
CHAPTER 9

Coverage and Connectivity Issues
in Wireless Sensor Networks

AMITABHA GHOSH and SAJAL K. DAS

Department of Computer Science and Engineering, University of Texas at Arlington

9.1 INTRODUCTION

Wireless sensor networks [33,34] have inspired tremendous research interest in

since the mid-1990s. Advancement in wireless communication and microelectro-

mechanical systems (MEMSs) have enabled the development of low-cost, low-

power, multifunctional, tiny sensor nodes that can sense the environment, perform

data processing, and communicate with each other untethered over short distances.

A typical wireless sensor network consists of thousands of sensor nodes, deployed

either randomly or according to some predefined statistical distribution, over a geo-

graphic region of interest. A sensor node by itself has severe resource constraints,

such as low battery power, limited signal processing, limited computation and com-

munication capabilities, and a small amount of memory; hence it can sense only a

limited portion of the environment. However, when a group of sensor nodes colla-

borate with each other, they can accomplish a much bigger task efficiently. One of

the primary advantages of deploying a wireless sensor network is its low deploy-

ment cost and freedom from requiring a messy wired communication backbone,

which is often infeasible or economically inconvenient.

Wireless sensor networks ensure a wide range of applications [2], starting from

security surveillance in military and battlefields, monitoring previously unobserved

environmental phenomena, smart homes and offices, improved healthcare, indus-

trial diagnosis, and many more. For instance, a sensor network can be deployed

in a remote island for monitoring wildlife habitat and animal behavior [25], or

near the crater of a volcano to measure temperature, pressure, and seismic activities.

In many of these applications the environment can be hostile where human
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intervention is not possible and hence, the sensor nodes will be deployed randomly

or sprinkled from air and will remain unattended for months or years without any

battery replacement. Therefore, energy consumption or, in general, resource man-

agement is of critical importance to these networks.

Sensor nodes are scattered in a sensing field with varying node densities. Typical

node densities might vary from nodes 3 m apart to as high as 20 nodes/m3. Each

node has a sensing radius within which it can sense data, and a communication

radius within which it can communicate with another node. (We will discuss the

models [52] for sensing and communication later.) Each of these nodes will collect

raw data from the environment, do local processing, possibly communicate with

each other in an optimal fashion to perform neighborhood data or decision fusion

(aggregation) [23], and then route back those aggregated data in a multihop fashion

to data sinks, usually called the basestations, which link to the outside world via the

Internet or satellites. Since an individual node measurement is often erroneous

because of several factors, the need for collaborative signal and information proces-

sing (CSIP) [49] is critical. Here the assumption is that the more a sensor network

has access to the information scattered across different nodes, the greater the like-

lihood that it would be able to provide more reliable and correct information about

the underlying stochastic process.

One important criterion for being able to deploy an efficient sensor network is to

find optimal node placement strategies. Deploying nodes in large sensing fields

requires efficient topology control [35]. Nodes can either be placed manually at pre-

determined locations or be dropped from an aircraft. However, since the sensors are

randomly scattered in most practical situations, it is difficult to find a random

deployment strategy that minimizes cost, reduces computation and communication,

is resilient to node failures, and provides a high degree of area coverage [20]. The

notion of area coverage can be considered as a measure of the quality of service

(QoS) in a sensor network, for it means how well each point in the sensing field

is covered by the sensing ranges. Once the nodes are deployed in the sensing field,

they form a communication network, which can dynamically change over time,

depending on the topology of the geographic region, internode separations, residual

battery power, static and moving obstacles, presence of noise, and other factors.

The network can be viewed as a communication graph, where sensor nodes act

as the vertices and a communication path between any two nodes signifies an

edge.

In a multihop sensor network, communication nodes are linked by a wireless

medium, which is often unreliable and insecure. These links can be formed by

radio, infrared, or optical media. Although infrared communication is license-

free, cheap, and robust against interference from electrical devices, it requires

line of sight between the sender and the receiver. ‘‘Smart dust’’ [21], which is an

autonomous sensing, computing, and communication system based on optical

media for transmission, also needs line of sight. Most of the current hardware for

internode communication is based on radiofrequency (RF) circuit design in which

securing the wireless communication links is of great concern because of the poten-

tial malicious users and eavesdroppers who can modify and corrupt data packets,

222 COVERAGE AND CONNECTIVITY ISSUES IN WIRELESS SENSOR NETWORKS



insert rogue packets in the network, or launch denial-of-service (DoS) attacks.

Therefore, designing proper authentication protocols and encryption algorithms

for sensor networks is very important and a challenging task as well, especially

because of severe resource constraints as mentioned earlier.

Routing protocols and node scheduling are two other important aspects of wire-

less sensor networks because they significantly impact the overall energy dissipa-

tion. Routing protocols involve primarily discovery of the best routing paths from

source to destination, considering latency, energy consumption, robustness, and

cost of communication. Conventional approaches such as flooding and gossiping

waste valuable communication and energy resources, sending redundant informa-

tion throughout the network. In addition, these protocols are neither resource-aware

nor resource-adaptive. Challenges lie in designing cost-efficient routing protocols

[39,37], which can efficiently disseminate information in a wireless sensor network

using resource-adaptive algorithms. On the other hand, node scheduling for optimal

power consumption requires identification of redundant nodes [40] in the network,

which can be switched off at times of inactivity.

In this chapter, we discuss primarily the node deployment issues that are related

to area coverage and network connectivity in wireless sensor networks. In

Section 9.2, we introduce the notion of coverage and connectivity and state their

importance with respect to different application scenarios. Section 9.3 describes

the different models for sensing, communication, coverage, and other functions.

We also introduce some mathematical notations and describe a few appropriate

mobility models that will be applicable to mobile sensor networks. In Section 9.4

we describe the coverage algorithms based on exposure paths. In Section 9.5 we

describe various deployment strategies and compare these strategies with respect

to their goals, assumptions, complexities, and usefulness in practical scenarios.

Section 9.6 discusses miscellaneous techniques based on node redundancy, which

are used to optimize coverage and ensure connectivity. We provide a summary of

our work and discuss open research problems and challenges in Section 9.7.

9.2 COVERAGE AND CONNECTIVITY

Optimal resource management and assuring reliable QoS are two of the most fun-

damental requirements in ad hoc wireless sensor networks. Sensor deployment stra-

tegies play a very important role in providing better QoS, which relates to the issue

of how well each point in the sensing field is covered. However, due to severe

resource constraints and hostile environmental conditions, it is nontrivial to design

an efficient deployment strategy that would minimize cost, reduce computation,

minimize node-to-node communication, and provide a high degree of area cover-

age, while at the same time maintaining a globally connected network is nontrivial.

Challenges also arise because topological information about a sensing field is rarely

available and such information may change over time in the presence of obstacles.

Many wireless sensor network applications require one to perform certain functions

that can be measured in terms of area coverage. In these applications, it is necessary
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to define precise measures of efficient coverage that will impact overall system

performance.

Historically, three types of coverage have been defined by Gage [12]:

1. Blanket coverage — to achieve a static arrangement of sensor nodes that

maxi mizes the detection rate of targets appearing in the sensing field

2. Barrier coverage — to achieve a static arrangement of sensor nodes that

minimizes the probability of undetected penetration through the barrier

3. Sweep coverage — to move a number of sensor nodes across a sensing field,

such that it addresses a specified balance between maximizing the detection

rate and minimizing the number of missed detections per unit area

In this chapter, we will focus mainly on the blanket coverage, where the objective is

to deploy sensor nodes in strategic ways such that an optimal area coverage is

achieved according to the needs of the underlying applications. Here, it is worth

mentioning that the problem of area coverage is related to the traditional art gallery

problem (AGP) [30] in computational geometry. The AGP seeks to determine the

minimum number of cameras that can be placed in a polygonal environment, such

that every point in the environment is monitored. Similarly, the coverage problem

basically deals with placing a minimum number of nodes, such that every point in

the sensing field is optimally covered under the aforementioned resource con-

straints, presence of obstacles, noise and varying topography.

Before proceeding further, let us introduce the notion of the degree of coverage.

In the simplest term, the degree of coverage at a particular point in the sensing field

can be related to the number of sensors whose sensing range cover that point. It has

been observed and postulated that different applications would require different

degrees of coverage in the sensing field. For instance, a military surveillance appli-

cation would need a high degree of coverage, because it would want a region to be

monitored by multiple nodes simultaneously, such that even if some nodes cease to

function, the security of the region will not be compromised, as other nodes will

still continue to function, whereas some of the environmental monitoring applica-

tions, such as animal habitat monitoring or temperature monitoring inside a build-

ing, might require a low degree of coverage. On the other hand, some specific

applications might need a framework, where the degree of coverage in a network

can be dynamically configured. An example of this kind of application is intruder

detection, where restricted regions are usually monitored with a moderate degree of

coverage until the threat or act of intrusion is realized or takes place. At this point,

the network will need to self-configure and increase the degree of coverage

at possible threat locations. A network that has a high degree of coverage will

clearly be more resilient to node failures. Thus, the coverage requirements vary

across applications and should be kept in mind while developing new deployment

strategies.

Along with coverage, the notion of connectivity is equally important in wireless

sensor networks. If a sensor network is modeled as a graph with sensor nodes

as vertices and the communication link, if it exists, between any two nodes as

224 COVERAGE AND CONNECTIVITY ISSUES IN WIRELESS SENSOR NETWORKS



an edge, then, by a connected network we mean that the underlying graph

is connected, that is, between any two nodes there exists a single-hop or multihop

communication path consisting of consecutive edges in the graph. Similar to the

notion of degree of coverage, we shall also introduce the notion of degree of net-

work connectivity. A sensor network is said to have k connectivity or be k-node-

connected if removal of any ðk � 1Þ nodes does not render the underlying commu-

nication graph disconnected. In latter sections, we shall provide formal definitions of

k connectivity and k coverage from graph theory perspectives. Like single degree of

coverage, single-node connectivity is not sufficient for many sensor network appli-

cations because the failure of a single node would render the network disconnected.

It should be noted that robustness and throughput of a sensor network are directly

related to connectivity.

Area coverage and connectivity in wireless sensor networks are not unrelated

problems. Therefore, the goal of an optimal sensor deployment strategy is to

have a globally connected network while optimizing coverage at the same time.

By optimizing coverage, the deployment strategy would guarantee that optimum

area in the sensing field is covered by sensors, as required by the underlying appli-

cation. By ensuring that the network is connected, it is also ensured that the sensed

information is transmitted to other nodes and possibly to a centralized basestation

that can make valuable decisions for the application.

9.3 MATHEMATICAL FRAMEWORK

In this section, we introduce the basic mathematical framework for sensing models,

communication models, coverage models, mobility models, and graph-theory-

based network connectivity models applicable to wireless sensor networks. These

will be used in subsequent sections for describing and analyzing the existing algo-

rithms on coverage and connectivity and to provide future research directions.

9.3.1 Sensing Model

Each node has a sensing gradient, whose radius, although ideally extending to infi-

nity, attenuates gradually as the distance increases. The sensitivity S of a sensor si at

point P is usually modeled as follows [26]

S si;Pð Þ ¼ l
d si;Pð Þ½ �g ð9:1Þ

where l and K are positive sensor-dependent parameters and dðsi;PÞ is the

Euclidean distance between the sensor and the point. Typically the value of g is

dependent on environmental parameters and varies between 2 and 5. Since the sen-

sitivity rapidly decreases as the distance increases, we define a maximum sensing

range for each sensor. It is customary to assume a binary sensing model, according

to which a sensor is able to sense from all the points that lie within its sensing range
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and any point lying beyond it is outside its sensing range. Thus, according to this

model the sensing range for each sensor is confined within a circular disk of radius

Rs. In a heterogeneous sensor network, the sensing radii of different types of sen-

sors might vary, but in this chapter, to simplify the analysis of coverage algorithms,

we assume that all the nodes are homogeneous and the maximum sensing radius for

all of them is the same, Rs.

This binary sensing model can be extended to a more realistic one and expressed

in probabilistic terms [52]. This is illustrated in Figure 9.1a. Let us define a quantity

Ru < Rs, such that the probability that a sensor would detect an object at a distance

less than or equal to ðRs � RuÞ is 1, and at a distance greater than or equal to

ðRs þ RuÞ is 0. In the interval ððRs � RuÞ, ðRs þ RuÞÞ, there is a certain probability

p, that an object will be detected by the sensor. The quantity Ru is a measure of

uncertainty in sensor detection. This probabilistic sensing model reflects the sensing

behavior of devices such as infrared and ultrasound sensors.

9.3.2 Communication Model

Similar to the sensing radius, we define a communication radius Rci (see Fig. 9.1b)

for each sensor si. Two sensors, si and sj, are able to communicate with each other if

the Euclidean distance between them is less than or equal to the minimum of their

communication radii, that is, when dðsi; sjÞ � minfRci ;Rcjg. This basically means

that the sensor with smaller communication radius falls within the communication

radius of the other sensor. Two such nodes that are able to communicate with each

other are called one-hop neighbors. The communication radii might vary depending

on the residual battery power (energy) of an individual sensor. In this chapter, we

assume that the communication radii for all the nodes are the same, denoted by Rc.

9.3.3 Coverage Model

Depending on the sensing range, an individual node will be able to sense a part of

the sensing field. From the probabilistic sensing model, we define the notion of

(a) (b)

Rs

Ru

Rs-Ru

Rs+Ru

s

Ru

Rci

Rcj
d(si, sj)

si sj

Figure 9.1 (a) Probabilistic sensing model; (b) communication model.
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probabilistic coverage [52] of a point Pðxi; yiÞ by a sensor si by the following

equations:

cxiyiðsiÞ ¼
0; Rs þ Ru � dðsi;PÞ
e�gab ; Rs � Ru < dðsiPÞ < Rs þ Ru

1; Rs � Ru � dðsiPÞ

8<
: ð9:2Þ

Here, a ¼ dðsi;PÞ � ðRs � RuÞ and g and b are parameters that measure the

detection probabilities when an object is within a certain distance from the sensor.

All points that lie within a distance of ðRs � RuÞ from the sensor are said to be

1-covered and all points lying within the interval ððRs � RuÞ, ðRs þ RuÞÞ have a

coverage value that exponentially decreases as the distance increases and is less

than 1, as observed in Equation (9.2). Beyond the distance ðRs þ RuÞ, all the

points have 0 coverage by this sensor. However, a point might be covered by

multiple sensors at the same time, each contributing a certain value of coverage.

In the following, we define the concept of total coverage [52] of a point.

Definition 9.1 (Total Coverage of a Point) Let S ¼ fsi; i ¼ 1; 2; . . . ; kg be the set
of nodes whose sensing ranges cover the point Pðxi; yiÞ. We define the total cover-

age of the point P as follows:

CxiyiðSÞ ¼ 1�
Yk
i¼1

ð1� cxiyiðsiÞÞ ð9:3Þ

Since cxiyiðsiÞ is the probabilistic coverage of a point as defined in Equation (9.2),

the term ð1� cxiyiðsiÞÞ is the probability that the point is not covered by sensor si.

Now, since the probabilistic coverage of a point by one node is independent of

another node, the product
Qk

i¼1ð1� cxiyiðsiÞÞ of all such k terms will denote the

joint probability that the point is not covered by any of the nodes. Hence, one minus

this product would give the probability that point P is covered jointly by its neigh-

boring sensors, and is defined as its total coverage. Clearly, the total coverage of a

point lies in the interval [0,1].

9.3.4 Graph-Theoretic Perspective of Wireless Sensor Networks

9.3.4.1 Geometric Random Graph
Over the years, several natural phenomena have been modeled using different

graph-theoretic abstractions, more specifically, using random graphs. Understand-

ing the structural properties of such graphs provides valuable insights into the

underlying physical phenomena. In this section, we provide some concepts related

to graph theory that concern the notion of coverage and connectivity.

Under the particular sensing, communication and coverage models described

in the previous sections, the structure of geometric random graphs (GRGs)
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provides the closest resemblance to wireless sensor networks. A number of

probabilistic aspects related to setup of an ad hoc sensor network, such as

sprinkling nodes randomly in a sensing field and simultaneous routing of informa-

tion through different paths, motivates the study of GRGs in the networking

community. Furthermore, it has been observed in practice that a sensor network

cannot be too dense because of spatial reuse; specifically, when a particular

node is transmitting, all other nodes within its transmission radius must

remain silent to avoid collision and corruption of data. In this chapter, we

consider the generic GRG model Gðn; r; lÞ, where, instead of limiting the loca-

tions of the graph vertices within a unit square, we assume that the vertices

are distributed according to a probability distribution function (pdf) in a d-

dimensional space, having a length l for each dimension; and that an edge

exists between any two vertices if the Euclidean distance between them is less

than the communication radius. In this generic GRG model, the node density

n=l2 can converge to zero, to a constant c > 0, or diverge as l ! 1, depending

on the relative values of n; r, and l. Therefore, this model is applicable to both

sparse and dense communication networks. Next, we provide a formal definition

of GRGs.

Definition 9.2 (Geometric Random Graph) We define a generic geometric ran-

dom graph as Gðn; r; lÞ ¼ ðV;EÞ, where a total number n of vertices are distributed

according to a pdf f , in a d-dimensional space ½0; l�d to form the nodes in V and an

edge ðu; vÞ 2 E exists between any two nodes u and v if the distance between them

is less than r, namely, dðu; vÞ < r, for some 0 < r � l.

Some of the results from GRG can be applied to study the connectivity in ad hoc

wireless networks. For instance, if we assume that a communication graph is

induced on a wireless network, then the minimum common transmission range

required for all the sensors, such that the communication graph that is connected

is equal to the longest Euclidean edge of the minimum spanning tree built on the

GRG [31].

These kinds of results from GRGs can be analyzed using the continuum perco-

lation theory [3]. In the theory of continuum percolation, nodes are distributed

according to a Poisson density l. The main result of the theory states that there

exists a finite, positive value of l, say, lc, which is called the critical density,

such that a phase transition occurs in the graph. This means that when the node

density crosses a particular threshold lc, the detectability of an ad hoc network

becomes 1; that is, an object moving within the sensor network can be detected

with probability almost equal to 1.

9.3.4.2 Graph Connectivity
In the previous sections, we introduced the concept of degree of coverage and con-

nectivity; here we provide formal definitions for those concepts in terms of node

degree and connectivity in a graph [45].
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Definition 9.3 (Node Degree) Let GðV ;EÞ be an undirected graph. The degree

deg(u), of a vertex u 2 V is defined as the number of neighbors of u. The minimum

node degree of G is defined as dðGÞ ¼ min8u2G fdegðuÞg.

Definition 9.4 (k-Node Connectivity) A graph is said to be connected if for every

pair of nodes, there exists a single-hop or a multihop path connecting them; other-

wise the graph is called disconnected. A graph is said to be k-connected if for any

pair of nodes there are at least k mutually independent (node-disjoint) paths con-

necting them. In other words, there is no set of (k � 1) nodes, whose removal would

render the graph disconnected or result in a trivial graph (single vertex).

Definition 9.5 (k-Edge Connectivity) In a similar fashion, the notion of k-edge

connectivity is defined when there are at least k edge-disjoint paths between every

pair of nodes. In other words, there is no set of ðk � 1Þ edges whose removal will

result in a disconnected graph or a trivial graph.

It can be proved [45] that if a graph is k-node-connected, then it is also k-edge-

connected, but the reverse is not necessarily true. In this chapter, we shall use the

term connectivity to mean node connectivity. In Figure 9.2, a 3-connected and a

disconnected graph are shown.

Mapping these graph connectivity definitions to the wireless sensor networks

scenario, we say that the communication graph formed by the sensor nodes is con-

nected, if between every pair of nodes there exists a single-hop or multihop com-

munication path. A sensor network would be k-connected if at least k other nodes

fall within the transmission range Rc of each node. The connectivity problem in

sensor networks has been approached from different angles in the literature. One

such way is to assign different transmission ranges to the sensors such that the net-

work is connected. This problem has been defined as the critical transmission range

(CTR) assignment problem [36], which can be formulated for the case of homoge-

neous sensor network as follows. Given a total number (N) of nodes to be deployed

in an area A, what is the minimum value of the transmission range to be assigned to

all the sensors, such that the network ensures global connectivity?

We are now ready to describe various techniques that are used to ensure optimal

network coverage and connectivity. In the following sections, we classify these

approaches into three main categories and analyze them in terms of their goals,

assumptions, algorithm complexities, and practical applicability:

1. Coverage based on exposure paths

2. Coverage based on sensor deployment strategies

3. Miscelleneous strategies

Figure 9.2 A 3-connected graph and a disconnected graph.
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9.4 COVERAGE BASED ON EXPOSURE PATHS

Approaches to solve the coverage problem in wireless sensor networks using expo-

sure paths is basically a combinatorial optimization problem. Two kinds of optimi-

zation viewpoints exist in formulating the coverage problem: worst-case and best-

case coverage.

In the worst-case coverage, usually the problem is tackled by trying to find a path

through the sensing region, such that an object moving along that path will have the

least observability by the nodes. Hence, the probability of detecting the moving

object would be minimum. Finding such a worst-case path is important because

if such a path exists in the sensing field, a user can change the locations of the nodes

or add new nodes to increase the coverage and hence observability. Two well-

known methods of approaching the worst-case coverage problem are minimal expo-

sure path [26] and maximal breach path [24,27].

On the other hand, in the best-case coverage, the goal is to find a path that has

the highest observability, and hence an object moving along that path will be most

probable to be detected by the nodes. Finding such a path can be useful for certain

applications, including those that require the best coverage path in regions where

security is of highest concern, or those that would like to maximize some prede-

fined benefit function from the nodes while traversing the sensor field. An example

of the latter kind is a solar-powered autonomous robot traversing in a light detecting

sensor network so as to accumulate the most light within a certain timeframe. By

using the best coverage path, the solar powered robot can gain the maximum

amount of light within its limited time. Two approaches to solve the best-case cov-

erage problem are maximal exposure path [42] and maximal support path [27]. In

the following text, we describe several methods to calculate the worst-case and

best-case coverage paths and the algorithms that use the concept of exposure to

derive analytical results.

9.4.1 Minimal Exposure Path: Worst-Case Coverage

Exposure is directly related to the area coverage problem in sensor networks. It is a

measure of how well a sensing field is covered with sensors. Informally stated, it

can be defined as the expected average ability of observing a target moving in the

sensing field. The minimal exposure path provides valuable information about the

worst-case coverage in sensor networks. Let us first explain the notion of exposure,

which is defined as an integral of a sensing function that is inversely proportional to

the distance from the sensors, along a path between two specified points during a

certain time interval [28,42]. We can state this formally as follows.

Definition 9.6 (Exposure) The exposure of a moving object in a sensing field

during time interval ½t1; t2� along a path pðtÞ is defined as the integral:

EðpðtÞ; t1; t2Þ ¼
Z t2

t1

I F; p tð Þð Þ dp tð Þ
dt

����
����dt ð9:4Þ
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where the sensing function IðF; pðtÞÞ is a measure of sensitivity at a point on the

path by the closest sensor or by all the sensors in the sensing field.

In the first case, it is called the closest sensor field intensity, defined as

ICðF;PðtÞÞ ¼ Sðsmin;PÞ, where the sensitivity S is given by Equation (9.1) and

smin is the sensor closest to point P. In the latter case, it is called the all-Sensor field

intensity, defined as IAðF;PðtÞÞ ¼
Pn

1 Sðsi;PÞ, where the n active sensors,

s1; s2; . . . ; sn, contribute a certain value of sensitivity to point P depending on their

distance from it. In Equation (9.4), the quantity jdpðtÞ=dtj is an arc element of the

path. If the path is defined in parametric coordinates as pðtÞ ¼ ðxðtÞ; yðtÞÞ, then

dp tð Þ=dtj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx tð Þ=dtð Þ2þ dy tð Þ=dtð Þ2

q
ð9:5Þ

This definition of exposure as given by Equation (9.4) makes it a path-dependent

value. Given two endpoints A and B in the sensing field, different paths between

them, as shown in Figure 9.3a, are likely to have different exposure values. The

S

vi

v1

v2

vi+1

vn

u1

u2

ui

un

ui+1

(c)

S (0, 0)

P(1, –1)

Q(–1, 1)

x

y

P’(x, 0)

(b)(a)

A

B

Figure 9.3 (a) Different paths between A and B have different exposures; (b) minimal

exposure path for single sensor in a square sensing field; (c) minimal exposure path for single

sensor in a sensing field bounded by a convex polygon.

COVERAGE BASED ON EXPOSURE PATHS 231



problem of minimal exposure path is to find a path pðtÞ in the sensing field such that
the value of the integral EðpðtÞ; t1; t2Þ is minimum. In the following, we describe a

few strategies to calculate the minimal exposure path.

As an example, illustrated in Figure 9.3b, it can be proved [28] that the minimal

exposure path between two given points Pð1;�1Þ and Qð�1; 1) in a sensing field,

restricted within the region jxj � 1, jyj � 1 and having only one sensor located at

(0,0), consists of three segments: (1) a straight-line segment from P to (1,0), (2) a

quarter-circle from (1,0) to (0,1), and (3) another straight-line segment from (0,1) to

Q. The basis of the proof lies in the fact that, since any point on the dotted curve is

closer to the sensor than any point lying on the straight-line segment along the edge

of the square, the exposure is more in the former case. Also, since the length of the

dotted curve is longer than the line segment, the dotted curve would induce more

exposure when an object travels along it, given that the time duration is the same in

both cases. The calculations show that the exposure along the arc of the quarter-

circle in Figure 9.3b is p/2.
This method can be extended in the following way to more generic scenarios

when the sensing region is a convex polygon v1; v2; . . . ; vn and the sensor is located

at the center of the inscribed circle, as illustrated in Figure 9.3c. Let us define two

curves between points vi and vj of the polygon as

�ij ¼ viui � uiuiþ1

zfflffl}|fflffl{ � uiþ1uiþ2

zfflfflfflffl}|fflfflfflffl{ � � � � � uj�2uj�1

zfflfflfflffl}|fflfflfflffl{ � uj�1vj
zfflffl}|fflffl{

�0
ij ¼ viui�1 � ui�1ui�2

zfflfflfflffl}|fflfflfflffl{ � ui�2ui�3

zfflfflfflffl}|fflfflfflffl{ � � � � � ujþ1uj
zfflffl}|fflffl{ � ujvj

z}|{
where viui is the straight-line segment from point ui to vi; uiuiþ1

zfflffl}|fflffl{
is the arc on the

inscribed circle between two consecutive points ui and uiþ1, � denotes concatena-

tion, and all � operations are modulo n. It can be shown that the minimum exposure

path between vertices vi and vj is either of the curves �ij or �
0
ij, whichever has less

exposure.

Next, we extend the preceding two methods of calculating minimum exposure

path under the scenario of many sensors. To simplify, the problem can be trans-

formed from the continuous domain into a tractable discrete domain by using an

m� n grid [28]. The minimal exposure path is then restricted to straight-line seg-

ments connecting any two consecutive vertices of a grid square. This approach

transforms the grid into an edge–weighted graph and computes minimal exposure

path usingDjikstra’s single-source shortest-path algorithm (SSSP) or Floyd-Warshal’s

all–pair shortest-path algorithm (APSP). The SSSP algorithm complexity is domi-

nated by the grid generation process, which has a time complexity O(n), where n is

the total number of gridpoints. On the other hand, the APSP algorithm is dominated

by the shortest-path calculation process, which has a time complexity Oðn3Þ.
A different approach based on variational calculus, due to Euler and Lagrange,

has been used [42] to find a closed-form expression for minimal exposure path in

case of a single sensor. In the following, we state the fundamental theorem of

variational calculus and briefly describe the method from the paper by Veltri et al.

[42] to derive an analytic solution for minimal exposure path. Informally stated,
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variational calculus is an approach to solving a class of optimization problems that

seek a functional (y) to make some integral function (J) an extreme. The fundamen-

tal theorem of variational calculus states the following [11] theorem.

Theorem 9.1 Let J½y� be a function of the form J½y� ¼
R a

b
Fðx; y; y0Þdx defined on

the set of functions yðxÞ, which have continuous first-order derivatives in ½a; b� and
satisfy the boundary condition yðaÞ ¼ A and yðbÞ ¼ B. Then a necessary condition

for J½y� to have an extremum for a given function yðxÞ is that yðxÞ satisfies the

Euler–Lagrange equation:

qF
qy

� d

dx

qF
qy0

� �
¼ 0 ð9:6Þ

Assuming the sensitivity of a sensor at a point P as given by Sðsi;PÞ ¼
1=dðsi;PÞ [l ¼ 1 and g ¼ 1 in Eq. (9.1)], the minimal exposure path between

two arbitrary points A and B can be expressed in the following form using

Equation (9.6) in polar coordinates rðyÞ ¼ aef½lnðb=aÞ�=cgy, where the constant a is

the distance from sensor si to A, b is the distance from sensor si to B, and c is

the angle formed by ffASB, as shown in Figure 9.4a. The function F in this case

is given by F ¼ ð1=rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðdr=dyÞ2

p
, after the transformation x ¼ r cos y and

y ¼ r sin y.
For the case of multiple sensors, a grid-based approximation algorithm [42]

using the Voronoi diagram can be applied. In this approach, the gridpoints are

placed along the Voronoi edges and gridpoints that are part of the same Voronoi

cell are connected via an edge. The weight of such an edge is determined by the

single sensor minimal exposure path weight between the two points. Each node

exchanges a set of messages to find topological information and uses it in the loca-

lized Voronoi-based approximation algorithm to calculate the minimal exposure

path.

In addition to the methods of calculating minimum exposure path, the solution to

the unauthorized traversal (UT) problem [8] is relevant, which is to find a path P

a

b

A

B

c

S

(a) (b)

a b

weight = |log(ml)| weight = 0

Minimum exposure path P

Figure 9.4 (a) Exposure path in single sensor scenario (b) Unauthorized Traversal problem.
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that has the least probability of detecting a moving target, given that n sensors are

deployed in the sensing field. According to the coverage model described in Section

9.3.3, the probability of failure to detect a target at a point u by a sensor s is

(1� cuðsÞÞ. If the decision about a target’s presence is taken by a collaborative

group of sensors using value fusion or decision fusion, then we can replace cuðsÞ
by DðuÞ, where DðuÞ is the probability of consensus target detection using value

fusion or decision fusion. Thus, the net probability GðPÞ, of failure to detect a target
moving in the path P, is given by

GðPÞ ¼
Y
u2P

ð1� DðuÞÞ ) logGðPÞ ¼
X
u2P

logð1� DðuÞÞ ð9:7Þ

Let us briefly describe the method of calculating a minimal exposure path in the

UT algorithm. The algorithm divides the sensor field into a fine grid and assumes

that the target moves only along the grid. Then finding the minimum exposure path

on this grid is to find a path P that minimizes j logGj.
Consider two consecutive gridpoints, v1 and v2. Let ml denote the probability of

failure to detect a target traveling between v1 and v2 along the line segment l. Then

we have logml ¼
P

u2P logð1� DðuÞÞ. Each segment l is assigned a weight

j logmlj, and two fictitious points a; b and line segments with zero weights are

added from them to the gridpoints as illustrated in Figure 9.4b. Thus the minimum

exposure path in this configuration is to find the least-weight path from a to b,

which can be identified using Dijkstra’s shortest-path algorithm.

9.4.2 Maximal Exposure Path: Best-Case-Coverage

Earlier, we introduced the notion of maximal exposure path by relating it to the

highest observability in a sensing field. In this section, we shall further explain

the concept and state a few methods to calculate such a path. A maximal exposure

path between two arbitrary points A and B in a sensing field is a path following

which the total exposure, as defined by the integral in Equation (9.4), is maximum.

It can be interpreted as a path having the best-case coverage. It has been proved [42]

that finding the maximal exposure path is NP-hard because it is equivalent to

finding the longest path in an undirected weighted graph, which is known to be

NP-hard. However, there exist several heuristics to achieve near-optimal solutions

under the constraints that the object’s speed, pathlength, exposure value, and time

required for traversal are bounded. Given these constraints, any valid path that can

reach the destination before deadline is contained within an ellipse with the starting

and ending points as the foci. This greatly reduces the search space for finding the

optimal exposure path. In the following we describe each of the heuristics briefly

[42].

1. Random Path Heuristic. This is the simplest heuristic to approximately

calculate the maximal exposure path. In this method, a random path is

created according to the rule that a node on the shortest path from source A to
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destination B is selected at certain times, and a random node is selected at

other times. Nodes on the shortest path are selected because of the time

constraint, and random nodes are selected to collect more exposure. This

approach does not depend on the network topology and is computationally

inexpensive.

2. Shortest-Path Heuristic. In this approach, first a shortest path is calculated

between the two endpoints A and B, assuming that certain topographical

knowledge is available. Then, to achieve maximal exposure, an object must

travel at maximum speed along this path and stop at the point with the highest

exposure. However, it might not yield a good approximation because no other

path, which might have more exposure, is allowed to be explored.

3. Best-Point Heuristic. This heuristic superimposes a grid over the ellipse and

then finds the shortest path to each gridpoint from A and B. Next the total

exposure of the two paths having a common gridpoint is calculated. The path

that gives the maximal exposure is the optimal exposure path. The quality of

the optimal path depends on the granularity of the grid; however, this

approach is computationally expensive.

4. Adjusted Best-Point Heuristic. This method improves the best-point heuristic

by considering paths that consist of multiple shortest paths. Performing one or

more of the path adjustments such as moving, adding, or deleting a node on

the shortest path iteratively, the optimal solution can be found.

9.4.3 Maximal Breach Path: Worst-Case Coverage

In Section 9.4.1, we discussed several methods to find a minimal exposure path in

a sensing field under a single-sensor as well as multiple-sensor scenarios. We

observed that finding a minimal exposure path is equivalent to finding a worst-

case coverage path, which provides valuable information about node deployment

density in the sensing field. A concept very similar to finding the worst-case cover-

age paths is the notion of maximal breach paths [27]. A maximal breach path

through a sensing field starting at A and ending at B is a path such that, for any point

P on the path, the distance from P to the closest sensor is maximum. The concept of

the Voronoi diagram [29], a well-known construct from computational geometry, is

used to find a maximal breach path in a sensing field. In two dimensions, the

Voronoi diagram of a set of discrete points (also called sites) divides the plane

into a set of convex polygons, such that all points inside a polygon are closest to

only one point. In Figure 9.5a, 10 randomly placed nodes divide the bounded rec-

tangular region into 10 convex polygons, referred to as Voronoi polygons. Any two

nodes si and sj are called Voronoi neighbors of each other if their polygons share a

common edge. The edges of a Voronoi polygon for node si are the perpendicular

bisectors of the lines connecting si and its Voronoi neighbors.

Since by construction, the line segments in a Voronoi diagram maximizes the

distance from the closest sites, the maximal breach path must lie along the Voronoi

edges. If it does not, then any other path that deviates from the Voronoi edges would
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be closer to at least one sensor, thus providing more exposure. Having said that the

maximal breach path between two endpoints A and B will lie along the Voronoi

edges, we now describe an algorithm that finds such a path. First a geolocation-

based approach is used to determine node locations, and a Voronoi diagram based

on that information is constructed. Then a weighted, undirected graph G is con-

structed by creating a node for each vertex and an edge corresponding to each

line segment in the Voronoi diagram. Each edge is given a weight equal to the mini-

mum distance from the closest sensor. The algorithm then checks the existence of a

path from A to B using breadth-first search (BFS) and then uses binary search

between the smallest and largest edge weights in G to find the maximal breach

path. It should be noted that the maximal breach path is not unique. It can be proved

that the worst-case time complexity of the algorithm is given by Oðn2 log nÞ, and for
sparse networks it is Oðn log nÞ.

Furthermore, the maximal breach path algorithm finds a path such that at any

given time, the exposure is no more than some particular value that it tries to mini-

mize. On the other hand, the minimal exposure path does not focus on exposure at

(a) (b)

(c)

sisj

N2

N3

N4
N5

N1

SPerpendicular
bisector
of SN1

Figure 9.5 (a) Voronoi diagram of 10 randomly deployed nodes; (b) Voronoi polygon for

node S, constructed by drawing perpendicular bisectors of the lines connecting S and its

neighbors; (c) Delaunay triangulation for the same set of nodes.
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one particular time, but rather tries to minimize the exposure acquired throughout

the entire time interval in the network.

9.4.4 Maximal Support Path: Best-Case Coverage

A maximal support path through a sensing field starting at A and ending at B is a

path such that for any point P on that path, the distance from P to the closest sensor

is minimized. This is similar to the concept of maximal exposure path. However,

the difference lies in the fact that a maximal support path algorithm finds a path at

any given time instant, such that the exposure on the path is no less than some par-

ticular value that should be maximized. In contrast, the maximal exposure path does

not focus on any particular time; rather, it considers all the time spent during an

object’s traversal.

A maximal support path in a sensing field can be found by replacing the Voronoi

diagram by its dual, Delaunay triangulation as shown in Figure 9.5b, where the

edges of the underlying graph are assigned weights equal to the length of the cor-

responding line segments in the Delaunay triangulation. (A Delaunay triangulation

[29] is a triangulation of graph vertices such that the circumcircle of each Delaunay

triangle does not contain any other vertices.) Similar to the maximal breach path

approach described earlier, this algorithm also checks for the existence of a path

using breadth-first search and applies binary search to find the maximal support

path. The worst-case and average-case complexities for this algorithm are

Oðn2 log nÞ and Oðn log nÞ, respectively.
So far we have described several methods to derive worst-case and best-case

coverage paths exploiting the concept of exposure to detect targets in a sensing

field. Now we will see that exposure paths can also be used to find the optimal num-

ber of sensors (critical node density) required for complete coverage with very high

target detectability [1]. Since the sensing task is inherently probabilistic, the method

for critical density calculation takes into account the nature and characteristics of

both the sensor and the target. We consider the path-based exposure model as

described in Equation (9.4) and that the target moves in a straight line with constant

speed away from the sensor at a distance d. Assuming the probabilistic sensing

model as described in Section 9.3.1, typical values are calculated for the quantities

ðRs � RuÞ and ðRs þ RuÞ, which are termed as radius of complete influence (denoted

by Rci) and radius of no influence (denoted by Rni), respectively. It can be proved

that for a typical threshold exposure Eth, the values for radius of complete influence

and no influence are given by the following equations [1]

Eth ¼
l

vRci

d
dþ Rci

� �
ð9:8Þ

Eth ¼
2l
vRni

tan�1 d
2Rni

� �
ð9:9Þ

and that to cover an area Awith random deployment, the number of nodes required

is of the order of OðA=R2
niÞ.
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9.5 COVERAGE BASED ON SENSOR DEPLOYMENT
STRATEGIES

The second approach to the coverage problem is to seek sensor deployment strate-

gies that would maximize coverage as well as maintain a globally connected net-

work graph. Several deployment strategies have been studied for achieving an

optimal sensor network architecture that would minimize cost, provide high sensing

coverage, be resilient to random node failures, and so on. In certain applications,

the locations of the nodes can be predetermined and hence can be hand-placed or

deployed using mobile robots, while in other cases we need to resort to random

deployment methods, such as sprinkling nodes from an aircraft. However, random

placement does not guarantee full coverage because it is stochastic in nature, hence

often resulting in accumulation of nodes at certain areas in the sensing field but

leaving other areas deprived of nodes. Keeping this in mind, some of the deploy-

ment algorithms try to find new optimal sensor locations after an initial random

placement and move the sensors to those locations, achieving maximum coverage.

These algorithms are applicable to only mobile sensor networks. Research has also

been conducted in mixed-sensor networks, where some of the nodes are mobile and

some are static; and approaches are also proposed to detect coverage holes after an

initial deployment and to try to heal or eliminate those holes by moving sensors. It

should be noted that an optimal deployment strategy should not only result in a

configuration that would provide sufficient coverage but also satisfy certain constraints

such as node connectivity and network connectivity [32].

As mentioned in the introduction, the problem of sensor deployment is related to

the traditional art gallery problem (AGP) [30] in computational geometry. The AGP

seeks to determine the minimum number of cameras that can be placed in a poly-

gonal environment, such that the entire environment is monitored. In a similar way,

an optimal deployment strategy tries to deploy nodes at optimal locations, such that

the area covered by the sensors is maximized. In the following, we briefly describe

several sensor deployment algorithms targeted for static, mobile, and mixed-sensor

networks, that aim to provide optimum sensing field architecture.

9.5.1 Imprecise Detections Algorithm (IDA)

Dhilon et al. [9] propose a grid coverage algorithm that ensures that every gridpoint

is covered with a minimum confidence level. They consider a minimalistic view of a

sensor network by deploying a minimum number of sensors on a grid that would

transmit a minimum amount of data. The model assigns two probability values pij
and pji for every pair of gridpoints ði; jÞ, where pij is the probability that a target at

gridpoint j is detected by a sensor at gridpoint i and pji is the probability that a target

at gridpoint i is detected by a sensor at gridpoint j. In absence of obstacles, these

values are symmetric: pij ¼ pji. From this, a miss probability matrix M is generated

where mij ¼ ð1� pijÞ. The obstacles are modeled as static objects, and the value of

pij is set to zero if an obstacle appears in the line of sight between two gridpoints

ði; jÞ (as illustrated in Fig. 9.6).
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The algorithm as described by Dhilon et al. [9] takes three inputs: (1) M, M
,
Mmin, where M is the miss probability matrix as mentioned above; (2) M
 ¼
ðM1;M2; . . . ;MNÞ; such that Mi is the probability that a gridpoint i is not

collectively1 covered by the set of sensors; and (3) Mmin ¼ 1� T , which is the

maximum value of the miss probability that is permitted for any gridpoint. The

algorithm is iterative and uses a greedy heuristic to determine the best placement

of one sensor at a time. It terminates when either a preset upper limit on the number

of sensors is reached or sufficient coverage of the gridpoints is achieved.

The time complexity of the algorithm is Oðn2Þ, where n is the total number of

gridpoints in the sensor field. It attempts to evaluate the global impact of an addi-

tional sensor by summing up the changes in the miss probabilities for the individual

gridpoints. However, the algorithm models the obstacles depending on whether they

appear in the line of sight of the target and the sensor, which is applicable for infra-

red cameras, for example, but not for sensors that do not require line of sight, such

as acoustic and temperature sensors. Also, since a complete knowledge of the ter-

rain is assumed, the algorithm is not very applicable in cluttered environments, such

as interior of buildings, because modeling obstacles becomes extremely difficult in

those scenarios.

9.5.2 Potential Field Algorithm (PFA)

In contrast to static sensor networks, nodes in mobile sensor networks are capable

of moving in the sensing field. Such networks are capable of self-deployment start-

ing from an initial configuration. The nodes would spread out such that coverage in

the sensing field is maximized while maintaining network connectivity. A potential

field-based deployment approach using mobile autonomous robots has been pro-

posed to maximize the area coverage. [18,32]. Poduri and Sukhatme augment

the scheme such that each node has at least K neighbors. The potential field tech-

nique using mobile robots was first introduced in 1986 [22]. In the following we

describe the concept of potential field and the algorithm proposed by Poduri and

Sukhatme [32].

1The notion of collective or total sensor coverage of a point is expressed in Equation (9.3)

Obstacle

1

2

3

4

1 2 3 4

p23 = p32 = 0

Figure 9.6 Two probability values, pij and pji, are assigned for every pair of gridpoints ði; jÞ
under line-of-sight static obstacle modeling.
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The basic concept of potential field is that each node is subjected to a force F (a

vector)2 that is the gradient of a scalar potential field U; that is, F ¼ �rU. Each

node is subjected to two kinds of force: (1) Fcover, which causes the nodes to repel

each other to increase their coverage; and (2) Fdegree, which constrains the degree of

nodes by making them attract toward each other when they are on the verge of

being disconnected. The forces are modeled as being inversely proportional to

the square of the distance between a pair of nodes and obey the following two

boundary conditions:

1. Fcoverk k tends to infinity when the distance between two nodes approaches

zero to avoid collision.

2. Fdegree

�� �� tends to infinity when the distance between critical neighbors

approaches Rc, the communication radius.

In mathematical terms, if kXi � Xjk ¼ �xij is the Euclidean distance between

two nodes, i and j, then Fcoverði; jÞ and Fdegreeði; jÞ can be expressed as

Fcover i; jð Þ ¼ �Kcover

�x2ij

xi � xj

�xij

� �
ð9:10Þ

Fcover i; jð Þ ¼
�Kdegree

�xij�Rc

� �2 xi� xj

�xij

� �
;

0; otherwise

for critical connection

8><
>: ð9:11Þ

In the initial configuration all the nodes are accumulated in one place, and thus each

node has more than K neighbors, assuming that the total number of nodes is � K.

Then, they start repelling each other using Fcover until there are only K neighbors

left, at which point the connections reach a critical level, and none of these connec-

tions should be broken at a later point of time to ensure K connectivity. Each node

continues to repel all its neighbors using Fcover, but as the distance between the

node and its critical neighbors increases, kFcoverk decreases and kFdegreek also

increases. Finally, at some distance ZRc, where 0 < Z < 1, the net force

kFcover þ Fdegreek becomes 0, at which point each node and its neighbors reach

an equilibrium and the sensing field becomes uniformly covered with nodes. At a

latter point, if a new node joins the network or an existing node ceases to function,

the nodes will need to reconfigure to satisfy the equilibrium criteria.

9.5.3 Virtual Force Algorithm (VFA)

Similar to the potential field approach as described in by Poduri and Sukhatme [32],

a sensor deployment algorithm based on virtual forces has been proposed [50,52]

to increase the coverage after an initial random deployment. Since a random place-

ment does not guarantee effective coverage, an approach that modifies the sensor

2 The bold symbol X represents a vector, and kXk represents the magnitude of the vector.

240 COVERAGE AND CONNECTIVITY ISSUES IN WIRELESS SENSOR NETWORKS



locations after a random placement is useful. In this section, we describe the virtual

force algorithm (VFA) briefly.

A sensor is subjected to three kinds of force, which are either attractive or repul-

sive in nature. In the VFA model, obstacles exert repulsive forces ðFiRÞ, areas of

preferential coverage (sensitive areas where a high degree of coverage is required)

exert attractive forces ðFiAÞ, and other sensors exert attractive or repulsive forces

ðFijÞ, depending on the distance and orientation. A threshold distance dth is defined

between two sensors to control how close they can approach each other. Likewise, a

threshold coverage cth is defined for all gridpoints such that the probability that

a target at any given gridpoint is reported as being detected is greater than this

threshold value. The coverage model as described in this algorithm is given by

Equations (9.2) and (9.3). The net force on a sensor si is the vector sum of all three

forces:

Fi ¼
Xk

j¼1; j 6¼i

Fij

� �
þ FiR þ FiA ð9:12Þ

The term Fij can be expressed in polar coordinates with magnitude and orientation

as

Fij ¼
wA dij � dth

� �
; aij

� �
; if dij > dth

0; if dij ¼ dth
wR=dij; aij þ p
� �

; otherwise

8<
: ð9:13Þ

where dij is the distance between sensors si and sj, aij is the orientation of the line

segment from si to sj, wA and wR are measures of attractive and repulsive forces,

respectively. The VFA algorithm is a centralized one, and it executes in a cluster

head. After the nodes are randomly placed in the sensing field, for all gridpoints,

the algorithm calculates the total coverage as defined by Equation (9.3). Then it

calculates the virtual forces exerted on a sensor si by all other sensors, obstacles,

and preferential coverage area, for all i. Next, depending on the net forces, new

locations are calculated by the cluster head and sent to the sensor nodes, which

perform a one-time movement to the designated positions.

For an n� m grid with a total number of k sensors deployed, the computational

complexity of the VFA algorithm is OðnmkÞ. The efficiency of the algorithm

depends on the values of the quantities wA and wR. Negligible computation time

and a one-time repositioning of sensors are two of its primary advantages. However,

the algorithm does not provide any route plan for repositioning the sensors to avoid

collision.

9.5.4 Distributed Self-Spreading Algorithm (DSSA)

Along the lines of potential field and virtual force based approaches, a distributed

self-deployment algorithm (DSSA) has been proposed [16] for mobile sensor net-

works that maximizes coverage and maintains uniformity of node distribution.

They define coverage as the ratio of the union of covered areas of each node to
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the complete area of the sensing field and uniformity as the average of local

standard deviations of internodal distances. In uniformly distributed networks,

internodal distances are almost the same and hence the energy consumption is uni-

form. DSSA assumes that the initial deployment is random and that each node

knows its location. Similar to VFA, it uses the concept of electric force that depends

on the internode separation distance and local current density (mcurr). In the begin-

ning of the algorithm, the initial density for each node is equal to the number of its

neighbors. The algorithm defines the notion of expected density as the average

number of nodes required to cover the entire area when the nodes are deployed uni-

formly. It is given by mðRcÞ ¼ ðNpR2
cÞ=A, where N is the number of sensors and Rc

is the communication range. DSSA executes in steps and models the force on the ith

node by the jth node at timestep n as

f i;jn ¼ mcurr
m2 Rcð Þ Rc � pin � p j

n

�� ��� �
pin � p j

n

� �
= pin � p j

n

�� ��� �
ð9:14Þ

where pin denotes the location of ith node at timestep n. Depending on the net forces

from the neighborhood, a node can decide on its next movement location. The algo-

rithm settles down when a node moves an infinitely small distance over a period of

time or when it moves back and forth between two same locations.

9.5.5 VEC, VOR and MiniMax Algorithms

Wang et al. [44], describe three distributed self-deployment algorithms (VEC,

VOR, and min–max) for mobile sensors using Voronoi diagrams. After the sensors

are deployed in the field, the algorithm locates coverage holes (area not covered by

any sensor) and calculates new positions that would increase coverage by moving

sensors from densely populated regions to sparsely ones. The Voronoi diagram, as

explained in Section 9.4.3, consists of Voronoi polygons such that all the points

inside a polygon are closest to the sensor that lies within the polygon, as illustrated

in Figure 9.7a. Once the Voronoi polygons are constructed, each sensor within the

S

A

Vfar

(a)

si
d

Rs

(b)

C

Figure 9.7 (a) The VOR algorithm moves a sensor toward the farthest Voronoi vertex, Vfar;

(b) bid estimated by sensor Si is the area of the shaded circle with center at C.
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polygon examines the existence of possible coverage holes. If such a hole is discov-

ered, the sensors move to new positions according to certain heuristics to reduce or

eliminate the coverage hole. In the following we explain the heuristics.

The vector-based algorithm (VEC) pushes sensors from densely covered areas to

sparsely covered areas. Two sensors exert a repulsive force when they are too close

to each other. If dav is the average distance between any two sensors when they are

evenly distributed in the sensing field, the virtual force between the sensors si and sj
will move each of them ðdav � dðsi; sjÞÞ=2 distance away from each other. In case,

one of the sensor’s sensing range completely covers its Voronoi polygon, only the

other sensor should move away ðdav � dðsi; sjÞÞ distance. In addition to the mutual

repulsive forces between sensors, the boundaries also exert forces to push sensors

too close to the boundary inside. If dbðsiÞ is the distance of a sensor si from its clo-

sest boundary, then the repulsive force would move it a distance dav=2� dbsi
toward the inside of the region. Before actually moving to the new position, each

sensor calculates whether its movement would increase the local coverage within its

Voronoi polygon. If not, the sensor wouldn’t move to the target location; instead it

applies a movement adjustment scheme and will move to the midpoint position

between its target location and new location.

The Voronoi-based algorithm (VOR) is a greedy algorithm that pulls sensors

toward their local maximum coverage holes. If a sensor detects a coverage hole

within its Voronoi polygon, it will move toward its farthest Voronoi vertex ðVfarÞ,
such that the distance from its new location (A) to (Vfar) is equal to the sensing

range (see Figure 9.7a). However, the maximum moving distance for a sensor is

limited to at most half the communication range, because the local view of the Vor-

onoi polygon might be incorrect because of limitations in communication range.

VOR also applies the movement adjustment scheme as in VEC and additionally

applies an oscillation control scheme that limits a sensor’s movement to opposite

directions in consecutive rounds.

The min–max algorithm is very similar to VOR, but it moves a sensor inside its

Voronoi polygon to a point such that the distance from its farthest Voronoi vertex is

minimized. Since moving a sensor to its farthest Voronoi vertex might lead to a

situation such that the vertex that was originally close now becomes a new farthest

vertex, the algorithm positions each sensor such that no vertex is too far away from

the sensor. The authors define the concept of min–max circle, the center of which is

the new targeted position. To find the min–max circle, all circumcircles of any two

and any three Voronoi vertices are found and the one with minimum radius covering

all the vertices is the min–max circle. The time complexity of this algorithm is in

the cubic order of the number of Voronoi vertices.

9.5.6 Bidding Protocol (BIDP)

The algorithms described in the previous sections (PFA, VFA, DSSA, VEC, VOR,

min–max) deal with sensor networks where all the nodes are mobile. However,

there is a high cost associated with rendering each node mobile. Instead, a balance

can be achieved by using both static and mobile sensors (mixed-sensor network),
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while still ensuring sufficient coverage. Wang et al. [43] describe such a protocol,

called the bidding protocol, for mixed sensor networks. They reduce the problem to

the NP-hard set covering problem and provide heuristics to solve it near-optimally.

Initially, a mixture of static and mobile nodes are randomly deployed in the sen-

sing field. Next, the static sensors calculate their Voronoi polygons and find cover-

age holes with their polygons and also bid to the mobile sensors to move to holes’

locations. If a hole is found, a static sensor chooses the location of the farthest Vor-

onoi vertex as the target location of the mobile sensor and calculates the bid as

pðd � RsÞ2, where d is the distance between the sensor and the farthest Voronoi ver-

tex and Rs is the sensing range (see Fig. 9.7b). A static sensor then finds a closest

mobile sensor whose base price (each mobile sensor has an associated base price

that is initialized to zero) is lower than its bid and sends a bidding message to this

mobile sensor. The mobile sensor receives all such bids from its neighboring static

sensors and chooses the highest bid and moves to heal that coverage hole. The

accepted bid becomes the mobile sensor’s new base price. This approach ensures

that a mobile sensor does not move to heal a coverage hole when its departure gen-

erates a larger hole in its original place. The authors also incorporate a self-detec-

tion algorithm to ensure that no two mobile sensors move to heal the same coverage

hole. They also apply the movement adjustment scheme as described in VEC, to

push sensors away from each other if their movement can guarantee more coverage.

9.5.7 Incremental Self-Deployment Algorithm (ISDA)

Howard and colleagues [17,19] presented an incremental and greedy self-deployment

algorithm for mobile sensor networks, in which nodes are deployed one at a time

into an unknown environment. Each node makes use of the information gathered by

previously deployed nodes to determine its optimal deployment location. The algo-

rithm ensures maximum coverage but at the same time guarantees that each node

remains in line of sight with at least another node. Conceptually it is similar to the

frontier-based approach [46], but here, occupancy maps are built from live sensory

data and are analyzed to find frontiers between free space and unknown space. In

the following, we highlight the four phases of the algorithm.

1. Initialization Phase. In this phase, nodes are assigned one of the three states:

waiting, active, or deployed with the exception of a single node that acts as an

anchor and is already deployed.

2. Goal Selection Phase. In this next phase an optimal location is chosen for the

next node to be deployed on the basis of previously deployed sensors. The

concept of occupancy grid [10] (see Fig. 9.8b) is used as the first step to

global map building. Each cell is assigned a state of either free (known to

contain no obstacles), occupied (known to contain one or more obstacle) or

unknown. However, not all free space represents valid deployment locations

because nodes have finite size and a free cell that is close to an occupied cell

may not be reachable. Hence, the occupancy grid is further processed to build

a configuration grid (see Fig. 9.8c). In a configuration grid, a cell is free iff all
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the occupancy grid cells lying within a certain distance are also free. A cell is

occupied if there are one or more occupancy grid cells lying within a certain

distance are similarly occupied. All other cells are marked as unknown. Once

this global map is built, the goal selection phase chooses a location based on

certain policies.

3. Goal Resolution Phase. Next, this new location is assigned to a waiting node

in the goal resolution phase, and a plan for reaching the goal is generated

applying a distance transform (also called flood-fill algorithm) on the

configuration gird, giving rise to a reachability grid (see Fig. 9.8d). Thus,

the set of reachable cells is a subset of the set of free configuration cells,

which in turn is a subset of the set of free occupancy cells. A distance of 0 is

assigned to the goal cell (the cell which is chosen to be the optimal location

for the next node to be deployed), a distance of 1 to cells adjacent to the goal

cell, a distance of 2 to their adjacent cells, and so on. However, distances are

not propagated through occupied or unknown cells. Thus, for each node the

distance to the goal and whether the goal can be reached is determined.

4. Execution Phase. In this phase, the active nodes are deployed sequentially to

their respective goal locations. The nodes end up moving in a ‘‘conga line’’;

specifically, as the lead node moves forward, the node immediately behind it

steps forward to take its place; this node in turn is replaced by the one behind

it, and so on.

9.5.8 Integer Linear Programming Algorithm (ILPA)

Chakrabarty et al. [4] model the optimization problem of coverage with integer lin-

ear programming (ILP) and represent the sensor field as a two- or three-dimensional

grid. Given a variety of sensors with different ranges and costs, they provide stra-

tegies for minimizing the cost, provide coding-theoretic bounds on the number of

sensors, and present methods for their placement with desired coverage. Their

approach of maximizing coverage in the sensing field is different in the sense

that it determines a deployment strategy, such that every gridpoint is covered by

(a) (b) (c) (d)

obstacle
sensor

Figure 9.8 (a) Environment with obstacles and a single sensor; (b) occupancy grid — black

cells are occupied, gray ones are unknown, and white ones are free; (c) configuration grid —

black cells are occupied, gray ones are unknown, and white ones are free; (d) reachability

grid–white cells are reachable, gray ones are unknown.

COVERAGE BASED ON SENSOR DEPLOYMENT STRATEGIES 245



a unique subset of sensors. In this way, the set of sensors reporting a target at a

particular time uniquely identifies the grid location for the target at that time.

9.5.9 Uncertainty-Aware Sensor Deployment Algorithm (UADA)

In most of the sensor deployment algorithms discussed so far, the optimal positions

of the sensors are determined for maximizing coverage. However, there is an inherent

uncertainty in sensor locations when sensors are dispersed, scattered, or airdropped.

Hence, for every point in the sensing field there is only a certain probability of a

sensor being located at that point. Zou and Chakrabarty [51] present two algorithms

for efficient placement of sensors when exact locations are not known.

The sensor locations are modeled as random variables following Gaussian

distribution. Let the intended sensor locations ðx; yÞ be taken as mean values and

sx;sy as standard deviations in the x and y dimensions, respectively. Assuming

that these deviations are independent, the join distribution pxyðx0; y0Þ of a sensor’s

actual location is calculated. Then, the uncertainty in sensor location is modeled by

a conditional probability c
ijðx; yÞ, for a gridpoint ði; jÞ to be detected by a sensor that
is supposed to be deployed at ðx; yÞ. Hence, the miss probability (probability of

missing) of a gridpoint ði; jÞ due to a sensor at ðx; yÞ is calculated as

mijðx; yÞ ¼ 1� c
ijðx; yÞ. From this, the collective miss probability of the gridpoint

ði; jÞ due to a set Ls of already deployed sensors is given by mij ¼
Q

ðx;yÞ2Ls
ð1� c
ijðx; yÞÞ. The algorithm then determines the location of the sensors one at a

time. It finds out all possible locations that are available on the grid for the next

sensor to be deployed and calculates the overall miss probability mðx; yÞ, due to

the already deployed sensors and this sensor, assuming that it will be placed at

ðx; yÞ: mðx; yÞ ¼
P

ði; jÞ2Grid mijðx; yÞmij. Based on the mðx; yÞ values, the current

sensor can be placed at gridpoint ði; jÞ with maximum overall miss probability

(worst-case coverage) or minimum overall miss probability (best-case coverage).

Once the best location is found, the miss probabilities are updated and the process

continues until each gridpoint is covered with a minimum confidence level. The

complexity of the first phase of the algorithm where it calculates the conditional

and miss probabilities is OððmnÞ2), for a m� n grid. The computational complexity

of the second phase where the algorithm deploys the sensors is OðmnÞ.

9.5.10 Comparison of the Deployment Algorithms

The various sensor deployment strategies discussed in the previous sections, have

different assumptions and goals depending on the underlying application require-

ments and the nature of the sensor network. Some of those strategies are applicable

to mobile sensor networks, whereas some other ones are applicable only to static

sensor networks. Then, a couple of the algorithms work under the scenarios having

a mixture of static and mobile nodes. Therefore, the algorithms vary in terms of

their applicability, complexity, and several other factors. In this section, we com-

pare these sensor deployment strategies on the basis of their goals, advantages,

disadvantages, performance, computation complexity, and applicability. These

comparisons are summarized in Table 9.1.
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9.6 MISCELLANEOUS STRATEGIES

Our discussion so far has concerned mainly algorithms that guarantee optimal cov-

erage of the sensing field. However, as mentioned earlier, a sensor network needs to

be connected as well, so that the data sensed by the nodes can be transmitted by

multihop communication paths to other nodes and possibly to a basestation where

intelligent decisions can be made. Therefore, it is equally important for a coverage

algorithm to ensure a connected network. In this section, we will discuss a few tech-

niques that ensure coverage as well as connectivity in a sensing field while at the

same time reduce redundancy and increases overall network lifetime.

It is envisioned that a typical wireless sensor network would consist of large

numbers of energy-constrained nodes deployed with high density. In such a net-

work, it is sometimes undesirable to have all the nodes in the active state simulta-

neously, because there would be redundancy in sensing and excessive packet

collisions. Also, keeping all the nodes active simultaneously would dissipate energy

at a much faster rate and would reduce overall system lifetime. Hence, it is impor-

tant to turn off the redundant nodes and maximize the time interval of a continu-

ously monitoring, transmitting, or receiving function. Scheduling of nodes that

would control the density of active nodes in a sensor network has been the focus

of many research works. An optimal scheduling scheme ensures that only a subset

of nodes are active at any given point of time, while satisfying the following two

requirements relating coverage and connectivity:

1. The area that can be monitored by the working set of nodes is not smaller than

the area that can be monitored by the set of all nodes.

2. Network connectivity is maintained even after turning off the redundant nodes.

Zhang and Hou [48] proposed a decentralized and localized density control algo-

rithm [Optimal geographic density control (OGDC)] based on certain optimality

conditions of coverage and connectivity for large-scale sensor networks. They

investigated the relation between coverage and connectivity and proved that if

the communication range is at least twice the sensing range ðRc � 2RsÞ, then com-

plete coverage of an area guarantees a connected network. The OGDC algorithm

tries to minimize the overlap of sensing areas of all the nodes and finds a node sche-

duling scheme. It defines the notion of a crossing point as an intersection point of

the sensing circles of two nodes (see Fig. 9.9a) and proves that to cover one cross-

ing point of two nodes with minimum overlap, only one other node should be used

and the centers of the three nodes should form an equilateral triangle with side-

length
ffiffiffi
3

p
Rs. As illustrated in Figure 9.9a, nodes A and B have two crossing points.

To cover that crossing point optimally, another node C should be placed such that

the centers of the three nodes form an equilateral triangle �ABC. Furthermore, to

cover one crossing point of two nodes whose positions are fixed (i.e., with x1 fixed),

only one disk3 should be used and x2 ¼ x3 ¼ ðp� x1Þ=2.

3Refer to Section 9.3.1 for definition of a disk.
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Tian and Georganas [40] proposed a self-scheduling scheme that can reduce

overall energy consumption and increase system lifetime by exploiting the redun-

dancy of nodes. Their approach is based on sponsorship criteria, by which each

node decides whether to turn itself off or on using only local neighborhood infor-

mation. We define the notion of sponsorship and the algorithm in the following.

Definition 9.7 (Sponsor Nodes) Let NðiÞ denote the set of one-hop neighbors

of node si. Node si is said to be sponsored by its one-hop neighbors if the union

of its neighbors’ sensing areas is a superset of node si’s sensing area. If we

denote the sensing area of a node si as SðiÞ, then the sponsorship criterion isS
j2NðiÞ SðjÞ � SðiÞ.

Definition 9.8 (Sponsored Sector) Let the sensing areas of node si and one of its

one-hop neighbors sj intersect at points P1 and P2, respectively, as shown in

Figure 9.9b. The area bounded by radius siP1, radius siP2, and the inner arcdP1P2P1P2 is called the sponsored sector of node si by node sj. The central angle of

the sector is denoted as Qj!i, which lies in the interval 120 � yj!i � 180.

Gao, et al. [13] proved that at least three and at most five one-hop neighbors are

needed to cover the whole sensing area of node si.

The algorithm described by Tian and Georganas [40] consists of two phases:

self-scheduling phase and sensing phase. In the self scheduling phase, each sensor

broadcasts its position and node id, and listens to the advertisement messages from

its neighbors to obtain their location information. Then it calculates the sponsored

sectors by its neighbors and checks whether the union of their sponsored sectors can

cover its own sensing area. If so, it decides to turn itself off. However, if all the

nodes make decisions simultaneously, blindspots might appear. To avoid such a

situation, each node waits a random period of time and also broadcasts its status

message to other nodes. In this way the nodes self-schedule, thus reducing energy

consumption while maintaining the original coverage area.

Ye et al. [47] described a distributed localized algorithm for density control

based on probing mechanism. In their algorithm, each node can be in one of the

A B

C

O
crossing

x1

x2

x3

(a)

Rs

(b)

P2

P1

si sj

Figure 9.9 (a) Optimal positions of sensors to minimize overlap; (b) sponsored sector.
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three states: sleeping, wakeup, or working. A working node is responsible for sen-

sing and data communication, while nodes in wakeup state prepare themselves for

replacing a dying node due to energy depletion or other kinds of failures. A sleeping

node wakes up after sleeping for an exponentially distributed period of time

(termed as wakeup rate l) and broadcasts a probing message within a radius of

r. If there are any working nodes in the vicinity, they reply back to the wakeup

node. If the wakeup node hears such a reply message, it knows that there is a work-

ing node within its probing range r and goes back to sleep again. If the wakeup node

does not hear a reply message within a certain time, it assumes that there is no

working node within its probing range and it starts working. By tuning the para-

meters l and r in simulations, the authors show that an optimal node density can

be achieved while ensuring that each area is monitored by at least k working nodes.

The algorithm is fully distributed and localized, and no neighborhood topology

discovery is necessary. The computation and memory overhead per node is also

negligible and is independent of the number of neighbors.

Shakkottai et al. [38] considered an unreliable wireless sensor grid network with

n nodes placed over a unit area. Defining r(n) as the transmitting radius of each

node, and p(n) as the probability that a node is active at some time t, they found

that the necessary and sufficient condition for the grid network to cover the unit

square region as well as ensure that the active nodes are connected is of the

form pðnÞ_rr2ðnÞ � logðnÞ=n. This result indicates that when n is large, each node

can be highly unreliable and the transmission power can be small and we can still

maintain connectivity with coverage. They have also shown that the diameter of

the random grid (i.e., the maximum number of hops required to travel from any

active node to another) is of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=logðnÞ

p
. A corollary of this is that

the shortest-hop path between any pair of nodes is nearly the same as a straight-

line path between the nodes. Finally, the authors derived a sufficient condition

for connectivity of the active nodes (without necessarily having coverage) and

showed that if p(n) is small enough, connectivity does not imply coverage.

9.7 DISCUSSIONS AND CONCLUSIONS

In this chapter, we have discussed the importance of coverage and connectivity,

which are two fundamental factors for ensuring efficient resource management in

wireless sensor networks, and surveyed various methods and protocols, which opti-

mally cover a sensing field while maintaining global network connectivity at the

same time. We have seen that exposure paths can be viewed as a measure of good-

ness of detectability of a moving target in a sensing field. The notions of min–max

exposure paths, breach paths, and support paths provide critical information to the

application in terms of identifying sparsely and densely covered areas. We also dis-

cussed and compared several node deployment algorithms for static and mobile as

well as for mixed-sensor networks, and observed that, depending on the coverage

requirements, topological information, presence of obstacles, and other variables,

the algorithms vary with respect to their goals, assumptions, and complexities.
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The node scheduling schemes that we described under miscellaneous strategies

using the notion of sponsored sectors ensure longer network lifetime and guarantee

uniform dissipation of battery power throughout the network. This in turn implies

better resource management.

However, the works existing in the literature have not addressed some of pro-

blems on theoretical bounds related to coverage and connectivity. Although Zhang

and Hou [48] provided a theoretical result, proving that if the communication range

is at least twice the sensing range, then complete coverage of an area guarantees a

connected network, the probabilistic bounds on the number of nodes for a certain

percentage of coverage is still unresolved. Future research in this area would pro-

vide insights into the probabilistic bounds on the best coverage that one can achieve

given a number of nodes. The problem can be formulated as, given a total N number

of nodes and a rectangular sensing field A ¼ a� b, with what probability one can

guarantee p percentage coverage, while ensuring k degrees of connectivity across

the network. This is a combinatorial optimization problem and can be tackled using

statistical techniques and integer linear programming.

The deployment of nodes in mixed-sensor networks, which require one to strike

a balance between the number of static and mobile sensors, involves the optimiza-

tion of a cost/performance-based objective function and is therefore challenging.

We discussed one approach [43] that initially deploys a fixed number of static

and mobile nodes in a sensing field, after which the static nodes are required to

find local coverage holes and bid for mobile sensors to relocate to the targeted loca-

tions and reduce or eliminate those holes, thus increasing area coverage. However,

this approach has a drawback because it deploys a fixed number of mobile nodes.

To overcome this shortcoming, we [14] considered a mixed-sensor network,

where initially a fixed number of static nodes are deployed, which deterministically

find the exact amount of coverage holes existing in the entire network using the

structure of Voronoi diagrams and then dynamically estimate the additional number

of mobile nodes needed to be deployed and relocated to the optimal locations of the

holes to maximize overall coverage. This approach of deploying a fixed number of

static nodes and a varying estimated number of mobile nodes can provide optimal

coverage under controlled cost. A mixed sensor approach is a very attractive one,

because it allows one to choose the degree of coverage required by the underlying

application as well as gives an opportunity to optimize on the number of additional

mobile nodes needed to be deployed. We [15] provided distributed algorithms to

find suboptimal minimum connected sensor covers, such that the whole sensing

field is covered using a suboptimal number of sensors. In another study [5,7] we

proposed a novel energy conserving data gathering strategy based on a tradeoff

between coverage and data reporting latency with the ultimate goal of maximizing

a network’s lifetime. The basic idea is to select in each data reporting round only a

minimal number of k sensors as data reporters, based on a desired sensing coverage

specified by the user or application. Besides conserving energy, such a selection of

minimum data reporters also reduces the amount of traffic flow, thus avoiding traffic

congestion and channel interference. Simulation results of our proposed schemes

demonstrate that the user-specified percentage of the monitored area can be covered
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using only k sensors. It also shows that the sensors can conserve a significant

amount of energy with a small tradeoff and that the higher the network density,

the higher is the energy conservation rate without any additional computation

cost. In one of our works [6] for efficient resource management in wireless sensor

networks, we presented a two-phase clustering scheme for energy saving and delay-

adaptive data gathering in order to extend a network’s lifetime.

Further research on optimization algorithms in mixed sensor networks and eval-

uating tradeoffs between latency and data gathering strategies can provide valuable

information to optimize resources in a sensing field and help answer questions

related to the theoretical bounds on coverage and connectivity.

ACKNOWLEDGMENT

This work is supported by NSF grant IIS-0326505.

REFERENCES

1. S. Adlakha and M. Srivastava, Critical density thresholds for coverage in wireless sensor

networks, Proc. IEEE Wireless Communications and Networking Conf. (WCNC’03),

New Orleans, LA, March 2003, pp. 1615–1620, Louisiana, Mar. 2003.

2. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: A

survey, Comput. Networks 38(2):393–422 (2002).

3. L. Booth, J. Bruck, and R. Meester, Covering algorithms, continuum percolation and the

geometry of wireless networks, Annals Appl. Probability 13(2):722–741 (May 2003).

4. K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, Grid coverage for surveillance and

target address in distributed sensor networks, IEEE Trans. Comput. 51(12):1448–1453

(Dec. 2002).

5. W. Choi and S. K. Das, in S. Phoha and T. La Porta, eds., An Energy-conserving Data

Gathering Strategy Based on Trade-off between Coverage and Data Reporting Latency in

Wireless Sensor Networks, Sensor Network Operations, IEEE Press, 2004.

6. W. Choi and S. K. Das, A framework for energy-saving data gathering using two-phase

clustering in wireless sensor networks, Proc. Mobile and Ubiquitous Systems: Network-

ing and Services Conf., Mobiquitous’04, Boston, Aug. 2004, pp. 203–212.

7. W. Choi and S. K. Das, Trade-off between coverage and data reporting latency for energy-

conseving data gathering in wireless sensor networks, Proc. 1st Int. Conf. Mobile Ad Hoc

and Sensor Systems, MASS’04, Ft. Lauderdale, FL, Oct. 2004.

8. T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja, Sensor deployment

strategy for target detection, Proc. 1st ACM Int. Workshop on Wireless Sensor Networks

and Applications (WSNA’02), Atlanta, GA, Sept. 2002, pp. 42–48.

9. S. S. Dhilon, K. Chakrabarty, and S. S. Iyengar, Sensor placement for grid coverage under

imprecise detections, Proc. 5th Int. Conf. Information Fusion (FUSION’02), Annapolis,

MD, July 2002, pp. 1–10.

10. A. Elfes, Occupancy grids: A stochastic spatial representation for active robot perception,

Proc. 6th Conf. Uncertainty in AI, Cambridge, MA, July 1990, pp. 60–70.

REFERENCES 253



11. S. V. Fomin and I. M. Gelfand, Calculus of Variations, Dover Publications, Oct. 2000.

12. D. W. Gage, Command control for many-robot systems, Proc. 19th Annual AUVS

Technical Symp. Reprinted in Unmanned Syst. Mag. 10(4):28–34 (Jan. 1992).

13. Y. Gao, K. Wu, and F. Li, Analysis on the redundancy of wireless sensor networks, Proc.

2nd ACM Int. Conf. Wireless Sensor Networks and Applications (WSNA’03), San Diego,

CA, Sept. 2003 pp. 108–114.

14. A. Ghosh, Estimating coverage holes and enhancing coverage in mixed sensor networks,

Proc. 29th Annual IEEE Conf. Local Computer Networks (LCN’04), Tampa, FL, Nov.

2004, pp. 68–76.

15. A. Ghosh and S. K. Das, Distributed connected sensor cover algorithms for lattice and

random deployment of nodes in dense sensor networks, Proc. 1st IEEE/ACM Int. Conf.

Distributed Computing in Sensor Systems (DCOSS’05), Marina del Rey, CA, June–July

2005.

16. N. Heo and P. K. Varshney, A distributed self-spreading algorithm for mobile wireless

sensor networks, Proc. IEEE Wireless Communications and Networking Conf.

(WCNC’03), New Orleans, LA, March 2003, pp. 1597–1602.

17. A. Howard, M. J. Matari, and G. S. Sukhatme, An incremental self-deployment algorithm

for mobile sensor networks, Autonomous Robots special issue on intelligent embedded

systems 13(2):113–126 (2002).

18. A. Howard, M. Mataric, and G. Sukhatme, Mobile sensor network deployment using

potential fields: A distributed scalable solution to the area coverage problem, Proc. 6th

Int. Symp. Distributed Autonomous Robotic Systems (DARS’02), Fukuoka, Japan, June

2002, pp. 299–308.

19. A. Howard and M. J. Mataric, Cover me! A self-deployment algorithm for mobile sensor

networks, Proc. IEEE Int. Conf. Robotics and Automation (ICRA’02), Washington DC,

May 2002, pp. 80–91.

20. C.-F. Huang and Y.-C. Tseng, The coverage problem in a wireless sensor network, Proc.

2nd ACM Int. Conf. Wireless Sensor Networks and Applications (WSNA’03), San Diego,

CA, Sept. 2003, pp. 115–121.

21. J. M. Kahn, R. H. Katz, and K. S. J. Pister, Next century challenges: Mobile networking

for smart dust, Proc. 5th Annual ACM/IEEE Int. Conf. Mobile Computing and Network-

ing (MOBICOM’99), Seattle, WA, Aug. 1999.

22. O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Int.

J. Robotics Res. 5(1):90–98 (1986).

23. M. M. Kokar, J. A. Tomasik, and J. Weyman, Data vs. decision fusion in the category

theory framework, Proc. 4th Int. Conf. Information Fusion (FUSION’01), Montreal,

Australia, Aug. 2001.

24. X.-Y. Li, P.-J. Wan, and O. Frieder, Coverage in wireless ad-hoc sensor networks, IEEE

Trans. Comput. 52:753–763 (2003).

25. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, Wireless sensor

networks for habitat monitoring, Proc. 1st ACM Int. Workshop on Wireless Sensor

Networks and Applications (WSNA’02), Atlanta, GA, Sept. 2002, pp. 88–97.

26. S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkonjak, Exposure in

wireless sensor networks: Theory and practical solutions, Wireless Networks

8(5):443–454 (2002).

254 COVERAGE AND CONNECTIVITY ISSUES IN WIRELESS SENSOR NETWORKS



27. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava, Coverage problems

in wireless ad-hoc sensor networks, Proc. IEEE InfoCom (InfoCom’01), Anchorage, AK,

April 2001, pp. 115–121.

28. S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, Exposure in wire less ad-hoc

sensor networks, Proc. 7th Annual Int. Conf. Mobile Computing and Networking

(MobiCom’01), Rome, Italy, July 2001, pp. 139–150.

29. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts and

Applications ofVoronoi Diagrams, 2nd ed., Wiley July 2000.

30. J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford Univ. Press, Oxford, UK,

1987.

31. M. Penrose, The longest edge of the random minimal spanning tree, Annals Appl.

Probability 7(2):340–361 (May 1997).

32. S. Poduri and G. S. Sukhatme, Constrained coverage in mobile sensor networks, Proc.

IEEE Int. Conf. Robotics and Automation (ICRA’04), New Orleans, LA, April–May

2004, pp. 40–50.

33. G. J. Pottie, Wireless sensor networks, Proc. Information Theory Workshop, June 1998,

pp. 139–140.

34. G. J. Pottie and W. Caiser, Wireless sensor networks, Commun. ACM 43(5):51–58 (May

2000).

35. P. Santi, Topology Control in Wireless Ad Hoc and Sensor Networks, Wiley, May

2005.

36. P. Santi and D. M. Blough, The critical transmitting range for connectivity in sparse

wireless ad hoc networks, IEEE Trans. Mobile Comput. 2(1):25–39 March 2003.

37. R. C. Shah and J. M. Rabaey, Energy aware routing for low energy ad hoc sensor

networks, Proc. IEEE Wireless Communications and Networking Conf. (WCNC’02),

Orlando, FL, March 2002.

38. S. Shakkottai, R. Srikant, and N. Shroff, Unreliable sensor grids: Coverage, connectivity

and diameter, Proc. IEEE InfoCom (InfoCom’03), pages 1073–1083, San Francisco, CA,

March 2003.

39. C. Shurgers and M. B. Srivastava, Energy efficient routing in wireless sensor networks,

Proc. Military Communications Conf. (MilCom’01), Vienna, VA, Oct. 2001.

40. D. Tian and N. D. Georganas, A coverage-preserving node scheduling scheme for large

wireless sensor networks, Proc. 1st ACM Int. Workshop on Wireless Sensor Networks and

Applications (WSNA’02), Atlanta, GA, Sept. 2002, pp. 32–41.

41. P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applica-

tions, Reidel Publishing, Kluwer, 1987.

42. G. Veltri, Q. Huang, G. Qu, and M. Potkonjak, Minimal and maximal exposure path

algorithms for wireless embedded sensor networks, Proc. 1st Int. Conf. Embedded

Networked Sensor Systems (SenSys’03), Los Angeles, Nov. 2003, pp. 40–50.

43. G. Wang, G. Cao, and T. LaPorta, A bidding protocol for deploying mobile sensors,

Proc. 11th IEEE Int. Conf. Network Protocols (ICNP’03), Atlanta, GA, Nov. 2003,

pp. 80–91.

44. G. Wang, G. Cao, and T. LaPorta, Movement-assisted sensor deployment, Proc. IEEE

InfoCom (InfoCom’04), Hong Kong, March 2004, pp. 80–91.

45. D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Aug. 2003.

REFERENCES 255



46. B. Yamauchi, A frontier-based approach for autonomous exploration, Proc. IEEE Int.

Symp. Computational Intelligence in Robotics and Automation (CIRA’97), Monterey,

CA, June 1997, pp. 146–156.

47. F. Ye, G. Zhong, S. Lu, and L. Zhang, Peas: A robust energy conserving protocol for long-

lived sensor networks, Proc. 10th IEEE Int. Conf. Network Protocols (ICNP’02), Paris,

Nov. 2002, pp. 200–201.

48. H. Zhang and J. C. Hou, Maintaining sensing coverage and connectivity in large sensor

networks, Proc. Int. Workshop on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc

Wireless and Peer-to-Peer Networks (AlgoSensors’04), Florida, Feb. 2004.

49. F. Zhao, J. Liu, J. Liu, et al. Collaborative signal and information processing: An

information-directed approach, Proc. IEEE 91(8):1199–1209, (2003).

50. Y. Zou and K. Chakrabarty, Sensor deployment and target localization based on virtual

forces, Proc. IEEE InfoCom (InfoCom’03), San Francisco, CA, April 2003, pp. 1293–

1303.

51. Y. Zou and K. Chakrabarty, Uncertainty-aware sensor deployment algorithms for

surveillance applications, Proc. IEEE Global Communications Conf. (GLOBECOM’03),

Dec. 2003.

52. Y. Zou and K. Chakrabarty, Sensor deployment and target localization in distributed

sensor networks, Trans. IEEE Embedded Comput. Syst. 3(1):61–91 (2004).

256 COVERAGE AND CONNECTIVITY ISSUES IN WIRELESS SENSOR NETWORKS


