c is 
the real depth of the feature, whose value is known from the calibration and equal to 
the camera height, since the features lie on the ground. The absolute motion of the 
vehicle can be computed recursively from the frame-to-frame motion. Let R k (2D 
rotation matrix) and T k (2D translation vector) be the absolute motion of the vehicle 
in world co-ordinates, then: 

R t = Rk_lr~,~_ 1 ; R 0 = I (4) 
T k =T~_ 1-Rktk,k_l ;  T o = 0  

The problem consists of finding rk,k-1 and tk,ia through a sequence of images. This 
implies to select the features and to track them estimating their real-world positions. 

3 F e a t u r e  C o r r e s p o n d e n c e  
Due to the special characteristics of the application to which this work is mainly 
directed, we have used points as features to be tracked. For the rest of the work we 
assume that a set of feature points is available for every image. The method to find 
the correspondence and motion recovery is independent of the way the feature points 
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were extracted, the only requirement is that they are stable and that some 
characteristics of the points can be provided. In our approach we assume a 
measurement of similarity on pairs of features is available, we combine it with the 
assumptions of smoothness of motion and rigidity of the scene, and we exploit the 
special configuration of the camera used in vehicle navigation to define the virtual 
image plane. The correspondence problem has to be solved as a first step to feature 
tracking, by which we mean to assign a new feature observation to a tracker 
(tracking filter) that estimates the real position of the feature, based on previous 
observations; and to the problem of estimating the camera motion from the set of 
correspondences (point correspondences in this case). Each feature has a tracking 
filter (we will use Kalman filters) assigned to it, that estimates its most likely 
position from all previous observations. The data to be estimated are the projection 

on the virtual image plane, (~proj ,~,proj) Features observed in image k-1 already 

have an associated tracker. Features appearing in image k have not been associated 
to a tracker yet, but they will be after the correspondence is found, then the new 
observation will be used to update the corresponding tracker. Features in image k for 
which no correspondence is found are assumed to be new, and a new tracker is 
initiated for them. The matching is found from features in frame k to all the 
estimated positions of the features that have been observed before, we will call these 
present tracks. The method can cope with poor feature extraction: a feature that is 
not detected during some frames will be assigned to its corresponding track when 
detected again. When a feature is not detected a change of co-ordinates is made to its 
estimated position to update it on the virtual plane. The tracks are filtered before 
computing the matching to reject those falling outside the present field of view. 

The correspondence problem can be stated as follows: 
Let nk be the number of detected features in image k, and let nk-1 be the estimated 

positions from the trackers at time k-1 that survive the filtering (tracks in image k-l). 
Solving the correspondence consists of finding a backward mapping, ~ :  i e [1.. nk] 
--+j e [0,1.. nk.1] and a forward mapping O : j  e [1.. nk.l] ---> i e [0,1.. nk] following 
some criteria, and so that: 

qJ(i) is the corresponding track in image k-1 to feature i in image k. W(i)=0 
means feature i has no corresponding in image k-1 (new appearing feature). ®(j) is 
the corresponding feature in image k to track j in image k-1. ®(j)=0 means feature j 
has no corresponding in image k (it has disappeared from the field of view or has not 
been detected). 

The criteria to find the mapping have to satisfy the following constraints: 

3.1 Similarity between features 
A general procedure to give a measure of similarity between features consists of 
computing a vector of characteristics for every feature, (cli, c2i . . . . .  cNS. The 
meaning of these characteristics is highly dependent on the method used to detect 
them (details on the characteristics that have been used in our application will be 
given in the results section). Then a distance between features can be defined as: 

N 
2 (5) 

l~l 
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where dij is the distance between feature i in image k and feature j in image k-l, and 
wl is the weight associated to characteristic l (I=I...N). 

3.2 Smoothness of motion 
The previous estimated frame-to-frame motion, rk-l,k-2 and tk-l.k-2, is used to search for 
correspondences. Given a feature i in image k, the search area to find its 
corresponding in image k-1 is located by back-projecting (3) its co-ordinates on 
image k-l, but an estimation of the depth, zvc, is needed in equation (3), so we make 
the assumption that the depth is equal to the camera height, i.e. the features lie on 
the ground. This is a quite reasonable approach for most autonomous navigation 
applications where the camera is pointed to the ground, the same idea was used by 
Liu et al. in [2] to recover motion from line and point correspondences assumed to be 
on the ground plane. Finally the search area is set as an ellipse of centres a and b, 
whose main axis is orientated along the motion epipolar line. Co-ordinates of point a 
are set by back-projecting the co-ordinates of the feature using a decreased value for 
Zvc, and point b is set by back-projecting it with an increased value of Zvc (30% of 
increasing/decreasing has been used in our application). 

The distance used can be considered a modified Euclidean distance since points 
inside a fixed distance threshold do not fall inside a circle, but inside an ellipse 
orientated in the direction of the epipolar line, direction which has been found using 
the previous value of the motion parameters. By this approach we favour the 
searching for correspondences in the direction of the motion, which is mainly 
forward although can have some rotational or transversal translation component. 

3.3 Rigidity of the scene 
The rigidity of the scene constrains the correspondences which arise from the same 
motion of the camera, this means that, ideally, the values of rk,k-1 and tk, k-1 in (2) and 
(3) have to be the same for all features. Once some candidate correspondences have 
been found by selecting similar features in the search areas, a Hough Transform-like 
technique is applied to further select those features having very close values of rk, k-1 
and t~,k-1. 

4 P r o c e d u r e  to  f i n d  t h e  c o r r e s p o n d e n c e  
Following the criteria explained above leads to obtaining an initial set of 
correspondences of present features to existing tracks, and a first guess for the frame- 
to-frame motion. After selecting the coherent correspondences a better value for the 
motion parameters can be obtained by minimisation, the rest of correspondences can 
then be computed by back-projecting the still non-matched features using the 
recovered motion, and by finding the most similar track in image k-1. The complete 
method to find all the correspondences can be expressed as follows: 

4.1 Compute candidate matches 
Build a distance matrix, dm. Each entry, din[i j] ,  represents the distance (or 
dissimilarity) between feature i in image k and track j in image k-1. Then find 
candidate correspondences as those pairs (id) in which position dm[ij] is at the same 
time minimum in its row and its in column. This means that track j is the most 
similar to feature i, and feature i is the most similar to trackj. 
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4.2 Select the coherent matches by a Hough Transform-like technique 
For each candidate correspondence, give values to V and compute the set of points in 
the 3D parameter space, (V, tx, ty), using equation (2). Apply a clustering [6] to the 
set of points (~, tx, ty) and find the biggest cluster, (Vo, t~0, ty.o), which gives a first 
guess for the motion parameters, r0;k,k-1 and t0;k,k-l, Mark the correspondences that 
originated the points that support the biggest cluster as a coherent match and discard 
the others. A similar technique was used by Sanchiz et al. in [7] to find 
correspondences of blobs. 

4.3 Compute the motion by minimisation 
Find a best value of the frame-to-frame motion by minimisation [3], rl;k,k-I and tl;k.k-V 
The coherent correspondences are used to prepare two sets of 3D points in world co- 
ordinates. The projected co-ordinates of all the features are known, and the depths, 
zvc, are set to the camera height. The real-world positions in virtual camera co- 
ordinates of a feature are then: 
(~ ,, , ~T-c~.pr4 z~c ~p,-~j (6) 
~vc,~vc, ~vc, - ,'~vc f ,~vc Zvcf , Zv c)T 

4.4 Apply a further filtering to the present matches 
The matches that still represent a big variation from the motion parameters that were 
found by minimisation are rejected. Once the motion parameters are known, the new 
observed depth of a feature can be found by triangulation. From equation (2), and 
assuming that the module of the translation due to this correspondence is the same as 
the module of the translation found by minimisation, we can solve for zvc (Zw = zv~ 
(ob~)) and tzk_1 (tk, k.1 = tk, k.1 (obs)): 

It,,,~_ll (7)  tk'k-l(°~) = ~ f  [(yvcUr°J j~ \Y~v )I¢-1~ 
Zvc(°bs) = f lr proj~ t proj~ I 

Xvc r Xvc 
lyprOi] -1;t,t-,[y,rOj] 

I \ VC ] k  \ vc ~ 'k- l l  

The filtering rejects the correspondences that produce a big variation in the depth 
or a big variation in the direction of the translation. In our application we have 
rejected variations in depth bigger than 30%, and variations of more than 5 degrees 
in the direction of the translation. 

4.5 Find the final matching 
The rest of the matches are found by computing z~c (ob~) and tk.k_l (ob,) for all possible 
correspondences of still non-matched features. Computing the distance for those 
whose z~c (ob~) and tk,k_l (ob~) values are inside the limits, and successively picking up 
the most likely correspondence. 

4.6 Find the final value of the motion parameters 
A new (and definitive) value of the frame-to-frame motion, rk.k_l and tk.k_l, is found 
by minimisation [3] using all the correspondences. 

5 Tracking Features 
A tracking filter is initiated for every new feature appearing in the scene. Its function 
is to estimate the position of a feature from its set of observations, and from the 
estimated motion parameters. The data to estimate are the co-ordinates of the 
projection of a feature on the virtual image plane. Fixing the depth, zv~, to the camera 
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height, the real-world position can be computed from equation (2). The Kalman 
filter [8] is used as a tracker, it estimates the best value, in a least-squares sense, of a 
state vector from a set of Gaussian noisy measurements in dynamic linear systems. 
Precisely the frame-to-frame motion can be expressed as a linear system if we use the 
co-ordinate axes of the virtual vertical camera. The Kalman filter equations are: 
System: xk = (I)k-1 Xk-1 + Fk-1 Uk-I + Vk; gk E N(0,R1) (9) 
Measurement: Yk = Ck Xk + ek; eke N(0, R2) (10) 
Initial state: E[x0] = x0e; cov[xo] = Po; E[vk eft] = 0 

Prediction at k-l: Xklk-1 = ~k-1 Xk-llk-1 + rk  Ilk (11) 
Pklk-1 = Ok-1 Pk-1 (I)k-1 T q" R~ (12) 

Prediction at k: Kk = Pak-1 C~ [CkPak_lC T + R2] 1 (13) 
x~k = Xak-1 + Kk [ Yk- Ck X~k-1 ] (14) 
P~k = [ I - Kk Ck ] Pktk-1 (15) 

The state vector is defined as: x k = ( XPv~. °j yP"°J ] "r (16) 
• v c  ]k 

The transition matrix, Ok, is used to express the rotation, and the input part in 
equation (9) is used to model the translation: 

( t x / f ]  (18) (COSlF -sin~/) (or  Ok : r k k _ , )  (17) F~ =I;  u k / f  
~ = \ s i n v  c o s v ) k  ' = ty k 

The transition from state k-I to state k is: 

x::°, I y ( j j k = (  l i t - s i n v /  (xC°i) + ( t  l f~  (19) 

s i n v  cos V Jk_,~,y~[°~)~_, ~,t~/ fJk_ 1 
The measurements from the visual information are the co-ordinates of the 

. proj proj projected features, tXvc., Yvc ), so the measurement matrix is the 2x2 identity 

matrix, Ck=I. The covariance matrices are initiated as: Po = R1 = R2 = o "a I, where a 
is set to a fraction of the field size. 

6 Experimental results 
In our application the context is an autonomous vehicle that navigates in an outdoor 
crop field. The scenes we deal with consist of a perspective view of a piece of crop 
field where only natural objects (plants) appear. The purpose of the application is to 
spray on the plants or weeds automatically, thus, the vehicle is equipped with a bar 
of nozzles to perform the spraying. Images are segmented [9] to divide the scene into 
three classes, regions of class "soil", "plant" and "weed". The same images are used 
to identify the plants and to compute the motion parameters, which are used to place 
the images on a map of the field, built up while the vehicle moves [10]. Exploring 
the map along the nozzle bar allows us to open those nozzles that are over a plant or 
weed. The motion estimation is intended to be passed to the vehicle control system, 
thus closing the loop and trying to perform an autonomous row following. 

Features are detected as dominant points in the contours of the regions of class 
"plant". A contour following algorithm was applied to code the boundaries, and the 
dominant points were found by a neural network-based algorithm for dominant point 
detection [11]. The tracking method explained in this paper has been tested with 
several image sequences obtained from a camera mounted on a manually driven 
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vehicle, Fig. 1, undergoing a zigzag motion. The camera height 
was v=1200 ram., the tilt angle was q~=66 degrees and from a 
previous calibration [5] of the camera the lens focal length was 
f=40 ram. 

Since we use dominant points in contours as features, two 
characteristics that give satisfactory results for similarity 
measurements are the convexity and the orientation of the contour 
in a small area around the point, so we fix N=2 in equation (5). 
Assuming that both characteristics have the same importance we 

P, 

.,. P ^ J 

Fig. 4. Convexity, 
c~, and orientation, 
13, at a dominant 
point. 

fix wl=l and wz=l (5). From a dominant point, p, two points are found at either side 
of the contour, Pa and Pb, SO that the distance between p and Pa, and between p and 
Pb is as close as possible to a given value (10% the contour length has been used). 
The angles of convexity and orientation are computed as shown in Fig. 4. 

An example of the matching process can be seen in Fig. 5. The rate of successful 
correspondences was over 95% through a whole sequence of thirty images, this rate 
was determined by manually identifying the correct correspondences, the incorrect, 
and the missed ones, in every image of the sequence. From the frame-to-flame 
motion, rk.k-1 and tk,~-l, the absolute position and orientation of the vehicle, Rk and Tk, 
are found from (4). In order to measure the accuracy of the motion estimation, Rk 
and Tk were used to place every image over the ground plane, thus building a map of 
the crop at a desired scale. Since the images overlap in a certain amount, a majority 
voting scheme was used to determine the classification of the pixels, counting the 
times that a pixeI is assigned a certain class. As the plants are aligned in rows, every 
plant was manually assigned to a certain row, and straight lines were fitted to every 
row, using the centres of the blobs of class "plant" as the data for the fit. The root- 
mean-square (r.m.s.) error of the fit, the parallelism and the distance between 
neighbouring lines (and its comparison with the real-world distance) are 
measurements that indicate the accuracy of the map, and so of the estimated motion. 
Fig. 6 shows a map drawn in a 256x512 image at a scale of 15 mm. per pixel, the 
last field of view and position of the nozzle bar are outlined. The r.m.s, error of the 
fit was below 30 ram. for the three lines respectively, the angle between 
neighbouring lines was below 0.5 degrees and the distance (measured at the centre of 
the map) was 413.2 and 408.3 mm. (400 mm. is the approximate real-world distance 
between rows in the crop). It has also to be noted that the lines were fitted to the 
centres of the blobs of class "plant", which are not exactly over the lines that pass 
through the centre of the crop rows, nevertheless the results are quite satisfactory. 

7 Conclusions 
A strategy to solve the correspondence problem and the tracking of features has been 
presented. The method is intended for autonomous navigation applications, where a 
general constraint is that the motion is undergone on the ground plane. The 
similarity between features and the smoothness of motion are taken into account to 
provide an initial matching. The matches that are coherent with the rigidity of the 
scene are selected by a Hough Transform. The motion is computed by minimisation, 
and used, together with the similarity between features, to obtain the final 
correspondence. A Kalman filter is defined for each feature to estimate its real 
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Fig. 5. From left to right and top to bottom: Two consecutive images 
(contours and dominant points outlined, correspondence superimposed on Fig. 6. Map built 
the second one). Both images transferred and overlapped on the virtual from the recovered 
image plane, initial matching. Selected matches after applying the Hough motion, with lines 
Transform-like technique. Final correspondence, fitted the rows. 

position. The method has been applied to a real-world application. 
(Work supported by the Spanish Ministry of Science, CICYT TIC95-0676-C02-01) 
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