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construct a stopping rule for the number of simulations required by logic sampling,randomized approximation schemes, and likelihood weighting to provide (�; �)-estimatesof Pr[xje]. With probability 1 � �, the stopping rule is optimal in the sense that thealgorithm performs the minimum number of required simulations. We prove that ourstopping rules are insensitive to the prior probability distribution on Pr[xje].
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1 IntroductionBelief networks are an expressive graphical language for representing uncertain knowledgeabout the causal and associational relationships among variables in complex systems. Overthe last �ve years, there has been a maturation of techniques for assessing and solving beliefnetworks (e.g., see Networks, 20, 1990). Several e�ective diagnostic reasoning systems usebelief networks to assign probabilities to alternative hypotheses about a patient's health|for example, MUNIN [Andreassen et al., 1987], ALARM [Beinlich et al., 1989], Path�nder[Heckerman et al., 1992], Sleep Consultant [Nino-Murcia and Shwe, 1991], VPnet [Rutledge et al., 1989],and QMR-DT [Shwe et al., 1991a]|or about the source of failure in complex machinery,including jet engines, electric power generators, and copy machines [Horvitz et al., 1988,Henrion et al., 1992, Breese et al., 1992]. Several exact inference algorithms have been de-veloped for computing posterior probabilities with belief networks. Exact algorithms in-clude the method of cutset conditioning, developed by Pearl [Pearl, 1988], and the clique-tree method, developed by Lauritzen and Spiegelhalter [Lauritzen and Spiegelhalter, 1988].These exact inference methods exploit the topology of a belief network to compute theposterior probabilities of the belief network given the observed evidence.Unfortunately, several complex knowledge bases that have been developed resist solutionwith exact inference algorithms. For example, the QMR-DT knowledge base [Shwe et al., 1991a],a reformulation of the Internist-1/QMR knowledge base [Miller et al., 1986] for internalmedicine into a belief network, poses a di�cult challenge to medical informatics investiga-tors [Henrion, 1990]. Monte Carlo simulation procedures o�er the most promising methodfor solving inference in this and similarly complex belief networks. Di�culties characterizingthe convergence behavior of simulation algorithms hinders their use. For example, in theQMR-DT project, it is di�cult to derive the con�dence in simulation results as computationproceeds [Shwe and Cooper, 1991, Shwe et al., 1991b].Simulation procedures have have been employed for solving diverse problems in com-puter science. To date, work on the characterization of simulation algorithms has beenbased largely on statistical methods, such as the Zero{One Estimation Theorem. Froma Bayesian perspective, simulation-based inference techniques can be viewed as discardinguseful information about a posterior probability of interest. However, such methods aresatisfying to many in their ability to bypass complex distribution-updating procedures, and3



issues surrounding the use of prior probability. Nonetheless, we show how Bayesian updatingcan be used to characterize the convergence of simulation algorithms on results of interestby employing a conjugate distribution to simplify the updating procedure. Furthermore,we address the discomfort that some computer scientists and statisticians may have withmethods that require prior probability distributions by proving that our stopping rules areinsensitive in most cases to prior probabilities.2 Belief Networks and Inference AlgorithmsA belief network is a directed acyclic graph (DAG) containing nodes, representing proposi-tions (e.g., hypotheses and observations), and arcs representing probabilistic dependenciesamong nodes. Nodes representing propositions are associated with a set of mutually exclu-sive and exhaustive values that represent alternative possible states of a proposition (e.g.,true, false).Let fX1; :::; Xng denote the set of nodes in a belief network. For any node Xi, and set ofparents �Xi , the belief network speci�es a conditional probability function Pr[Xij�Xi]. Thefull joint-probability distribution speci�ed by a belief network can be calculated by takingthe product of the conditional probabilities,Pr[X1; :::; Xn] = nYi=1Pr[Xij�Xi]: (1)Probabilistic inference in belief networks refers to the computation of an inference probability|that is, Pr[X = xjE = e] for any given set of nodes X instantiated to value x and con-ditioned on observation nodes E instantiated to value e. Probabilistic inference in largemultiply connected belief networks is di�cult. Complexity analyses shows that both ex-act and approximate algorithms pose intractable problems in the worst case [Cooper, 1990,Dagum and Luby, 1991]. Nevertheless, for many problems, inference approximation proce-dures provide useful estimates of posterior probabilities in acceptable computation times.The major classes of approximation algorithms for probabilistic inference in belief net-works are stochastic simulationmethods [Pearl, 1987b, Pearl, 1987a, Henrion, 1988, Fung and Chang, 1989,Shachter and Peot, 1989, Shachter and Peot, 1990, Chavez and Cooper, 1990] and search-based methods [Cooper, 1984, Henrion, 1990]. Stochastic simulation algorithms for prob-abilistic inference began with the pioneering work of Pearl's straight simulation algorithm4



[Pearl, 1987b, Pearl, 1987a]. Simulation algorithms devised subsequently include logic sam-pling [Henrion, 1988], likelihood weighting [Shachter and Peot, 1989, Fung and Chang, 1989,Shachter and Peot, 1990], and randomized approximation schemes [Chavez and Cooper, 1990,Chavez, 1990, Dagum and Chavez, 1991]. We analyze stochastic-simulation algorithms indetail in Section 7. We distinguish straight simulation from other simulation algorithmsbecause straight simulation is based on a single long-run rather than a multiple short-runsalgorithm|that is, the estimate of straight simulation is based on a single, long simula-tion run rather than on the arithmetic mean of the outputs of multiple short runs. As weshall discuss in Section 8, this distinction has important consequences for the analyses ofconvergence of these algorithms.3 Monte Carlo MethodsStochastic simulation algorithms are based on the Monte Carlo method, a procedure forcomputing random variables based on a weighted random sampling. In this section, we dis-cuss the foundations of the Monte Carlo method and simulation algorithms for probabilisticinference in belief networks, based on the Monte Carlo method. In Section 4 we discuss therate of convergence of these algorithms.The Monte Carlo method originated with the work of von Neumann and Ulam forcomputing parameters needed to construct nuclear reactors [von Neumann, 1951]. In thisarticle we focus on the use of Monte Carlo for approximating Lebesgue integrals, or morespeci�cally, for approximating expectations of random variables.Let us �rst review the basics of Monte Carlo approximation of expectations of randomvariables. Let (
; 2
;P) denote a probability space, where 2
 denotes the power set of theset 
 and P denotes probability distribution. Let� : 
! <map a random variable into the reals <.For a �nite space 
, the expectation E� is the Lebesgue sum of the 2
-measurablefunction � = �(!) with respect to the Lebesgue measure P,E� = X!2
 �(!)P[!]: (2)5



For simpli�cation, we shall use � to denote E�. The Monte Carlo method approximates� in Equation 2, by simulating the random variable �. The simulation of � requires beingable to sample the space 
 with distribution given by the probability P. An algorithm thataccomplishes the latter is said to be a sample generator for the probability space (
; 2
;P).The output !0; !1; ::: of a sample generator for (
; 2
;P) de�nes the simulation of therandom variable, �(!0); �(!1); :::. The arithmetic mean � of a simulation of � of size N isan estimate of �, � = 1N (�(!1) + � � �+ �(!N )): (3)The Law of Large Numbers guarantees convergence of the estimate to � in the limit ofin�nite samples, �! � as N !1:Although the estimate � has correct limiting convergence, from a computational perspec-tive, only a �nite number of samples are available. Thus, practical considerations dictatethe need for lower bounds on the number of samples N required to bound the error in theestimate �. The sequence �(w0); �(w1); ::: forms a sequence of independent and identicallydistributed random variables. Thus, by the Central Limit Theorem, for su�ciently largeN the distribution of the estimate � is approximated by a normal distribution. Under thisassumption, the cumulative mass of the tails of the normal distribution gives the probabilitythat � does not approximate � to within a speci�ed error tolerance. Thus, in the limit asN tends to in�nity, P� j�� �jpV� � ��! 2p2� Z ��1 e�x2=2dx; (4)where V� denotes the variance of the sequence �(w0); �(w1); :::.Although the Central Limit Theorem guarantees that Equation 4 holds for in�nite N , wedo not know how well the approximation holds for �nite N . This makes Equation 4 di�cultto use in practice. Chebyshev's inequality bounds the probability of Equation 4 withoutany assumptions on the form of the probability distribution of the estimate �. Cherno�bounds and the Zero-One Estimator Theorem (see, e.g., [Karp et al., 1989]) give bounds forBernoulli trials, but they are expressed in terms of the unknown quantity �.6



4 Zero{One Convergence AnalysisThe analysis of the convergence of simulation algorithms in the theoretical computer sci-ence community has been rooted in Zero{One Estimation Theory. The methodology hasbeen used by several investigators to analyze the performance of simulation algorithms[Shachter and Peot, 1989, Chavez and Cooper, 1990, Dagum and Chavez, 1991].Zero{One Estimation Theory provides a lower bound, N , on the number of Bernoullitrials required to achieve a speci�ed level of accuracy in the estimate of the inference. Thisapproach is de�cient in that N is expressed in terms of the probabilistic inference to becomputed, and thus, it requires a priori knowledge of the value of the inference. Thisproblem is circumvented by using lower-bound estimates on the value of the inference,yielding upper bound estimates on N . Typically, however, the best a priori lower boundsone can achieve are exponentially small in the size of the problem, independent of theactual value of the inference. Thus, convergence analysis based on Zero{One EstimationTheory may suggest intractable bounds on the number of trials required even though asmall, polynomial, number of trials may su�ce.We review briey the Zero{One Estimation approach for analyzing the convergence ofsimulation algorithms. Consider the problem of trying to estimate P[A] in the probabilityspace (
; 2
;P) where A denotes a subset of 
. From the presentation of the Monte Carlomethod in Section 3, this problem can be solved by simulating the random variable � = �(!)that is the characteristic function of the set A. It is straightforward to show that � = P[A].Let a success be de�ned as having chosen an element ! that belongs to A|that is, �(!) = 1.From the Law of Large Numbers, in the limit of an in�nite number of trials, the fraction ofsuccesses, �, converges to �. If we stop a Monte Carlo simulation after a �nite number oftrials N , the current fraction � serves as an estimate of �.For simulation algorithms, one is interested in deriving an upper bound on N whichguarantees that � gives a good estimate of �. More speci�cally, for any �; � � 1 we wouldlike to know the least number of trials N needed to guarantee that with a probability of atleast 1� �, � approximates � with relative error �.De�nition 4.1 For �; � � 1, � is an (�; �)-estimate of � if and only ifP[�(1 + �)�1 � � � �(1 + �)] � 1� �:7



The Zero{One Estimator Theorem gives the following result.Theorem 4.2 If �; � � 1 and N = 4��2 ln 2�then � is an (�; �)-estimate of �.Proof See [Karp et al., 1989]. 2Note that the upper bound on N given by the Zero{One Estimator Theorem is contin-gent on knowing �|the same quantity that we are employing the simulation algorithm toestimate. To circumvent this circular de�nition, a conservative lower-bound on �, computedwith a polynomial-time algorithm, is used to derive a rough estimate of N . A key challengefor computer scientists is to develop methods for computing a lower bound on � that is withina constant multiplicative factor of �. Unfortunately, in many cases the best lower boundthat can be computed is exponentially small in the size of the problem. Thus, traditionalanalyses on convergence, and associated recommendations about run times for achievingdesired levels of con�dence, can be quite conservative, lead to wasteful computations.5 Bayesian Analysis of ConvergenceWe explore the relationship between Zero{One Estimation Theory and a Bayesian proba-bilistic analysis that exploits the structure of the second-order distributions over �. We usesecond-order distribution to refer to a probability distribution over a probabilistic parameterof interest. Few analyses of belief-network inference algorithms have characterized the errorof an estimate with a probability distribution on a target probability. Some algorithmsoutput partial characterizations of such second-order distributions. For example, search-and decomposition-based procedures typically provide upper and lower bounds on a prob-ability, without a statement of the likelihood of alternate values of the �nal answer withinthese bounds [Cooper, 1984, Henrion, 1990, Horvitz et al., 1989]. Also, Zero{One Estima-tion Theory can be viewed as relying on an incomplete characterization of the second-orderdistributions associated with a Bernoulli process. Rather than considering second-orderprobability distributions explicitly, investigators have resorted to conservative worst-caseanalyses of convergence. The variance of the outcomes of the simulation provides error8



bounds on the estimates. We prove that from a Bayesian perspective, previous analyses ofthe performance of simulation algorithms are conservative.5.1 OverviewWe employ the properties of a conjugate second-order probability distribution to developa stopping rule for the number of Bernoulli trials required by a Monte Carlo algorithmto output an (�; �)-estimate. A conjugate distribution is a parameterized description of aprobability distribution whose basic structure is invariant to Bayesian updating in responseto new information. Conjugate distributions are valuable for simplifying the analysis of howa second-order distribution changes with the results of Monte Carlo simulation. We shallexamine the beta density function, a conjugate probability distribution over possible means� of a Bernoulli process. The stopping rule we develop considers the current estimate of� to determine whether the estimate is within prede�ned error bounds, or to indicate thatfurther computation is needed. With probability close to one|that is, 1� 2�n for problemsize n|the algorithm terminates after the minimum number of trials. In Section 8, weapply the results of this section to analyze the convergence of simulation-based inferenceapproximation algorithms.Let � be the estimate of Pr[xje] provided by a stochastic-simulation algorithm after Nsimulations. We use Bayesian statistics to reason about the convergence of � to Pr[xje]as N increases. We update the state of information about a target inference, Pr[xje], byemploying a beta distribution with parameters �N and N . We sum the tails of the betadistribution to obtain an expression for the error of the estimate that is a function of � andN . From this expression, we derive a stopping rule for the number of simulations whichguarantees with probability 1�2�n that the output estimates the inference with prescribedrelative error �. With probability 1� 2�n, the stopping rule is optimal in the sense that thealgorithm terminates after the minimum number of simulations.
9



5.2 Bayesian Updating with a Conjugate DistributionFor N trials and �N successes, the probability distribution over � is described by a betafunction as follows: �(�j�;N ) = B(�;N )��N�1(1� �)(1��)N�1where B(�;N ) = (N � 1)!(�N � 1)!((1� �)N � 1)! :The beta distribution has a mean of � and variance ofv�(�;N ) = 1N + 1� (1� �) :If � has a beta prior, then the probability distribution for � is also a beta distribu-tion after we observe N outcomes with �N successes [Howard, 1970]. In other words, theprobability that a particular value of � gives rise to a particular fraction of successes �in the N Bernoulli trials is given by �(�j�;N ). Later, we will describe why our analy-ses of convergence are insensitive to the use of alternate information-poor prior probabilitydistributions.Theorem 5.1 Let Pr[�] denote the prior distribution on �. The distribution of � after weobserve �N successes in N Bernoulli trials isPr[�j�;N ] = k��N (1� �)(1��)N Pr[�];where k normalizes the distribution.Proof Let Pr[�j�;N ] denote the distribution of � having observed �N successes in NBernoulli trials. We would like to know how this probability is updated when the outcomeof the N +1st trial is made available. Let us �rst assume that the N +1st trial is a success,denoted by S. Bayes' theorem expresses the updated distribution of � asPr[�j�N + 1; N + 1] = Pr[Sj�; �N;N ] Pr[�j�N;N ]Pr[Sj�N;N + 1] : (5)The probability we observe a success given knowledge of � is just �; thusPr[Sj�; �N;N ] = �:10



The denominator in Equation 5 does not depend on �. Thus,Pr[�j�N + 1; N + 1] = k�Pr[�j�N;N ]; (6)with normalization constant k. When the N +1st trial is a failure, a similar argument givesthe expression Pr[�j�N;N + 1] = k(1� �) Pr[�j�N;N ]: (7)The expression for the probability distribution of � conditioned on observing �N successesin N trials can be simpli�ed by recursive application of Equations 6 and 7. Thus,Pr[�j�N;N ] = k��N (1 � �)(1��)N Pr[�]; (8)where as before, k normalizes the distribution. 25.3 Issues of Prior ProbabilityThe explicit consideration of prior probability distributions in Bayesian reasoning has beena source of ongoing discussion among advocates of statistical and Bayesian methodologies.The results of Bayesian analysis of Monte Carlo simulation algorithms are insensitive tochanges in assumptions about the speci�c information-poor prior probability distributionselected.Consider the knowledge that an agent has about � prior to observing the �rst sample.Before experimentation, an agent might believe that all values of � in the interval [0; 1]are equiprobable. We represent this prior distribution with a uniform distribution, or,equivalently, with �(�j12 ; 2). Alternatively, Bayesian statisticians use Je�reys prior|thebeta distribution �(�j12 ; 1)|for the unbiased-beta prior (see, e.g., [Hartigan, 1983]). Thisdistribution e�ectively partitions its mass equally at the two extremes � = 0 and � = 1,reecting the uncertainty in �.The analysis of the preferred form of the informationless beta prior is rendered immaterialby noting the general insensitivity of results to di�erent information-poor prior probabilitydistributions. For example, the information necessary to update an agent's prior distributionon �, from Je�reys prior to the uniform distribution, is provided by the outcome of a singlesample. Thus, for large samples, the rate of convergence of the estimate to the mean isinsensitive to the choice of the beta prior distribution on �. Others have explored in detail11



the insensitivity of probabilistic analyses to the assumption of alternative prior distributions[DeRobertis and Hartigan, 1981, Hartigan, 1983].From Theorem 5.1, if the prior distribution Pr[�] is beta, then the posterior distributionon the mean � is also beta, reecting the conjugate property of the beta distribution. Weassume � has the beta prior �(�j12 ; 0). Like the Je�reys prior, �(�j12 ; 0) distributes itsmass at the extremes � = 0 and � = 1, and thus, it is an informationless prior (see, e.g.,[Hartigan, 1983]). We prove Corollary 5.2.Corollary 5.2 Prior to any observations, if the mean � of a Bernoulli process is distributedaccording to the prior �(�j12 ; 0), the distribution of � after we observe �N successes in Ntrials is �(�j�;N ). 2In Part II of the Appendix, we develop stopping rules for arbitrary prior probabilitydistributions. We also demonstrate the insensitivity of convergence results to alternateprior probability distributions.5.4 Bayesian Stopping RulesWe now develop stopping rules for simulation algorithms based on a Bayesian error analysis[Dagum and Horvitz, 1991]. To determine the least number of trials N required to output(�; �)-estimate, we use the beta distribution and the equivalence of De�nition 4.1 toPr ��(1 + �)�1 � � � �(1 + �)� > 1� �: (9)With the unbiased-beta prior, Corollary 5.2 shows � has a �(�j�;N ) distribution after weobserve N outcomes with �N successes.The cumulative mass of �(�j�;N ) that lies inside the bounds [�(1+�)�1; �(1+�)] yieldsthe probability term in Equation 9. Conversely,Z �(1+�)0 �(xj�;N )dx+ Z 1�(1+�) �(xj�;N )dx = �: (10)yields the failure probability �.We can refer to beta cumulative distribution tables for necessary values. Alternatively,we can solve Equation 10 directly. Gauss' hypergeometric functions [Gradshteyn and Ryzhik, 1980]gives a closed-form solution of Equation 10,Z z0 �(xj�;N )dx = z�N�N F (�N; 1� (1� �)N ;�N + 1; z)B(�;N ); (11)12



The hypergeometric function F (�N; 1� (1� �)N ;�N + 1; z) is a polynomial in z of degree(1� �)N � 1 and ith coe�cient(�1)i �N�N + i�(1� �)N � 1i �: (12)For arbitrary values of �, N , and �, Equation 11 solves the �rst integral in Equation 10.From the symmetry properties of the beta distribution, we express the second integral inEquation 10 as Z 1�(1+�) �(xj�;N )dx = Z 1��(1+�)0 �(xj1� �;N )dx (13)and once again, Equation 11 gives a solution.From the preceding analysis, for arbitrary values of �, N , and � � 1, the sum of twohypergeometric functions yields the failure probability �. Thus, we prove the followingstopping rule for simulation algorithms.Theorem 5.3 Let � have a beta-prior distribution. For input parameters �; � � 1, andcurrent estimate �, the approximation algorithm stops if � equals the sum�a�N�N F (�N; 1� (1� �)N ;�N + 1; a) + b�N�N F (�N; 1� �N ;�N + 1; b)�B(�;N );where a = �(1 + �)�1, b = 1� �(1 + �), and 1� � denotes �. 2We compute Gauss's hypergeometric functions to yield the error � of the estimate � inTheorem 5.3. This computation is expensive. We could base our stopping rule on a moreinexpensive table lookup. However, we can also approximate the analysis. In Section 6, wederive an approximation to � that we compute in constant time. Thus, we obtain a stoppingrule that is evaluated in constant time.6 Traditional Versus Bayesian Analyses of Run TimeWe now derive upper bounds on the number of trials N for a stochastic simulation algorithmto output an (�; �)-estimate. Theorem 4.2, the Zero-One Estimator Theorem, gives thenumber of trials for a stochastic simulation algorithms to output an an (�; �)-estimate interms of �|that is, the limit value of � for in�nite trials. We do not know � and Theorem 4.213



provides only a theoretical measure of the e�ciency of simulation algorithms. In practice, alower bound for � is used in Theorem 4.2 to get an upper bound on the number of trials N .Thus, the practical e�ciency of simulation approximation algorithms rest critically on thenature of the available lower bound for �.Instead of relying on Gauss's hypergeometric functions to compute �, we approximatethe tails of the beta distribution by a Taylor series and estimate the cumulative mass ofEquation 10 by a Reimann sum. In this way, we obtain an easily computable expression forN in terms of �, �, and �.Theorem 6.1 Let � have a beta-prior distribution. For given �; � � 1, and estimate �, ifN satis�es N > 7�2� ln�4��then � is an (�; �)-estimate.Proof See Appendix, Part I. 2Theorem 6.1 replaces the appearance of the unknown mean � in the Zero-One EstimatorTheorem with the known current estimate �. Thus, Theorem 6.1 provides a practical boundon the required number of trials dervied from a principled analysis of information madeavailable about � via simulation.Corollary 6.2 An approximation algorithm outputs an (�; �)-estimate after N simulations,where N satis�es P �N � 14�2� ln�4��� � 1� �:Proof The algorithm stops when N satis�es Theorem 6.1. Thus, � is an (�; �)-estimate.Therefore, when the algorithm stops, with probability at least 1� �, we know � � 2�. Wesubstitute �=2 in Theorem 6.1 to yield an upper bound on N in terms of � that holds withprobability 1� �. 2The upper bound for N in Corollary 6.2 is within a multiplicative constant of the lowerbound, and therefore, it is optimal. Thus, with probability at least 1 � �, the stoppingrule expressed by Theorem 6.1 is optimal. With probability �, the output is not an (�; �)-estimate, in which case Corollary 6.2 does not hold and the stopping rule is not optimal.14



By Theorem 6.1, if the failure probability � is O(2�n) then the number of trials increasesby a factor of O(n). If we accept an O(n) increase in N then the failure probability is madevery small. Since the test condition expressed by the stopping rule is easily implemented, byCorollary 6.2 with high probability we achieve optimal convergence of simulation algorithmsfor probabilistic inference.Theorem 5.3 and Theorem 6.1 express stopping rules contingent on a beta-prior distri-bution of the estimate �. In Section 5.3, we discussed the insensitivity of the distributionfor � to beta priors once we observe several outcomes. In Part II of the Appendix, we derivestopping rules for situations where the prior probability is not a beta distribution.Remark Thus far, we have discussed Monte Carlo algorithms that ouput randomized-relative error approximations. That is, the estimate � satis�es De�nition 4.1. We can weakenthe de�nition of randomized-relative error approximations to yield randomized-absolute errorapproximations. For �; � � 1, � is a randomized-absolute error approximation if and only ifP[�� � � � � �+ �] � 1� �:If instead of randomized-relative error approximations we desire randomized-absolute errorapproximations, then N > 2�2 ln 1�trials su�ce for convergence. The result follows directly from the analysis of the Zero-OneEstimator Theorem. Although we can derive a similar result from the analysis presented inPart I of the Appendix, it is unnecessary to invoke a Bayesian analysis to derive a stoppingrule for absolute error approximations. For absolute-error approximations,N is independentof � and implementation of the bound is straightforward.7 Simulation Algorithms for InferenceWe describe logic sampling, straight simulation, randomized approximation schemes, andlikelihood-weighting simulation algorithms for inference in belief networks. In Section 8, weemploy results from Section 5 to analyze the speci�c behavior of these algorithms.Let the nodes of the belief network be denoted by W = fW1; :::;Wng, the unobservednodes by Z = fZ1; :::; Zmg, and as before we denote the observed nodes by E = fE1; :::; Eqg,15



and X = fX1; :::; Xpg denotes some subset of Z. Lower-case letters, w = (w1; :::; wn),z = (z1; :::; zm), e = (e1; :::; eq) and x = (x1; :::; xp), denote instantiations of these nodes.We also refer to special types of nodes, based on the topology of a belief network. Rootnodes are those nodes that have no parents.We de�ne logic sampling, straight simulation, randomized approximation schemes, andlikelihood weighting in terms of the Monte Carlo method presented in Section 3. Eachalgorithm is de�ned in terms of (1) the probability space from which samples are generated;and, (2) the algorithm that generates samples from that space with the desired probability.In the context of this information, we de�ne, for each algorithm, a random variable � = �(!)with expectation equal to the desired inference probability.7.1 Logic SamplingWe describe two implementations of logic sampling to highlight two basic Monte Carlomethods to approximating the inference, Pr[xje]. Both implementations have similar run-ning times. In Sections 7.3 and 7.4 we show that randomized approximation schemes andlikelihood weighting represent two versions of the basic methods discussed here. We beginwith the sample-generator algorithm that generates complete instantiations of the beliefnetwork. This algorithm is common to both implementations of logic sampling.The sample-generator algorithm begins simulating the root nodes in the belief network.For example, if wi is a root node with prior probability Pr[wi = 1] = p, then the algorithmtosses a coin having probability p of landing heads. The algorithm instantiates wi to 1if the outcome is heads and instantiates wi to 0 otherwise. Once all the root nodes areinstantiated, the algorithm proceeds to the nodes in the network that have root nodes astheir only parents. If wj is such a node, having root node parents �wj , then the outcomeof a coin toss with probability Pr[wj = 1j�wj ] of landing heads determines the setting ofwj. The procedure continues in this manner until all nodes have been instantiated. Bythis construction, instantiation w = (w1; :::; wn) occurs with probabilityQni=1 Pr[wij�wi]: Itfollows from Equation 1 that the probability of the outcome w is drawn with the probabilityPr[w]. 16



7.1.1 Basic MethodIn the basic method, the probability space has state space 
 = fw : w = (w1; :::; wn); wi =0; 1g and probability distribution given by the full joint distribution of the belief network,P = Pr. The basic method makes one call to the sample-generator algorithm to outputw 2 
 with probability distribution Pr[w]. To compute inferences conditional on evidencee|that is, Pr[xje]|the basic method obtains estimates of the unconditional inferencesPr[x; e] and Pr[e] separately. The ratio of the unconditional inferences gives an estimateof Pr[xje]. We obtain estimates of Pr[e] and Pr[x; e] simultaneously from the outcomes ofeach simulation. For example, to estimate Pr[x; e], logic sampling de�nes a random variable� = �(w) that takes on the value 1 if in the instantiation w, nodes X and E are instantiatedto x and e, and takes on the value 0 otherwise. It is readily veri�ed that with this de�nition,� has the required expected value � = Pr[x; e]:7.1.2 Rejection MethodThe rejection method estimates the probability Pr[xje] directly by accepting outcomes onlyif nodes E are instantiated to e. The rejection method converges faster on the estimate.This property follows directly from Theorem 4.2 or from the Bayesian analysis in Section 8.The disadvantage of the rejection method is the increase in running time to generate validoutcomes, since multiple calls are made to the sample-generator algorithm.The rejection method de�nes a random variable � = �(w) to take on the value 1 if, inthe instantiation w, nodes X and E are instantiated to x and e, and to take on the value 0if nodes X are not instantiated to x but nodes E are instantiated to e. Outcomes for whichnodes E are not instantiated to e are rejected. With this de�nition, � has expected value� = Pr[xje]:The expected number of simulations required to generate a valid outcome|that is, one forwhich E is instantiated to e|is 1Pr[e] .The two implementations of logic sampling di�er in the time T to generate a sample. Inthe basic method, T is O(n)|that is, the time to run the sample-generator algorithm. Inthe rejection method, T is a random variable with expected value ET = O( nPr[e] ).17



7.2 Straight SimulationIn straight simulation, the probability space has state space 
 that consists of all possibleinstantiations of the m unobserved nodes Z. Instantiations are generated by a sequenceof random variables �0; �1; :::, with values in 
, that form a stationary Markov process.Let 
 = fw0; :::; w2m�1g denote an arbitrarily �xed ordering of the states. The transitionprobability pij of going from state !i to state !j of the Markov process is de�ned as follows.Assume !i and !j di�er in the instantiation of a single node Zi, which is instantiated to ziin !i and zi = 1� zi in !j. Let wZi denote the instantiation of all nodes in Z except nodeZi to !i. Then, de�ne pij = Pr[zijwZi; e]: (14)If !i and !j di�er in more than a single node, then pij = 0.Straight simulation �xes an arbitrary order Z1; :::; Zm of the nodes in Z. The algorithmcycles through the nodes in order, and, at each node, the algorithm simulates the conditionaldistribution given by Equation 14 for that node. The algorithm instantiates the node to theoutcome of the simulation. The conditional distribution in Equation 14 can be simulatedin O(n) time because it is shown that the conditional distribution can be decomposed intoa product of the conditional probabilities that de�ne the belief network [Pearl, 1987b].The Markov process is stationary with distribution fPr[wje] : w 2 
g [Pearl, 1987b].Let (pi)2m�10 denote the stationary distribution and let p(t)ij denote the tth order transitionprobabilities. Because the transition matrix (pij) is irreducible and aperiodic, thenlimt!1p(t)ij ! pj : (15)To compute the inference probability Pr[xje], straight simulation de�nes a random variable� = �(!) that takes on the value 1 if in instantiation ! nodes X � Z are instantiatedto x, and it takes on the value 0 otherwise. If !0; !1; ::: denotes the outcomes of straightsimulation, then � = tXi=0 �(!i) (16)converges to � = Pr[xje] in the limit t!1. The convergence depends on the convergenceexpressed in Equation 15. The latter forms a �-mixing process [Billingsley, 1968] that wenow analyze. 18



We assume that the conditional probabilities that de�ne the belief network are nonzero.Thus, pi > 0 for all i, and �t = maxij �����p(t)ijpj � 1����� (17)is �nite. The sequence �0; �1; ::: measures the convergence rate of the Markov processto the stationary distribution (also known as the mixing rate of the Markov process). Thetransition matrix (pij) is nonnegative, and Perron-Frobenius theory dictates that the secondeigenvalue �1 of the transition matrix bounds �n from above [Seneta, 1973],�n � �n1 :Evaluation of �1 is inaccessible to direct computation because of the size of the transitionmatrix. It is desirable, however, to have an upper bound on �1 to inform us when we havedone su�cient simulations so that �n is less than a prescribed threshold. The conductanceof the Markov process gives an upper bound on �1 [Sinclair and Jerrum, 1989]. With theconductance, we establish the number of simulations T for which �T is O(2�n). FromEquation 17 we verify that after T simulations, the Markov process is in state ! withprobability p, Pr[!je](1� �T ) � p � Pr[!je](1 + �T ):Thus, the outcomes !T ; !2T ; ::: are approximately independently and identically distributedwith probability distribution that approximates Pr[!je]. This result forms the basis ofrandomized approximation schemes discussed in the section that follows.7.3 Randomized Approximation SchemesPearl's straight simulation algorithm is an example of a single long-run approximation al-gorithm. Logic sampling, randomized approximation schemes, and likelihood weighting areexamples of multiple short-run approximation algorithms. Like straight simulation, the lat-ter algorithms also simulate conditional distributions. Unlike straight simulation, however,these algorithms run multiple short simulations and output the arithmetic mean of the es-timates of each simulation. If straight simulation is implemented with multiple short runsthen we have a randomized approximation scheme. In a randomized approximation schemethe cycle order through the nodes is randomized to simplify the analysis of convergence.19



The choice between using a single long-run or a multiple short-run simulation algorithm isunsettled. E�ciency is the advantage of the single long-run algorithm [Raftery and Lewis, 1992].In practice, however, the accuracy of the output of a single long-run simulation is di�cultto assess because we do not know when a single run has converged. For this reason, othershave argued that it is important to use multiple short runs [Gelman and Rubin, 1991].A randomized approximation scheme is a many short-runs version of straight simulation.When we sample every T th simulation only, for su�ciently large T , the outcomes of straightsimulation are approximately independently and identically distributed with probabilitydistribution that approximates Pr[!je]. To estimate the inference Pr[xje], we de�ne therandom variable � = �(!) that takes on the value 1 if in the instantiation !, nodes X areinstantiated to x, and it takes on the value 0 otherwise. From this de�nition and Equation 17we verify that �(!T ); �(!2T ); ::: is a Bernoulli process with probability p that satis�esPr[xje](1� �T ) � p � Pr[xje](1 + �T ): (18)The estimate � is de�ned by � = NXi=1 �(!iT ):In the limit of in�nite N , � converges to p rather than � = Pr[xje]. However, for suf-�ciently large T , this di�erence is insigni�cant in contrast to the error in the estimate �that arises because the number of samples we use for the estimate is �nite [Broder, 1986,Jerrum et al., 1986].In a randomized approximation scheme the runs are of length T and N is the numberof runs. When �T < 13�Pr[xje]; (19)the relative error �T in Equation 18 is comparable to the relative error � of the estimate �[Broder, 1986, Jerrum et al., 1986]. Dagum and Chavez [Dagum and Chavez, 1991] obtainan upper bound on T so that �T satis�es Equation 19 by application of nonasymptoticresults on the rate of convergence of ergodic Markov chains [Sinclair and Jerrum, 1989].Once we have a value for T , the Zero{One Estimator Theorem provides a bound on thenumber of simulationsN so that with probability at least 1��, the output estimates Pr[xje]with relative error �. 20



7.4 Likelihood WeightingLikelihood weighting employs the same probability state space 
 that does a randomizedapproximation algorithm. The probability distribution over the state space is the sam-pling distribution �; thus, P = �. Each variation of likelihood weighting employed de-�nes a speci�c sampling distribution. Variations of the likelihood weighting algorithm in-clude the basic method, several forms of importance sampling and Markov-blanket scoring[Shachter and Peot, 1989].7.4.1 Basic MethodIn the basic method, the sampling distribution is the path probability,�(z; e) = Yzi2z Pr[zij�zi]jE=e:Sampling the space 
 according to the path probability is accomplished by a simulationprocedure similar to logic sampling, except that only the nodes in Z are simulated. Itis evident that the probability of outcomes of the sampling distribution di�ers from thefull joint probability of the belief network. In likelihood weighting, if an estimate weighseach outcome equally|as is done, for example, in logic sampling and randomized approxi-mation schemes|then the output is biased. Instead, in likelihood weighting the samplingdistribution determines a weighting distribution !(z; e) de�ned by!(z; e) = Pr[z; e]�(z; e) : (20)Thus, likelihood weighting scores the weights !(z; e) for each outcome z to yield unbiasedestimates.As in logic sampling, likelihood weighting estimates Pr[x; e] and Pr[e] to obtain an esti-mate of the inference probability Pr[xje]. To estimate Pr[x; e], likelihood weighting de�nesa random variable � = �(z) to take on the value 1 if in the instantiation z nodes X areinstantiated to x, and to take on the value 0 otherwise. Likelihood weighting then scoresthe random variable �, �(z) = �(z) � !(z; e):We verify that E� = Pr[x; e]. To estimate Pr[e], likelihood weighting scores the random21



variable �, �(z) = !(z; e):We verify that E� = Pr[e].In the basic method, the interval [0; 1] contains all the values of !(z; e). Thus, theconvergence of a 0 � 1 Bernoulli process upper bounds the convergence of values of therandom variables � and �.7.4.2 Importance-Sampling MethodImportance sampling is an established method of reducing the standard error in the estimateof Monte Carlo algorithms [Rubinstein, 1981]. For example, the basic algorithm estimatesthe probability Pr[e] by sampling the path probability �(z; e)Pr[e] =Xz !(z; e)�(z; e):The distribution �(z; e) is not necessarily the best choice of sampling distribution to usein a Monte Carlo approximation for Pr[e]. Importance sampling introduces a di�erentdistribution ~�(z; e) in the approximation of Pr[e],Pr[e] =Xz �!(z; e)�(z; e)~�(z; e) � ~�(z; e): (21)The sampling distribution ~�(z; e) de�nes the new weighting distribution ~!(z; e) given by the�rst term in the sum of Equation 21. The choice of distribution that minimizes the varianceof a Monte Carlo estimate is ~�(z; e) = !(z; e)�(z; e)Pr[e] : (22)Because !(z; e)�(z; e) = Pr[z; e], Equation 22 yields the distribution Pr[zje].Unfortunately, we cannot simulate easily the optimal choice of distribution. The rejectionmethod of logic sampling and randomized approximation schemes sample the distributionPr[zje] but at the expense of a long running time for each sample. For variance reduc-tion, however, it su�ces to choose a distribution with shape similar to the distribution inEquation 22 [Rubinstein, 1981].By sampling with a distribution ~� that approximates Pr[zje], importance sampling re-quires fewer samples to estimate Pr[e] than the basic method of logic sampling. Only when22



the algorithm samples ~� e�ciently, is the savings in samples bene�cial. The rejection methodof logic sampling and randomized approximation schemes sample the distribution Pr[zje] ata substantial increase in the running time. The savings in running time of these algorithmscomes from the reduction in the number of samples to estimate Pr[xje] compared to Pr[x; e]and Pr[e].8 Simulation Performance AnalysesTo analyze the performance of di�erent simulation algorithms, we must consider (1) thee�ciency with which valid, or usable, samples are generated, and (2) the complexity of theinformational update associated with each valid sample. We focus on the sample genera-tion and information update for logic sampling, randomized approximation, and likelihoodweighting methods.As we noted in Section 4, investigators have previously analyzed the performance ofstochastic simulation algorithmswith the Zero{One EstimationTheorem [Chavez and Cooper, 1990],or with use of weaker bounds such as Chebyshev's inequality [Shachter and Peot, 1989].These theorems are used as key arguments in proofs that bound the number of samples Nrequired by an (�; �)-estimate. Since these bounds require a priori knowledge of the inferenceprobability being estimated, they are only of theoretical interest|that is, they cannot beemployed to appropriately limit computation in real-world implementations.The bounds used in practice overestimate N . For example, to estimate Pr[xje] for asingle node instantiation x, Chavez and Cooper [Chavez and Cooper, 1990] use the smallestMarkov blanket probability for x as the lower bound of Pr[xje]. The lower bound is used inplace of the unknown � in Theorem 4.2 to yield an upper bound on N . It is not di�cultto demonstrate that the upper bound on N obtained using the smallest Markov blanketprobability can, at times, be exponentially large, whereas the optimal value of N basedon the correct value of Pr[xje] is polynomial or even constant. In likelihood weighting,the bound on N for estimating Pr[xje] requires a lower bound on the joint probabilityPr[x; e]. Shachter and Peot [Shachter and Peot, 1989] use the smallest joint probability inthe network for the lower bound on Pr[x; e]. Since the smallest joint probability in ann node binary-valued belief network is at most 2�n, this method requires an exponential23



number of samples in all cases. Thus, in contrast to the theoretical performance of stochasticsimulation algorithms predicted by previous analyses, there has been di�culty in knowingwhen to stop the simulation in order to guarantee that the output is an (�; �)-estimate.Using the Bayesian stopping rule of Section 5.3, we present bounds on the number ofsamples required that are practical bounds in the sense that they are achieved by implemen-tations. With probability 1� � the bound is optimal for a robust class of prior distributionsin the sense that, with probability 1� �, an algorithm stops after the minimum number ofsimulations. The failure probability � is made O(2�n) by an O(n) multiplicative increase incomputational cost. Thus, provided an O(n) increase in the running time is tolerated theprobability the algorithm fails to stop within the optimal stopping time is not of signi�cantconcern.The overall running time of stochastic simulation algorithms is factored into the productof the time required to generate samples and the number of samples required to achievea desired convergence. Based on the Bayesian analysis, Theorem 9.1 gives the numberof samples required by a stochastic simulation algorithm to output an (�; �)-estimate � of�. In the performance analysis of logic sampling, randomized approximation schemes andlikelihood weighting, we �rst present optimal bounds on the number of samples required toachieve convergence. The bounds we derive assume the prior distribution on the inferenceunder approximation, � = Pr[xje], conforms to those stated following Theorem 9.1.For simplicity, in the performance analysis we assume a model of computation where com-puting a single-node instantiation in logic sampling, computing an unobserved single-nodeinstantiation in likelihood weighting, or computing a transition probability in randomizedapproximation schemes requires a single unit of computational cost. In an implementation,the true cost of these computations is the product of the cost of running a random numbergenerator and the log of the size of the smallest probability in the model.8.1 Analysis of Logic SamplingWe analyze separately the running time complexity of both the basic method and the re-jection method of logic sampling. 24



8.1.1 Basic MethodFrom Section 7.1, the basic method estimates the inference Pr[xje] from the estimates of theinferences Pr[x; e] and Pr[e]. Thus, in the basic method, � is either Pr[x; e] or Pr[e]. FromCorollary 6.2, the number of samples required by the basic method to estimate Pr[x; e] is,with probability at least 1� �, bounded byO� 1�2 Pr[x; e] ln 4�� :In other words, the algorithm terminates after this number of samples with probability atleast 1��. At termination, the output � produced by the basic method is an (�; �)-estimate.The time to generate samples in the basic method is equal to the number of nodes thatare instantiated in a sample. Thus, we prove Corollary 8.1.Corollary 8.1 With probability at least 1 � �, the basic method of logic sampling outputsan (�; �)-estimate of Pr[xje] in running timeO� n�2 Pr[x; e] ln 4�� : 28.1.2 Rejection MethodThe rejection method estimates Pr[xje] directly. From Corollary 6.2, the number of samplesrequired by the rejection method to estimate Pr[xje] is,O� 1�2Pr[xje] ln 4�� :Once again, the algorithm terminates after this number of samples with probability at least1� �, and at termination, outputs an (�; �)-estimate.The rejection method, compared to the basic method, employs O( 1Pr[e] ) less samples toestimate Pr[xje]. The decrease in the required number of samples is at the expense of anO( 1Pr[e] ) increase in expected running time to generate each sample. We prove Corollary 8.2.Corollary 8.2 With probability at least 1��, the rejection method outputs an (�; �)-estimateof Pr[xje] in running time O� n�2 Pr[x; e] ln 4�� : 225



Both approaches to logic sampling have similar running times. Conceptually, the di�er-ence is whether we spend more time sampling, or more time generating suitable samples.In logic sampling, we arrive at the same running time by either method. In contrast, ran-domized approximation schemes and likelihood weighting represent variations of the twomethods of logic sampling when the choice between a few good samples or many poor sam-ples does a�ect the running time. Like the rejection method, randomized approximationschemes estimate Pr[xje] directly by generating outcomes conditioned on the evidence. Andlike the rejection method, the time to generate outcomes is expensive. Likelihood weightingsubsumes the basic method, and like the basic method, it estimates Pr[xje] from estimatesof Pr[x; e] and Pr[e]. The samples are generated e�ciently, but the number of samples toachieve convergence is large.8.2 Analysis of Randomized Approximation SchemesThe Bayesian stopping rule limits the number of runs in multiple short-run algorithms. Wecannot apply our methods to straight simulation because it is an example of a single long-run algorithm. We discussed in Section 7.2 that a randomized approximation scheme is amultiple short-runs version of straight simulation. In this section, we apply the Bayesianstopping rule to randomized approximation schemes.From the discussion in Section 7.3, for randomized approximation schemes � is Pr[xje].From Corollary 6.2, a randomized approximation scheme stops afterO� 1�2Pr[xje] ln 4��samples with probability at least 1 � �. At termination, the output � produced by therandomized approximation scheme is an (�; �)-estimate.Like the rejection method of logic sampling, the number of samples used by a randomizedapproximation scheme is independent of the evidence e|that is, they achieve an O( 1Pr[e] )reduction in the number of required samples compared to the basic method and likelihoodweighting. The reduction in the number of samples, however, is at the expense of a signi�cantincrease in the time required to generate a sample.In randomized approximation schemes, the time to generate samples is given by thenumber of transitions T necessary to satisfy Equation 19. Unfortunately, for complex belief26



network structures, Dagum and Chavez [Chavez, 1990, Dagum and Chavez, 1991] show thatT is exponentially large in the number of nodes of the network.Corollary 8.3 With probability at least 1� �, a randomized approximation scheme outputsan (�; �)-estimate of Pr[xje] in running timeO� T�2Pr[xje] ln 4�� ;where T is the time for �T to satisfy Equation 19. 28.3 Analysis of Likelihood WeightingThe outcomes of the random variables in likelihood weighting are contained in the interval[0; a] for some a � 1. Because the outcomes do not form a Bernoulli process, we cannotobtain optimal convergence times for likelihood weighting with the stopping rule of Sec-tion 5.4. We use an approximation that gives an upper bound on the number of simulationsrequired to output an (�; �)-estimate.From Equation 3, the stopping rule for a 0 � a random variable is an upper bound onthe number of samples required for the convergence of a random variable with values in theinterval [0; a]. How well the upper bound approximates the true number of samples dependson the distribution of the outcomes in the interval [0; a].Let � denote the random variable of likelihood weighting�(z) = �(z) � !(z; e)with with expectation � = Pr[x; e]:Let a denote the maximumvalue of the weighting distribution !(z; e). The random variable� = 1a� is 0� 1 valued. We prove the following corollary.Corollary 8.4 To output an (�; �)-estimate of Pr[x; e], likelihood weighting requires a num-ber of samples N that with probability at least 1� � isO� a�2 Pr[x; e] ln 4�� :27



Proof The number of samples required when the random variable is 0�a valued is an upperbound on the number of samples required when it takes arbitrary values in the interval [0; 1].Consider an estimate � of Pr[xje] that is the arithmetic mean of N outcomes �. It is veri�edthat a su�cient condition for � to be an (�; �)-estimate is that N satisfy Theorem 6.1 withestimate 1a�. Use of Corollary 6.2 completes the proof. 2We cannot a priori determine the value of a. Nonetheless, our stopping rule guaranteesthat the likelihood weighting algorithm stops with very high probability after a number ofsamples given by Corollary 8.4. To generate a sample, likelihood weighting requires O(n)time to instantiate the unobserved nodes Z. Corollary 8.5 gives the overall running time oflikelihood weighting .Corollary 8.5 With probability at least 1��, likelihood weighting outputs an (�; �)-estimateof Pr[xje] in running time O� an�2 Pr[x; e] ln 4�� : 2The value of a depends on the speci�c variant of likelihood weighting used. When thebasic algorithm is used, the weighting distribution is the path likelihood. Because the pathlikelihood is a probability, a must be less than 1. On the other hand, because E! = Pr[e],there exists some value of z for which !(z; e) � Pr[e], and a must be at least Pr[e]. Given therange of a, the number of samples required by the basic algorithm lies intermediate betweenthe number of samples required by logic sampling in Corollary 8.1, a = 1, and the numberof samples required by a randomized approximation schemes in Corollary 8.3, a = Pr[e].The objective of importance sampling is to anticipate the evidential support of e on z,and thus, to adjust the sampling distribution ~�(z; e) until it approximates the posterior dis-tribution Pr[zje]. The new weighting distribution ~!(z; e) is distributed near Pr[e]; however,when we adjust the sampling distribution we may increase the range of values of ~!(z; e) sothe maximum value exceeds 1. Consequently, a is greater than 1 and the algorithm conver-gences slower than logic sampling. We explain this phenomenon if we recall the de�nition ofthe weights in Equation 20. The distribution ~�(z; e) biases the sampling distribution �(z; e)and some instances of z are sampled with probability greater than �(z; e) while others are28



sampled with probability less than �(z; e). When the sample probability of an instance isreduced, its weight is magni�ed, and potentially, some weights exceed 1.9 Summary and ConclusionsSimulation algorithms for probabilistic inference in belief networks operate by using as es-timates the fraction of successes of Bernoulli processes. In the limit of in�nite trials, theLaw of Large Numbers proves these estimates converge to the correct probability. Tradi-tional analyses of the convergence of simulation algorithms for a �nite number of trials relyon Zero{One Estimation Theory. This theory gives bounds on number of trials needed toguarantee prede�ned levels of convergence. Because the bounds are contingent on having apriori knowledge of the answer to the initial inferential query, tight bounds on the amountof simulation required cannot be computed.We developed a Bayesian stopping rule for simulation algorithms that guarantee conver-gence in a minimum number of trials. We discussed how the Bayesian stopping rules areinsensitive to di�erent assumptions about informationless prior probability distributions.We proved that, from a Bayesian perspective, nonBayesian statistical techniques typicallydiscard useful information about inferences of interest. Finally, we applied the stopping ruleto analyzing the performance of several popular approximation algorithms for probabilisticinference.
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AppendixPart I: Approximation of Bayesian Error AnalysisWe prove Theorem 6.1. Let �l and �u denote the �rst and second integrals in Equation 10.Without loss of generality, we assume that � � 12 , and therefore, �u � �l. Thus �u is anupper bound for �2 .We approximate the integral expression for �u given in Equation 10 by a Reimann sum-mation �u < b 1���� cXi=1 ���((1 + i�)�j�;N ): (23)We express the beta functions in the summation as�((1 + i�)�j�;N ) = �N (1� �)NN � N�N�[(1 + i�)�]�N�1[1� (1 + i�)�](1��)N�1= �N (1� �)NN � N�N�[(1 + 12�)�]�N�1[1� (1 + �2)�](1��)N�1� [1 + (i� 12 )�1+ �2 ]�N [1� (i� 12 )��1�(1+ �2 )� ](1��)N[1 + (i�12 )�1+ �2 ][1� (i� 12 )��1�(1+ �2 )� ]= �((1 + 12�)�j�;N ) [1 + (i� 12 )�1+ �2 ]�N [1� (i�12 )��1�(1+ �2 )� ](1��)N[1 + (i� 12 )�1+ �2 ][1� (i�12 )��1�(1+ �2 )� ]Because ���((1 + 12�)�j�;N ) � 1 we express Equation 23 as�u < 1h1 + (i�12 )�1+ �2 i h1� (i� 12 )��1�(1+ �2 )� i b 1���� cXi=1 �1 + (i � 12)�1 + �2 ��N �1� (i� 12)��1� (1 + �2 )��(1��)NLet a = 1��� . By assumption, � � 12 ; hence a � 1. We express each summand in the upperbound expression for �u as�1 + (i� 12)�1 + �2 ��N �1� (i� 12)��1� (1 + �2 )��(1��)N = "�1 + (i � 12)�1 + �2 ��1� (i� 12) �a1� �2a �a#�N= eN� lnh�1+ (i� 12 )�1+ �2 ��1� (i� 12 ) �a1� �2a �ai:Thus, �u < 1[1 + (i�12 )�1+ �2 ][1� (i�12 ) �a1� �2a ] b 1���� cXi=1 eN� lnh(1+ (i� 12 )�1+ �2 )(1� (i� 12 ) �a1� �2a )ai30



< b 1���� cXi=1 e(N��1) lnh(1+ (i� 12 )�1+ �2 )(1� (i� 12 ) �a1� �2a )ai:The last inequality follows because�1 + (i � 12 )�1 + �2 � �1� (i � 12 ) �21� �2a � > �1 + (i � 12 )�1 + �2 � �1� (i � 12 ) �a1� �2a �a :For all x � 0, ln(1 + x) � x;and for all 0 � x � 1, ln(1� x) � �x:We now simplify the log-terms in the preceding expression for �u.ln"�1 + (i � 12 )�1 + �2 ��1� (i � 12) �a1� �2a �a# = ln�1 + (i � 12 )�1 + �2 �+ a ln�1� (i � 12 ) �a1� �2a �� (i � 12 )�1 + �2 � a (i� 12) �a1� �2a= �14(2i � 1)�2 " 1 + 1a�1 + �2� �1� �2a�#� �16(2i � 1)�2Thus, we yield �u < b a� cXi=1 e� 16 (N��1)�2(2i�1): (24)We require N to be su�ciently large to make the right hand side of Equation 24 less than1. Thus, each summand must be less than 1. Therefore,�u < b a� cXi=1 e� 16 (N��1)�2(2i�1)= e� 16 (N��1)�2 2641 + b a� c�1Xi=2 e� 16 (N��1)�22(i�1)375< e� 16 (N��1)�2 2641 + b a� cXi=1 e� 16 (N��1)�2(2i�1)375< 2e� 16 (N��1)�2 : 31



Using �2 < �u and solving for N we getN < 6�2� ln�4��+ 1�< 7�2� ln�4�� :
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Part II: Stopping Rule for Arbitrary PriorsWe examine the case of Monte Carlo simulation beginning with an arbitrary prior probabilitydistribution, not necessarily represented as a beta distribution. We develop formulae forcomputing the distribution of the mean � after we observe N outcomes, given an arbitraryprior probability distribution Pr[�].Theorem 9.1 Let � have a prior distribution Pr[�] and let � = max0���1Pr[�]. Let knormalize the distribution Pr[�]�(�j�0; N+2), where �0 = �NN+2 for estimate �. For �; � � 1,de�ne �̂ = ��0��k2 . If N satis�es N > 4�2� ln� 4̂��then � is an (�; �)-estimate.Proof From Equation 10 and Theorem 5.1 we express the failure probability � ask Z �(1+�)0 Pr[x]�(xj�0; N + 2)dx+ k Z 1�(1+�) Pr[x]�(xj�0; N + 2)dx = �; (25)where �0 = �NN+2 and k�1 = Z 10 Pr[x]�(xj�0; N + 2)dx:Let �l and �u refer to the �rst and the second integrals in Equation 25. Without loss ofgenerality, we assume that � � 12 , and therefore, �u � �l. We use the Cauchy-Schwarzinequality for integrals (e.g., see [Purcell, 1972]) to bound �2u by�2u � k2 Z 1�(1+�) Pr[x]2dx Z 1�(1+�) �2(xj�0; N + 2)dx: (26)By inspection of the proof of Theorem 6.1 given in the Appendix, we verify directly that,Z 1�(1+�) �2(xj�0; N + 2)dx < 2��0 e� 16 (2(N+2)�0�2)�2:Furthermore, Z 1�(1+�) Pr[x]2dx � max�(1+�)�x�1Pr[x] Z 1�(1+�) Pr[x]dx� max0�x�1Pr[x]= � 33



and hence, �2u < 2��0�k2e� 13 ((N+2)��1)�2 :Let �̂ = ��0��k2 :Since � < 2�u we get, N + 2 > 4�2�0 ln 4̂� ;or equivalently N > 4�2� ln 4̂� : 2When �̂ � �c for some constant c, the bound on the number of samples given in Theo-rem 9.1 is within a constant factor of the bound given in Theorem 6.1. We investigate theconditions which guarantee �̂ � �c.To guarantee e�ciency|that is, the number of samples N is within a polynomial factorof 1�|we always choose the error probability � to be exponentially small and the error �to be polynomially small in the problem size|for example, 2�n and 1n , respectively. Forthis choice of � and �, we show that under most circumstances, �0�k2 � 2�cn, and therefore,�̂ � �c+2.We assume without loss of generality that there are no deterministic links in the beliefnetwork. (When two nodes are connected by a deterministic link, we group the nodes into asingle node, and thus, we eliminate the deterministic link.) We assume that all conditionalprobabilities are greater than 2�d for some constant d > 1. (The conditional probabilitiesof a belief network without deterministic links are rarely less than 10�6.) From Equation 1it follows that the full joint probability is greater than 2�dn, and therefore, � > 2�dn.Thus, provided � and k are less than 2an and 2bn for constants a and b, the bound on thenumber of samples given in Theorem 9.1 is within a constant factor of the bound given inTheorem 6.1. In the extreme case were the prior is concentrated entirely in the interval[1� 2�an; 1], however, k cannot be bounded by 2bn for any b, even assuming that the priordistribution for � is bounded by 2an. Nontheless, under most circumstances large variationsin the prior do not necessarily lead to large variations in the number of samples required for� to converge to �. 34
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