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Abstract

Today, minutiae-based and image-based are the two major approaches for the purpose of fingerprint authentication. Image based approach

offers much higher computation efficiency with minimum pre-processing and proves also effective even when the image quality is too low to

allow a reliable minutia extraction. However, this approach is vulnerable to shape distortions as well as variation in position, scale and

orientation angle. In this paper, a novel method of image based fingerprint matching based on the features extracted from the integrated

Wavelet and the Fourier–Mellin Transform (WFMT) framework is proposed to remedy these problems. Wavelet transform, with its energy

compacted feature is used to preserve the local edges and reduce noise in the low frequency domain after image decomposition, and hence

making the fingerprint images less sensitive to shape distortion. The Fourier–Mellin transform (FMT) served to produce a translation,

rotation and scale invariant feature. Multiple WFMT features can be used to form a reference invariant feature through the linearity property

of FMT and hence reduce the variability of the input fingerprint images. Based on this integrated framework, a fingerprint verification system

is designed. The experiments show the verification accuracy is 5.66 and 1.01% of equal error rate is achieved when multiple WFMT features

are used.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fingerprint is the pattern of ridge and furrows on the

surface of a fingertip. The pattern is formed by a set of

ridgelines, which sometimes terminates (ridge-ending) or

intersects (bifurcation). These ridge-ending and bifurcation

form a set of features called minutiae. Various approaches of

automatic fingerprint matching have been proposed in the

literature. Fingerprint matching techniques can be broadly

classified as being either minutiae-based or image based

[1–3,6,7]. Minutiae based approach first extracts the

minutiae from the fingerprint images. Then the decision is

made based on the correspondence of the two sets of

minutiae locations. Minutiae based approaches are the most

popular ones being in almost contemporary fingerprint

matching systems. This approach depends heavily on both

pre-processing and post-processing operations (i.e image

enhancement, directional filtering, ridge segmentation,

ridge thinning, minutiae extraction, purification and point

registration) in order to get reliable minutiae features [2–5].

The main drawback of the minutiae-based approach is that

errors can propagate from minutiae extraction down to the

decision stage [6].

Unlike minutiae extraction, image based approaches

usually extract the feature directly from the raw image since

a gray-level fingerprint image contains much richer, more

discriminatory information compared to the minutiae

locations. The minimum pre-processing requirement with

this approach may also reduce the computation load.

Additionally, image-based approaches may be the only

viable choice, for instance, when image quality is too low to

allow reliable minutia extraction [7]. However, the image

based approach suffer from the two types of distortions: (1)

noise, which is caused by the capturing device or by e.g.

dirty fingers and (2) non-linear distortions, often produced

by an incorrect finger placement over the sensing element.

This causes various sub regions in the sensed image to be

distorted differently due to the non-uniform pressure applied
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by the subject. Also, the variation in position, scale and

orientation angle is difficult to track when using this

approach [7].

In this paper, a new image-based method is proposed. By

using an integrated Wavelet and Fourier–Mellin trans-

formed feature (WFMT) the distortion and alignment

problems are alleviated while retaining the advantages of

the image based approach. The only pre-processing step is

the reference point detection in the fingerprint image. In this

proposed technique, Wavelet transform preserves the local

edges and noise reduction in the low frequency domain

(high energy compacted) after the image decomposition,

and hence makes the fingerprint images less sensitive to

shape distortion. In addition to that, the reduced dimension

of the images also helps to improve the computation

efficiency. Fourier–Mellin transform (FMT) produces a

translation, rotation in plane and scale invariant feature. The

linearity property of FMT enables multiple WFMT features

to be used to form a reference invariant feature and hence

reduce the variability of the input fingerprint images. Based

on this integrated framework, a fingerprint verification

system can be designed.

The outline of the paper is as follows: Sections 2 and 3

provide a short review of Wavelet Transform and FMT,

respectively. Section 4 presents the integrated framework of

Wavelet Transform and the FMT for representing the

fingerprint image, while the architecture of the fingerprint

verification system based on the WFMT feature is illustrated

in Section 5. Section 6 presents the experimental results,

discussion and the comparison with a few existing image

based techniques.

2. Wavelet transform

2.1. Short review of discrete wavelet transform

The wavelet decomposition of a signal f ðxÞ can be

obtained by a convolution of signal with a family of real

orthonormal basis, ca;bðxÞ

ðWcf ðxÞÞða; bÞ

¼ lal2
1
2

ð
R

f ðxÞc
x 2 b

a

� �
dx f ðxÞ [ L2ðRÞ ð1Þ

where a; b [ R and a – 0 are the dilation parameter and

the translation parameter, respectively. The basis function

ca;bðxÞ is obtained through translation and dilation of a

kernel function cðxÞ known as mother wavelet [8] as defined

below:

ca;bðxÞ ¼ 22a=2cð22ax 2 bÞ ð2Þ

The mother wavelet cðxÞ can be constructed from a scaling

function, fðxÞ: The scaling function fðxÞ satisfies

the following two-scale difference equation

fðxÞ ¼
ffiffi
2

p X
n

hðnÞfð2x 2 nÞ ð3Þ

where hðnÞ is the impulse response of a discrete filter which

has to meet several conditions for the set of basis wavelet

functions to be orthonormal and unique [8]. The scaling

function fðxÞ is related to the mother wavelet cðxÞ via

cðxÞ ¼
ffiffi
2

p X
n

gðnÞfð2x 2 nÞ ð4Þ

The coefficients of the filter gðnÞ are conveniently extracted

from filter hðnÞ from the following relation

gðnÞ ¼ ð21Þnhð1 2 nÞ ð5Þ

The discrete filters hðnÞ and gðnÞ are the quadrature mirror

filters (QMF), and can be used to implement a wavelet

transform instead of explicitly using a wavelet function.

For 2D signal such as image, there exists an algorithm

similar to the one-dimensional case for two dimensional

wavelets and scaling functions obtained from one-dimen-

sional ones by tensiorial product. This kind of two-

dimensional wavelet transform leads to a decomposition

of approximation coefficients at level j 2 1 in four

components: the approximations at level j, and the details

in three orientations (horizontal, vertical and diagonal)

Ljðm; nÞ ¼ ½Hx p ½Hy p Lj21�#2;1�#1;2ðm; nÞ ð6Þ

Dj verticalðm; nÞ ¼ ½Hx p ½Gy p Lj21�#2;1�#1;2ðm; nÞ ð7Þ

Dj horizontalðm; nÞ ¼ ½Gx p ½Hy p Lj21�#2;1�#1;2ðm; nÞ ð8Þ

Dj diagonalðm; nÞ ¼ ½Gx p ½Gy p Lj21�#2;1�#1;2ðm; nÞ ð9Þ

where p denotes the convolution operator, # 2; 1 ð" 2; 1Þ

subsampling along the rows (columns), H and G are a low

pass and bandpass filter, respectively. This decomposition

algorithm can also be illustrated by the block diagram in

Fig. 1.

2.2. Fingerprint images in wavelet domain

As described in Section 2.1, a multiresolution represen-

tation can provide a hierarchical framework for interpreting

the image information and the wavelet transform can be

used to decompose the image into a multiresolution

Fig. 1. Decomposition of Lj21ðm; nÞ into four quarter-size images by using

the conjugate filter H and G:
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representation. Fig. 2(a) shows the decomposition process

by applying the 2D wavelet transform on a fingerprint image

in level 1. Similarly, two levels of the wavelet decompo-

sition as shown in Fig. 2(b) by applying wavelet transform

on the low-frequency band sequentially.

In Fig. 2(a), the subband L1 corresponds to the low-

frequency components in both vertical and horizontal

directions of the original images, making it the low-

frequency subband of the original image. The subband

D1horizontal corresponds to the high-frequency component in

the horizontal direction (horizontal edges). A similar

interpretation is made on the subbands D1 vertical (vertical

edges) and D1 Diagonal (both directions).

For fingerprint images, the ridge structure can be viewed

as an oriented texture pattern, which often runs parallel in

omni direction. According to wavelet theory, the wavelet

transform conserves the energy of signals and redistributes

this energy into more compact form. It is commonly found

that most of the energy content will be concentrated in low

frequency subband, Lj if compare to high frequency

subbands, Dj: Obviously, Dj’s are not suitable to represent

the ridge structure because of their low energy content and

its high pass feature that tends to enhance the edges detail,

including noise and the shape distortion whereas the

subband Lj is the smoothed version of original image and

thus helps to reduce the influence of noise on one hand, and

on the other hand it also preserves the local edges well

which helps to capture the features that insensitive to the

small distortion.

However, how well is the Lj can preserve the energy

is depend to the chosen wavelet bases. By using the 1st

level decomposed fingerprint image that shown in Fig. 2

with various wavelet bases, the normalised energy

distributions are shown in Table 1. The results show

that the orthogonal/biorthogonal and high order wavelet

bases are able to preserve the energy efficiently in

subband Lj which is only quarter size of the original

image. In turn, the computational complexity will be

reduced dramatically by working on a lower resolution

image. This makes the wavelet approach differ from the

other common techniques that also reduce the noise as

well as resolution reduction, such as spatial filters with

dyadic down-sampling. Table 2 shows the energy leakage

of the spatial filter followed the way of wavelet

decomposition that shown in Fig. 1 where H and G

are replaced with the spatial filters, i.e filtering followed

with dyadic down-sampling. This implies the information

content in the fingerprint images will be lost. On the

other hand, verification results in Section 6.2 will be

another vindication of the observation.

Fig. 2. 2D wavelet decomposition of a fingerprint image.

Table 1

Energy distribution of various wavelet bases in four subband images

Wavelet bases Normalised energy distribution (%)

Type Orthogonality Symmetry Lj D1horizontal D1vertical D1diagonal

Haar Orthogonal No 99.348 0.251 0.377 0.024

Daubechies 4 Orthogonal No 99.856 0.060 0.080 0.003

Daubechies 8 Orthogonal No 99.913 0.040 0.045 0.002

Symlets 4 Orthogonal Near 99.856 0.060 0.080 0.003

Symlets 8 Orthogonal Near 99.907 0.042 0.049 0.002

Discrete Meyer Biorthogonal Yes 99.936 0.030 0.033 0.002

Spline Bior 1.1 Biorthogonal Yes 99.348 0.251 0.3770 0.024

Spline Bior 5.5 Biorthogonal Yes 99.903 0.044 0.0494 0.004

Discrete Morlet No Yes 94.363 2.218 2.327 1.092
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3. Fourier–Mellin invariant features

In the fingerprint authentication, the varying position,

scale and the orientation angle of the fingerprint image

during the capturing time may severely reduce performance,

as shown in Fig. 3. These alignment problems can be solved

by transforming a fingerprint image into an invariant

feature.

Various translation, rotation and scale invariant methods

such as integral transforms, moment invariants and Neural

Network approaches have been proposed [9].

These techniques provide good invariance theories but

suffer from the presence of noise, computation complexity

or accuracy problem [9]. In this paper, a well-known

translation, scaling and rotation invariant function which

called FMT is adopted. FMT performs well under noise and

can be applied efficiently by using Fast Fourier Transform

[10]. FMT is translation invariant and represents rotation

and scaling as translations along the corresponding axes in

parameter space.

Consider an image f2ðx; yÞ that is a rotated, scaled and

translated replica of f1ðx; yÞ;

f2ðx; yÞ ¼ f1½sðx cos aþ y sin aÞ

2 x0; sð2x sin aþ y cos aÞ2 y0� ð10Þ

where a is the rotation angle, sthe uniform scale factor, and

x0 and y0 are translational offsets. The Fourier Transform of

f1ðx; yÞ and f2ðx; yÞ are related by

F2ðu; vÞ ¼ e2jfsðu;vÞs22½F1½s
21ðu cos aþ v sin aÞ;

s21ð2u sin aþ v cos aÞÞ�� ð11Þ

where fsðu; vÞ is the spectra phase of the image f2ðx; yÞ:

This phase depends on the translation, scaling and rotation,

but the spectral magnitude

lF2ðu; vÞl ¼ s22lF1½s
21ðu cos aþ v sin aÞ;

s21ð2u sin aþ v cos aÞÞ�l ð12Þ

is translation invariant.

Equation (12) shows that a rotation of the image rotates

the spectral magnitude by the same angle, and that a scaling

by s scales the spectral magnitude by s21: Rotation and

scaling can be decoupled by defining the spectral magni-

tudes of f1 and f2 in the polar coordinates ðu; rÞ;

f2pðu; rÞ ¼ lF2ðr cos u; r sin uÞl;

f1pðu; rÞ ¼ lF1ðr cos u; r sin uÞl
ð13Þ

By applying some appropriate trigonometry identities, one

can obtain

f2pðu; rÞ ¼ s22f1pðu2 a; r=sÞ ð14Þ

Hence an image rotation shifts the function f1pðu; rÞ along

the angular axis. A scaling is reduced to a scaling of the

radial coordinate and to a magnification of the intensity by a

constant factor s2: Scaling can be further reduced to a

translation by using a logarithmic scale for the radial

coordinate, thus

f2plðu; lÞ ¼ f2pðu; rÞ ð15Þ

Fig. 3. Three general errors that may occur in fingerprint authentication system.

Table 2

Energy leakage in the dyadic sub-sampled fingerprint images after the

filtering

Spatial filter Energy content (%) after the first level

of dyadic sub-sampling

Mean filter 88.834

Gaussian filter 89.401

Median filter 88.189

Unsharp masking filters 90.261
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and

f2plðu;lÞ ¼ f2pðu; rÞ ¼ s22f1plðu2 a; r 2 hÞ ð16Þ

where, l ¼ logðrÞ and h ¼ logðsÞ: In this polar-logarithmic

representation, both rotation and scaling are reduced to

translation. By Fourier transforming the polar-logarithm

representations, Eqs. (15) and (16),

F2plðz; jÞ ¼ s22e2j2pðzhþjlÞF1plðz; jÞ ð17Þ

where

F1plðz; jÞ ¼
ð1

21

ð2p

0
f1plðu;lÞe

jðzlþjuÞdudl ð18Þ

thereby rotation and scaling now appear as phase shifts. This

technique decouples images rotation, scaling and trans-

lation, and is therefore very efficient numerically.

4. Integrated framework of wavelet transform

and Fourier–Mellin transform

The integrated framework of WFMT produces an

invariant, distortion and noise insensitive feature. In

addition to that, reduce the resolution of the image

decrease the computation of the feature generation. In

this paper, 2 levels decomposition are performed on a

fingerprint image with size 128 £ 128 due to the consider-

ation that too coarse resolution is inappropriate, as down

sampling process would eliminates the orientation charac-

teristics of ridge structures. Experiment results in Section

6.2 show that L1 subband (size 64 £ 64) with Spline Bior

5.5 gives the best performance whereas the usage of L2

seems to decrease the performance.

The fingerprint image with the low-frequency subband

representation is then subjected to log-polar mapping and

Fast Fourier Transforming as described in Section 3.

However, the result stated for the continuous case does

not carry over exactly to the discrete case. Some artifacts

may be introduced due to the sampling and truncation if the

implementation is not done with care [11,12]. The first

implementation difficulty consists of the numerical instabil-

ity of coordinates near to the origin. Here care needs to be

taken in selecting the starting point of the logarithm

resampling, since limr!0ln r ¼ 21: Therefore a high-pass

filter is apply on the logarithm spectra [13],

Hðx; yÞ ¼ ð1:0 2 cosðpxÞ cosðpyÞÞð2:0 2 cosðpxÞ cosðpyÞÞ

ð19Þ

with 20:5 # x; y # 0:5:

The dynamic range of the spectral magnitude is usually

large and the values of the spectral magnitude at the two

ends of the radial axis differ by several orders of magnitude.

This discontinuity can cause artifacts but can suppress by

applying a Hanning window to the input images.

In the proposed framework, FMT is based on Fourier

Transform theory, which has a linear property as below:

If fi [ R2; a [ R; then

Fpl

Xm
i¼1

aifi

( )
¼

Xm
i¼1

Fpl{aifi} ð20Þ

This implies that multiple m WFMT features can be used to

form a reference WFMT feature and just only one

representation per user needs to be stored in the database.

The representation for each user, WFMTUi can be

formulated as follow:

WFMTUi ¼
1

m

Xm
j¼1

WFMTi
j ð21Þ

where WFMTi
j is the invariance feature of the jth finger

image of the ith person. Producing a WFMTU feature from

different training images, could relax various variability’s

that occur during the acquisition process, such as sharp

distortion and noise.

The block diagram of the WFMT feature representation

is shown in Fig. 4.

5. Fingerprint verification system based

on WFMT features

A fingerprint verification system checks whether a

person really is who he claims to be. A person first

identifies himself by e.g. an ID or smart card. Then, the

user puts his or her finger on a sensor. A typical image

based fingerprint verification system comprises the

following sub modules: Pre-processing, such as reference

point detection, feature extraction and classification. The

verification system consists of two stages, namely,

training stage and verification stage. Training stage

represents a set of the template images as WFMT feature,

label and store them into a database. Verification stage

converts an input image into WFMT feature, and then

matches it with the claimant fingerprint image stored in

the database to get the dissimilarity measure. Thereafter,

the similarity measure is compared to a predefined

threshold to determine whether a claimant should be

accepted. Fig. 5 shows the system block diagram.

In the verification stage, the comparison of two

fingerprints must be based on the same reference point (or

core point). The method proposed in [14] is opted to detect

the reference point. In this algorithm, core point of a

fingerprint is defined as the point of maximum curvature in

the fingerprint image; the coupling of the modified averaged

square directional field (MASDF) with morphological

operation enable it to detect the five Henry classes [15] of

the fingerprint images, as illustrated in Fig. 6. At first, an

input fingerprint will be divided into non-overlapping

blocks of size 5 £ 5. In each block, the x and y magnitudes

of the gradient, Gx and Gy at each pixel in each block were
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determined. With each block, slope that perpendicular to the

local gradient orientation of each block will be computed to

produce a MASDF. In the MASDF, the blocks with slopes

value ranging from 0 to 1/2p will be sought and marked as

‘1’ otherwise ‘0’ was assigned to produce a binary pattern.

However, the binary pattern shows a lot spurious points or

cluster area that may lead to the false detection core point. In

order to rectify this problem, mathematical morphological

operations are performed to ‘repairs’ the estimate by

removing small areas, thus creating more compact cluster

and thus easier to pinpoint the core point. [14] reported only

3.13% of false core point detection rate was obtained in 160

FVC2000 (Set B) fingerprint images.

For the dissimilarity matching, a simple Euclidean

distance metric is employed instead of more complex

classifiers such as neural network or Support Vector

Machine (SVM). This is because we are more concern

about the effectiveness of using WFMT features rather than

the classification technique in the experiment. Besides that,

k-Nearest Neighbourhood (k-NN) also has been adopted in

order to compare with the system that reported in the

literature.

The computation complexity of WFMT in verification

task could be estimated as follow: Let the number of pixels

found in an image is n: The complexity of the wavelet

transform is then Oðn £ log nÞ: Suppose the dimension of

wavelet subband, L1 is n0 where n0 , n; the complexity of

applying FMT on the L1 is Oðn £ log n0Þ: Eventually, the

complexity for verifying a training images is Oðn0Þ:

Therefore, the computational complexity for WFMT is

Oðn £ log n þ 2n £ log n0Þ in the training stage and Oðn £

log n þ 2n £ log n þ n0Þ in the recognition stage.

6. Experiments and discussion

The experimental results presented in this section are

divided into five parts. The first part details the

experiment protocol of the proposed method. The second

part compares the performance of different wavelet and

spatial filters to form the WFMT feature. Part three

evaluates on using multiple training WFMT features to

form a reference WFMT feature. The next part evaluates

the translation, scale and rotation on the plane invariant

characteristic of WFMT feature. Finally, a comparison

between the proposed method and the existing methods

is presented.

Fig. 5. Block diagram of the Fingerprint Verification System.

Fig. 4. Block diagram of generating the WFMT features.
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6.1. Experiment setup

In fingerprint research community, there are only a few

benchmarks are available, namely NIST, FVC 2000 and

FVC 2002 databases. NIST databases containing thousands

of scanned inked impressions of fingers. Since these images

notably differ from those acquired electronically, they are

not well suited for the testing contemporary (online)

fingerprints system. FVC 2000 and FVC 2002 databases

were established with the aim of providing a benchmark to

determine the state-of-the-art in fingerprint recognition

application, where the finger impressions were acquired by

using modern capacitive and optical scanners [17].

In this paper, the algorithm is evaluated on images taken

from FVC 2002 (Set A), which is available in DVD included

in [16]. FVC2002 (Set A) provided four different fingerprint

databases: DB1, DB2, DB3 and DB4, three of these

databases are acquired by various sensors, low-cost and

high quality, optical and capacitive. 90 volunteers were

randomly partitioned into three groups (30 person each);

each group was associated to a DB and therefore to a

different fingerprint scanners. The fourth database contains

synthetically generated images. Preparation procedure of

FVC 2002 has been explained in detail in [17]. All databases

in FVC2002 (Set A) contain 8 impressions of 100 different

fingers, hence 800 images in total. However, the comparison

only can be done if both fingerprint images contain their

respective core points, as mentioned in Section 5, but 2 out

of 8 impressions for each finger in FVC2002 have no core

point due to the exaggerate displacement. In our exper-

iments, these two impressions were excluded and hence,

there are only 6 impressions per finger yielding 600

(6 £ 100) fingerprint images in total for each database.

Every finger image will be performed core point detection

and a 128 £ 128 square region centred in the reference point

of the fingerprint images can be cropped as shown in Fig. 7.

Even though some false core points were detected but they

are not deviate too much from the actual core point location.

It is commonly known that the slight translation is invariant

under FMT and thus we still included those false detected

core point images as our experimenting subjects. The

experiments were conducted separately for DB1, DB2 and

DB3, particularly in Section 6.2 due to their fingerprint

images are acquired by using different type of sensor.

For the performance evaluation, a False Acceptance Rate

(FAR) and a False Rejection Rate (FRR) test is performed.

The FAR and FRR are defined as below:

FAR¼
Numberof acceptedimposterclaims

Totalnumberof imposteraccesses
£100% ð22Þ

FRR¼
Numberof rejectedgenuineclaims

Totalnumberof genuineaccesses
£100% ð23Þ

These two measurements may yields another performance

measure known as Total Success Rate (TSR):

TSR¼ 12
FARþFRR

Totalnumberof accesses

� �
£100% ð24Þ

However, this performance indicator may somehow

misleading due to the great imbalance number of genuine

and imposter distribution, and it is better to adopt Equal

Error Rate (EER) when FAR ¼ FRR or alternatively

EER ¼ (FAR þ FRR)/2.

Fig. 6. Core point extraction for example from each of the five Henry classes with. (a) Whorl. (b) Tented arch. (c) Left Loop. (d) Right Loop and (e) Arch.

A.T.B. Jin et al. / Image and Vision Computing 22 (2004) 503–513 509



6.2. Performance evaluations on different wavelet basis

This section shows the verification performance of

various combinations of the wavelet basis in the WFMT

feature. For each database, an FRR and an FAR test is

performed. For the FAR test, the first impression of each

finger is matched against the first impression of all other

fingers and the same matching process was repeated for

subsequent impressions, leading to 29,700 (4,950 £ 6)

imposter attempts. For the FRR test, each impression

of each finger is matched against all other impressions

of the same finger, leading to 1,500 (15 attempts of each

finger £ 10). The first experiments in this section are

performed on DB1 which acquired by using optical sensor.

From the Table 3, wavelet basis with Spline biorthogonal

order 5.5, level 1 attains the best performance, which is

5.93, 5.38, 94.60 and 5.66% of FAR, FRR, TSR and EER,

respectively. This is inline to the observations that found in

Table 1 which shown the Spline bior 5.5 wavelet compacted

the highest energy in L1: The other high order orthogonal

wavelets such as Daubechies 8, Symlet 8 and discrete

Meyer, which is also superior in the energy preservation in

L1; achieved the relatively good verification rate as well. In

contrary, the non-orthogonal wavelet, i.e discrete Morlet

and other normal spatial filters that unable to preserve the

energy were poorly performed. Generally, there is a direct

relation in between the ability of a wavelet to preserve the

energy in dyadic sub-sampling fingerprint images and the

discrimination power in WFMT as depicted in Fig. 8.

However, for this application, it does not really matter if the

wavelet is symmetric or not.

It also can be observed that experimental result in level 2

generally is poor compare to level 1. This indicates that the

excessive down sampling process eliminates the orientation

characteristics of ridge structures of the coarser image or in

other words, lesser energy is maintained; hence lower the

discrimination power of WFMT. On the other hand, the

performance is inferior when only sole Fourier–Mellin

transform is applied, i.e 15.53, 17.75, 82.36 and 16.64% of

FAR, FRR, TSR and EER, respectively.

By using the chosen wavelet basis - decomposition level

1 with Spline Bior 5.5, experiments were performed on DB2

and DB3, and the results are tabulated in the Table 4.

Experiment results show that DB3 is slightly inferior

compare to the DB1 and DB2. This implies that the usage

of sensor with different technology might affect the

performance of an image based fingerprint recognition

algorithm.

6.3. Forming a reference WFMT feature by using multiple

training WFMT features

The linearity property of FMT ensures that multiple

WFMT features can be used to form a reference WFMT

feature, which is able to relax the variability that occurred

during the acquisition process. In this section,

Fig. 7. Samples of cropped fingerprint image that based on the reference point detected from DB1, DB2 and DB3, respectively.

Table 3

Comparative result of verification rate

Filter Decomposition

level

FRR

(%)

FAR

(%)

TSR

(%)

EER

(%)

None (sole FMT) – 15.533 17.751 82.356 16.642

Mean filter – 20.000 21.737 78.346 20.869

Gaussian filter – 19.600 19.077 80.897 19.339

Median filter – 19.733 18.815 81.141 19.274

Unsharp

masking filters

– 15.867 16.862 83.186 16.364

Haar 1 7.333 7.923 92.106 7.628

2 13.000 13.737 86.298 13.369

Daubechies 4 1 7.067 7.195 92.811 7.131

2 12.067 12.939 87.103 12.503

Daubechies 8 1 7.067 6.700 93.282 6.884

2 12.000 12.943 87.103 12.471

Symlet 4 1 6.667 6.707 93.295 6.687

2 12.067 12.939 87.103 12.503

Symlet 8 1 6.600 6.488 93.506 6.544

2 12.067 12.939 87.103 12.503

Discrete Meyer 1 6.733 6.700 93.298 6.717

2 11.667 11.165 88.811 11.416

Spline Bior 1.1 1 6.667 6.707 93.295 6.687

2 11.400 12.051 87.981 11.725

Spline Bior 5.5 1 5.933 5.380 94.593 5.657

2 11.000 10.279 89.686 10.640

Discrete Morlet 1 11.400 11.990 88.038 11.695

2 16.200 17.306 82.747 16.753
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the experiments were conducted by using 1–4 and 5 training

images per person from DB1 to form a WFMT feature

template while 6th impression is treated as the testing image

to maintain the consistency of the comparison. For the FAR

test, a WFMT feature template that formed by m training

image(s), where m ¼ 1;…; 5 is matched against the 6th

impression of all other fingers produced 9900 (100 £ 99)

imposter attempts. For the FRR test, each impression of

WFMT feature template is matched against all 6th

impressions of the same finger, leading 100 genuine

attempts. Tables 5 and 6 show the configurations for this

experiment and their results, respectively.

Table 6 shows that the verification rate in terms of EER

decreases consistently when multiple training WFMT

features are used. The best verification rate is obtained

when four training WFMT features are used. The compari-

son in terms of Receiving Operating Curve (ROC) also

depicted in Fig. 9. Also note that even though more than one

image are used to form the reference WFMT feature, it

would not increase the system and recognition complexity

because only one reference WFMT is stored in database.

6.4. Invariant characteristic of WFMT feature

This section demonstrates the invariant characteristic of

the WFMT feature. A test database is arranged according to

the experiment setting on DB1 in Section 6.2 but the

optimum wavelet setting, which is in decomposition level 1

and Spline Bior 5.5 is used. However, each testing image is

rotated on plane from 290 to 908 with the increasing step

208 while training images are remain unchanged, i.e 08.

Results in Table 7 shows the high verification rate for

rotated testing images in between 230 and 308 and the

performance drop significantly when the rotation angle

exceed ^308. These results demonstrated that the WFMT

feature is invariant to rotation on the plane in within certain

degree.

The translation problem may occur due to the automatic

reference point detection algorithm (as mentioned in

Section 5) may not always detect the reference point

correctly but deviate from the actual location of the

reference point. The scaling problem may also arise from

Fig. 8. Relation in between the verification rate (EER) and the energy preservation in dyadic sub-sampling fingerprint images.

Table 6

Verification accuracy when reference WFMT feature is formed by multiple

training WFMT feature

Setting FAR (%) FRR (%) TSR (%) EER (%)

1 6.000 5.869 94.130 5.934

2 4.000 3.949 96.050 3.975

3 3.000 3.253 96.750 3.126

4 1.000 1.020 98.980 1.010

5 2.000 2.242 97.760 2.121

Table 5

Configurations for the experiments

Setting Training

images

Number of

genuine attempts

Number of

imposter attempts

1 1st 100 100 £ 99 ¼ 9900

2 1st þ 2nd 100 100 £ 99 ¼ 9900

3 1st þ 2nd þ 3rd 100 100 £ 99 ¼ 9900

4 1st þ · · · þ 4th 100 100 £ 99 ¼ 9900

5 1st þ · · · þ 5th 100 100 £ 99 ¼ 9900

Table 4

Verification results for DB2 and DB3

Database in FVC2002 (SetA) FRR (%) FAR (%) TSR (%) EER (%)

DB1 (Optical sensor) 5.933 5.380 94.593 5.657

DB2 (Optical sensor) 5.400 5.219 94.772 5.309

DB3 (Capacitive sensor) 8.800 7.875 92.080 8.338
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the uneven placement of the fingerprint in the sensor. In this

paper, translation and scaling problems are addressed

indirectly from the experiments result that reported in

Sections 6.2, 6.3 and 6.4.

6.5. Comparison with other techniques in literature

This section presents the comparison in between the

proposed method with the image based approaches found in

the literature, based on the Tico et al. [7] and Lee’s [18]

work. Tico et al. [7] described each fingerprint with a subset

of band filtered images containing wavelet coefficients.

With the wavelet decomposition, a set of wavelet coeffi-

cients that characterize the fingerprint texture and the

orientation can be obtained. Consequently, a set of compact

feature vectors are formed using the simple statistical

measures while Lee [18] proposed to use Gabor filter based

features, which directly extracted from grey scale level

fingerprint images as the input vector. These two papers

used k nearest neighbour (k-NN) classifier to test their

technique by using Biometrics System Lab database [19].

Biometrics System Lab database, contains 21 person

fingerprint images and each person consists of 8

impressions. However, there are 20 person images are

chosen in the experiments because there is no core point can

be found for one person. Hence, there are 160 (20 £ 8)

images could be obtained. In order to conform the

experiment setting that described in the papers mentioned

above, the experiments done in Section 6.3 is reevaluated in

recognition mode, using k-NN as the classifiers instead of

Euclidean distance metrics as Biometrics System Lab

database is adopted. However, only setting 1, which only

one image is used to form the WFMT features and setting 4,

where four images are used which yield the best

performance are chosen. Table 8 below shows the

comparative results in between the methods discussed

above. Note that only the best results achieved that reported

in [7] and [18] are taken to compare with the proposed

method.

From Table 8, the proposed method in setting 1 exhibits

the better recognition rate compare to Lee and Wang’s

method, while shows slightly inferiors compare to Tico et al.

approach. Setting 4 achieved the comparable outcome with

the Tico et al. approach. However, both papers did not

mention about the possibility of their method able to be

invariant to translation, scale and rotation.

7. Conclusions

An integrated framework that combined WFMT in the

fingerprint verification system is presented in this paper.

The proposed approach is simple in the pre-processing

process, where only reference point detection involved. The

complexity and computational of this integrated wavelet

and Fourier–Mellin framework also are significantly low

compare to the minutiae-base approach because of the

available of Fast Wavelet Transform and Fast Fourier

Transform. The EER of the proposed method is under

5.66% and also proves its rotation invariant property if the

rotation angle not exceed ^308, and indirectly to translation

invariant if detected core point of the fingerprint is not

deviate too much from the actual location. The extensibility

of this method also able to achieve low EER to 1.01% if

more than one training images are included.
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