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Abstract. Achieving optimal battery usage and prolonged network life-
time are two of the most fundamental issues in wireless sensor networks.
By exploiting node and data redundancy in dense networks, and by
scheduling nodes efficiently, minimum battery drainage is possible. In
this paper, we focus on the problem of Minimum Connected Sensor Cover
(MCSC), an NP-hard problem, and describe a distributed greedy algo-
rithm to generate sub-optimal connected sensor covers for homogeneous
dense static sensor networks. Our greedy algorithm is based on the no-
tions of maximal independent sets on random geometric graphs, and on
the structure of Voronoi diagram. We provide complexity analysis and
bounds on the cardinalities of maximal independent sets (MIS) for our
problem scenario, and derive an analytical expression for the size of the
sub-optimal minimum connected sensor cover. We verify the bounds on
the MIS using simulation.

1 Introduction

Wireless sensor networks are distributed, self-organizing, pervasive systems that
perform the tasks of sensing and collaborative data processing to provide useful
information about some physical phenomenon, which is typically stochastic in
nature. Sensor nodes are severely energy constrained due to limited battery
power, and are not likely to be replenished during their lifetime. Therefore,
it is very important to make use of their energy as optimally as possible and
enhance the overall network lifetime. In dense sensor networks, the data sensed
by geographically neighboring nodes exhibit a high degree of spatio-temporal
correlation, and thus, many such data maybe redundant. Being able to exploit
this redundancy is one of the ways to optimize energy usage and extend network
lifetime.

Some of the existing works on conserving battery power have focussed on
node scheduling algorithms based on the concept of sponsored sectors. Tian
and Georganas [1] proposed a node self-scheduling scheme based on sponsorship
criteria, by which each node decides whether to turn itself off or on using only
local information. Gao, et. al [2] analyzed the problem of estimating redundant
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sensing area and described observations concerning minimum and maximum
number of neighbors required for complete redundancy of a particular node.

In literature some methods have been proposed ( [3], [4]) to determine the
optimal number of nodes and their locations to provide complete coverage of a
given sensing region, while maintaining connectivity. Zhang and Hou [5] proved
that if the communication radius of a node is at least twice the sensing radius,
then complete coverage of a convex region guarantees a connected network. Al-
though, on one hand, the problem of determining the optimal number of nodes
for complete coverage is important; deploying redundant nodes in the region on
the other hand, contributes to network robustness and can overcome degrada-
tion in signal propagation or loss of nodes. However, when there are redundant
nodes, keeping them active all the time will lead to faster drainage of energy;
and thus, will reduce network lifetime. Now, since the data sensed by geographi-
cally neighboring nodes are spatio-temporarily correlated, it is often sufficient to
turn on only an optimal number of nodes, which can provide the required data
reliability, while putting others to sleep. However, the optimal number of nodes
selected should be able to guarantee the same quality of data, which would have
been provided if all the nodes were kept active. Since two of the factors which de-
termine data quality are coverage and connectivity [6], the problem boils down
to finding an optimal number of nodes that will provide the same quality of
coverage and network connectivity.

This leads to the problem of finding the minimum connected sensor cover
(MCSC), which is proved to be NP-hard for random deployment of nodes, as
the less general problem of covering points using line segments is already known
to be NP-hard [7]. Gupta, et. al [8] described an algorithm to construct a con-
nected sensor cover for a network topology with fixed sensing radius, within an
O(logN) factor of the optimal, where N is the number of nodes in the network.
Zhou, et. al [9] approached the MCSC problem, where each node can vary its
sensing and transmission radii and provided a Voronoi diagram based localized
algorithm and a greedy algorithm to construct sub-optimal network topologies
within a factor of O(logN) of the optimal size. Funke, et. al [10] proposed im-
proved approximation algorithms for connected sensor covers and gave worst
case approximation factors of 6π and 12 for grid placement and fine grid al-
gorithms, respectively. They also described a greedy algorithm that provides
complete coverage with an approximation factor of Ω(logN) from the optimal
connected sensor cover.

In this paper, we propose a distributed greedy algorithm that constructs a
sub-optimal MCSC using only local neighborhood information. Our basic idea
is to greedily select a large set of nodes in the first phase, such that none of
their sensing circles overlap with each other. Then we make those nodes select
an optimal number of neighbor nodes using local information, such that the
whole query region gets covered. We use the notions of maximal independent
sets (MIS) on random geometric graphs and the structure of Voronoi diagram
to find out sub-optimal MCSC. We also do complexity analysis of our algorithm
and provide bounds on the cardinality of MIS for our problem scenario. These
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bounds are directly related to the size of the sup-optimal MCSC, as will be seen
later.

The rest of the paper is organized as follows. In section 2, we formally in-
troduce the problem of MCSC and discuss the notions of Independent Set (IS)
and Voronoi diagram. In section 3, we describe a distributed greedy algorithm
to find a sub-optimal MCSC and illustrate it on a grid and random deployment
of nodes. In section 4, we show some preliminary simulation results and analyze
the algorithm in terms of time complexity and provide bounds on the size of
MIS. We conclude the paper in section 5.

2 Preliminaries

In this section, we give a formal description of the problem and introduce some
of the basic concepts related to independent sets in graphs and the structure
of Voronoi diagrams that we will use in our algorithm to find a sub-optimal
connected cover set.

2.1 Problem Formulation

We consider homogeneous static (dense) sensor networks, where all the nodes
have the same sensing radius, Rs and the same communication radius, Rc. We
assume that the communication radius is α times the sensing radius, i.e., Rc ≥
αRs, where α ≥ 2, and that the sensing range is a circular region of radius Rs

with the node at the center. Throughout this paper, we also assume that a node is
aware of its own location and its one-hop neighbors’ locations. Such localization
can be achieved by triangulation methods using received signal strengths or
proximity measurements [11].

Let us define the induced communication graph on the network as the undi-
rected graph GC = (V, ERc), where the nodes act as vertices and an edge exists
between any two nodes if the Euclidean distance1 between them is less than the
communication radius.

Definition 1. Connected Sensor Cover: Let a set S = {s1, s2, ..., sN} of N
nodes, be deployed in a sensing field of area A and let the sensing region covered
by node si be denoted by Ai. Given a query Q over a region AQ in the sensing
field, where AQ ⊆ A, a set Γ = {si1 , si2 , ..., sim} of m nodes is called a connected
sensor cover if the following two conditions hold.

1. AQ ⊆ Ai1 ∪Ai2 ∪ ... ∪Aim

2. The induced communication graph GC is connected, i.e., any pair of nodes in
the connected sensor cover can communicate with each other, either directly
or indirectly over a multi-hop communication path.
The Minimum Connected Sensor Cover problem is to find the Γ with mini-

mum number of nodes, such that the above two conditions hold. As mentioned

1 We will denote d(.) as the Euclidean distance function
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earlier, MCSC is an NP-hard problem. In this paper, we propose a distributed
greedy algorithm to find a sub-optimal MCSC, and derive an analytical expres-
sion for the cardinality of this sub-optimal set.

Under our particular problem scenario, where a communication link exists
between a pair of nodes only if they are less than a certain distance (Rc) away,
the structure of Random Geometric Graphs (RGG) provides the closest resem-
blance for modelling such networks. It is a more realistic model compared to
the classical random graph models of Erdos and Renyi. We define the induced
sensing graph over the set of nodes as a random geometric graph, GS = (V, ERs),
where the nodes act as vertices and an edge exists between two nodes si and sj

if the Euclidean distance between them is less than twice the sensing radius, i.e.,
e(si, sj) ∈ ERs

if d(si, sj) < 2Rs. The rationaile for defining the induced sensing
graph in this way is to make sure that an edge exists between any pair of nodes,
only when their sensing circles intersect with each other. We will see in latter
sections how we select a large number of nodes, whose sensing circles do not
overlap with each other, and hence, cover a maximum area in the sensing field.
Next, we define the notion of independent set over the induced sensing graph.

Definition 2. Maximal and Maximum Independent Sets: An independent set
(IS) of a graph G is a subset of vertices, such that no two vertices in the subset
has an edge in G. A maximal independent set (MIS) is an independent set that
is not a proper subset of any other independent set, i.e., it is a largest set with
respect to set containment. A maximum independent set is an independent set
that has the largest possible number of vertices.

Note that, a maximum independent set is always maximal, but the converse
is not always true. In Fig. 1.(a), the set of vertices colored black forms a maximal
independent set. In this particular case, this is also a maximum IS. However, the
set of white vertices also forms a maximal independent set, but it it not the
maximum. It is well known that finding the maximum IS for a general graph is
NP-hard [12]. It is also NP-hard to approximate the size of the maximum IS. In
the case of sensor networks, we are interested in finding an MIS on the induced
sensing graph, which is basically a maximal set of nodes none of whose sensing
circles overlap with each other (see Fig. 1.(b)).

2.2 Voronoi Diagrams

In 2-dimension, the Voronoi diagram [13] for a set of discrete points divides the
plane into a set of convex polygons according to the nearest neighbor rule: all
points inside a polygon are closest to only one point. In other words, if S is
the set of points in the 2-D plane, then the convex polygon V (pi) for any point
pi ∈ S, is defined as the set of all points in the plane that are closest pi than
any other point pj , for i 6= j. Mathematically,

V (pi) =
{
x ∈ <2 | d(x, pi) ≤ d(x, pj)

}
, pj ∈ S, i 6= j. (1)

V (pi) is called the Voronoi polygon for pi, and the edges that constitute the
polygon are called its Voronoi edges. The Voronoi diagram VD(S) for the set of
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Rs

(a) (b)

Fig. 1. (a) Set of black vertices forms a maximum IS; set of white vertices forms a MIS
but not a maximum. (b) Induced sensing graph of 10 nodes. The set of 5 darkened
nodes forms a MIS

V(pi)

Vk(pj)

Fig. 2. Voronoi diagram for a set of randomply deployed points in 2-D. Vk(pj) denotes
a Voronoi vertex

points S is the union of such polygons for all the points in S (see Fig. 2). A pair
of points pi and pj are called Voronoi neighbors if their polygons share a common
edge. The number of edges of V (pi) is equal to the number of neighbors of pi,
and each Voronoi edge is basically the perpendicular bisector between the two
points which share the common edge. We will use these properties of Voronoi
diagram in developing the proposed greedy algorithm for connected sensor cover.

3 Sub-optimal MCSC Algorithm

In this section, we describe the distributed greedy algorithm that generates a
sub-optimal MCSC for homogeneous dense static sensor networks. Our algorithm
runs in two phases, and always inherently maintains connectivity by selecting
the best node at each step, only when it is connected to one or more already
selected set of nodes.
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Table 1. Notations and their meanings

Nsi(Rx) Set of nodes lying within radius Rx with si at the center

Nsi(Rx −Ry) Set of nodes lying in the annular region between the two circular

regions of radii Rx and Ry with si at the center and Rx > Ry

Γ Set that will contain the sub-optimal MCSC

V (si) Voronoi polygon of si

Vk(si) A Voronoi vertex of V (si)

Aholes(si) Total area of the holes lying within V (si)

AΓ Area covered by the nodes in the sub-optimal set Γ

The basic idea behind the first phase is to select a maximum number of nodes,
such that none of their sensing circles overlap with each other, and they form a
connected network. This essentially boils down to finding a connected MIS on
the induced sensing graph. In case of certain special graphs, it is possible to find
out the maximum IS in polynomial time; however, in case of RGG, upon which
we base our network model, finding the maximum IS is NP-hard. It is well known
and has been experimentally evaluated in [14], that for random graphs G(N, p)
2, the standard randomized and greedy algorithms can generate an IS of size
log1/(1−p)N , with high probability for fixed p. However, in our case of induced
sensing graph, where the sensing region is bounded and the degree of a node is
directly proportional to its number of neighbors, we need to consider inter-node
distances and maintain network connectivity while choosing the next node to be
included in the connected MIS. Thus, the sensing radius, rather than the node
density, plays a bigger role in determining the cardinality of the connected MIS,
as derived analytically and verified by simulation later, for our RGG model.
Here, we present a greedy algorithm that generates a large MIS on the induced
sensing graph, and derive lower and upper bounds on the cardinality of the MIS
in section 4.

In the second phase, the nodes that form the connected MIS in the first
phase construct a localized Voronoi diagram. Each of the nodes then finds
out coverage holes (regions in the sensing field that are not covered by any
sensor) [15] within its Voronoi polygon and chooses the best nodes that can
optimally cover those holes. Therefore, if each node follows the principle of
optimally covering all the holes within its own polygon, then at the end of
phase 2 the whole sensing field will get covered, and the selected set of nodes
will form a sub-optimal MCSC. In the next subsections, we describe in detail
the two phases of the algorithm and illustrate how they run on a grid and
random deployment of nodes. We introduce some notations in Table 1 that
are used in our discussion.

2 N is the number of vertices and p is the probability that an edge exists between a
pair of nodes.
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3.1 Phase 1

The connected MIS finding algorithm starts with the node that has compara-
tively fewer neighbors, i.e., one of the perimeter nodes, because intuitively they
will have fewer neighbors than the ones which are towards the center of the field.
The successive steps in this phase differ from that of the standard greedy algo-
rithms for random graphs, in the sense that we follow a distributed approach
that makes it practically difficult at every step to choose the minimum degree
node from the remaining eligible set of nodes. Also, we want the network to
be connected at every step, and because of which our eligible set of nodes is
constrained within one-hop neighbors of the last selected node. At every step,
the last selected node chooses a new eligible node which is closest to itself, and
includes it in Γ . A node sj is called eligible to another node si, if it satisfies the
following three criteria:

1. sj has not yet been included in the connected MIS, Γ
2. sj is a one-hop neighbor of si, i.e., sj ∈ Nsi(Rs)
3. sj ’s sensing circle does not overlap with any of the already selected node’s

sensing circles.

Every node also informs the chosen closest eligible node about the area cov-
ered so far. However, if there exists no eligible node for si, then it passes over the
responsibility to its farthest one-hop neighbor and requests it to choose the next
node within that node’s one-hop neighborhood, such that none of the sensing cir-
cles overlap with each other. This process continues until none of the nodes has
any more eligible nodes left to choose from, at which point phase 1 terminates
with Γ containing a connected MIS that covers a total sensing area of |Γ |πR2

s

(because none of the sensing circles overlap with each other). Formalizing the
afore-mentioned rules we state the best eligibility criteria as follows.

Definition 3. Best Eligibility Criteria: If the the last selected node in Γ is si,
then the best eligibility criteria for it to choose the next node sj are the following:

1. sj ∈ Nsi(Rc − 2Rs) \
(
Nsi(Rc − 2Rs)

⋂ (⋃i−1
k=0 Nsk

(2Rs)
))

2. d(si, sj) = min {d(si, sk),∀ sk ∈ Nsi(Rc − 2Rs)}
The first condition makes sure that sj ’s sensing circle does not overlap with

the sensing circle of any other already selected node, while the second condition
chooses the nearest eligible node of si. Note that, there can be more than one
node satisfying the best eligibility criteria, in which case, one of them is chosen at
random to break the tie. The stepwise description of phase 1 is given in Algorithm
1. Next, we illustrate the algorithm running on a grid and on randomly deployed
set of nodes.

Grid Network: Let the nodes are deployed on the intersection points of a
grid as shown in Fig. 3.(a). Without loss of generality, we assume that Rc =
2Rs. Phase 1 begins by choosing the first node s0 having minimum node degree
(though not unique in this particular case) that lies on the intersection of the
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first row and first column. In the next step, s0 finds that there are two nodes
s1 and s3, which tie on the best eligibility criteria. Let s0 choose s1 at random
to break the tie. Next, s1 chooses s2 because that is the only node that satisfies
the best eligibility criteria, and in a similar way, s2 chooses s3. At this point,
phase 1 ends because no more nodes can be chosen without their sensing circles
getting overlapped. Note that, these four nodes construct a MIS on the grid,
which in this case is also the maximum IS. For special graphs like this, it is
always possible to find the maximum IS in polynomial time.

Random Deployment: We illustrate few steps of phase 1 of the algorithm
in case of random deployment as shown in Fig. 3.(b). Let s0 be the first node
chosen. In the second step, since s1 is the nearest one-hop neighbor of s0, which
falls in the annular region and belongs to the set Ns0(Rc−2Rs), it is included in
Γ . In the fourth step, while it is s2’s responsibility to choose the next best eligible
node, it chooses s3 that satisfies the best eligibility criteria. That is, s3 is the
closest one-hop neighbor of s2 that falls outside the hashed region in the diagram.
This hashed region is where the set of nodes Ns2(Rc−2Rs)

⋂ (⋃2
k=0 Nsk

(2Rs)
)

fall.

Algorithm 1. Phase 1: Distributed greedy algorithm to find a connected MIS
1: Initialization:
2: Γ ← φ;
3: Choose the first node s0 and include it in Γ ; sb ← s0;
4: Steps at each sb:
5: Nsb(Rc − 2Rs) ← φ;
6: for all sk ∈ Nsb(Rc) do
7: if 2Rs ≤ d(sb, sk) ≤ Rc then
8: Nsb(Rc − 2Rs) ← Nsb(Rc − 2Rs)

⋃
sk;

9: end if
10: end for
11: if Nsb(Rc − 2Rs) 6= φ then

12: Find that sk ∈ Nsb(Rc − 2Rs) \
(
Nsb(Rc − 2Rs)

⋂ (⋃
sj∈Γ,sj 6=sb

Nsj (2Rs)
))

,

such that d(sb, sk) is minimum;
13: Γ ← Γ ∪ sk;
14: else if Nsb(Rc − 2Rs) == φ then
15: sk ← sq, such that d(sb, sq) = max {d(sb, si), ∀si ∈ Nsb(Rc)};
16: end if
17: sk becomes the next sb to execute the same steps 5− 16.

3.2 Phase 2

In this phase, the nodes that were chosen in phase 1 construct a Voronoi diagram
using neighborhood information. By properties of Voronoi diagram, the number
of edges of the Voronoi polygon for node si is equal to the number of its one-hop
neighbors. Now, since the nodes selected in phase 1 do not have their sensing
circles overlapped with each other, there will definitely exist holes in each of the
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Fig. 3. (a) The induced sensing graph and the total coverage (shaded area) achieved
by the four nodes (s0, s1, s2, s3), selected in phase 1. (b) Best Eligibility Criteria for a
set of nodes deployed randomly

Voronoi polygons. In the first step of phase 2, one of these nodes si ∈ Γ is selected
at random, which then finds out holes existing within its polygon by the method
described in [15]. It basically splits the convex Voronoi polygon into a set of dis-
joint and mutually exhaustive triangles, and using simple techniques of line and
curve intersections finds out the area of coverage holes lying within its polygon.
Next, the best one-hop neighbor is chosen, such that it covers maximum amount
of hole within its polygon. The criteria for choosing the best node is as follows.
Node si determines a set of optimal points Psi =

{
pk

si
, k = 1, ..., |Nsi(Rc)|

}
,

in the neighborhood of each of its Voronoi vertex Vk(si). Each optimal point
satisfies the following rules [15]:

1. Rule1: pk
si

should lie on the angle bisector of the Voronoi vertex,
2. Rule2: d(si, p

k
si

) = min {2Rs, d(si, V (si))}.
These criteria ensure that if a node is placed at pk

si
, then the amount of

coverage hole lying in the vicinity of Vk(si) will get eliminated maximally. From
these optimal locations, node si also finds out approximate estimates Cov(pk

si
) of

the amount of coverage holes that will get eliminated if nodes were placed at these
optimal locations. This is illustrated in Fig. 4. Nodes A,B,C, D form Voronoi
diagram, and let A be the first node to eliminate holes within its polygon. P, Q, R
are the intersection points of the Voronoi edges with the lines that connect the
nodes. From the properties of Voronoi diagram, Area(∆AV P ) = Area(∆BV P )
and Area(∆AV R) = Area(∆BV R), and node A knows that if it chooses the
best node (sb) close to vertex V , then that node will also eliminate almost an
equal amount of holes in the polygons of B and C combined, as it will do within
its own polygon. The point which corresponds to maximum such elimination of
holes is chosen as the best location for the next best node.

Once the new best node sb is selected, node si rechecks whether there still
exist holes within its polygon. If so, it recalculates the area of the holes lying
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Fig. 4. Optimal position to choose a best node using Voronoi diagram. The hashed
areas are equal: a = b, c = d

in the vicinity of the Voronoi vertices, except the one where sb lies and repeats
the same steps to choose another best node. This process continues until all
the holes get eliminated from si’s polygon, at which point, one of the neighbor
nodes of si that was part of the connected MIS in phase 1 gets the chance
to fill the holes within its polygon and so on. Thus, at the end of this phase,
when each node chosen from the first phase have guaranteed the existence of no
more holes within their polygons, the monitoring region gets completely covered
with a connected set of nodes that form the sub-optimal MCSC. Phase 2 of the
algorithm is described in Algorithm 2.

4 Analysis and Simulation

In this section, we present our analysis and preliminary simulation results of
the distributed greedy algorithm to calculate a sub-optimal MCSC. We derive
lower and upper bounds on the cardinality of the MIS generated in phase 1,
using which we calculate an approximate size of the sub-optimal MCSC. We
also provide a brief discussion on time complexity analysis for both the phases
of the algorithm.

4.1 Analysis

Let the total number of nodes deployed in the square sensing field of area A,
following a uniform random distribution be N , and let the cardinality of the
connected MIS generated in phase 1 be ζ. At any step during the first phase,
when a node gets included in Γ , all nodes that lie within a distance of 2Rs from
that node become ineligible to be included in Γ at a latter step. For instance, if
the first node chosen falls atleast 2Rs distance away from any edge of the field,
then the number of nodes that become ineligible is 4ρπR2

s − 1, where ρ = N/A
denotes uniform node density (here 1 is subtracted for the node which gets
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Algorithm 2. Phase 2 of the sub-optimal MCSC algorithm
1: Notations:
2: SMIS : Set of connected MIS that were selected in Phase 1;
3: Initialization:
4: SMIS ← Γ , AΓ ← π|SMIS |R2

s;
5: Nodes ∈ SMIS construct a localized Voronoi diagram;
6: Randomly choose one of the nodes si ∈ SMIS as the starting node;
7: Steps at each si ∈ SMIS:
8: if AΓ < AQ then
9: Calculate Aholes(si);

10: while Aholes(si) 6= 0 do
11: Find optimal points {pk

si
} that satisfy Rules 1, 2 near all unmarked Vk(si);

12: Calculate Cov(pk
si

) for each optimal point;
13: Choose the point for which Cov(pk

si
) is maximum, call it pb

si
;

14: si chooses the node (sb) closest to pb
si

and includes it in Γ ;
15: Update Aholes(si), AΓ and mark the vertex near pb

si
;

16: si informs its neighbors of the amount of holes it eliminated, so that they can
update their calculations;

17: end while
18: end if

included). Note that, this is the maximum number of ineligible nodes at any
step, because there could be some nodes which are ineligible to more than one
node, and hence, should be counted only once. Similarly, the minimum number
of ineligible nodes at any step is zero. Therefore, let the number of ineligible
nodes at any step be β(4ρπR2

s − 1), where 0 ≤ β ≤ 1.
Now, since the ζ nodes do not have their sensing circles overlapped with each

other, the total number of nodes that lie within those ζ sensing circles is ζρπR2
s.

The remaining (N − ζρπR2
s) nodes must have become ineligible at some step

while finding the connected MIS. Therefore, we have:

ζβ(4ρπR2
s − 1) = (N − ζρπR2

s) (2)

or

ζ =
N

ρπR2
s(1 + 4β − β/ρπR2

s)
(3)

Neglecting the term β/ρπR2
s because it is very small, we get

ζ =
N

ρπR2
s(1 + 4β)

. (4)

Now, substituting β = 0 and β = 1 we get the upper and lower bounds, respec-
tively, for the cardinality of the connected MIS, which gives us

N

5ρπR2
s

≤ ζ ≤ N

ρπR2
s

. (5)
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(b)

(a) (b)

Fig. 5. Simulation: Dark circles represent sensing ranges of nodes belonging to con-
nected MIS : (a) N = 150, R = 15m, AQ = 10, 000m2. (b) Variation of connected MIS
cardinality with sensing radius Rs

Using Eq. (4) and assuming that each of the ζ nodes on the average selects η
nodes in phase 2 to optimally cover the holes within its Voronoi polygon, we can
estimate the cardinality of the sub-optimal MCSC Γ as,

|Γ | = ζ(1 + η) =
N(1 + η)

ρπR2
s(1 + 4β)

. (6)

The time complexity of the first phase of the algorithm is output sensitive,
i.e., it depends on the cardinality of the connected MIS generated. Now, since the
“for loop” in Algorithm 1, in the worst case, runs over all the one-hop neighbors
of a node while choosing the best eligible node, the time complexity of the first
phase is O(ζN). For deriving the complexity of the second phase, note that the
localized Voronoi diagram is constructed by the nodes in the connected MIS.
This can be performed in O(ζlogζ) time. Next, each node checks for coverage
holes in the vicinity of each of its Voronoi vertices, the time complexity of which
is bounded by its number of one-hop neighbors. Hence, time complexity of the
second phase is O(ζlogζ).

4.2 Simulation

We considered a sensing field of size 100 x 100 m2 (the query region AQ is also
assumed to be of the same size) and performed simulation using Matlab and
GNU R, a software package for statistical computing and graphics. We deployed
the nodes uniformly randomly and varied their number as well as their sensing
radii, and assumed that the communication radius is thrice the sensing radius. In
Fig. 5.(a), we show a sample simulation run for AQ = 10, 000m2, N = 150, R =
15m. The 11 darker nodes form the MIS in the first phase, which then construct
Voronoi diagram to select another 18 nodes (the ones with ligher shade in the
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figure) to optimally cover the holes. In Fig. 5.(b), we show the variation of the
connected MIS size with respect to sensing radius. Note that, the cardinality of
the connected MIS satisfies the bounds given by Eq. (5).

5 Conclusions

In this paper, we described a distributed greedy algorithm for generating a sub-
optimal minimum connected sensor cover (MCSC) for homogeneous dense sensor
networks. Possibility to extend network lifetime by exploiting node redundancy
and guaranteeing 100% coverage of the query region has been the motivation to
this problem. We used the concepts of independent sets and Voronoi diagrams
to construct a sub-optimal MCSC. We also provided upper and lower bounds
on the cardinality of the MIS for random geometric graph model used to model
the sensor network. The exact determination of the heuristic parameter, η, that
we use to find the size of the sub-optimal MCSC is part of our future work. We
also plan to do extensive simulations and derive tighter bounds on the size of the
MIS. Instead of constructing the connected cover set greedily in a single phase,
like in [8], where the sensing ranges of nodes could overlap right from the first
step, we follow a different strategy of finding a large set (the connected MIS )
of nodes in the first phase where none of the sensing circles overlap with each
other. This gives us the maximum coverage that can be achieved by the set of
nodes in phase 1, which is ζπR2

s (where, ζ is given by Eq. (4). In phase 2, since
these set of non overlapping nodes optimally cover the holes within their Voronoi
polygons, the sensing field can be covered with a number of nodes, that is close
to optimal. The exact derivation of this sub-optimal bound is part of our future
work.
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