
High-Dimensional Similarity Search using Data-

Sensitive Space Partitioning

Sachin Kulkarni1 and Ratko Orlandic
2

1 Illinois Institute of Technology, Department of Computer Science,

Chicago 60616, USA
kulksac@iit.edu

2 University of Illinois at Springfield, Computer Science Department,

Springfield 62703, USA
rorla2@uis.edu

Abstract. Nearest neighbor search has a wide variety of applications. Unfortu-

nately, the majority of search methods do not scale well with dimensionality.

Recent efforts have been focused on finding better approximate solutions that

improve the locality of data using dimensionality reduction. However, it is pos-

sible to preserve the locality of data and find exact nearest neighbors in high

dimensions without dimensionality reduction. This paper introduces a novel

high-performance technique to find exact k-nearest neighbors in both low and

high dimensional spaces. It relies on a new method for data-sensitive space par-

titioning based on explicit data clustering, which is introduced in the paper for

the first time. This organization supports effective reduction of the search space

before accessing secondary storage. Costly Euclidean distance calculations are

reduced through efficient processing of a lightweight memory-based filter. The

algorithm outperforms sequential scan and the VA-File in high-dimensional

situations. Moreover, the results with dynamic loading of data show that the

technique works well on dynamic datasets as well.

1 Introduction

Many traditional access methods are ineffective in high-dimensional spaces [10, 19].

Moreover, real high-dimensional data are often correlated or clustered, and the data

tends to occupy only a small fraction of the space [5]. An appropriate similarity search

method must be aware of the locality of data in high dimensions. However, most meth-

ods for finding the locality of data rely on dimensionality reduction. Unless a multi-

step approach is applied [16], this leads to approximate results.

The problem of similarity search can be stated as follows: Given a database with

N points and a query point q in some metric space, find k ≥ 1 points closest to q [6].

Effective solutions to this problem find applications in computational geometry, geo-

graphic information systems, multimedia databases, data mining, etc. Most of these

applications deal with Euclidean multi-dimensional spaces.

In order to tackle the “curse of dimensionality”, various approximate solutions

based on dimensionality reduction have been proposed [2, 6, 7]. Aggarwal [2] empha-

sized the need to distinguish between the localities in the data and introduced a con-

cept of locality sensitive subspace sampling. The concept of locality sensitive hashing

(LSH) is developed in [7]. The emphasis in [2] and [7] is on finding the locality of the

data in a way that makes the process of dimensionality reduction more “data aware”.

The focus here is on local rather than global distribution of data.

Significant effort in finding the exact nearest neighbors has yielded limited suc-

cess. The SR-Tree [9] uses both a hyper-sphere and hyper-rectangle to represent a

region and improves search efficiency over the SS-tree and R-tree. However, as re-

ported in [4], the SR-Tree is at par with sequential scan when dimensionality is at least

20. Blott and Weber [5] proposed the VA-File, which applies a filter to the sequential

scan using the concept of vector approximations. The bit-encoded approximations

provide bounds to guide the elimination of points during the search. The solution is

simple and tends to be efficient.

A-tree [15] and i-distance [19] are reported to work well in high dimensions. The

A-tree is an index structure that stores virtual bounding rectangles, which approximate

minimum bounding rectangles. i-distance uses the concept of space partitioning to

separate the data into different regions. The data for each region are transformed into a

single-dimensional space in which the similarity is measured.

Our quest is for a solution with an efficient and scalable search, acceptable data-

loading time, and the ability to work on incremental loads of data. Despite consider-

able work done in the area, this formulation of the problem of exact similarity search-

ing in high-dimensional spaces is still an intriguing one.

In this paper, we introduce a new way of arranging data on storage to facilitate ef-

ficient search. A new space partitioning method is proposed along with a new algo-

rithm for exact similarity search in high-dimensional spaces. The basic idea is to sepa-

rate clusters in the dataset and eliminate searching over the empty space, thus improv-

ing the retrieval performance. We adopt an explicit density-based clustering using the

efficient GARDENHD clustering technique [13], which is different than the sampling-

based approach proposed in [19]. We then apply a new space partitioning technique,

called DSGP (data-sensitive gamma partitioning), which operates on the compact

cluster representation of data produced by GARDENHD.

The paper also presents the results of comprehensive experiments showing that

our approach can efficiently find exact k nearest neighbors in high dimensions. More-

over, it can work efficiently on dynamically growing data. The algorithm is compared

to the sequential scan, the VA-File, and the GammaSLK partitioning and indexing

technique without explicit data clustering [12].

The rest of this paper is organized as follows. Section 2 gives the basic design

principle underlying the proposed approach and our clustering and partitioning

schemes. Section 3 presents the system architecture and briefly reviews the adopted Γ

partitioning and GARDENHD clustering. Section 4 introduces the data-sensitive space

partitioning. Section 5 introduces the proposed algorithm for similarity search. Section

6 provides experimental evidence. Section 7 concludes the paper.

2 Design Principle

For generality, let us use the term storage cluster to denote the spatial region formed

by points in a storage unit, which we assume to be an index page. Then the design

principle underlying our approach can be stated as follows: multi-dimensional data

must be grouped on storage in a way that minimizes the extensions of storage clusters

along all relevant dimensions and achieves high storage utilization.

The term "relevant dimensions'' refers to the fact that multi-dimensional region

queries may have "affinity'' for certain dimensions, consistently leaving other dimen-

sions unrestricted. However, since exact similarity searching must restrict the search

space in all dimensions, the clustering scheme used for storage organization must treat

all data dimensions as equally important. Assuming a multi-dimensional space defined

by relevant dimensions, the stated principle implies that the storage organization must

maximize the densities of storage clusters both by increasing the number of points in

the clusters and by reducing their volumes. To increase the densities of storage clus-

ters, the organization must reduce their internal empty space. For best results, the

database system should employ a genuine clustering algorithm for this purpose.

To understand the logic behind this principle, let us assume for the moment an

idealized system that, for any given query, accesses only those pages on secondary

storage containing data items that satisfy the query. Moreover, assume that N data

items are divided into M << N pages and that K << N items satisfying the query are

randomly distributed among the pages. Then, a well-known Cardenas expression A =

M⋅(1–(1–1/M)k) gives a good estimate of the number of accessed pages for the given

query. Note that the number of pages with useful data is at most min{K, M} and, when

K << M, the above expression can be approximated by A ≈ M⋅(1–(1–K/M)) = K.

Eliminating the assumption that data items are randomly distributed among the

pages, the number of accessed pages can be estimated by a more general expression,

valid for any K, M ≤ N: A = K/I, where I ≥ 1 is the average number of items that satisfy

the query in an accessed page. Since the goal of clustering data on storage is to in-

crease the number of useful items in any page accessed by a typical query, the parame-

ter H = I/C ≤ 1, where C is the page capacity, is a good measure of the quality of clus-

tering with respect to the given query. Obviously, when C = 1 or H = I/C, clustered

storage organization has the same effect as the organization with randomly distributed

data. However, when C >> 1 and H is as close to 1 as possible, the performance im-

provement can be significant—as much as C times fewer page accesses. For this to

happen, the storage utilization must also be high.

To develop an appropriate clustering strategy, let us now consider the problem of

supporting multi-dimensional region queries, which restrict the ranges of values in one

or more dimensions of a D-dimensional unit space [0,1]
D
. We use the term storage

cluster to denote a spatial region consisting of points in a storage unit, i.e. a page.

In this context, increasing H implies increasing the probability that each storage

cluster with useful data is completely covered by the query. However, since clustering

must benefit not one but many different queries, the storage organization must be such

that, for every storage cluster S and any query Q, it decreases the probability P(S ∩ Q)

that S overlaps Q (which would trigger access to the corresponding page), while in-

creasing the probability P(S ⊆ Q) that it is covered by Q. Assuming that S is repre-

sented by its minimum bounding hyper-rectangle, and that all possible positions of S

are equally likely, one can easily show that, for data dimensionality D:

∏ =
+=∩

D

i ii SQQSP
1

}1,min{)(and ∏ = −

−
=⊆

D

i
i

ii

S

SQ
QSP

1
}0,

1
max{)(,

where Si and Qi are the extensions (lengths) of S and Q, respectively, in an axis i.

 Since the extensions of any given query are fixed, the way to reduce P(S ∩ Q) and

increase P(S ⊆ Q) for an arbitrary query Q is to reduce the lengths Si of S along all

dimensions i restricted by Q (i.e., all i for which Qi < 1). This and the earlier observa-

tion about storage utilization lead to the design principles stated earlier.

We refer to the process of detecting dense areas (dense cells) in the space with

minimum amounts of empty space as data space reduction. In this context, data clus-

tering is a process of detecting the largest areas with this property, called data clus-

ters. The stated design principle can be achieved either by clustering or by data space

reduction only. However, a facility to do both is an advantage.

Explicit data clustering with effective data space reduction can facilitate various

kinds of retrieval, including similarity searching, by enabling a close-to-optimal as-

signment of data to pages and a significant reduction of the search space even before

the retrieval process hits persistent storage. For effective data space reduction, the

clustering method should operate directly in the given (externally defined) space with-

out dimensionality reduction, and it should not be governed by any expectation about

the number of clusters. To be useful for storage organization, it must also be very

efficient. This set of requirements motivates the design of the GARDENHD clustering

algorithm for high-dimensional datasets introduced in [12] and the DSGP data-

sensitive space partitioning technique introduced later in this paper.

3 System Architecture

Figure 1 gives the architecture of our system for efficient retrieval of data that scales

well with the increasing dimensionality. The process of data clustering produces a

compact cluster representation of data. Operating on this representation, the partition-

ing module produces a data-sensitive Γ space partition (see below). The derived space

partition is maintained by a light-weight in-memory structure, called the Γ filter.

Fig. 1. Key processes of the system.

Data Clustering

“Data-Sensitive”

Gamma Partitioning

Data Loading

Region Search Similarity Search

Incremental Data

Loading

Data Retrieval

In the process of data loading, this memory structure acts like a filter that channels the

points of each region in the space partition into a separate KDB-tree index. Together,

these indices represent clustered data storage. With the facility for incremental load-

ing, the system can subsequently accept new data points through the existing space

partition. The processes of data retrieval include both region and similarity-search

queries, which undergo two levels of filtering—one in the memory-resident Γ filter

and the other in the selected indices on disk.

 The KDB-tree indexing technique is not necessarily optimal for this environment.

The R-tree would yield faster retrieval, but at the expense of slower insertions. In

environments with frequent insertions, the later cost is not insignificant.

3.1 Gamma Partitioning

Γ space partitioning was first introduced in [11]. A D-dimensional space is partitioned

by several nested hyper-rectangles whose low endpoints lie in the origin of the space.

The outermost hyper-rectangle is the space itself. We call these nested hyper-

rectangles partition generators, or just generators. The space inside one generator and

outside its immediately enclosed generator, if any, is called Γ subspace. Except for

the innermost subspace, each Γ subspace is further divided into at most D hyper-

rectangular regions, called Γ regions, by means of (D–1)-dimensional hyper-planes,

each of which lies on an upper boundary of the inner generator. Beginning with the

outermost generator, these Γ regions are carved out from the base region one by one

(see Figure 2c below). Each coordinate of the high endpoint of a generator gives the

position of the hyper-plane that separates a Γ region from the space in which the sub-

sequent Γ regions lie. Note that, if G is the number of generators and D the number of

dimensions, the total number of created regions is at most 1+(G–1)⋅D.

 In our system, Γ space partition is compactly represented by the Γ filter. During

the insertions, for each Γ region, the Γ filter dynamically maintains its live region, i.e.

the minimum bounding hyper-rectangle enclosing the points in the Γ region.

3.2 GARDENHD Clustering

GARDENHD [13] is designed to provide a fast and accurate insight into data distribu-

tion in order to facilitate data mining or retrieval. This clustering method efficiently

and effectively separates disjoint areas with points, which is the primary reason we

selected it for this application. With an appropriately selected density threshold, which

is the only input parameter, GARDENHD runs in O(NlogN) time [13], where N is the

number of D-dimensional points in the dataset.

 GARDENHD is a hybrid of cell- and density-based clustering that operates in two

phases. Employing a recursive space partition using a variant of Γ partitioning [13],

the first phase performs an efficient data space reduction, identifying rectangular cells

whose density is above the user-defined threshold. In the second phase, the adjacent

dense cells are merged into larger clusters. It is the application of Γ partitioning that

enables the algorithm to efficiently cluster data in high-dimensional spaces without

dimensionality reduction.

4 Data Sensitive Gamma Partitioning - DSGP

The partitioning method, called DSGP (Data-Sensitive Gamma Partitioning), uses

the cluster representation of data produced by GARDENHD and generates a space

partition in which well-separated clusters appear in different regions of the space.

DSGP runs in time equivalent to O(L
2
) comparisons of D-dimensional points, where L

is the number of clusters detected by GARDENHD.

Each data cluster is approximated by its minimum bounding hyper-rectangle

(MBR), represented by the low and high endpoints. As in “data blind” Γ partitioning

into regions of equal volume [11], DSGP produces static Γ regions, but around spatial

clusters. The number of resulting regions depends on the number of clusters. The

objective is to store points of each disjoint cluster into a separate KDB-tree index.

Fig. 2. Steps of the DSGP space partitioning.

Figure 2 illustrates the steps of the data-sensitive space partitioning strategy. Fig-

ure 2a shows four clusters detected by GARDENHD. The DSGP procedure starts by

sorting the clusters based on their high endpoints along each dimension. As a result,

each dimension is associated with a sorted list of cluster indices. The procedure de-

tects the gaps between clusters as follows: going from the higher to lower coordinates

along each dimension, the low endpoint of each cluster is compared with the high

endpoint of the next cluster until a gap is found. A partitioning hyper-plane is drawn in

the middle of a detected gap, perpendicular to the dimension with the minimum-

containment region above the gap. By the “minimum-containment region”, we mean a

Γ region with the smallest number of clusters. The resulting space partition is stored in

the Γ filter. The live regions bounding the points of each Γ region in the Γ filter are

determined dynamically during initial and incremental data loading.

In Figure 2a, Cluster 1 has been assigned to the first Γ region. Hence, it is elimi-

nated from further consideration. The same procedure is repeated, and Cluster 2 is

assigned to another partition along the same dimension (Figure 2b). In the next itera-

tion, a gap is found along the second dimension (Figure 2c). The last cluster is as-

signed to the remaining Γ region. During data loading, the constructed KBD-tree indi-

ces perform implicit partitioning of the respective Γ regions into a collection of index

regions, each of which bounds the points in an index page (Figure 2d). Since no point

can fall outside the live region of the corresponding Γ region, the KDB-tree index

regions are effectively bounded by the corresponding live regions.

If multiple clusters appear in the same Γ region, the DSGP procedure performs

“slicing” of the Γ region, so that each slice of the Γ region contains only one cluster.

The current slicing procedure requires a pair-wise comparison of the given cluster

MBRs. It is also possible that no gap can be found during an iteration of this algorithm

or during slicing of a Γ region. In such a case, DSGP performs a “data blind” Γ parti-

tioning [12] of the space (region) in which the overlapping cluster MBRs appear.

5 Similarity Search

Through the constructed Γ filter representing the partition produced by DSGP, data

points are inserted into appropriate KDB-tree indices. As points are inserted, live

regions of the Γ regions and their slices are dynamically formed. Each inserted point

either grows a live region or falls inside it. For a point lying inside a live region, its

distance to the geometric center of the live region is calculated. This point becomes a

representative of the region if it is closer to the center of the live region than the pre-

vious representative, if any. Note that the dynamic computation of representatives

takes place after the clustering and partitioning is performed on an early data sample.

(a) (b)

Fig. 3. k-nearest neighbor and region search.

Figure 3 depicts the processes of nearest neighbor and region searching. The near-

est neighbour search in Figure 3a uses a query hyper-sphere with the query point at the

center and the distance to its closest region representative as the radius. In this exam-

ple, the hyper-sphere intersects two live regions and requires the region searches only

for the overlapping clipped portions of the live regions. Figure 3b is included to em-

phasise that region search can be performed in a similar way. Figure 4 gives the algo-

rithm for nearest-neighbor searching, called GammaNN (the k-NN algorithm is a sim-

ple variant of this). A similar procedure can be used for region search as well.

 Once the live regions that overlap the query hyper-sphere or query rectangle (win-

dow) are determined, they are clipped against the hyper-sphere or the query window,

respectively. The KDB-tree corresponding to an overlapping live region is then que-

ried with the appropriate clip of the query window. In the case of k-nearest neighbor

searching, the query hyper-sphere dynamically shrinks as the new nearest neighbors

are detected. The points returned by the interrogated KDB-tree indices are compared

with the query point to construct the resulting list of k-nearest neighbors. For a region

search, the points returned by the KDB-tree indices represent the result set.

Input:

 Q; // query point:

 NoRegions; // number of Gamma regions

 Regions; // list of Gamma regions

Output:

 Result.Point; // nearest neighbor

 Result.Distance; // distance to the nearest neighbor

Local:

 Slice; // a slice of a region (region can have one or more slices)

 Slice.LR; // live region of the given slice

 TempResult; // contains a temporary NN and the distance to it

 Distance ← ∞, Dist; // temporary distance

 Qclip; // query window (clip) by which an index is searched

BEGIN GammaNN

 // find closest representative and “construct” the sphere

 for i=1 to NoRegions do

 if sphereIntersectsGammaRegion (Q, Distance, Region[i]) then

 if Region[i].Cardinality > 0 // in a data-blind partition, region can be empty

 for j=1 to Region[i].NoSlices do

if sphereIntersectsLiveRegion (Q, Distance, Region[i].Slice[j].LR)

 begin

 MarkSlice (Region[i].Slice[j]); // mark slice for later inspection

 if Dist ← calculateDistance (Slice[j].Repr, Q) < Distance then

 begin Slice ← Region[i].Slice[j]; Distance ←Dist; end

 end

 // examine points in the “closest” slice

Qclip ← constructSearchWindow (Q, Distance, Slice.LR); // construct query clip

Result ←searchIndex (i, Qclip); // search index and return the temporary NN

Distance ← Result.Distance;

 // examine points in other slices, shrinking the sphere

for each other Slice in the list of marked slices do

 if sphereIntersectsLiveRegion (Q, Distance, Slice.LR) then

 begin // since the sphere is shrinking, we had to test for overlap again

 Qclip ← constructSearchWindow (Q, Distance, Slice.LR);

 TempResult ←searchIndex (i, Qclip);

 if TempResult.Distance < Distance then

 begin Distance ← TempResult.Distance; Result ←TempResult; end

 end

END GammaNN

Fig. 4. GammaNN algorithm for nearest-neighbor searching.

6 Experimental Evidence

The experiments were performed on simulated and real data on a PC configuration

with a 3.6 GHz CPU, 3GB RAM, and 280GB disk. In all structures, the page size was

8K bytes. We assumed a normalized D-dimensional space [0,1]D. Each coordinate of a

point was packed in 2 bytes. The GammaNN implementations with and without ex-

plicit clustering are referred to here as ‘data aware’ and ‘data blind’ [12] algorithms,

respectively. The static Γ partitioning of the data blind GammaNN was obtained as-

suming 3 generators, decided based on a number of experiments. In the synthetic data

of up to 100 dimensions, the points are distributed across 11 clusters—one in the

center and 10 in random corners of the space. The real data is a 54-dimensional forest

cover type (“covtype”) set obtained from the UCI machine learning repository1.

Fig. 5. Preprocessing time including the time for data loading.

Figure 5 gives the pre-processing time for two versions of GammaNN and the

VA-File. For the data-blind algorithm, this time includes the time of space partition-

ing, I/O (reading the data), and the time for data loading (i.e., the construction of indi-

ces plus insertion of data). The data-aware algorithm includes the clustering time in

addition. Observe that the pre-processing time of this algorithm is heavily dominated

by the construction of KDB-tree indices, whereas GARDENHD clustering is fast.

For the VA-File technique, the pre-processing time includes the time to generate

the VA-File. Since this time is dominated by the calculation of approximation values

[17] and requires no insertion of points into any data structure, faster pre-processing

for VA-File is expected. However, since the pre-processing time is usually amortized

over a large number of queries, it is much less consequential than the search time.

Figure 6 shows the results on 100,000 synthetic data points as their dimensional-

ity increases from 10 to 100. The data-aware algorithm is more than eight times faster

than sequential scan and six times faster than the VA-File. The data-aware method and

the VA-File incur almost the same number of page accesses to the data. However, this

is because we counted only accesses to index or data pages, respectively. In other

words, no page access was counted for the processing of the Γ filter or the VA-File,

which favors the latter technique. If the VA-File were maintained on disk, the VA-File

technique would incur many more page accesses, and the relative differences with

respect to GammaNN variants would be closer to those observed for processing times.

1 http://kdd.ics.uci.edu/databases/covertype/covertype.data.html.

Fig. 6: Synthetic data with query distribution same as data, 10 NN.

Cumulative time for 100 queries

10 NN, real data

0

200

400

600

800

1000

1200

S. Scan Data Blind VA-File Data Aware

A
v
g
 p
a
g
e
 a
c
c
e
s
s
e
s

Fig. 7: Real data with 100 queries selected from the real data file, 10 NN.

T
im
e
 i
n
 s
e
c
o
n
d
s

Fig. 8: Progress as the number of nearest neighbors increases on real data.

Fig. 9: Time and average page accesses for incremental load on real data.

Figure 7 shows that the data-aware algorithm is significantly faster than sequential

scan and the VA-File. For this experiment, 580,900 points were loaded into each

structure, and the remaining 100 points in the data set were used as query points. Also

noteworthy is that the data-aware algorithm accesses only about 3% of all data points.

Figure 8 shows the changes in performance of different methods with respect to the

increasing value of k in k-NN searching. Except for the data-blind algorithm, all meth-

ods have a stable performance as k grows up to 100.

Figure 9 shows the performance of the data-aware algorithm on incremental load-

ing of the real data set. The clustering and space partitioning were performed on the

first 100,000 points in the set, which were loaded into the structure. The results of 10-

NN queries were recorded after subsequent incremental loads of 100,000 points. No

re-clustering was performed after an incremental load. However, as described earlier,

the live regions and their respective representatives were dynamically modified during

the incremental loads. The equivalent results of the same algorithm but without incre-

mental loading (in Figure 9, referred to as “data aware, full load”), i.e. after clustering

the entire subset of the data, are used as benchmarks.

One can observe from Figure 9 that the data-aware GammaNN algorithm results

in almost the same number of page accesses and the query execution times with or

without incremental loading of data. This suggests that GammaNN reacts well to in-

cremental loads. As in this case, in many practical environments, it will require no re-

clustering of data even after many incremental loads. This is particularly important for

scientific applications, which regularly obtain data through incremental loads.

7 Discussion and Conclusions

In this paper, we proposed a new technique for exact similarity searching in high di-

mensionalities, called GammaNN. The GammaNN technique employs explicit data

clustering using a new density-based clustering method and a new data-sensitive space

partitioning method in order to preserve the locality of data and reduce the volumes of

data clusters on storage. The application of a memory-based filter with live regions

further improves the performance of similarity searching.

The comparison of the data-sensitive and data-blind approach clearly highlights

the importance of clustering data on storage for efficient similarity search. Our ap-

proach can support exact similarity search while accessing only a small fraction of

data. The algorithm is very efficient in high dimensionalities and performs better than

sequential scan and the VA-File technique. The performance remains good even after

incremental loads of dynamically growing data sets without re-clustering.

 The high performance of GammaNN similarity searching is mainly due to the

structure’s adherence to the design principle stated in Section 2. By detecting dense

areas in the space, the data clustering facility determines the spatial proximity of data.

The data-sensitive space partitioning enables a static pre-clustering of data on storage

according to their spatial proximity. Storing the points of every region into a separate

KDB-tree enables a dynamic sub-clustering of data into index pages corresponding to

relatively small and dense regions in the space, as required by our design principle.

The application of the memory-resident filter is important for several reasons. It

dynamically channels incoming data into appropriate indices. It dramatically reduces

the number of costly distance computations. With the dynamically-maintained live

regions, it also reduces the amount of searching over empty space, enabling a poten-

tially significant reduction of search space before accessing the storage.

In our future work, we plan to incorporate R-trees into the system and provide a

facility for handling data with missing values.

Acknowledgment

This material is based upon work supported by the National Science Foundation under

grant no. IIS-0312266.

References

1. Aggarwal, C.C.: On the effects of dimensionality reduction on high dimensional similarity

search, Proc. 20th PODS Conf., (2001) 256–266

2. Aggarwal, C.C.: Hierarchical subspace sampling: A unified framework for high dimensional

data reduction, selectivity estimation and nearest neighbor search, Proc. ACM SIGMOD

Conf., (2002) 452-463

3. Berchtold, S., Ertl, B., Keim, D., Kriegel, H.P., Seidl, T.: Fast nearest neighbor search in

high-dimensional space, Proc. 14th ICDE Int. Conf. on Data Engineering, (1998) 209-218.

4. Beyer, K.S., Goldstein, J., Ramakrishnan, R. and Shaft, U.: When is `nearest neighbor'

meaningful?, Proc. 7th Int. Conf. on Database Theory, (1999) 217-235

5. Blott, S., Weber, R., A simple Vector-Approximation file for similarity search in high-

dimensional vector spaces. Technical report, Esprit Project Hermes (no. 9141), (1997)

6. Fagin, R., Kumar, R., Shivakumar, D.: Efficient similarity search and classification via rank

aggregation, Proc. Proc. ACM SIGMOD Conf., (2003) 301-312

7. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimension via hashing, Proc.

25th VLDB Conf., (1999) 518-529

8. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is nearest neighbor in high dimensional

spaces?, Proc. 26th VLDB Conf., (2000) 506-515

9. Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional nearest

neighbor queries, SIGMOD Record 26(2): (1997) 369-380

10. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In

Proc. 5th Berkeley Symp. Math. Statist, Prob. 1: (1967) 281–297

11. Orlandic, R., Lukaszuk, J., Swietlik, C.: The design of a retrieval technique for high-

dimensional data on tertiary storage, SIGMOD Record 31(2): (2002) 15–21

12. Orlandic, R., Lukaszuk, J.: Efficient high-dimensional indexing by superimposing space-

partitioning schemes, Proc. 8th International Database Engineering & Applications Sympo-

sium IDEAS’04, (2004) 257-264

13. Orlandic, R., Lai, Y., Yee, W.G.: Clustering high-dimensional data using an efficient and

effective data space reduction, Proc. ACM Conference on Information and Knowledge

Management CIKM’05, (2005) 201-208

14. Robinson, J.T.: The K-D-B-Tree: A search structure for large multidimensional dynamic

Indexes, Proc. ACM SIGMOD Conf., (1981) 10-18

15. Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: The A-tree: An index structure for

high-dimensional spaces using relative approximation, Proc. 26th VLDB Conf., (2000)

516-526

16. Seidl, T., Kriegel, H.P.: Optimal multi-Step k-nearest neighbor search. Proc. ACM

SIGMOD Conf., (1998) 154-165

17. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similar-

ity search methods in high-dimensional spaces, Proc. 24th VLDB Conf., (1998) 194-205

18. Weber, R., Zezula, P.: The theory and practice of similarity searches in high dimensional

data spaces (extended abstract), 4th DELOS Workshop, 1997

19. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V.: Indexing the distance: An efficient method to

KNN processing, Proc. 26th VLDB Conf., (2001) 421-430

