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Abstract—The problem of anonymous wireless networking is
considered when adversaries who monitor the transmissions
in the network are also capable of compromising a fraction
of nodes to extract network information. For a given level of
network performance, as measured by network throughput, the
problem of maximizing anonymity is studied from a game-
theoretic perspective. The metric of anonymity considered is
the conditional entropy of network routes given the monitored
packet transmission times. In order to provide anonymity, a
random subset of nodes (referred to as covert relays) are chosen
to generate independent transmission schedules. These covert
relays, unless compromised, can effectively hide the flow of traffic
through them. Depending on the routes and the throughput
requirement, the network designer needs to optimize the choice
of covert relays such that anonymity is maximized. Whereas, the
eavesdropper needs to optimize the choice of nodes to compromise
subject to a constraint on maximum number of monitored nodes,
such that the anonymity of the network routes is minimized. This
problem is posed as a two player zero-sum game, and it is shown
that a unique Nash equilibrium exists for a general category of
finite networks. Using numerical examples, the tradeoff between
the achievable anonymity and the power of the adversary is
demonstrated as a function of the throughput for passive and
active adversaries.
Keywords– anonymity, wireless networks, Nash equilibrium,
eavesdropper, traffic analysis

I. I NTRODUCTION

A. Motivation

The packet transmission times1 of nodes in a network
can reveal significant information about the source-destination
pairs and routes of traffic flow in the network [1]. Equipped
with such information, a malicious adversary can launch
more powerful attacks such as wormhole, jamming and denial
of service. The problem of anonymous communication in
traditional IP based networks has been well studied, beginning
with the seminal work by David Chaum on Mix networks
[2]. In ad hoc wireless networks, however, the problem has
attracted significant attention only recently [3]. The primary
challenge in the design of anonymous protocols for wireless
networks is to hide the routing information from eavesdrop-
pers without violating the constraints imposed by the shared
medium. In particular, the shared medium is band limited,
transmissions are susceptible to fading and interference,and
in many networks, nodes/routers are deployed with limited
physical protection.

1Transmission time in this work refers to the time point of transmission,
and not the duration or latency.

The typical design of anonymous networking protocols
models adversaries as passive and capable of monitoring
the transmissions in the network perfectly. However, in net-
works with limited physical protection, for example sensor
networks, adversaries would be capable of compromising a
few nodes and extract additional flow related information. In
this work, our goal is to study the problem of anonymity in
such networks, where anunknownsubset of the nodes are
compromised by the adversary. The subset of compromised
nodes could depend on the physical location of the adversary,
or partial knowledge of cryptographic keys. It is also possible
that in public wireless networks, certain nodes may have
lesser physical protection than others, and are hence, more
vulnerable.

From a network design perspective, the goal is to design
transmission and relaying strategies such that the desired
level of network performance is guaranteed with maximum
anonymity of network routes. Providing anonymity to the
routes of data flow in a network requires modification of packet
transmission schedules and additional transmissions of dummy
packets to confuse the adversary. These modifications however
reduce the achievable network performance, particularly in ad
hoc wireless networks, where the scheduling needs to satisfy
constraints due to limited bandwidth and interference on the
shared channel. Therefore, depending on the level of network
performance desired, it is necessary to pick the optimal set
of nodes to modify transmission schedules so that the quality
of service (QoS) criterion is met while providing maximum
anonymity. If the network designer were aware of which nodes
were compromised by the adversary, the optimal set of nodes
can be chosen such that minimum information is available
through the compromised nodes. However, if the adversary
is aware of the set of nodes chosen to modify schedules,
then he can choose to compromise only those nodes that
provide him maximum information about the network routes.
Since neither the adversary nor the network designer may have
perfect knowledge, this “interplay” between the two parties is
studied using game theory.

When the set of compromised nodes is unknown to the
network designer, intuition may suggest that the network de-
signer would have to design the scheduling strategy assuming a
passive adversary. However, when the power of the adversary,
i.e. the maximum fraction of monitored nodes, is bounded,
the strategies of the network designer and the adversary can
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be analyzed jointly to get a better tradeoff between anonymity
and network performance compared to that achievable under
the omniscient assumption. To this end, we propose a two-
player zero sum game between the adversary and the network
designer , where the payoff is anonymity, the action of the
adversary is to choose which nodes should be compromise
to minimize payoff and the action of the network designer
is to choose which nodes of the network to “hide” from
the adversary to maximize the payoff subject to the QoS
constraint.

Destinations

B1

B2

B3

B4

Sources Relays

Fig. 1. Example Network.

The game theoretic formulation can be motivated using the
following example. Consider the networkG1 as shown in Fig-
ure 1. We assume that during any period of observation of the
adversary, the network operates in one of six configurations,
one for each source-relay pairing (each source picks a distinct
relay). The adversary’s goal is to identify which of these
configurations is currently active in the network. Consider
an adversary who can compromise atmost one relay in the
network.

If a relay generates a transmission schedule that is statis-
tically independent from other schedules, then passive mon-
itoring would reveal no information about the flow of traffic
through the relay. However, if the relay were to be com-
promised then the node would reveal this information. If all
relays generated independent schedules, then it is easy to see
that the network has maximum anonymity regardless of which
node is compromised. Let us suppose that, for a given level
of network performance, the network is allowed to modify
the transmission schedule of at most two of the relays. If
the relays generating independent schedules areB1 and B2,
then an adversary who compromisesB1 or B2 (aside from
passively monitoring all other transmissions in the network)
would perfectly identify the set of source-destination pairs.
However, given the knowledge that the adversary would com-
promiseB1 or B2, the optimal strategy of the network designer
would be to make the schedules ofB3, B4 independent. This
“interplay” between the optimal design of adversary and the
network designer forms the motivation for the game-theoretic
model. In particular, this example can be formulated by an

equivalent two-player zero-sum game between the adversary
and the network designer, and it is easily shown that a Nash
equilibrium exists in the class of randomized strategies. At
the equilibrium point, the optimal strategy for the network
designer is to choose two of the relays with probability1
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to generate independent schedules, and the optimal strategy
for the adversary is to compromise any relay with probability
1
4 . By definition, at this operating point, neither the network
designer nor the adversary have any incentive to modify their
strategy.

The example considered a simple scenario of a two hop
network. In a general multihop network, anonymity based
on partial information about the routes can be quantified
using Shannon’s equivocation [4], [5], and the goal is to
optimize the tradeoff between the desired network throughput
and the achievable anonymity given the adversary’s monitoring
capability.

B. Main Contributions

In this work, we consider a general class of finite networks
with a localized adversarywho monitors the transmissions
of an unknown subset of the nodes. When the maximum
number of monitored nodes is bounded by a known quantity,
we present a game-theoretic formulation of the design problem
with anonymity as payoff, where the adversary chooses a
random subset of nodes to compromise and the network
designer chooses a random subset of nodes to modify trans-
mission schedules. For the class of finite multihop networks
considered, we prove that a unique Nash equilibrium exists
in the class of randomized strategies. We provide numerical
examples to demonstrate the tradeoff between the anonymity
and throughput under different adversarial restrictions.

C. Related Work

Anonymous communication over the Internet is fairly well
studied, where many applications have been designed based
on the concept of traffic mixes proposed by David Chaum
[2]. Mixes are routers or proxy servers that collect packets
from multiple users and transmit them after reencryption and
random delays so that, incoming and outgoing packets cannot
be matched by an external observer. While mix-based solutions
have been used in applications such as anonymous email [6]
or browsing [7], the strategies have not been designed for
long streams of packets under physical layer constraints on
latency or bandwidth. In fact, it has been shown that when
long streams of packets with latency or buffer constraints are
forwarded through mixes, it is possible to correlate incoming
and outgoing streams almost perfectly [8].

In wireless networks, an alternative solution to Mixing is
the use of cover traffic [9], which ensures that, irrespective of
the active routes, the transmission schedules of all nodes are
fixed apriori. If a node does not have any data packets, the
transmission schedule is maintained by transmitting dummy
packets. While the fixed scheduling strategy provides complete
anonymity to the routes at all times, it was found to be
inefficient [9] due to high rate of dummy transmissions and
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the implementation requires synchronization across all nodes
which is not practical in ad hoc wireless networks.

In this work, we adopt the mathematical framework devel-
oped in [5], [10] for omniscient adversaries, where equivoca-
tion was used to quantify anonymity of routes, and it was
shown that anonymity in network communication requires
a reduction in network throughput. In particular, for long
streams of packets transmitted across the network, it was
proven that any desired level of anonymity is achievable by
making a subset of relays (referred to ascovert relays) generate
independent transmission schedules.

The general adversary model considered here necessitates
a game-theoretic formulation of the problem. Game theory
[11] has been used in a wide range of multi-agent problems
from economics to networking. In the context of network
security, game-theoretic models have primarily been used to
model problems related to distributed intrusion detection[12],
[13], where the goal is to design attacking and detection
strategies with probability of detection as the payoff. In [14],
game-theory was used to study attacker and defense strategies
on a graphical model of a network, where the attackers
choose nodes to compromise while the defender picks links
to “clean up”. To the best of our knowledge, ours is the
first application of game-theory to hiding traffic flows in the
presence of eavesdroppers. The work closest to ours in this
regard is that of information concealing games using finite
dimensional data [15] where one of the players (the adversary)
chooses a subset of available resources to hide, while the
opponent (the network user) chooses a subset of resources
based on the revealed observation to maximize his utility.
The authors identify conditions under which Nash equilibria
exist and provide approximation techniques to compute the
equilibria. Conceptually, this problem has some similarities to
our strategy of covert relaying, where the network designer
chooses to hide a subset of relays, whereas the adversary
chooses a subset of relays to monitor. In our model, the
adversary’s observation depends on the actions of both the
players which are decided apriori. Furthermore, the payoff
is given by conditional entropy— a non linear function of
probabilities of mixing strategies— and is thus different from
classical mixed strategy models [16].

Entropy and measures related to entropy such as K-L diver-
gence have been proposed as payoffs in games of complexity
between two players,Nature and the Physicist, where the
goal of nature is to design the distribution of the observable
information, and the goal of the physicist is to guess the
chosen distribution with maximum accuracy. The equilibrium
strategies in such games of complexity have been shown to
belong to a category of maximum entropy distributions [17].

II. SYSTEM MODEL

Notation Let the network be represented by a directed graph
G = (V, E), whereV is the set of nodes in the network and
E ⊂ V×V is the set of directed links.(A,B) is an element of
E if and only if nodeB can receive transmissions from node
A. A sequence of nodesP = (V1, · · · , Vn) ∈ V∗ is a valid

path in G if (Vi, Vi+1) ∈ E , ∀i < n. The set of all loop-less
paths is denoted byP(G).

A. Adversary Observation and Inference

During any network observation by the adversary, a subset
of nodes communicate using a fixed set of paths. This set
of pathsS ∈ 2P(G) is referred to as a networksession. The
adversary’s goal is to use his observation to identify the
session. We modelS as an i.i.d. random variableS ∼ p(s).
The prior p(s) on sessions is assumed to be available to
the adversary. The set of possible sessionsS is given by
S = {s ∈ P(G) : p(s) > 0}.

Transmitter Directed Signaling The adversary’s observation
would depend on the underlying physical layer signaling
model. In this work, we consider orthogonal transmitter
directed signaling at the physical layer, where each node
utilizes a unique orthogonal signaling scheme such that a
transmission schedule detected by the adversary would reveal
only the transmitting node and not the intended receiving node.

Observable SessionThe goal of the network designer is to
modify transmission schedules of the nodes in every session
such that the observed schedules reveal as little information
about the actual session as possible. For instance, if a subset of
relays always generated independent transmission schedules
then it is not possible for the adversary to determine which
paths pass through them unless all of them are compromised.
In effect, the set of (broken) paths observeable would be
a distorted version of the actual session. LetŜ (henceforth
referred to asobserveable session) denote the set of paths
observed by an omniscient adversary.

Adversary Observation. We consider a general adversary
model, where all packet transmission times are observed by
the adversary, and a fraction of relays are compromised.
Specifically, the adversary randomly picks any subset of
relays, denoted byNa, to monitor subject to a constraint
on the maximum number of monitored nodes, denoted by
ka (also referred to aspower of the adversary). We model
Na as a random variable where the random distribution
of Na is chosen by the adversary to maximize his payoff.
Depending on the observeable sessionŜ and the set of
monitored nodes, the adversary would observe a less
distorted version of the underlying sessionS. In effect the
adversary’s net observation can be represented by a set of
paths Ŝa and would be given by a deterministic function
fa(S, Ŝ,Na). Note thatfa(S, Ŝ,V) = S andfa(S, Ŝ, φ) = Ŝ.

B. Performance Metrics: Anonymity and Throughput

The task of the network designer is to design a probabilistic
strategy, denoted byqn(ŝ|s), such that a desired quality of
service is achieved while the adversary obtains minimum
information about the sessionS by observingŜa. The task of
the adversary is to design the probabilistic strategyqa(Na)
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of monitored nodes such that maximum information can be
obtained by observinĝSa.

Anonymity We quantify anonymity using Shannon’s equiv-
ocation which measures the uncertainty of the underlying
session given the adversary’s observation (of the broken paths).

Definition 1: We define theanonymity A(qn, qa) for a
network strategyqn(ŝ|s) w.r.t adversary strategyqa(na) as
the normalized conditional entropy of the sessions given the
adversary observation:

A(qn, qa)
4
=

H(S|Ŝa)

H(S)
. (1)

The normalization ensures that the anonymity is always
between0 and1. The motivation behind the above definition
comes from Fano’s inequality which lower bounds the
adversary’s probability of error by the conditional entropy
[18]. Note that previous entropy-based definitions of
anonymity [5], [10] in the context of omniscient adversaries
are special cases of Definition1 (whenNa ≡ V).

Throughput Since distorting the observeable session requires
modification of transmission schedules, the latency and band-
width constraints in the network would require transmission
of dummy packets and result in a reduced rates of data
packes delivered from the sources to destinations. LetΛ(S, Ŝ)
represent the sum-rate of packets deliverable from sourcesto
destinations when the actual sessionS and the observeable
session iŝS. Note thatΛ(Ŝ,S) ≤ Λ(S,S).

Definition 2: The throughputΥ(qn) of a scheduling strat-
egy qn(Ŝ|S) is defined as

Υ(qn) = E

(

Λ(S, Ŝ)
)

(2)

where the expectation is over the joint pdf ofS and Ŝ.
Anonymity and throughput are essentially two opposing

paradigms in the design of the optimal scheduling strategy;
transmitting more dummy packets increases anonymity while
higher throughput necessitates fewer dummy transmissions.
Unlike the passive adversary setup, the uncertainty in the
identities of the compromised nodes,i.e. the randomness in
Na, complicates the design of the optimal scheduling strategy,
as was illustrated in the example in Section I. In the following
section, we therefore formulate this problem as a two-player
zero sum game, and establish the existence of Nash equilibria.

III. T WO PLAYER GAME USING COVERT RELAYING

STRATEGY

Consider a two-player zero sum game, defined by a3−tuple
(An,Aa, φ) whereAn andAa denote the action spaces of the
network designer and the adversary respectively, andφ : An×
Aa 7→ [0, 1] is the payoff function for the network designer
(the adversary’s payoff is−φ(·, ·)).

A. Action Spaces

In its most general form, the action space for the network
designer would include the set of all probability distributions
qn(Ŝ|S) which is a distribution over the space of loop-less
pathsP. In this work, we design the observeable sessionŜ

using the set ofcovert relaying strategieswhere each relay
node belongs to one of two categories:covertor visible.

Covert relay A covert relay B generates an outgoing
transmission schedule that is statistically independent of the
schedules of all nodes occurring previously in paths that
containB. Due to statistical independence, no adversary can
detect the flow of traffic through a covert relay.

Visible relay: A visible relay B transmits every received
packet immediately upon arrival thereby ensuring all arriving
packets are relayed successfully within the latency constraint.
However, the traffic flow through the visible relay operating
under this highly correlated schedule is easily detected byan
eavesdropper.

In a given sessions, if the set of covert relays isbn then
the observeable sessionŝ can be expressed as a deterministic
functionfo(s,bn). For a transmitter directed signaling model,
fo(s,bn) is a set of paths such that: for every path ins
which hask covert relays,fo(s,bn) containsk+1 paths, each
beginning at the source or a covert relay and terminating one
relay before the subsequent covert relay or the destination.
This is because the independent schedule of a covert relay
would prevent the adversary from detecting any correlation
between the schedule of any prior node in the path and that
of the covert relay.

We model the set of covert relays in a session by a random
variableBn with conditional distribution{qn(bn|s)} and the
class of covert relaying strategies is defined by the set of
all probability distributions{qn(bn|s)}. Note that this is a
restrictive set of strategies where it may not be possible to
realize all observeable sessions in2P(G) for any given session
s.

As expected, maintaining independent schedules would re-
quire covert relays to drop packets or add dummy packets
thereby resulting in rate loss, whereas visible relays can relay
every packet that arrives without any rate loss. The loss in
rate at a covert relay would be the function of the number of
arrival processes, distribution of transmission schedules and
the relaying strategy to forward packets. In a sessions, let
Λc(s,b) denote the achievable sum-rate when the relays in
the setb are covert. The characterization of the exact rate loss
is not necessary for the remainder of this exposition, and we
will treat it as an abstract quantity. In the subsequent section,
where we apply the theory to study parallel relay networks,
we shall use specific scheduling and relaying strategies, and
provide an analytical characterization of the rate loss forthat
class of networks.

For a given strategyqn(bn|s), the throughputΥ can be
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expressed as a linear function:

Υ(qn) =
∑

s∈S

p(s)
∑

b∈2V

qn(b|s)Λc(s,b).

By restricting ourselves to the class of covert relaying
strategies, we define the action spaces for the network designer
and the adversary in the game as follows:

An =















{qn(bn|s) : s ∈ S,bn ⊂ V} :
Υ(qn) ≥ γ

qn(bn|s) ≥ 0,∀s,bn
∑

bn

qn(bn|s) = 1,∀s

Aa =







{qa(na) : na ∈ Vka}
qa(na) ≥ 0,∀Na
∑

na

qa(na) = 1

The task of the two participants is to design the probability
mass functionsqn, qa to maximize their respective payoffs.
The key constraint in the action of the network designer is the
throughput requirement (Υ(qn) ≥ γ). The key constraint for
the adversary’s action is the maximum number of monitored
nodeska.

B. Payoff and Nash Equilibrium

Since the adversary obtains complete information from
the compromised nodes, the adversary observation would be
equivalent to the observeable session when the set of covert
relays exclude the compromised nodes. In other words, for a
given sessions, with covert relaysb, the adversary observation
ŝa would be given by

fa(s,b,na) = fo(s,b/na).

Define Fa : 2P(G) × 2V 7→ 2S×2V

to be the adversary’s
uncertainty set:

Fa(p,na) = {(s,b) : fa(s,b,na) = p}.

In other words,Fa(p,na) is the set of possible pairs of session
and covert relays that correspond to the given observationp

through the nodesna.
For a given pair of strategies(qn(s,bn), qa(na)) ∈ An ×

Aa), the payoff functionφ(qn, qa) is the anonymity which
from Definition 1 is given by:

φ(qn, qa) =
H(S|Ŝa)

H(S)
=

1

H(S)

∑

na∈2V

∑

s∈S,bn∈2V

qa(na)p(s) ×

−qn(s,bn) log qap(s, fa(fo(s,bn),na),ba) (3)

where

qap(s,p,n) =
qn(n, s)p(s)

∑

(s′,b′)∈Fa(p,n) qn(s′,b′)p(s′)

is the aposteriori probability that the current session iss

given the adversary observesp obtained through nodesn.

In a zero-sum game, we know that the interests of the
network designer and the adversary are exactly the opposite;

while the network designer would prefer to make the moni-
tored nodes covert, the adversary would prefer to monitor the
nodes that are not covert. We wish to determine if there is
an operating point in the pair of action spaces, where neither
the network designer nor the adversary has any incentive to
change their strategy, in other words, if this game has a Nash
equilibrium.

Definition 3: A pair of strategies(qn, qa) ∈ An × Aa

constitute aNash equilibriumif:

φ(qn, qa) = sup
q∈An

φ(q, qa) = inf
q∈Aa

φ(qn, q). (4)

Note that, although it has been shown that two player zero
sum games, as defined classically [16], always have a Nash
equilibrium in the class of mixed strategies, the result does
not extend to the game defined here. While the payoff for a
mixed strategy in classical two player games is a weighted
sum of the mixing probabilities, in our setup, the payoff is a
non-linear function of the mixing probabilities, as given in (3).
The existence of a Nash equilibrium in this game is shown in
the following theorem.

Theorem 1:1. For the two player zero-sum game defined
by the action spacesAn,Aa and payoff functionφ, there
exists a unique Nash equilibrium.

Proof: Refer to Appendix. 2

The Nash equilibrium condition guarantees that at the oper-
ating point, the adversary can use no other strategy to decrease
the anonymity of the session. Characterizing the optimal
strategy for the adversary is particularly helpful in network
scenarios where additional protection can be provided to nodes
that are more likely to be monitored. Note that since the action
spaces are defined on the probability simplex, any pair of
pure strategies inAa × An corresponds to a random choice
of deterministic strategies, and the Nash equilibrium would
therefore be a “pure” (albeit random) strategy equilibriumon
the defined action spaces.

Note that the omnisicient adversary setup is a specific
instance of this game, when the adversary compromises0
nodes. The existence and uniqueness of the Nash equilibrium
is trivial in that instance and the operating point is given by
the rate distortion optimization:

φ(γ) = H(S) − inf
qn(Ŝ|S):Υ(qn)≤γ

I(S; Ŝ), (5)

which was proven in [5].
The uniqueness of the equilibrium in the general adversary

model follows from the zero-sum property of the game. Note
that this game is also an example of an incomplete information
game [13] where the adversary does not have complete access
to the session or the realization of the network designer’s
randomness, while the network designer does not have access
to the realization of the adversary’s randomness.

Consider the example of a switching network as shown
in Figure 2. In any session of the network, each source
node Ai picks a unique destinationCj to transmit packets
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Fig. 2. Switching Network:{Ai} transmit to{Ci} through relays{Bi}.

to. Given a set of source-destination pairs, it is easy to see
that the set of routes are fixed. Figure 3 plots the tradeoff
between anonymity and throughput for the example network
for an active adversary for different values ofLe (number
of compromised nodes). Note that the adversary passively
monitors all other nodes in the network.
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Fig. 3. Throughput-Anonymity Trade-offs for switching network with an
active adversary.

In Figure 3, the curve corresponding toLe = 0 represents
the omniscient passive eavesdropper. As is evident from the
plots, active compromising of nodes significantly reduces
anonymity of the network routes. In this example, it is
sufficient for the adversary to compromise the4 relays
B1, · · · , B4 in order to perfectly determine the session. For
every value ofLe, there is a maximum level of anonymity
(less than1) that is achievable. This would correspond to
the minimum side information that can be obtained by the
adversary by compromisingLe relays.

Comparison with Localized Passive AdversaryIn [19], we
adopted a game-theoretic approach to study networks under
partial eavesdropping, where a passive adversary monitors
only a fraction of nodes. In that setup, the uncertainty in
the choice of nodes to monitor gives rise to a game-theoretic
formulation. The key difference between the partial eavesdrop-

ping and active adversary problems lies the choice of nodes
by the adversary. This is illustrated in Tables I and II, where
we summarize the optimal strategies of the adversaries with
different power levels. In the case of active adversaries, there
is a high correlation between compromised nodes and covert
relays, whereas, for passive adversaries, a higher percentage
of non-covert nodes are likely to be monitored.

Ke Eavesdropper support Designer Support

2 {
(B1, B3), (B1, B4)
(B2, B3), (B2, B4)

} { (B3), (B4) }

3

{(B1, B3, B4), (B2, B3, B4)
(A1, A3, B3), (A2, A3, B4)}

or
{(B1, B3, B4), (B2, B3, B4)
(A1, A4, B4), (A2, A4, B3)}

{(B3, B4), (B1, B2)
(B1), (B2)}

4

{(A1, A2, A3, B3), (A1, A2, A3, B4)
(A1, A3, B1, B3), (A2, A3, B2, B4)
(A1, A3, A4, B4), (A1, A3, A4, B3)
(A2, A4, B1, B4), (A1, A4, B2, B3)}

{(B3, B4), (B1, B2)
(B1), (B2)}

TABLE I
OPTIMAL SUPPORT SET OF STRATEGIES FOR NETWORK DESIGNER AND

THE LOCALIZED ADVERSARY.

Le Eavesdropper support Designer Support
1 { (B2), (B4) } { (B2, B4), (B4), (B2) }

2
{(B1, B2), (B1, B4)
(B3, B2), (B3, B4)}

{(B2, B4), (B2)
(B4), (B1, B2)}

3 {(B1, B2, B4), (B3, B2, B4)}
{(B3, B4), (B1, B2)
(B1, B2, B3, B4)}

TABLE II
OPTIMAL SUPPORT SET OF STRATEGIES FOR NETWORK DESIGNER AND

THE ACTIVE ADVERSARY.

IV. CONCLUDING REMARKS

In this work, we considered the problem of providing
anonymity to network communication when adversaries com-
promise an unknown subset of nodes in the network. We for-
mulated a game-theoretic equivalent, and proved the existence
of Nash equilibrium. Although the numerical simulation was
based on a simple switching network, the solutions indicate
that this approach can provide significant insight into optimal
design of anonymizing strategies as well as the optimal
adversarial behaviour. The problem of computing the Nash
equilibria has not been dealt with in this work, but efficient
algorithms for this purpose would fortify the results here,and
is part of ongoing research. In this work, we have used a
speficic network model, and assumed knowledge of topology
and sessions. A similar approach for random networks with
random connections could shed valuable insights on scaling
behaviour of anonymous communication.
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APPENDIX

A. Proof of Theorem1

In order to prove the existence of a Nash equilibrium in the
two player game, it is sufficient to show the following:

1) The action spacesAn and Aa are closed convex and
bounded sets.

2) The payoff is continuous in the domainAn ×Aa.
3) For everyqa ∈ Aa, the functionφ(x, qa) is concave in

x.
4) For everyqn ∈ An, the function−φ(qn, y) is concave

in y.

If the 2−player game satisfies the above conditions, then
it constitutes a general2−player concave game, which was
shown to have a guaranteed Nash equilibrium in [20].

1) Convexity of action spaces:The spaceAa is a finite-
dimensional simplex, which, by definition is closed,
bounded and convex.An is a subset of the simplex with
the additional constraint:

R(qa) ≥ r.

Since the constraint is not a strict inequality, the space
is closed.R(·) is a linear function ofqa. Therefore, for
any pair of probability vectorsq1

a, q2
a

αR(q1
a) + (1 − α)R(q2

a) = R(αq
1
a + (1 − α)q2

a),

which proves the convexity ofAn.
2) Since the payoff is linear inqa and is an entropy

function ofqn, the continuity of the payoff can be easily
shown (the details are omitted here).

3) In order to show the concavity ofφ w.r.t. toqn, we need
to show that for anyq1

n, q2
n ∈ An,qa ∈ Aa,

αφ(q1
n, qa)+(1−α)φ(q2

n, qa) ≤ φ(αq
1
n+(1−α)q2

n, qa).

Consider the following modification to the setup, where
apart from the topology and set of network sessions, the
network designer and the adversary are given access to a
common Bernoulli random variableZ ∼ B(α). Consider
any q

1
n, q2

n ∈ An. The network designer utilizes the
following strategy: If the observed variableZ = 1, then
the distributionq

1
n is used to make relays covert, and if

Z = 0, q
2
n is used. SinceZ is observed by the adversary

as well, this strategy would amount the anonymity being
equal to the conditional entropyH(S|Ŝ, Z).
Now, suppose the Bernoulli variable were only avail-
able to the network designer, and he utilizes the same
strategy. Since the adversary has no knowledge ofZ,
his entropy would beH(S|Ŝ) where the distribution of
covert relays would be the effective distribution:

αq
1
n + (1 − α)q2

n

. Since conditioning reduces entropy,H(S|Ŝ, Z) ≤
H(S|Ŝ, and therefore,

αφ(q1
n, qa)+(1−α)φ(q2

n, qa) ≤ φ(αq
1
n+(1−α)q2

n, qa).

4) For anyqn, φ(qn, qa) is a linear function ofqa, and
therefore,

αφ(qn, q1
a)+(1−α)φ(qn, q2

a) = φ(qn, αq
1
a+(1−α)q2

a),

which establishes the required concavity.
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