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Abstract

An intrusion-resilient database management system is
the one that is capable of restoring its consistency after be-
ing compromised by a malicious attack or a human error.
More specifically, an intrusion-resilient mechanism helps to
quickly repair a database by nullifying the damage caused
by malicious or erroneous transactions, while preserving
the effects of unaffected legitimate transactions that take
place between intrusions/errors and their detection. The
goal of this project is to develop a portable implementa-
tion framework that can augment a commercial database
management system with intrusion resilience without re-
quiring any modifications to its internals. The intrusion re-
silience mechanism described in this paper significantly im-
proves the availability of modern DBMSs by facilitating
and sometimes even automating the post-intrusion dam-
age repair process. In addition, it can be embodied in a
reusable implementation framework, whose portability is
demonstrated by its successful application to three differ-
ent DBMSs: PostgreSQL, Oracle, and Sybase. Performance
measurements on the fully operational prototypes under the
TPC-C benchmark show that the run-time overhead of the
intrusion-resilience mechanism is between 6% and 13%.

1. Introduction

Consistency of an information system can be compro-
mised due to a hardware failure, a malicious attack, or a
human mistake. Standard recovery mechanisms in modern
database management systems are designed to recover from
hardware failures, which can be detected as soon as they
occur. For malicious attacks and human mistakes, where
there is typically a time gap between occurrence and de-
tection, these recovery mechanisms are inadequate because
they can neither roll back committed transactions nor keep
track of inter-transaction dependencies. As a result, to clean
up a compromised database using existing tools takes time-

consuming human efforts and typically results in a long
mean time to repair (MTTR) and thus database down time.
We call an information system intrusion-resilient if it can
quickly repair the damage caused by a malicious attack or
human error and maximize the overall system availability.

A wide variety of information systems can be made
intrusion-resilient. For instance, Zhu and Chiueh [2]
described a general intrusion-resilience implementa-
tion framework for network file servers. The system,
called RFS (Repairable File Service), aims at facilitat-
ing the post-intrusion repair process for network file
servers. RFS is not a file server on its own. Instead, it is
a special file server that acts as a proxy between a pro-
tected network file server and its clients and logs all the file
updates. The resulting log is used at recovery time to deter-
mine the extent of the damage and to undo any detrimental
side effects.

Because there is a time gap between when an attack/error
occurs and when it is detected, legitimate transactions that
are not related to the attack/error could be committed to the
compromised database during this period. The key problem
that an intrusion-resilient DBMS needs to address is how to
completely undo the damage caused by an attack or an er-
ror while preserving the effects of these good transactions
as much as possible. More specifically, an intrusion-resilient
DBMS should be able to:

• Determine the exact extent of database damage from
an initial set of attack/error transactions identified by
the database administrator, including transactions that
are benign in nature but are polluted by attack/error
transactions.

• Perform a selective rollback of those transactions that
are considered corruptive to undo the database damage
caused by the attack or the error.

Because standard recovery mechanisms in modern DBMSs
performs neither of the above functions, today’s database
administrators (DBA) have to perform these two tasks man-
ually to repair a compromised DBMS. A typical post-



intrusion repair procedure involves restoring the compro-
mised database to a state before the attack/error, analyzing
the transaction log in detail to identify the corrupting trans-
actions, and redoing only those transactions that are legiti-
mate and unaffected by the attack/error. In most cases, this
is a time-consuming, error-prone and labor-intensive pro-
cess.

In this paper, we develop a fast database damage repair
mechanism that can quickly repair a database compromised
by an intrusion or an error and thus greatly improve the
database availability. This mechanism keeps track of inter-
transaction dependencies at run time in order to determine
the exact extent of the database damage at repair time, and
performs a selective rollback of those and only those cor-
rupting transactions. Moreover, this fast database damage
repair mechanism does not require any modification to the
DBMS internals, and thus could be embodied in a reusable
implementation framework that can be easily ported to dif-
ferent DBMSs with no or minor customization.

2. Related Work

The previous research on survivable and intrusion-
resilient systems has evolved in both hardware and soft-
ware fields and has addressed such areas as file systems,
storage systems, and database systems.

Wylie et al. [3, 4] describes a survivable storage system
S4, which is a network-attached object store with an access
interface based on storage of objects. The Repairable File
System (RFS) project [2] aims at improving the speed and
precision of post-intrusion damage repair for NFS servers.
Traditionally, file system recovery uses signatures generated
by systems such as Tripwire [5] to determine the corrupted
system files or complete point in time restoration from back-
ups. Instead, RFS maintains file system operation logs and
carries out dependency analysis to provide fast and accu-
rate repair of damage caused by NFS operations issued by
attackers.

Traditional database recovery methods have been dis-
cussed in many database textbooks [9, 10]. Combined
with data replication, WAL presents an efficient way for a
database to recover after media failures.

The problem of database post-intrusion recovery has
been addressed from both theoretical [6, 7] and practical
[1, 8] points of view. Liu [7], develops a family of archi-
tectures for intrusion-tolerant database systems. Subsequent
architectures enhance the first basic architecture by address-
ing various problems such as attack isolation, damage con-
finement, and quality of information assurance provision.

Ammann et al. [6] proposes various algorithms for re-
covery from malicious transactions. The authors address
two problems: the problem of inter-transaction depen-
dency tracking and the problem of database repair.
Inter-transaction dependency tracking requires know-
ing the data read and written by each transaction. The

latter problem is relatively simple since this informa-
tion is logged by modern DBMSs. However, the former
problem is much more difficult. Two solutions are pro-
posed in this paper — comprehensive logging of transaction
reads and extracting the read information from transac-
tion profiles. The authors admit that modern database sys-
tems do not support read logging and, therefore, the first
approach requires changing the source code of exist-
ing DBMS. The second solution has also some limita-
tions, because it is possible to come up with a transac-
tion whose read set profile will not provide a complete
information on the data read by this transaction. How-
ever, the authors claim that this solution will work in many
cases by providing the read set templates for TPC-C trans-
actions. Two versions of repair algorithms are provided
for each of the tracking approaches — static and dy-
namic. The static algorithm brings the whole database
offline during the repair time, whereas the dynamic al-
gorithms performs on-the-fly repair. There is a trade-off
between the two algorithms: the dynamic algorithm pro-
vides better service availability, but it can initially mark
some benign transactions as malicious (to prevent the dam-
age from being spread over the database) thus preventing
the user from accessing the data modified by these trans-
actions. Based on this work, an intrusion tolerant database
system [8] was implemented as an enhancement to Ora-
cle database server.

Pilania et al. [1] describes an intrusion resilience mech-
anism for PostgreSQL. The problem of transaction depen-
dency tracking is solved by modifying the internals of Post-
greSQL to allow the transaction read information to be cap-
tured. Although the system has a relatively small overhead,
its main drawback is that the technique used in it cannot be
directly applied to other DBMSs.

3. Intrusion-Resilient DBMS System Archi-
tecture

3.1. Inter-Transaction Dependency

Let us call the set of rows that an SQL statement retrieves
from the database for further processing the read set of the
statement. The read set of a SELECT, UPDATE or DELETE
statement is the set of rows satisfying its WHERE clause. An
INSERT statement has an empty read set. An SQL state-
ment S2 depends on another SQL statement S1 if the read
set of S2 was modified by S1. Transaction T1 depends on
transaction T2 if there exists one statement S1 in T1 and an-
other statement S2 in T2 such that S1depends on S2.

This definition of transaction dependency could lead to
both false positives and false negatives. For example, a false
positive occurs if two transactions, T1 and T2, update differ-
ent attributes of a row. Even though they do not share any
data, one is still considered dependent on the other. This
problem can be solved by tracking inter-transaction depen-



dencies on a column by column basis, which incurs a much
higher overhead. A false negative occurs if a transaction T1

updated the balance of an account from $50 to $500, and
later T2 charged a service fee from all accounts whose bal-
ance is less than $100. Each account is represented by a ta-
ble row. In this case, T2 does not depend on T1, because
the read set of T2 does not include the row that T1 updates.
However, were T1 not to update the row, the read set of T2

would have included that row. Therefore, if T1 is a mali-
cious transaction, the right repair operation is to roll back
both T1 and T2, even though dependency analysis suggests
only T1 needs to be undone.

There are also scenarios in which implicit inter-
transaction dependencies will not be caught, for instance,
dependencies that arise as a result of internal applica-
tion logic or inter-application interactions. In general,
transaction dependencies cannot be tracked only by just an-
alyzing SQL statements issued to a DBMS. Because of
all these issues, it is still advisable for the DBA to be in-
timately involved in the determination of the final set
of corrupting transactions, using the transaction set de-
rived from the dependency analysis as the starting point.

3.2. Transaction Dependency Tracking

An intrusion-resilient DBMS needs to keep track of
inter-transaction dependencies constantly so that it can use
this information to determine the damage perimeter at repair
time. To record inter-transaction dependencies in a way in-
dependent of the underlying DBMS, we propose a transac-
tion dependency tracking mechanism that is based on inter-
cepting and rewriting SQL statements sent from a database
client to its database server. One way to transparently inter-
cept SQL statements from DBMS client to DBMS server
is to put a proxy program between them. Another alterna-
tive to transaction dependency tracking is to use database
triggers, but this approach is not feasible because modern
DBMSs do not support read triggers (therefore, it is not pos-
sible to intercept SELECT statements).

If a DBMS client uses an open database connectivity
protocol such as JDBC to connect to the DBMS server,
a proxy JDBC driver sitting on the client side can per-
form query interception and rewriting, as shown in Fig-
ure 1. Putting the intercepting proxy on the server side is
infeasible because data transmitted over the network is in
a DBMS-specific and typically proprietary format. Putting
the proxy on the client side makes the database vulnera-
ble to an attack in which an attacker uses a standard JDBC
driver bypassing the proxy. In this case, the malicious trans-
actions executed by the attacker will not be tracked, and,
therefore, it will not be possible to identify them and roll
them back. This problem can be solved by using two prox-
ies as shown in Figure 2. One of these proxies resides on the
client side, the other resides on the server side. The goal of
the client-side proxy is to transmit the data to the server-side

proxy in some format known to both proxies. The transac-
tion dependency tracking is performed by the server-side
proxy. The server-side proxy establishes a local connection
to the database through a standard JDBC driver.

Transaction dependencies are stored as regular database
tables and are committed to the database together with the
transactions that these dependencies relate. The following
changes are made to a database when it is created:

• The table trans dep(tr id INTEGER,
dep tr ids VARCHAR) is added to the database.
For each transaction ID, it stores the set of IDs of the
transactions it depends on as a string with IDs sepa-
rated by spaces.

• The table annot(tr id INTEGER, descr
VARCHAR) is added to the database. It contains a
symbolic name for each transaction, which is used
in the visualization of the inter-transaction depen-
dency graph, as shown in Figure 3.

• A new field trid:INTEGER is added to each database
table transparently. The field of each row stores the ID
of the last transaction that modified the row.

By rewriting incoming SQL statements in a transac-
tion in the way shown in Table 1, the intercepting proxy
can track and record inter-transaction dependencies. For
a SELECT statement, the proxy additionally retrieves the
trid attribute from each table involved in the statement.
These attributes contain the IDs of the transactions that up-
date the rows being read most recently. When the DBMS
server returns a set of rows, the proxy reads these rows’
trid field and store them in a local array. For an UPDATE
statement, the intercepting proxy updates the trid attribute
of all the rows the statement modifies with the current trans-
action ID. Because an UPDATE statement implicitly involves
a SELECT operation, the transaction containing the UPDATE
statement thus depends on the transactions whose IDs are
stored in the trid attribute of the rows being updated. In
theory, these transaction IDs can be retrieved by executing a
SELECT statement before the UPDATE statement. However,
we decide to skip this step to reduce the run-time perfor-
mance overhead. This does not affect correctness as DBMS
logs UPDATE operations and these dependencies can be re-
constructed at repair time from the transaction log. For the
same reason the proxy does not record the associated inter-
transaction dependencies associated with a DELETE state-
ment.

For a COMMIT statement, the proxy issues an INSERT op-
eration that records the current transaction ID and the IDs of
all transactions it depends on in the trans dep table. Hav-
ing done so, the proxy commits the current transaction by
sending the COMMIT operation to the DBMS server.

Because inter-transaction dependency tracking involves
only SQL query rewriting, it is highly portable across dif-
ferent DBMSs as long as they support standard SQL inter-
face. In addition, most DBMSs also support open database
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Figure 1. Client-side single-proxy architecture for inter-transaction dependency tracking, where
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Figure 2. Dual-proxy architecture for inter-transaction dependency tracking, where shaded boxes
represent new elements to be added to a standard client-server DBMS system.

connectivity protocol such as JDBC. Therefore, our inter-
transaction dependency tracking module is fully reusable
across Oracle, Sybase, and PostgreSQL.

3.3. Selective Undo of Committed Transactions

Modern DBMSs perform transaction logging on a per-
row basis, and create a separate log entry for each row be-
ing modified. As a result, multiple log entries could be cre-
ated from a single SQL statement that affects multiple rows.
Each log entry contains the operation type, e.g., INSERT,
DELETE and UPDATE, internal transaction ID, the ID of the
table that the row belongs to, and the database data affected
by this operation. For an INSERT and DELETE operation,
the entire row is saved into the log. The amount of data

saved into the log in the case of an UPDATE operation varies
from DBMS to DBMS. It can be either complete pre-update
and post-update image of an updated row or only those at-
tributes that were actually modified. Each log record also
contains a reference to the position in the database to which
the change it describes is applied. For the three DBMSs that
we have studied, this position is a physical location within
the disk file containing the database, and is described by a
logical page number and an offset within this page. This ad-
dressing format is convenient for recovering a database af-
ter a crash or media failure when the transaction log needs
to be rolled forward.

The effect of a transaction can be nullified with a com-
pensating transaction. To do so, we consider each row af-
fected by an original transaction, create a compensating



Original statement Modified statement(s)
SELECT t1.a1, ..., t1.an1

, ..., tk.ank
FROM t1, ..., tk WHERE c SELECT t1.a1, ..., t1.an1

, ..., tk.ank
, t1.trid, ..., tk.trid

FROM t1, ..., tk WHERE c

SELECT SUM(t.a) FROM t WHERE c GROUP BY t.b SELECT t.trid FROM t WHERE c

SELECT SUM(t.a) FROM t WHERE c GROUP BY t.b

UPDATE t SET a1 = v1, ..., an = vn WHERE c UPDATE t SET a1 = v1, ..., an = vn,

trid = curTrID WHERE c

INSERT INTO t(a1, ..., an) VALUES (v1, ..., vn) INSERT INTO t(a1, ..., an, trid)

VALUES (v1, ..., vn, curTrID)
COMMIT INSERT INTO trans dep(curTrID, ...)

COMMIT

Table 1. Modifications to SQL statements that the intercepting proxy makes to track and record inter-
transaction dependency information.

statement for each affected row, and form a compensating
transaction from these per-row compensating statements.
For instance, if a particular row was deleted, its compensat-
ing statement is an INSERT that puts this row back into the
database. Similarly, if a row was inserted, the compensating
action is a DELETE statement. Finally, if a row was updated,
a compensating action is another UPDATE statement restor-
ing the pre-update image of the row. Although the trans-
action log can be used to generate compensating transac-
tions, it does not contain sufficient information to address
any given row precisely so that each compensating state-
ment is applied to that row only. Fortunately, most DBMSs
support a read-only row ID attribute in each table. We can
use this attribute in WHERE clause of UPDATE and DELETE
compensating statements to ensure that the change is ap-
plied to a particular row only.

The intercepting proxy generates its own transaction IDs
at run time because it is not always possible to access the
internal transaction ID of the underlying DBMS, if it ex-
ists at all. To correlate a transaction’s internal ID with its
proxy-generated ID, one searches for the last log entry right
before the transaction’s commit operation, which should be
an insert operation into the trans dep table. The proxy-
generated ID contained in this inserted row and the inter-
nal transaction ID recorded in this log entry establish the
desired correspondence. Once the correspondence between
two types of transaction ID is established, transaction de-
pendencies due to UPDATE and DELETE statements are gen-
erated. For each entry in the transaction log that is due to a
DELETE and UPDATE statement, one builds up a dependency
between the transaction to which the log entry belongs and
the transaction whose ID is stored in the pre-update row im-
age associated with the log entry.

After all transaction dependencies are identified, the
complete transaction dependency graph is visually pre-
sented to the DBA. An example transaction dependency
graph display is shown in Figure 3. The current prototype
uses GraphViz [13], an open source graph drawing soft-

ware from AT&T, for graph display. The DBA determines
the final undo set of transactions by analyzing the trans-
action dependency graph using the application-specific do-
main knowledge. Ideally, this transaction dependency graph
rendering software should be part of an interactive database
damage repair tool, which allows the DBA to include cer-
tain inter-transaction dependencies into dependency analy-
sis and ignore others, thus avoiding both false positives and
negatives. For instance, if the database contains a temporary
table that does not have any semantic significance, the DBA
may choose to ignore all the dependencies among transac-
tions due to this table. As another example, one transaction
may depend on another due to false sharing, i.e., touching
different attributes of the same row. In this case, the DBA
may choose to ignore this type of dependencies in the re-
pair process.

After the undo transaction set is determined, each entry
in the transaction log is checked from the end to the be-
ginning. If the proxy transaction ID of a log entry belongs
to the undo set its corresponding compensating statement
is executed immediately. Special care is required for rows
inserted to the database during the repair process. For ex-
ample, when a DELETE log entry is to be undone, a new
row is inserted into the database, and the DBMS assigns it
a unique row ID, which may be different from the row ID
that was used to refer to this row in the transaction log pre-
viously. As a result, the old row ID needs to be mapped to
the new row ID when processing all subsequent log entries
associated with this row. When an INSERT log entry asso-
ciated with this row is encountered, the mapping has to be
discarded. Each table has its own row ID mapping. Conse-
quently, the same row ID can be mapped to different row
IDs in different tables.

Unlike inter-transaction dependency tracking, the repair-
time logic of an intrusion-resilient DBMS is very database-
specific, because many of the following data structures are
proprietary: the transaction log format, transaction ID and
row ID encoding, pre-update row image representation, etc.
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Figure 3. Visualization of a sample inter-
transaction dependency graph. Nodes cor-
respond to transactions and edges to inter-
transaction dependencies. Each node has a
label describing the transaction type, e.g.,
Order for an order placement transaction,
Payment for an order payment transaction,
Deliv for an order delivery transaction. Num-
bers that are part of each label are the ware-
house ID, the district ID, the client ID, and the
transaction ID.

4. Implementation Issues

The most challenging part of our prototype implementa-
tion efforts is transaction log parsing, analysis, and recon-
struction. In this section, we discuss in greater detail how re-
constructing transaction log entries in Oracle, Sybase, and
PostgreSQL is done.

4.1. Transaction Log Processing in Oracle

Oracle provides a set of PL/SQL procedures called Log-
Miner [14] which is designed to convert a binary transac-
tion log into a database table called v$logmnr contents,
which is accessible via SQL inside the database. This
database table contains one row per transaction log en-
try. Each row has attributes such as operation type, user ID,

transaction ID, as well as a corresponding redo and undo
SQL statement. In order to roll back a particular trans-
action, one needs to execute all undo SQL statements
available in the v$logmnr contents for this transac-
tion.

4.2. Transaction Log Processing in PostgreSQL

PostgreSQL [15] does not have any tools for access-
ing its transaction log. However, it is possible to reverse-
engineer its log format since PostgreSQL is an open source
DBMS. It turns out that for each row operation (UPDATE,
DELETE, INSERT), PostgreSQL stores complete contents of
the before and after images (if required) for that row. We
have implemented a plugin for PostgreSQL that provides a
Logminer-kind functionality.

4.3. Transaction Log Processing in Sybase

The major implementation issue in Sybase [16] is the
fact that Sybase does not have a row ID attribute in its
tables. One has to add an attribute of type numeric(n)
identity to provide a row ID for each row. The de-
pendency tracking proxy for Sybase intercepts all CREATE
TABLE statements and adds such a column to each new ta-
ble.

Sybase provides the dbcc log command to read the
contents of the transaction log. For each row operation this
command outputs the contents of the row being modified in
the binary format without dividing it into attributes. If the
row operation is INSERT or DELETE, Sybase stores com-
plete row contents in the log. However, for an UPDATE op-
eration (called MODIFY in Sybase), only those attributes that
were modified are stored in the log. Therefore, the row ID
attribute we introduced to identify a row is never saved in
the transaction log. For the repair purpose, the entire con-
tent of each row appearing in the log needs to be fully re-
stored to obtain the row ID attribute.

Sybase stores the page number and the offset within the
page for each row operation. Given these two values, one
can read the contents of the page by using dbcc page com-
mand, retrieve complete row content and access the row ID
attribute of the required row. However, a row can migrate
within a page when some other rows are deleted. Therefore,
a row’s current location at the moment when the transaction
log is read might be different from the row’s current loca-
tion when it is stored in the transaction log. The rule of row
migration is as follows: when a row is deleted from the mid-
dle of a page, all rows located closer to the end of the page
are moved closer to the beginning of the page, overwriting
the row being deleted so that no gaps ever exist in the page.
Rows cannot migrate from one page to another. These ob-
servations allow one to develop an algorithm to keep track
of the location of each row in a page and thus to identify
the row ID attribute of every row associated with log en-



tries of type MODIFY. In this algorithm, rec.len denotes the
length of data (in bytes) of a log record rec, and rec.off de-
notes the offset of data (in bytes) of a log record rec within
a data page.

1. Read the transaction log using dbcc log command.
For each log record that modifies a table that needs to
be repaired, store its record type and data offset in the
repair tool’s memory.

2. Go through the list of all log records again and do
the following: for each record rm of type MODIFY go
through all log records of type DELETE located after
rm. For each DELETE record rd, decrement rm.off

by rd.len if rd.off + rd.len ≤ rm.off . If rd.off ≤

rm.off < rd.off + rd.len, then the current DELETE
operation deletes the row being modified, and since the
log entry associated with a DELETE operation keeps a
complete image of the deleted row, this image could be
used as the before image for the MODIFY statement as
well in this case.

3. Go through the list of all records and for each record
rm of type MODIFY, issue a command dbcc page
with an appropriately adjusted rm.off to read the full
row content.

Having restored the complete row data for each operation,
it is now relatively straightforward to generate all compen-
sating statements. We have implemented the algorithm pre-
sented above and were able to generate compensating state-
ments correctly.

4.4. Limitations of Current Prototype

Our current prototype has several limitations. First, there
is no support for stored procedures. However, the code
stored on the server’s side can be modified in advance to
support transaction dependency tracking. Second, almost
all DBMS vendors provide custom extensions to standard
SQL. Our current prototype supports only a subset of it,
thus making it impossible to use the tracking proxy in an
arbitrary database. However, the tracking proxy can be cus-
tomized for each DBMS vendor. The current prototype has
also several limitations due to its inter-transaction depen-
dency tracking mechanism. Essentially, the tracking is row-
based rather than field-based. This can result in false inter-
transaction dependencies. Another similar problem is the
dependencies that are the result of application logic (such
as inter-process communication). Such dependencies can-
not be tracked by our current tracking proxy.

5. Performance Evaluation

5.1. Experimental Setup

We used the TPC-C benchmark [12] to evaluate the
run-time performance overhead of the intrusion resilience

Number of warehouses 10
Districts per warehouse 30
Clients per district 5000
Items per warehouse 100000
Orders per district 5000

Table 2. Test database parameters and their
values.

mechanism added to Oracle, Sybase, and PostgreSQL. This
benchmark simulates activities of a wholesale supplier. The
supplier operates a number (W ) of warehouses each of
which has its own stock. A warehouse is comprised of
a number of districts, each of which in turn has a num-
ber of clients. The TPC-C benchmark also describes the
set of transactions that are issued during benchmarking
runs: order placement, payment, order delivery, order sta-
tus inquiry, stock level inquiry. Orders can only be made
by clients already in the database. We created a TPC-C
database and populated it with random data. The parameters
of the database are shown in Table 2. For the DBMSs that
support disk space pre-allocation, we have pre-allocated a
sufficiently large data file of size 4.5 GB to avoid dynamic
allocations at run time. All databases were configured with
a block size of 8 KB.

The following machines are used in the experiments. A
Pentium-4M 1.7GHz laptop with 512MB of RAM and a
30GB hard drive spinning at 4200 RPM is used as a client
issuing transactions requests. A Pentium-4 1.5GHz desktop
with 384MB of RAM and a 120GB hard drive spinning at
7200 RPM is used as a server running the DBMS under test.
The two machines were placed in the same 100Mbps lo-
cal network. Both machines used Mandrake Linux 9.1. We
have measured the following DBMS servers: Oracle 9.2.0,
Sybase ASE 12.5, PostgreSQL 7.2.2. In all our experiments,
we used a single-proxy dependency tracking architecture, as
shown in Figure 1.

In this performance study, we are mainly interested in an-
swering the following two questions. First, what is the run-
time performance cost of transparently augmenting an ex-
isting DBMS with the proposed intrusion resilience mech-
anism? Second, how much value does such an intrusion re-
silience mechanism help in the post-intrusion or post-error
repair process, in terms of the percentage of transactions
whose effects can be preserved in the repair process because
they are legitimate and unaffected by the intrusion or error?

5.2. Dependency Tracking Overhead

The run-time overhead of inter-transaction dependency
tracking includes query interception and modification over-
head as well as additional SQL query processing because
of additional fields and tables introduced for dependency



tracking. We vary the following workload parameters when
measuring the dependency tracking overhead for different
DBMSs:

• Transaction Mix: We used a read-intensive workload
(consisting of 100 read intensive Stock Level trans-
actions) and a read/write intensive workload (con-
sisting of 200 New Order, 200 Payment and 100
Delivery transactions).

• DBMS Client-Server Connection: In local configura-
tion both the DBMS client and server were placed on
the server machine. In the networked configuration the
DBMS client ran on the client machine and the DBMS
server ran on the server machine.

• Total Footprint Size: We varied the total footprint size
of the input workload so that in one case, a small
amount of data is accessed repeatedly and the data ac-
cessed is mostly in the database cache once it is loaded,
and in the other case, a large amount of data is accessed
randomly and mostly once.

Figure 4 presents the relative throughput penalty of trans-
action dependency tracking with respect to the original
DBMS without any intrusion resilience mechanism, where
the overall throughput is the ratio of the number of trans-
actions completed within a period of time over the time
period. In a typical on-line transaction processing environ-
ment, which the TPC-C benchmark attempts to emulate, the
DBMS server and client are connected through a network,
the transaction mix is read-intensive, and the total footprint
size is large so that most accesses require disk I/O access.
The results in the upper left corner of Figure 4 correspond
to this scenario, and show that the transaction dependency
tracking overhead in this case is between 6% to 13% for all
three DBMSs.

There is no clear trend as to whether the throughput
penalty of transaction dependency tracking is higher or
lower when comparing the networked configuration with
the local configuration. There are two factors at work here.
On the one hand, running the DBMS server and client on
the same machine, i.e., local configuration, means that the
DBMS server has access to less CPU resource and thus
lower base-case performance. As a result, the percentage
overhead should be lower in the networked configuration
than in the local configuration. On the other hand, running
the DBMS server and client on separate machines means
that the average transaction latency is increased due to net-
work transfer delay. This increase in latency does not in it-
self decreases the throughput as long as the DBMS client
can always keep sufficient transactions outstanding in the
pipeline. When this is not the case, the base-case through-
put suffers and the throughput penalty of transaction depen-
dency tracking could be increased.

Decreasing the total footprint size and thus increas-
ing the database cache hit ratio significantly increases the
throughput penalty of transaction dependency tracking for

the read/write intensive load, but matters very little for the
read intensive load. The reason is that when the footprint
is small, the only disk I/O required is writes to the transac-
tion log, and each transaction log write becomes more ex-
pensive when the transaction dependency tracking mecha-
nism is turned on.

5.3. Accuracy of Database Damage Repair

One way to minimize the number of legitimate transac-
tions that are incorrectly flagged as corruptive is to allow the
DBA to specify transaction dependencies that should be ig-
nored in the determination of the final undo set. Because
fewer dependencies are considered, fewer transactions are
judged corruptive and put into the undo set. We call depen-
dencies that can be safely ignored a false dependency.

One example of a false dependency is when a depen-
dency is based on an attribute of a table that can be com-
puted from other data in the database. For instance, the
warehouse table in the TPC-C benchmark’s test database
contains a w ytd attribute, which is the total sum of money
spent by all clients on a warehouse. This value could have
been computed by using information from the orders ta-
ble by summing up all orders that aim at a particular ware-
house.

Let us use Tdetect to refer to the interval between when
an intrusion/error takes place and when it is detected. Fig-
ure 5 shows how the number of corruptive (those that need
to be undone) transactions and percentage of saved transac-
tions (those that survive repair) correlate with Tdetect, un-
der different warehouse factor (W ) values, where Tdetect

is expressed in terms of the number of transactions com-
mitted since the intrusion/error. As expected, the number of
transactions that are affected by the initial attack/error trans-
action increases with Tdetect, but the percentage of saved
transactions remain flat except when Tdetect is small. More-
over, ignoring false dependency can significantly increase
the number of benign transactions that can be saved from
a repair process. The difference in the number of transac-
tions that need to be undone or rolled back can be more
than a factor of 5, and the improvement in the percentage
of saved transactions ranges from 20% to 30%. The saved
transaction percentage improvement decreases with W be-
cause larger W tends to have less false sharing and thus re-
duce the benefit of eliminating false dependency. This re-
sult suggests that it is crucial for an intrusion resilience en-
gine to incorporate site-specific domain knowledge from the
DBA and improve its repair accuracy by minimizing false
positives and negatives.

6. Conclusion and Future Work

The most important contribution of this work is the de-
velopment of a reusable implementation framework that
adds intrusion resilience to existing DBMSs without re-
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Figure 4. The inter-transaction dependency tracking overhead differs depending on whether the
workload is read-intensive (left column) or read/write intensive (right column). It is also affected
by the total footprint size, which is determined by the warehouse factor W . The upper row corre-
sponds to the large footprint case (W = 10 and low database cache hit ratio) and the lower row cor-
responds to the small footprint case (W = 1 and high database cache hit ratio).

quiring any modifications to their internals, and a demon-
stration of this framework’s portability to three different
DBMSs, Oracle, Sybase, and PostgreSQL. Moreover, we
also show the performance overhead of this portable ap-
proach to intrusion-resilient DBMS is quite reasonable, be-
tween 6% to 13% for a typical on-line transaction process-
ing environment. We believe this framework is one of the
first, if not the first portable intrusion resilience implemen-
tation framework that is also efficient and fully operational.

There are several directions we are pursuing currently.
First, we plan to build a full-scale interactive database dam-
age repair tool that allows a DBA to interact with the trans-
action dependency graph through a GUI, and explore the
damage perimeter by conducting “what if” analysis. This
tool will make the database damage repair process more
flexible, accurate and convenient to use. Second, we are
planning to build a transaction dependency tracking ap-
pliance that can be put in front of a DBMS server, and
performs SQL query interception and re-writing without
any additional configuration. Such an appliance minimizes
the disruption to existing IT infrastructure, and thus of-
fers a smoother migration path. Third, the current query
re-writing algorithms can be further optimized to reduce
the tracking overhead. For example, a single trans dep ta-

ble may become a bottleneck when the DBMS server runs
on a multiprocessor machine; the tr id attribute probably
should be put in the middle of each row, rather than at the
left or right end, to minimize the additional logging penalty;
keeping a tr id attribute per attribute rather than per row
is required to minimize false sharing and to support sup-
pression of false dependency, and how to implement it effi-
ciently deserves more investigation. Finally, the current pro-
totype does not support intrusion detection. We plan to de-
velop a DBMS-specific intrusion detection tool and inte-
grate it with the proposed intrusion resilience mechanism to
form an end-to-end database security solution.
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Figure 5. Number of transactions that need to be rolled back during the repair process (left column)
and percentage of saved benign transactions (right column) versus Tdetect under different W values.
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