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Abstract— We propose a cross-layer-model based adaptive
resource-allocation scheme for the diverse quality-of-service
(QoS) guarantees over downlink mobile wireless networks. Our
proposed scheme dynamically assigns power-levels and time-
slots for heterogeneous real-time mobile users to satisfy the
variation of statistical delay-bound QoS requirements. To achieve
this goal, we apply Wu and Negi’seffective capacityapproach
to derive the admission-control and power/time-slot allocation
algorithms, guaranteeing the statistical delay-bound for het-
erogeneous mobile users. When designing such an algorithm,
we study the impact of physical-layer issues such as adaptive
power-control and channel-state information (CSI) feedback
delay on the QoS provisioning performance. Through numerical
and simulation results, we observe that the adaptive power
adaptation has a significant impact on statistical QoS-guarantees.
In addition, the analyses indicate that our proposed resource-
allocation algorithms are shown to be able to efficiently support
the diverse QoS requirements for various real-time mobile users
over different wireless channels. Also, in an in-door mobile
environment, e.g., the widely used wireless local-area networks
(WLAN), our proposed algorithm is shown to be robust to the
CSI feedback delay.

Index Terms— Wireless networks, resource allocation, quality-
of-service (QoS), power control, cross-layer design and optimiza-
tion, effective capacity, real-time multimedia delay-bound.

I. I NTRODUCTION

T HE DIVERSE quality-of-service (QoS) guarantees for
the real-time multimedia transmissions play a critically

important role in the next-generation mobile wireless net-
works. Unlike its wired counterpart networks, supporting
the QoS requirement in wireless environment is much more
challenging since the time-varying fading channel has the
significant impact on the network performance. For wireless
QoS guarantees, link adaptation (LA) techniques have been
widely considered as the key solution to overcome the impact
of the wireless channel. At the physical layer, the most scarce
resources are power and spectral-bandwidth. As a result,
the LA techniques such as adaptive modulation and power
control are developed to enhance the spectral efficiency while
maintaining a certain target error performance [1]. However,
for real-time wireless multimedia services, the main QoS
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metric is bounded-delay, instead of high spectral efficiency [2].
Therefore, to support the real-time wireless multimedia QoS,
we need to consider the LA techniques not only at the
physical-layer, but also at the upper-protocol-layers such as
data-link layer when designing the wireless networks. To
achieve this goal, in this paper we develop the cross-layer-
model based adaptive resource-allocation scheme to support
the real-time multimedia QoS in the downlink heterogeneous
mobile wireless networks.

A. The Related Work

QoS provisioning in wireless networks has been widely
studied from different perspectives, such as packet scheduling,
admission control, traffic specifications, resource reservations,
etc. [2]–[11]. In [2] and [3], the authors investigated the real-
time and non-real-time QoS provisioning for code-division-
multiple-access (CDMA)-based wireless networks. In [4]–
[6], several architectures/algorithms were discussed for either
implicit or explicit QoS provisioning. In [7]–[8], the authors
integrated the finite-state Markov chain (FSMC) with adaptive
modulation and coding (AMC), and then jointly considered
the physical-layer channel and data-link-layer queuing char-
acteristics. The idea of resource allocation in [7] and [8]
is to calculate the reserved bandwidth for each user by
appropriate admission control and scheduling. This scheme
is developed across the physical-layer and data-link-layer and
is thus capable of characterizing the impact of physical-layer
variation on the data-link-layer QoS performance. However,
the main QoS requirement addressed in [7] and [8] is the
average delayof the wireless transmission, which does not
effectively support the real-time multimedia services, where
the key QoS metric is thebounded delay, as addressed in this
paper.

In [9], [10], the authors proposed a powerful concept termed
“effective capacity”. This concept turns out to be thedual
problem of the so-called “effective bandwidth”, which has
been extensively studied in the early 90’s in the contexts of
wired asynchronous transfer mode (ATM) networks [13]–[14].
The effective capacity and effective bandwidth enable us to an-
alyze thestatisticaldelay-bound violation and buffer-overflow
probabilities, which are critically important for multimedia
wireless networks. Based on [10], the authors in [11], [12]
proposed a set of resource-allocation schemes for statistical
QoS guarantees in wireless networks. The key techniques
used in [11], [12] are the integration of effective capacity
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Fig. 1. The system model. (a) Basestation transmitter. (b) Thekth mobile receiver.

with multiuser diversity [15], such that the scheme not only
provides the statistical QoS for different mobile users, but also
increases the total wireless-network’s throughput. However,
the effective capacity approach has not been explored in cross-
layer modeling and design for adaptive resource allocation and
QoS guarantees in mobile wireless networks.

B. The Contribution of This Paper

To overcome the aforementioned problems, in this paper
we propose a cross-layer-model based adaptive resource-
allocation scheme for downlink heterogeneous mobile wireless
networks. Based on our application of the effective capacity
method [16], [17], the system resources are allocated ac-
cording to the heterogeneous fading channel statistics, the
diverse QoS requirements, and different traffic characteristics.
Specifically, our scheme adaptively assigns power-level and
time-slots for real-time mobile users in a dynamic time-
division multiple access (TDMA) mode to guarantee the
bounded delays. We analytically derive the admission-control
and power/time-slot allocation conditions to guarantee the
statistical delay-bound for real-time mobile users. In this
paper, we do not employ multiuser diversity because of the
following reasons. In acentralized heterogenousmultiuser
network, the multiuser diversity will cause the serious fairness
problem — the users with good channels may occupy most of
the resources, while the users with poor channels may hardly
have opportunity for information transmission, which will
result in large queueing delay and thus the user’s delay-bound
QoS cannot be guaranteed. On the other hand, the advantages
of multiuser diversity only contribute to a small portion of
mobile users whose channel quality is good, which may not
lead to a significant QoS performance improvement from the
entire network perspectives. Note that in [18], the authors
proposed to use multiuser diversity under the “proportional
fairness” constraint. However, this scheme can only support
a loose delay-bound QoS requirements, which is also not
suitable for real-time multimedia services where the delay-
bound QoS requirement isstringent.

When designing the adaptive resource-allocation algorithm,
we address the problems of the physical-layer impact on
the statistical QoS provisioning performance. Specifically, we
study how adaptive power-control and channel-state informa-
tion (CSI) feedback delay influence our proposed scheme.

Based on our previous work [17], we apply our proposedQoS-
driven power adaptationfor heterogeneous mobile users and
compare its performance with conventional water-filling and
constant power schemes. Our numerical and simulation results
show that our proposed QoS-driven power control has signifi-
cant advantages over the conventional power controls in terms
of QoS-guarantees. On the other hand, our effective-capacity-
based adaptive resource-allocation algorithm can efficiently
support the QoS requirements for diverse real-time mobile
users. In an in-door mobile environment, e.g., the widely used
wireless local-area networks (WLAN), the proposed algorithm
also provides sufficient robustness to the CSI feedback delay.

The rest of the paper is organized as follows. Section II
describes our system model. Sections III briefly introduces
the concept of effective capacity. Section IV develops the
admission control and time-slot allocation algorithm with
fixed average transmission-power. Section V proposes the joint
power-level and time-slot allocation scheme. Section VI ana-
lyzes the impact of feedback delay on the proposed scheme.
The paper concludes with Section VII.

II. SYSTEM MODEL

The system model is shown in Fig. 1. In this paper,
we concentrate on single-input-single-output (SISO) antenna
system with the downlink transmission from the basestation
to the mobile users. We denote the total number of mobile
users byK, the total spectral-bandwidth of the system by
B, and the average transmission-power of the basestation by
P , respectively. We first assume that the average transmission
powerP is fixed. In Section V, we will remove this constraint
and letP vary within a discrete set. TheK users are assumed
to be heterogenous, i.e., they may experience different fading
conditions and demand different QoS requirements.

As shown by Fig. 1, the upper-protocol-layer packets are
first divided into a number of frames at data-link layer. The
frames are stored at the transmitter infinite-buffer and then
split into bit-streams at physical layer, where the adaptive-
modulation and power-control are employed, respectively, to
enhance the system performance. The reverse operations are
executed at the receiver side. Also, the CSI is estimated
at the receiver and fed back to the transmitter for adaptive
modulation and adaptive power-control, respectively.
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Fig. 2. The frame structure of the proposed system.

A. Data-Link Layer Frame Structure

The frame structure of our proposed system is shown by
Fig. 2. In our system, each frame at data-link layer consists
of L number of time-slots. The time-duration of each frame
is denoted byTf . Due to the employment of adaptive modu-
lation, the number of bits per frame varies depending on each
user’s modulation modes selected. As shown in Fig. 2, within
the frame durationTf , the system runs in a dynamic TDMA
mode. Thekth mobile user is assigned with a numberL(k) of
time-slots. The numberL(k) is determined by thekth mobile
user’s QoS requirement, which will be detailed in Section IV.
Clearly, we have

∑K
k=1 L(k) ≤ L.

B. Channel Model

We assume that the wireless fading channel is flat-fading
with Nakagami-m distribution. The fading statistics of differ-
ent mobile users are independent of each other. In this section,
we omit the user indexk for simplicity. The probability density
function (pdf) of the signal-to-noise ratio (SNR), denoted by
pΓ(γ), can be expressed as [19]

pΓ(γ) =
γm−1

Γ(m)

(
m

γ

)m

exp
(
−m

γ
γ

)
, γ ≥ 0 (1)

where Γ(·) represents the complete Gamma function,m
denotes the fading parameter of Nakagami-m distribution, and
γ denotes the average SNR of the combined signal, which can
be expressed asγ = PE{α2}/(N0B), whereE{α2} is the
average path-gain of the Nakagami fading channel andN0 is
the single-sided power spectral density (PSD) of the complex
additive white Gaussian noise (AWGN). Note that when the
average power-levelP varies, the corresponding average SNR
γ will change accordingly.

We use Nakagami-m channel model because this model is
very general and often best fits the land-mobile and indoor-
mobile multipath propagations [19]. As the fading parameter
m varies, wherem ∈ [1/2,+∞), the model spans a wide
range of fading environments, including one-sided Gaussian
fading channel (m = 1/2, the worst fading case), the Rayleigh
fading channel (m = 1), the precise approximations of Rician
and lognormal fading channels (m > 1), and the conventional
Gaussian channel (m = ∞, no fading). The channel is
assumed to be invariant within a frame’s time-durationTf ,
but varies from one frame to another. Furthermore, we assume
that the CSI is perfectly estimated at the receiver and reliably
fed back to the transmitter with a time-delay denoted byτ .
First, we assumeτ = 0, implying the perfect CSI feedback.
We will address the scenario with delayed CSI feedback in
Section VI.

C. Adaptive Modulation

Adaptive modulation is an efficient LA technique to im-
prove the spectral-efficiency at physical layer. In this paper,
we employ the adaptive QAM modulation proposed in [1].
The specific modulation modes for the adaptive-modulation
scheme are constructed as follows. We partition the entire SNR
range byN non-overlapping consecutive intervals, resulting
in N + 1 boundary points denoted by{Γn}N

n=0, whereΓ0 <
Γ1 < · · · < ΓN with Γ0 = 0 andΓN = ∞. Correspondingly,
the adaptive modulation is selected to be in moden if the
SNR, denoted byγ, falls into the range ofΓn ≤ γ < Γn+1.
The zero-th mode corresponds to the “outage” mode of the
system, i.e., the transmitter stops transmitting data in Mode 0.
The constellation used for thenth mode isMn-QAM, where
Mn = 2n with n ∈ {1, 2, ..., N − 1}. Let us further define
M0 = 0 and MN = ∞. Thus, the spectral-efficiency of the
adaptive modulation ranges from0 to N − 1 bits/sec/Hz. As
the SNR increases, the system selects the mode with higher
spectral-efficiency to transmit data. On the other hand, as the
SNR gets worse, the system decreases the transmission rate to
adapt to the degraded channel conditions. In the worst case,
the transmitter stops transmitting data as in the “outage” mode.

The bit-error rate (BER) when using thenth mode forn ∈
{1, 2, ..., N − 1}, denoted byBERn, can be approximated as
follows [1]

BERn ≈ 0.2 exp (−gnγ) (2)

where gn = 3/[2(Mn − 1)]. Based on the pdf given in
Eq. (1), the probabilityπn, that the SNR falls into moden is
determined by

πn =
∫ Γn+1

Γn

pΓ(γ)dγ =
Γ

(
m, m

γ Γn

)

Γ(m)
−

Γ
(
m, m

γ Γn+1

)

Γ(m)
(3)

whereΓ(·, ·) represents the incomplete Gamma function and
n ∈ {0, 1, ..., N − 1}.

In general, the forward-error control (FEC) and auto-
matic retransmission request (ARQ) are also employed at
the physical/data-link layer. However, in this paper we only
focus on uncoded system due to the following reasons. First,
there exist the simpleanalyticalpower-control policies [1][17]
for uncoded transmissions, while for coded transmission, it
is difficult to find such a policy. Thus, we assume uncoded
transmission for analytical convenience. Second, based on our
study in [16], we observe that the performance trends of
FEC/ARQ-based transmission is similar to that of uncoded
systems, as long as the link BER is not too high. Therefore, the
investigation of the uncoded system also provides a guideline
on designing the coded system.

D. Power Control

We mainly investigate three different power-control strate-
gies, namely, our proposed QoS-driven power control [17], the
water-filling power control, and the constant-power approach.
For different power-control strategies, the power-control law
as well as the boundary points{Γn}N−1

n=1 are different. We
study how to adjust the power and decide the boundary points
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for the above three power-control strategies, respectively, as
follows.

Strategy I: QoS-Driven Optimal Power Control. In [17],
we develop the QoS-driven optimal power-control strategy for
the adaptive QAM modulation. Let the BER QoS requirement
of the system be denoted byPtgt. In order to achieve the target
BER, i.e.,Ptgt, the power-control law, denoted byµn(γ), for
the nth mode can be derived as [17, eq. (22)]

µn(γ) =





(Mn − 1)
1

νnγ
, Mn ≤ γ

γ0
< Mn+1, (n 6= 0)

0, γ
γ0

< M1, (n = 0)
(4)

whereνn = −1.5/ log(5Ptgt) andγ0 is the cut-off threshold,
which can be numerically obtained by meeting the following
mean power constraint:

N−1∑
n=1

∫ Γn+1

Γn

µn(γ)pΓ(γ)dγ = 1 (5)

where we have [17, eq. (33)]

Γn = γ0M
κTf Bθ

log 2 +1
n (6)

where θ is called QoS-exponent [9], [10], which will be
detailed in Section III, andκ ≥ 1 is a parameter to deal
with the impact of channel correlation. Specifically, when the
channel process is uncorrelated (i.e., block fading channel),
then we haveκ = 1. Otherwise, when the channel process
is correlated,κ should be adjusted according to the channel
Doppler frequencyfd, see [17] for details. Once the cut-off
thresholdγ0 is determined, the boundary points{Γn}N−1

n=1 can
be obtained by using Eq. (6). The QoS-driven power control
makes the BER of each mode equal toPtgt. Then, the resulting
system BER is also equal toPtgt.

Strategy II: Water-Filling Power Control . In [1], the
authors proposed the optimal power-control strategy for adap-
tive MQAM that can maximize the spectral-efficiency, which
is actually based on the time-domain water-filling algorithm.
However, based on our study in [17], we find that the water-
filling power control can be considered as a special case of
our proposed QoS-driven power control by letting the QoS
exponentθ → 0. Thus, the power-control law and mean power
constraint of the water-filling scheme are the same as those
given by Eqs. (4) and (5), respectively. The boundary points
are determined by

Γn = lim
θ→0

γ0M
κTf Bθ

log 2 +1
n = γ0Mn. (7)

Strategy III: Constant-Power Approach. Constant power-
control approach is to keep the transmission power at the
basestation as a constant. Using Eqs. (1) and (2), the average
BER of the moden, denoted byBERn, can be derived as

BERn =
1
πn

∫ Γn+1

Γn

0.2 exp(−gnγ)pΓ(γ)dγ

=
0.2

(
m
bn

)m

πnΓ(m)

[
Γ

(
m,

bnΓn

γ

)
− Γ

(
m,

bnΓn+1

γ

)]

(8)

where bn = gnγ + m for n ∈ {1, 2, ..., N − 1} and the
boundary points are determined by

Γn =
η

gn
(9)

where the parameterη (η > 0) in Eq. (9) is numerically
obtained by meeting the following constraint on the average
BER requirementPtgt:

Ptgt =
∑N−1

n=1 nπnBERn∑N−1
n=1 nπn

. (10)

whereBERn is the function ofη through Eqs. (8) and (9).
Once the parameterη is determined, the boundary points
{Γn}N−1

n=1 can be obtained by using Eq. (9).

E. Service Process Modeling by Using FSMC

In this paper, we employ the FSMC model to characterize
the variation of the wireless service process. Each state of
FSMC corresponds to a mode of the adaptive-modulation
scheme. Letpi,j denote the transition probability from state
i to statej. We assume a slow-fading channel model such
that the transition only happens between adjacent states [20].
Under such an assumption, we havepij = 0 for all |i− j| >
1. The adjacent transition probability can be approximated
as [20]
{

pn,n+1 ≈ NΓ(Γn+1)Tf

πn
, wheren = 0, 1, ..., N − 2,

pn,n−1 ≈ NΓ(Γn)Tf

πn
, wheren = 1, 2, ..., N − 1

(11)

whereNΓ(γ) is the level-crossing rate (LCR) determined by
SNR of γ, which is given by [19]

NΓ(γ) =
√

2πfd

Γm

(
mγ

γ

)m− 1
2

exp
(
−mγ

γ

)
(12)

wherefd is the maximum Doppler frequency of the mobile
user. Then, the remaining transition probabilities can be de-
rived by using Eq. (11) as follows:





p0,0 = 1− p0,1

pN−1,N−1 = 1− pN−1,N−2

pn,n = 1− pn,n−1 − pn,n+1, n = 1, ..., N − 2.
(13)

Applying Eqs. (11) and (13), we obtain the probability tran-
sition matrix of the FSMC, denoted byP = [pij ]N×N .
Correspondingly, we obtain the stationary distribution of the
FSMC, denoted byπ, as follows:

π = [ π0, π1, ...πN−1 ] (14)

whereπn is given by Eq. (3) forn ∈ {0, 1, ..., N − 1}.

III. A P RELIMINARY OF THE EFFECTIVE CAPACITY

A. Statistical QoS Guarantees

The real-time multimedia services such as video and audio
require the bounded delay, or equivalently, the guaranteed
bandwidth. Once a received real-time packet violates its delay-
bound, it is considered as useless and will be discarded.
However, over the mobile wireless networks, a hard delay-
bound guarantee is practically infeasible to be achieved due to
the impact of the time-varying fading channels. For example,
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over the Rayleigh fading channel, the only lower-bound of the
system bandwidth that can bedeterministicallyguaranteed is
a bandwidth of zero [10]. Thus, we consider an alternative
solution by providing thestatisticalQoS guarantees, where we
guarantee the delay-bound with a small violation probability.

During the early 90’s, the statistical QoS guarantees theories
have been extensively studied in the contexts of so-called
effective bandwidth theorywith the emphasis on wired ATM
networks [13]–[14]. The asymptotic results in [13] showed
that, for stationary arrival and service processes with the
average arrival-rate less than the average service-rate, the
probability that the queue sizeQ exceeds a certain threshold
C decays exponentially fast as the thresholdC increases, i.e.,

Pr{Q > C} ≈ e−θC (15)

whereθ is a certain positive constant calledQoS exponent[9],
[10] to be detailed below. Furthermore, when delay-bound is
the main QoS metric of interest (i.e., when the focus is on
delay-bound violation probability), an expression similar to
Eq. (15) can be obtained as

Pr{Delay > Dmax} ≈ e−θδDmax (16)

whereDmax denotes the delay-bound, andδ is jointly deter-
mined by both arrival and service processes, which will be
elaborated on below.

From Eqs. (15)–(16), we can see that the parameterθ plays
an important role for the statistical QoS guarantees, which
indicates the decaying-rate of the QoS violation probability.
The smallerθ corresponds to the slower delaying-rate, which
implies that the system can only provide alooserQoS require-
ment, while a largerθ leads to a faster delaying-rate, which
means a morestringentQoS requirement can be guaranteed.
Consequently,θ is calledQoS exponent[9], [10].

B. Effective Bandwidth and Effective Capacity

In [9], [10], the authors proposed a powerful concept
termed aseffective capacity, which turns out to be thedual
problem of the effective bandwidth. The effective capacity
characterizes the attainable wireless-channel service-rate as
a function of the QoS exponentθ, and thus we can use it
as a bridge in cross-layer design modeling between physical-
layer system infrastructure and data-link-layer’s statistical QoS
performance.

To help demonstrate the principles and identify the rela-
tionships between effective bandwidth and effective capacity,
let us consider the case as illustrated in Fig. 3. For any
given arrival process and service process, we sketch their
effective-bandwidth function, denoted byEB(θ), and effective-
capacity function, denoted byEC(θ), in Fig. 3, respectively.
The effective bandwidth functionEB(θ) intersects with the
effective capacity functionEC(θ) at the point where the QoS
exponent isθ∗ and the rate isδ as shown in Fig. 3. In general,
the delay-bound violation probability can be calculated as
following steps:

Step1: According to the statistical characteristics of the
arrival and service processes, find the effective-
bandwidth function EB(θ) and effective-capacity
function EC(θ). Determine the solution of the rate

QoS Exponent

R
a
te

 (
b
it
s
/s

e
c
)

Arrival process

Effective capacity

Effective bandwidth

0

Service process C( )E

B( )E

Fig. 3. Relationships between effective bandwidth and effective capacity as
a function of the QoS exponentθ.

and QoS exponent(δ, θ∗) such that EB(θ∗) =
EC(θ∗) = δ.

Step2: For any pre-determined delay-boundDmax, the
delay-bound violation probability can be derived
using Eq. (16) as

Pr{Delay > Dmax} ≈ e−θ∗δDmax (17)

From the above observations and analyses, we propose to
use the effective bandwidth and effective capacity as a bridge
for the cross-layer modeling. The characterizations of the
QoS performance guarantees are equivalent to investigating
the dynamics of the effective capacity function, which turns
out to be a very simple and efficient cross-layer approach.

C. Effective Capacity of Our Proposed Scheme

As described above, the effective capacity is the dual
problem of the effective bandwidth. Thus, utilizing the well-
established effective bandwidth theory, it is feasible to formu-
late the effective capacity problem analytically. We showed
in [16] that based on our physical-layer FSMC model, the
effective capacity functionEC(θ) can be expressed as follows:

EC(θ) = −1
θ

log
(

ρ
{
PΦ(θ)

})
, θ > 0 (18)

whereρ{·} denotes the spectral radius of the matrix,P is the
transition matrix of our developed FSMC, and

Φ(θ) , diag
{
e−λ0θ, e−λ1θ, ..., e−λN−1θ

}
(19)

whereλn with n ∈ {0, 1, ..., N − 1} is the number of bits per
frame transmitted by thenth mode of the adaptive-modulation
scheme.

IV. A DAPTIVE RESOURCEALLOCATION WITH FIXED

AVERAGE POWER

The cross-layer modeling introduced in Section III estab-
lishes the analytical framework to investigate the impact of
physical-layer infrastructure variations on the statistical QoS
provisioning performance at the data-link-layer through the
effective capacity function. In this section, we develop the
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adaptive resource-allocation algorithms based on our devel-
oped cross-layer model to guarantee the desired QoS require-
ments. Since our focus is mainly on resource allocation in this
paper, we only adopt the simple round-robin (RR) scheduling
for the real-time mobile users.

A. The Effective Capacity of the Service Process

As described in Section II-A, our proposed system operates
in a dynamic TDMA mode. As shown in Fig. 2, thekth user
is assigned withL(k) of time-slots per frame for information
transmission. In order to determine the numberL(k) of time-
slots allocated to thekth user to support its statistical QoS,
we first need to derive the effective capacity of the service-
process. Consider only allocatingL(k) = 1 time-slot as a
basic-unit to thekth user, the effective capacity of thekth
user, denoted byE(k,1)

C (θ), can be expressed using Eq. (18)
as

E(k,1)
C (θ) = −1

θ
log

(
ρ
{
P(k) Φ(1)(θ)

})
, θ > 0 (20)

where P(k) is the transition probability matrix of thekth
user, which is determined by thekth user’s channel statis-
tics and is independent ofL(k), and Φ(1)(θ) is given

by Φ(1)(θ) = diag
{

e−λ
(1)
0 θ, e−λ

(1)
1 θ, ..., e−λ

(1)
N−1θ

}
, where

λ
(1)
n = nTfB/L, n ∈ {0, 1, ..., N − 1}, which is independent

of the channel statistics.
When allocatingL(k) = l time-slots for the user, applying

the results developed in [12], the effective capacity, denoted
by E(k,l)

C (θ), can be expressed as

E(k,l)
C (θ) = lE(k,1)

C (lθ). (21)

B. Admission-Control and Time-Slot Allocation

Let the kth user’s statistical QoS requirement be denoted
by {D(k)

max, ε(k)}, whereD
(k)
max is the delay-bound andε(k) is

the violation probability. Similar to the procedure described
in Section III-B, the time-slot allocation algorithms can be
designed in the following steps:

S1: Denote the effective bandwidth of thekth user’s
arrival-process byE(k)

B (θ). Find the solution of the
rate and QoS-exponent(δl, θl) such thatE(k)

B (θl) =
E(k,l)

C (θl) = δl.
S2: Using L(k) = l number of time-slots, the delay-

bound violation probability can be derived as

Pr{Delay > D(k)
max} ≈ exp

(
−θlδlD

(k)
max

)
(22)

S3: The numberL(k) is determined by

L(k) = min
1≤l≤L

{
l
}
, s.t. exp

(
−θlδlD

(k)
max

)
≤ ε(k).

(23)

For each real-time user,L(k) can be calculated using Eq. (23).
Clearly, the total number of time-slots that are allocated to the
real-time users needs to satisfy the following equation:

K∑

k=1

L(k) ≤ L. (24)

TABLE I

QOS REQUIREMENTS FORAUDIO AND V IDEO SERVICES.

BER Ptgt Delay-boundDmax Violation Prob.ε

Audio 10−3 50 ms 10−2

Video 10−4 150 ms 10−3

When a new mobile real-time user applies to join the system,
the admission-control algorithm examines if the number of
available time-slot resources is sufficient to support the new
real-time mobile user’s statistical QoS. If yes, the new real-
time mobile user is admitted to join the system; otherwise,
this new real-time mobile user is rejected to join the system.

C. Numerical and Simulation Results

We evaluate the proposed time-slot allocation algorithms
through numerical solutions and simulations. In the following,
we set the number of adaptive-modulation modesN = 8, the
total system spectral-bandwidthB = 1000 KHz, the data-
link-layer frame time-durationTf = 2 ms, the number of
time-slots per frameL = 100, and the maximum Doppler
frequencyfd = 15 Hz. Moreover, we generate two types
of real-time services. The first type simulates the low speed
audio service, where we model the arrival traffic by the well-
known ON-OFF fluid model. The holding times in “ON” and
“OFF” states are exponentially distributed with the mean equal
to 8.9 ms and8.4 ms, respectively. The “ON” state traffic
is modeled as a constant-rate of32 Kbps. The second one
simulates a high-speed video traffic flow. We employ a first-
order auto-regressive (AR) process to simulate video traffic
characteristics [21], the bit-rate of which can be expressed as

ν(t) = aν(t− 1) + bw (25)

where a = 0.8781, b = 0.1108 [21] and w is a Gaussian
random variable with the mean80 Kbps and the standard
deviation of30 Kbps. The effective bandwidth of the audio and
video traffic is derived according to [13] and [14], respectively.
The QoS requirements of these two types of services are
shown in TABLE I.

Using the time-slot allocation algorithm proposed in Sec-
tion IV-B, Fig. 4 shows the numerical results of allocated time-
slots for audio and video services as a function of the average
SNR. As shown by Fig. 4, for both audio and video services,
the required time-slots for supporting the QoS decreases as
the average SNR increases. The better quality channel (fading
parameterm = 5) needs the fewer number of time-slots than
the Rayleigh fading channel (fading parameterm = 1). When
the SNR is low, the time-slot allocation algorithms may not
find the feasible solution of theL(k) to support the required
QoS, sinceL(k) must satisfy1 ≤ L(k) ≤ L. From Fig. 4 we
can also observe that our proposed QoS-driven power control
has significant superiorities over both the conventional water-
filling scheme and constant power approach.

To evaluate whether the allocated time-slots can support the
required statistical QoS, Fig. 5 plots the simulated delay-bound
violation probabilities for video and audio services using our
proposed QoS-driven power control. We can obverse from
Fig. 5 that for both audio and video services the delay-bound
violation probabilities are below the required upper-bounds
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Fig. 4. The numerical time-slot allocation results for audio and video services.
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Fig. 5. Simulation results of the delay-bound violation probability for QoS-
driven power control. The fading parameterm = 1 (Rayleigh fading channel).

ε’s. The simulated delay-bound violation probability is lower
than the designated delay-bound violation probabilityε, which
is due to the fact that the approximations in Eqs. (15) and (16)
are conservative [10], [16]. Interestingly, Fig. 5 shows that the
QoS-violation probabilityfluctuatesaccording to the time-slot
allocation outcomes, which is because our time-slot allocation
results vary within a discrete set. For the conventional water-
filling scheme and constant power approach, we can observe
the similar delay-bound violation probability performance,
which is omitted for lack of space. Note that the conventional
power control schemes achieve the similar QoS violation
performance by using much more resources (i.e., time-slots,
see Fig. 4) than our proposed QoS-driven power control
scheme.

V. JOINT POWER-LEVEL AND TIME-SLOT ALLOCATION

A. Power-Level and Time-Slot Allocation Using Dynamic Pro-
gramming

In previous sections, we assume that the average trans-
mission powerP at the basestation transmitter is fixed. In
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Fig. 6. The time-slot and power-level mapping relations.

this section, we remove this constraint and let the average
transmission power vary within a discrete set. In fact, setting
the initial power-level has already been adopted in, e.g.,
UMTS 3GPP standard [22] for cellular networks. However,
in [22] it does not mention how to adjust the power-level
to guarantee the QoS requirement. In this paper, the idea of
joint power-level and time-slot allocation can be described as
follows. To guarantee thekth user’s QoS requirement, the
basestation may assign a larger number of time-slots while
using a lower power-level; it is also possible to allocate a fewer
number of time-slots while using a higher power-level. The
goal of our proposed joint power-level and time-slot allocation
algorithm is to assign each user with time-slots and power-
levels such that the user’s QoS requirement is guaranteed
while minimizing the total transmission energy. Thus, when
the number of users is large or the channel quality is poor, the
basestation can increase its transmission power-level to admit
more mobile users. On the other hand, when the number of
mobile users is small or the channel quality is good enough,
the basestation can decrease its transmission power-level while
still guaranteeing the desired QoS requirements. In a multi-
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cell wireless networks, e.g., the cellular networks, this will
not only save the power resources at the basestation, but also
generate less interference to the other cells.

It is clear that under current problem formulation, we can
also use different power-control policiesfor each given power-
level. However, in this section, we will only focus on our
proposed QoS-driven power control, since this scheme offers
the optimal performance. Let the set of the discrete average
power-levels be denoted byP = {P 1, P 2, ..., P I}, where
0 < P 1 < P 2 < ... < P I . Moreover, letP k(L(k)) denote
the minimum power-level that is required to guarantee the
kth user’s QoS requirement when allocatingL(k) time-slots to
the mobile user. Then, the problem of our dynamic resource-
allocation can be formulated as follows:

Objective: min

{
K∑

k=1

L(k)Pk(L(k))

}
(26)

subject to:
{

1 ≤ L(k) ≤ L, ∀k ∈ {1, 2, ..., K}∑K
k=1 L(k) ≤ L

(27)

where

P k(L(k))

= min
{

P ∈ P
∣∣∣∣ exp

(
−θL(k)δL(k)D(k)

max

)
≤ ε(k)

}
.(28)

To obtain the feasible solutions of the time-slotsL(k) and the
power-levelP k(L(k)), let us consider the procedure illustrated
in Fig. 6. Given a time-slot-allocation table obtained from
Section IV (e.g., Fig. 4), we can partition the average-SNR
range by a number of consecutive intervals, with each interval
corresponding to a power-level. At the range where the average
SNR is too low (as shown by the shaded-area in the left-hand-
side of Fig. 6), there is no feasible solution ofL(k) due to
the constraint of Eq. (27) thatL(k) must satisfyL(k) ≤ L.
On the other hand, at the range where the average SNR is
too large (as shown by the shaded-area on the right-hand-
side of Fig. 6), there is no feasible solution ofP k(L(k))
due to the condition of Eq. (28) thatP k(L(k)) must satisfy
P k(L(k)) ≤ P I . At the range in between, each average SNR-
interval is achieved by using certain power-levelP i, where
i ∈ {1, 2, ..., I}. Then, for a givenL(k), the required power-
level P k(L(k)) can be obtained by mappingL(k) into the
corresponding SNR-interval. For example, for the case shown
in Fig. 6, the power-levelP k(L(k)) falls into the SNR-interval
belonging toP 2 (as shown by the shaded-area in the middle
of Fig. 6). Therefore, the required minimum power-level is
P k(L(k)) = P 2.

OnceP k(L(k)) is attained, this minimization problem can
be solved by the dynamic programming (DP) approach [23].
Let us defineuk(l) , lP k(l), wherel = 1, 2, ..., L. The cost
function of the first mobile user, denoted byJ1(l), can be
expressed as

J1(l) = u1(l). (29)

Then, the cost function for thekth mobile user can be derived
iteratively as:

Jk(l) = min
1≤t≤l−1

{
uk(t) + Jk−1(l − t)

}
, for k ≤ l ≤ L (30)
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Fig. 7. The average energy consumption comparisons.

where k = 2, 3, ..., K. The resource-allocation algorithm is
executed every time when the new mobile user arrives or the
old mobile user leaves. In the case when the new user tries to
join the network, it is possible that there is no feasible solution
for the above problem. Thus, the basestation cannot support
the QoS requirement for the admission-testing mobile user
and therefore this mobile user is rejected to join the wireless
networks. Otherwise, the new mobile user is assigned with
certain time-slots and power-level for transmissions.

B. Complexity Discussions

In general, the complexity of finding the optimal power-
level and time-slots for multiple mobile usersexponentially
increases with the dimension of the searching space. For
example, forK users each being assigned withL time-slots
and I power-levels, the complexity is approximately propor-
tional to (LI)K . In contrast, by using our proposed dynamic-
programming based allocation scheme, the complexity islin-
early increased withLK. The key reasons of this complexity
decreasing include the followings. First, the employment of
dynamic programming reduces the exponential complexity to
linear complexity. Second, by using the power-level mapping
procedure introduced in Section V-A, the burden of finding
the minimum power-level (with complexity proportional to
I) is transferred to look up the “time-slot allocation table”
as shown by Fig. 6. Therefore, the complexity of dynamic-
programming is independent ofI. In practical systems, this
time-slot allocation table can be calculated off-line and stored
at the basestation in advance, without costing run-time CPU
resources.

C. Simulation Results

We also conduct simulations to evaluate our proposed
joint power-level and time-slot allocation algorithms. In the
simulations, the traffic types are randomly selected be-
tween audio and video services with probability of50%
for each type. We set the discrete average-power varying
within a dynamic range of±3 dB, with 7 discrete levels
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{−3 dB,−2 dB, ..., 2 dB, 3 dB} relative to the central power-
level (0 dB). Also, for a fair comparison with the results in
previous sections, we let the SNR of each user be uniformly
distributed between5 dB and25 dB when using the central
power-level (0 dB). Note that in UMTS 3GPP standard [22],
the power-level dynamic range is±9 dB (normal condition)
and±12 dB (extreme condition), which is much larger than
that used in our simulation. Therefore, our simulation results
are still conservative in terms of performance improvements.

Fig. 7 plots the average energy consumption comparisons
between the above three schemes, where the power is nor-
malized by the central power-level (0 dB). We can also
observe from Fig. 7 that the joint power-level and time-
slot allocation has significant advantage over the water-filling
and constant-power approaches. Fig. 8 depicts the simulation
results of the average admission-regions for the video and
audio users. As shown by Fig. 8, the averaged admission
region can be enlarged by the dynamic-programming-based
resource allocation. When the fading parameterm = 5, the
improvement is not as significant as that in Rayleigh fading
channel, which is due to the system capacity limit (L = 100).
However, our simulations show that this admission region is
achieved by using only65% of the power as compared to that
in Rayleigh channel.

VI. T HE IMPACT OF FEEDBACK DELAY

In previous sections, we assume that the CSI is reliably fed
back to the transmitter without error and delay. However, in
practice, this assumption hardly holds. In particular, the CSI
feedback delay is un-avoidable in most situations. Without loss
of generality, we discuss the impact of feedback delay on a
single user and omit the user-index for simplicity.

In order to guarantee the reliability QoS, the system needs
to maintain the same BER as that for the case without
feedback delay. As a result, the boundary points{Γn}N−1

n=1

for the adaptive modulation should be re-calculated. In [1], the
authors analyzed the impact of CSI feedback delay on BER
performance for the adaptive modulation. In [24], we also
investigated the feedback delay issue for transmit-selection-
combining (SC)/receive-maximal-ratio combining (MRC)-

based multiple-input-multiple-output (MIMO) scheme from
BER perspective. Using the similar approach to [1], [24], we
study the impact of feedback delay on the system’s delay-
bound QoS performance for different power-control policies
as follows.

A. QoS-Driven and Water-Filling Power Controls

We first investigate our proposed QoS-driven power control.
When considering the feedback delay, the transmission pro-
cedure can be described as follows. The constellationMn is
determined based on the SNRγ at timet, but the constellation
is transmitted at timet + τ with actual SNR denoted bŷγ. In
order to achieve the actual BER ofPtgt as in the case without
delay, the system needs to be designed to operate at a lower
target BER, which is denoted byP′tgt. According to Eq. (2),
the instantaneous BER at timet+ τ , denoted byBERn(γ̂|γ),
is given by

BERn(γ̂|γ) = 0.2 exp
(
−gnµn(γ)γ̂

)

= 0.2 exp
(

log(5P′tgt)γ̂
γ

)
(31)

whereµn(γ) is the QoS-driven power-control law given by
Eq. (4), except thatPtgt in the parameterνn should be
replaced by the new target BERP′tgt. Then, we obtain the
average BER with a givenγ, denoted byBERn(γ), as follows:

BERn(γ) =
∫ ∞

0

BERn(γ̂|γ) pΓ̂|Γ (γ̂|γ) dγ̂ (32)

wherepΓ̂|Γ (γ̂|γ) is the pdf of γ̂ conditioned onγ, which is
given by [24]

pΓ̂|Γ (γ̂|γ) =
1

(1− ρ)

(
m

γ

) (
γ̂

ργ

)m−1
2

· exp
(
−m(ργ + γ̂)

(1− ρ)γ

)
Im−1

(
2m

√
ργγ̂

(1− ρ)γ

)
(33)

whereIν(·) denotes the modified Bessel function of the first
kind with orderν andρ represents the correlation coefficient
betweenγ̂ and γ, which is given byρ = J2

0 (2πfdτ) [19]
with J0(·) denoting the zero-th-order Bessel function of the
first kind. Omitting the tedious derivations for lack of space,
we obtainBERn(γ) in Eq. (32) as a closed-form as follows:

BERn(γ) = 0.2
(

mγ

mγ − (1− ρ)γ log(5P′tgt)

)m

· exp
(

mρ log(5P′tgt)γ
mγ − (1− ρ)γ log(5P′tgt)

)
. (34)

Averaging Eq. (34) with respect to the pdfpΓ(γ) of γ given by
Eq. (1), we can express the average BER, denoted byBERn,
whenγ falls into thenth mode, as follows:

BERn =
1
πn

∫ Γn+1

Γn

BERn(γ)pΓ(γ)dγ (35)

whereπn andΓn are given by Eqs. (3) and (6), respectively.
It is hard to find the closed-form expression for Eq. (35).
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Fig. 9. The impact of CSI feedback delay on the time-slot allocation. The average SNR is set toγ = 10 dB.

However, it can be solved by a single finite-integral as

BERn =
0.2(1− ρ)m[log(5P′tgt)]

m

πnΓ(m)

·
∫ xn+1

xn

exp
(

log(5P′tgt)x(1− ρx)
1− x

)

· x2m−1

(1− x)m+1
dx (36)

wherexn = mΓn/
[
mΓn − (1− ρ)γ log(5P′tgt)

]
and xN =

1. The numerical searching procedure is used to search for
the new target BERP′tgt such that the actual BER after delay
satisfies

Ptgt =
∑N−1

n=1 nπnBERn∑N−1
n=1 nπn

. (37)

Once the new target BERP′tgt is obtained, we can find the new
boundary points{Γn}N−1

n=1 and thus reconstruct the FSMC of
the service-process. Then, the resource-allocation algorithms
can be re-executed based on the new FSMC. For water-filling
power control, the procedure is the similar, but omitted for
lack of space.

B. Constant Power-Control

Based on the similar approach to Section VI-A, we can
show that the average BER for thenth mode can be derived
as

BERn =
1
πn

∫ Γn+1

Γn

BERn(γ)pΓ(γ)dγ

=
0.2

πnΓ(m)

(
m

b′n

)m

·
[
Γ

(
m,

b′nΓn

γ

)
− Γ

(
m,

b′nΓn+1

γ

)]
(38)

where Γn is given by Eq. (9),b′n = m(γgn + m)/ζn, and
ζn = m + (1 − ρ)γgn. The searching procedure is also to
find the new boundary points{Γn}N−1

n=1 such that Eq. (37)
is satisfied. Also, after the boundary points{Γn}N−1

n=1 are

determined, we can reconstruct the FSMC of the service-
process and then we can re-execute the resource-allocation
algorithms based on the new FSMC.

C. Numerical and Simulation Results

The above analyses are verified by the numerical and simu-
lation results. In Fig. 9, we investigate the impact of feedback
delay on time-slot allocations. We can see from Fig. 9 that
the time-slot allocation results remain unchanged when the
normalized feedback delay is below certain threshold. When
fdτ further increases, the numberL(k) starts increasing in
order to maintain the same statistical QoS requirements. From
Fig. 9, we know that for all power-control policies, the better
quality channel (m = 5) can tolerant larger feedback delay
than the Rayleigh fading channel (m = 1). Specifically,
the Rayleigh channel can only tolerant feedback delay with
fdτ ≤ 0.01, while the channel withm = 5 can tolerant the
delayfdτ ≥ 0.04. Note that in our system, we haveTf×fd =
0.03, implying that the channel withm = 5 can tolerant
the feedback delay which is even larger than one frame’s
time duration. Thus, the proposed scheme provides sufficient
robustness to the system in an in-door mobile environment,
e.g., the widely used WLAN.

VII. C ONCLUSIONS

We proposed and analyzed a cross-layer-model based adap-
tive resource-allocation scheme for diverse QoS guarantees
over downlink mobile wireless networks. Our scheme jointly
allocates power-levels and time-slots for real-time users to
guarantee the diverse statistical delay-bound QoS require-
ments. We developed the admission-control and power/time-
slot allocation algorithms by extending the effective capacity
method. We also studied the impact of adaptive power control
and CSI feedback delay at physical-layer on the QoS pro-
visioning performance. Compared to the conventional water-
filling and constant power approach, our proposed QoS-driven
power adaptation shows significant advantages. The joint
power/time-slot allocation scheme can significantly reduce
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the transmit power, or equivalently, increase the admission
region. Also, in an in-door mobile environment, our proposed
algorithm is shown to be robust to the CSI feedback delay.
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