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Abstract—With the abundance of location-aware portable
devices such as cellphones and PDAs, a new emerging application
is to use this pervasive computing platform to learn about the
whereabouts of one’s friends and relatives. However, issues of
trust, security and privacy have hindered the popularity and
safety of the systems developed for this purpose. We identify and
address the key challenges of enabling private spatial queries
in social networks using an untrusted server model without
compromising users’ privacy. We propose Private Buddy Search
(PBS), a framework to enable private evaluation of spatial queries
predominantly used in social networks, without compromising
sensitive information about its users. Utilizing server side en-
crypted index structures and client side query processing, PBS
enjoys both scalability and privacy. Our extensive experimental
evaluation shows that PBS supports very efficient user operations
such as location updates, as well as spatial queries such as range
and k-nearest neighbor search.

I. INTRODUCTION

We are witnessing the emergence of a new killer-application
at the crossroad of two popular paradigms: Location-Based
Services (LBS) and Social Networking (SN). People make
friends and create buddy lists in virtual worlds using social-
networking sites such as MySpace (www.myspace.com) and
then use their mobile devices to locate their virtual buddies in
the real world. Enabling this emerging application, however,
has serious privacy ramifications. The users of mobile devices
may be willing to reveal their locations and/or profiles to their
buddies but not to the LBS+SN server and other users.

Hence, the challenge is how to support buddy searches
without revealing information to the server and other users in
the system. To illustrate the difficulty of this challenge, let us
consider two extreme solutions. One solution is to first encrypt
and then store all the users’ location and profile information
at a centralized server. The advantage of this approach is that
all the frequent updates to users’ locations (and profile) will
only be communicated to a single server. The disadvantage
is that the server cannot support any querying/searching on
the data efficiently because it is all encrypted. That is, for
every client query, the entire database needs to be sent to the
client for searching, hence, a high query overhead. The other
extreme solution is to eliminate the central server altogether
and push server’s asks to the clients. The problem with this
approach is that either every update to a user’s location needs
to be sent to all the members of the user’s buddy list (push)

or the user needs to communicate with all its buddies at the
query time (pull). Some studies try to make this approach
more practical by searching only the area around the user
by wireless broadcasting [3]. While this approach can find
user’s buddies around him, it cannot answer whether the user
has buddies beyond his cellphone’s short range BlueTooth
signals. Furthermore, the proposed techniques to protect lo-
cation privacy in LBS [11], [12], [6], [15] do not apply to
this problem because they focus on searching for the location
of static objects (e.g., hospitals), while here the buddies are
very dynamic and continuously move in the environment.
Meanwhile, the approaches to protect privacy in SN [2], [3],
[5] do not work either because they do not consider spatial
query processing using an untrusted server and mainly focus
on protecting a user from those not in his buddy list. However,
here no entity beyond a user’s buddy list is trusted while our
goal is to enable users to query their buddy lists privately.

In this paper, we propose a framework, called Private Buddy
Search (PBS), which would protect the users’ profiles and
locations from both the server and other non-buddy users.
Our approach strikes a compromise between the two above
mentioned extremes by storing users’ aggregate information
in various encrypted index structures at a centralized server
and then pushing the querying to the clients. Hence, the
clients utilize the encrypted index structures to only retrieve
a small portion of the database related to the query area.
Consequently, our approach benefits from the advantages of
both worlds. First, all the location (and profile) updates are
only sent to and stored (encrypted) in a single centralized
server. Second, at the query time, by securely communicating
with the (untrusted) server, the client receives enough informa-
tion to answer most typical LBS+SN queries. Another major
contribution of this paper is that we discuss our approach
as part of a complete end-to-end framework for PBS, which
includes proposed cryptographic protocols to certify users,
enable secure communication within groups, support various
group operations (e.g., join, leave) and enable private spatial
queries such as range and k-nearest neighbor (kNN) search.

To evaluate our PBS framework, we performed extensive
sets of experiments measuring client and server overhead for
various PBS operations and queries. The results confirm that
by distributing cryptographic and querying workload between



Fig. 1. The PBS Trust Model

the clients and the server, PBS supports very efficient interac-
tions for a large number of mobile users.

The remainder of the paper is organized as follows. Section
II sets out our trust and adversary models. Section III reviews
the key design decisions made in PBS and Section IV details
PBS constructs that collectively provide strong user privacy.
In Section V, we present PBS’s spatial query processing
techniques whereas Section VI covers the client/server com-
putation protocols which enable secure user interactions with
the server and their peers. Our experimental evaluations are
detailed in Section VII and Section VIII reviews the security
issues of PBS. Finally, Section IX surveys the related work
and we conclude the paper in Section X.

II. TRUST AND THREAT MODEL

We model a social networking framework as a central
location server LS (or server for short) and a set of users
U = {u1, u2, . . . , un}. Each user carries a client device (e.g.,
cellphone, laptop or PDA) equipped with a positioning tech-
nology such as GPS, Wi-Fi or GSM. All users communicate
with LS which acts as a central repository for users’ data and
querying needs. For the rest of the paper, by referring to a
user, we imply his client device by which he communicates
with LS or other users. Each user belongs to a group from
a set of groups G = {g1, g2, . . . , gm}. We assume users are
partitioned into m disjoint groups and defer the discussion of
multiple group affiliations to Section VIII. We also define a
user’s buddy list or peers as all users belonging to his group.

Users trust members of their buddy list with their sensitive
information. This trust is established when a user invites
another user to become part of his buddy list. We assume
the trust relationship between two users is symmetric (see
Figure 1). Users are willing to share their current location
and other non-spatial information with their peers and query
their buddies’ information if they so choose. Users trust neither
anyone outside their buddy list nor the LS. We use the term
adversary to refer to any such entity.

Although users trust their peers, recent studies have high-
lighted that users might not be willing to share their location
information even with their peers at certain times and prefer
to maintain their “social boundaries” [2]. Therefore, it is
important to allow users to temporarily stop sharing their
location information even with their trusted buddy lists.

We assume users do not trust the location server. However,
we take an honest but curious behavioral model for the loca-
tion server. That is, LS does not deviate from PBS protocols.
However, it is curious to take advantage of any sensitive user
data. This is a practical assumption in many disciplines such
as database outsourcing [8] and secure file sharing [10].

To interact with the location server and other peers, each
user uj creates a random pseudonym as his confidential

identity. User uj also creates the asymmetric public/private
key pair uj .pub, uj .pri and securely stores uj .pri on his
client device. The mapping between uj’s real identity and
his pseudonym is only revealed to uj’s buddies during the
group invitation process (Section VI-A). Therefore, while
uj .pub is used to verify uj during his communication to the
server and other peers, his pseudonym cannot be resolved to
his real identity by an adversary. We use public key digital
signatures to allow peers to efficiently authenticate each other
and henceforth denote uj’s Verifiable Pseudonym by vp.

Each user uj owns a profile denoted by uj .t which contains
non-spatial attributes such as gender, age and self-description.
We refer to a uj’s current position by the pair < uj .x, uj .y >.

To enable querying users’ profile and location information
within a group, any sharable user information has to be stored
and maintained on the untrusted location server. In this paper,
we do not consider a peer-to-peer architecture with no central
repository and assume the existence of a centralized server to
resemble real-world social network and location-based service
architectures. In addition, a P2P solution provides a limited set
of features such as location discovery of peers within a user’s
proximity [3] and cannot efficiently support spatial queries
over a user’s buddy list. Finally, while P2P approaches enable
two-party computation schemes such as “where is Bob now?”,
they cannot respond to queries such as “which one of my
friends are now in New York?” which is a fundamentally
different type of query also supported by PBS.

While querying other peers, user’s communication with LS
should not reveal sensitive information about both identity and
location of the querying user or the user being queried to
any adversary [12]. Obviously, PBS or other privacy-enabling
frameworks cannot protect users’ information from being
leaked to adversaries through other means such as physical
observation. Moreover, while we always encrypt client/server
communications to protect the content of information, anony-
mous communication is orthogonal to our problem and con-
structs such as Onion Router (Tor) [4] can be used to protect
PBS against traffic analysis or eavesdropping attacks.

III. QUERYING AN UNTRUSTED SERVER

In this section, we review the major design decisions we
made in PBS to support two conflicting objectives namely
query efficiency and user privacy. We show how indexing
aggregate data at the server side and shifting the query
evaluation to the client side enable efficient yet private query
processing. While we mainly focus on querying spatial data,
non-spatial data can be queried in a similar manner.

A. Client Side Query Processing with Space-Driven Indexing
Storing encrypted user information in a central location

server enables users to share and query location information
of their buddies. However, as we discussed in Section I, the
immediate effect of encrypting such information is crippling
LS from being able to efficiently process queries. To address
this drawback, we push query processing to the client side
and demote the server’s responsibility to a central storage
and retrieval module for our encrypted indexes. However,
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client side query processing imposes certain restrictions on
the choice of the partitioning used to index spatial data.

One of the most conventional ways of efficiently querying
spatial data is to partition objects according to their distribution
into sets of nearby objects and maintaining these sets in a tree
structure. The most well-known example of such data-driven
index structures [14] is the R-tree index [7] and its variants
where each set is the MBR of a group of nearby objects.
However, data-driven indexes are not viable solutions for our
framework. First, these indexes maintain a hierarchical tree
representation of objects at the server. Since the server is not
trusted in our model, the encrypted tree which indexes the
objects (MBR’s) should be maintained by the clients and be
communicated to them for query processing. This approach
requires users to go through several rounds of downloading,
decrypting, modifying, re-encrypting and communicating tree
nodes with the server for each query or location update
request. More importantly, while efficient with static data,
maintaining data-driven indexes is costly in the presences of
highly dynamic data [16], [9]. Therefore, using encrypted data-
driven indexing is not an attractive approach in our setting.

We avoid these drawbacks by using fixed grids which is an
example of space-driven index structures [14]. With this class
of indexes, objects are mapped to a certain cell independent
of other objects and solely based on some geometric criterion.
Knowing the grid granularity, henceforth denoted by δ, users
can directly query a certain region without having a global
knowledge of objects distribution. For instance, the client can
quickly identify a set of cells that (partially or fully) overlap
with his range query. This is a clear advantage over data-
driven indexing in terms of the complexities of maintaining
and querying a centralized encrypted index. While we use
grids as our primary index structure to achieve efficiency, we
stress that PBS can also utilize data-driven index structures
such as quad-trees at the cost of more complex client side
query processing and higher communication cost. We leave as
part of our future work, the design of an encrypted data-driven
index with reasonable cost for decentralized maintenance.
B. Plain Indexing: Aggregation and Isolation

We showed how client side query processing and space-
driven indexing are necessary to ensure privacy and efficiency.
However, simply encrypting space-driven indexes in general,
and grids in particular, do not guarantee privacy and efficiency.
Consider the object distribution of Figure 2a where the server
stores for each grid cell Cxc,yc , its enclosing objects as
shown in Figure 2b (for simplicity, we have only shown
object identifiers). To ensure privacy, we can encrypt each
record as e(Cxc,yc): < e(u1),e(u2), . . . ,e(ur) > where e()

represents an encryption. However, looking at Figure 2c top, it
is obvious that the server can roughly obtain user distribution
and mobility patterns from the size of each tuple.

Alternatively, one can treat all objects in a cell as a whole
during encryption. As illustrated in the bottom of Figure
2c, this process results in the encrypted index e(Cxc,yc) :<

e(u1, u2, . . . , ur) >. However, while such encryption does not
resolve the information leak, it further exacerbates the commu-
nication cost for each location update as well as buddy tracking
request as an entire row has to be queried, downloaded and
decrypted by the client for accessing each object.

We address the security threats and inefficiencies associated
with storing raw encrypted data by breaking the non-uniform
encrypted index discussed above into an encrypted Aggregate
Cell Index (ACI) and an encrypted Isolated Object Index
(IOI). Both of these indexes are plain, meaning all encrypted
tuples in either index have the same size regardless of object
distribution. The plain structure of ACI is achieved by storing
aggregate data for each cell while the plain structure of IOI is
achieved by indexing each individual object independent and
in isolation from other objects. Figure 2d illustrates a sim-
plified example to show how breaking the object information
into two plain indexes prevents an adversary from learning the
object distribution. We defer more details regarding the ACI
and IOI structures to Section IV-B.

IV. THE PBS FRAMEWORK

We now proceed to provide more details about PBS. We
introduce the concept of group keys and detail how our pro-
posed secure server side indexes enable users to efficiently and
privately query their peers in a social networking environment.

A. Group Keys
To ensure the privacy of users, PBS should support two

privacy features: (i) enabling peers to execute location queries
on their buddy list. (ii) preventing an adversary from obtaining
sensitive information about users during query processing. To
achieve these goals, members of each group share a symmetric
secret group key which enables users to query the current
location or other information of users in their buddy list. For
a group gi, all communications between the members, as well
as any sharable user information stored at LS are encrypted by
gi’s group key denoted by ki. We use eki() and dki() to denote
encryption and decryption of a value with ki, respectively.

B. Server Side Indexes
In Section III-B, we briefly discussed how to distribute

users’ raw encrypted location data into an encrypted Aggregate
Cell Index (ACI) and an encrypted Isolated Object Index (IOI)
and presented simplified versions of these indexes. We now
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provide more details about these two encrypted indexes. We
recognize two fundamentally different query types supported
in PBS. Data-driven queries allow a user to query another
user in his buddy list for his current location or other profile
information. Space-driven queries such as range and kNN
queries on the other hand, allow users to query a region (as
opposed to an object) for the presence of other peers. In
PBS, space-driven queries are supported by ACI while data-
driven queries are supported by IOI. Figure 3a illustrates the
ACI and IOI indexes stored at LS. Each tuple in ACI stores
aggregate user information for each cell per each group and
is represented by ACI = {eki

(xc,yc, gi), < eki (gi.cnt) >}, where
cnt or the object count denotes the number of uj’s peers
co-located in uj’s cell. Each object in PBS owns a record
in IOI with the schema IOI = {eki

(xc,yc, gi,uj.rnk),uj.vp, <

eki (uj .x, uj .y, uj .t) >}. A user’s rank uj .rnk is a sequence
number assigned to each object denoting an ordering between
peers of a group in each cell based on their arrival time.
Therefore, uj .rnk ∈ {1 . . . cnt}. Note that the bold-faced
columns are indexed and searchable. Aside from the above
indexes, the server maintains each user’s public key certificate
in a Key Relation RK = {uj.vp, < uj .pkc >} for authentication
purposes. Figure 3b illustrates a global view of how private
information is distributed between different PBS entities.

The benefits of breaking the object information into the ACI
and IOI indexes are threefold. First, our two proposed indexes
prevent the adversaries from learning any information about
the object distributions from the size of the encrypted indexed
data. This property is achieved via the plain nature of ACI and
IOI indexes. Second, ACI and IOI indexes efficiently support
various types of queries. With space-driven queries, knowing
the grid granularity, users first identify the right cells which
are likely to contain information about their buddies. Next, by
learning each cell’s aggregate information from ACI, they form
a request packet which is a set of requests for IOI tuples each
containing information about one of user’s buddies. For data-
driven queries, users directly query their peers in IOI using
their pseudonyms to locate or track them without knowing
their current location. We detail query processing in Section
V. Third, as we discuss in Section VI, PBS supports a wide
range of features that allow users to interact with their peers
and other users in a social networking environment.

V. PRIVATE SPATIAL QUERIES WITH PBS
We now discuss how the ACI and IOI indexes enable private

evaluation of space and data-driven queries in a social network.
A. Range Queries

A range query Range(R, gi) allows a user uj of group gi to
find the location of his peers in the rectangular region R (cir-
cular ranges are approximated by their surrounding rectangles

by later filtering excessive results at the client side). Algorithm
1 illustrates how range queries are supported with PBS.
Users first query ACI for aggregate information of the cells
overlapping with R. Next, the server’s response is decrypted
and a second request for IOI tuples each corresponding to one
of the user’s buddies in R is formed. Processing each range
query involves two rounds of client/server communication.
These steps are underlined in Algorithm 1 which illustrates
range query processing in PBS.

Algorithm 1 Range Queries
Require: R, gi, δ; {range, group and grid granularity info }

for all C =< xc, yc > overlapping with R do
req1 ← req1 ∪ eki (xc, yc, gi);

res1 ← LS.ACI[req1]; {server processing req1}
for all T = eki (xc, yc, gi), eki (cnt) ∈ res1 do
C < xc, yc >← dki (eki (xc, yc, gi)); cnt← dki (eki (cnt));
if (cnt 6= 0) then
U ← U ∪ C < xc, yc >; {find non-empty cells}

for all C ∈ U do
for (rnk ← 1; rnk ≤ C.cnt; rnk + +) do
req2 ← req2 ∪ eki (xc, yc, gi, rnk); {add objects ∈ R}

res2 ← LS.IOI[req2];{server processing req2}
for all T ′ =< eki (uj .x, uj .y, uj .t) > ∈ res2 do
< uj .x, uj .y, uj .t >← dki (T

′);
res← res ∪ < uj .x, uj .y, uj .t >

return (res);

B. k-Nearest Neighbor Queries

Resolving kNN queries is similar to range queries except
that here, the region containing users’ k-nearest peers is not
known in advance. Therefore, users progressively form con-
centric rectangular regions and query ACI until enough cells
are found that include at least k objects. Figure 4a illustrates
this progressive expansion strategy. The cells are shaded and
numbered according to the step they are visited. Next, a second
request queries IOI for objects located in the expanded region.
The server’s response will hence include location information
of k nearby objects. However, approximating a circular region
with rectangular regions might result in some false negatives
(points such as O7 in Figure 4b located inside the circle but
outside the rectangle) that are part of the result set. Therefore,
once the kth object is found, users expand the queried region
R to a safe region R′ which represents the region including
false negatives to guarantee query accuracy. It is easy to verify
that R′ is a square with sides 2×d||cq−farq(k)||e where cq is
the cell containing q and farq(k) is the cell containing q’s kth

nearest object in R and ||.|| is the Euclidean norm [16]. This
process is performed by the addSafeRegion() function in
Algorithm 2 which details kNN query processing (underlined
sections represent client/server communication).

C. Buddy Tracking
In addition to the space-driven queries discussed above,

an important functionality in a mobile social networking
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environment is to enable users to query a specific peer’s
location or profile information. To enable these data-driven
queries, users keep the list of their buddy lists vp’s in their
client devices (denoted by blvp in Figure 3b). The user uj
trying to track uv’s location (or to view uv.t), queries IOI
with uv.vp. As part of their invitation, users have received the
inviter’s vp, as well as his/her real identity and hence they
keep this mapping in blvp. Note that the server cannot verify
whether uj and uv belong to the same group and hence cannot
prevent uv’s information from being queried by adversaries.
However, this is not an issue as an adversary cannot decrypt
the sever’s response if he is not part of uv’s buddy list.

Algorithm 2 kNN Queries
Require: q, k, gi, δ; {kNN center, k, group and granularity}
ct← 0; {object count}
xc ← b q.xδ c; yc ← b

q.y
δ c;

req1 ← eki (xc, yc, gi); {adding the querying cell}
Let region ← C =< xc, yc >;
while (ct < k) do
region = expand(region); {stripe surrounding region}
for all C =< xc, yc > ∈ region do
req1 ← req1 ∪ eki (xc, yc, gi);

res1 ← LS.ACI[req1]; {server processing req1}
for all T =< eki (cnt) > ∈ res1 do
C.cnt← dki (T );
if (C.cnt 6= 0) then
ct+← C.cnt;
for (rnk = 1; rnk ≤ C.cnt; rnk + +) do
req2 ← req2 ∪ eki (xc, yc, gi, rnk); {tag cell’s objects}

res2 ← LS.IOI[req2];{server processing req2}
for all T ′ =< eki (uj .x, uj .y, uj .t) > ∈ res2 do
u =< uj .x, uj .y, uj .t >← dki (T

′);
res2 ← res2 ∪ u;

req1 ← ∅; req2 ← ∅;
return (res2 ∪ addSafeRegion(uj .x, uj .y, res2));

VI. PBS OPERATIONS

PBS supports a range of functionalities that enable various
user interactions with other peers. In this section, we provide
the two-party computation protocols between the users and the
server that enable such interactions.
A. Group Related Operations

Initiating Groups: To initiate a group gi, a user uj creates
a secret symmetric group key ki and computes the respective
ACI and IOI tuples by setting gi.cnt = 1, uj .rnk = 1. He
then signs this group init request and sends it to the server.
The server verifies the signature and processes the request.
Note that for all client/server communications, users bind a
nonce to their request to thwart replay attacks.

Joining Groups: A user can be invited to a group by any
of the group members. In order for a user uj ∈ gi to form
an invitation request to uv , he first needs to learn uv.vp (this
step is analogous to asking uv for his email address or phone
number except that here, vp is anonymous). Next, uv receives

the invitation euv.pub

(
uj .vp, uj , euj .pri(invitation, ki)

)
. The in-

vitee (i.e., uv) first decrypts the invitation with uv.pri. This
step ensures no one else can take advantage of the invitation or
learn anything by snooping the communication. Next, uv tries
to decrypt the invitation. If successful, this step guarantees
the invitation is sent by uj and transfers the group key to
uv . Having gi and ki, uv queries ACI and learns the object
count of his cell (i.e., cnt). He then sets uv.rnk = cnt + 1
and constructs a signed join request to the sever which updates
ACI (incrementing uv’s cnt) and adds one tuple to IOI storing
uv’s information. Note that the server does not learn any
information about the group or the identity of either user.

User Revocation: Revoking users from a group is chal-
lenging as the revoked user can share the secret group key
with adversaries to snoop future group communications. One
solution to revocation is for the remaining users of each group
to negotiate a new group key and to re-encrypt all relevant ACI
and IOI tuples. Unfortunately, this is a costly approach.

We use the lazy revocation with key rotation scheme from
[10] for revoking users’ access to shared files. Following the
eviction of a user from gi, the remaining users negotiate a new
group key which will be used to encrypt all future ACI and
IOI tuples during write operations such as location updates.
This scheme is called lazy revocation as the revoked users still
have access to the content they had access to, prior to their
eviction. However, this is not a security flaw as such members
could have cached the data and hence blocking their access to
unmodified data does not have any advantages. As new users
join PBS or during updates to the two indexes, one always uses
the most recent group key. However, the key rotation scheme
proposed by [10] guarantees that after each eviction: (i) given
the most recent key, it is easy for all existing group members
to rotate a key backward and obtain previous keys that are
still in use for certain tuples while (ii) it is computationally
infeasible for any expelled user from the group to compute
future keys given their current version of the key. This scheme
allows group members to only keep the most recent version of
the key and only if needed, compute the previous key versions.

B. User Related Operations

Location and Profile Updates: Depending on their types,
location and profile updates can be divided into two groups.
For intra-cell movements of user uj from (x, y) to (x′, y′) in
the cell Cxc,yc and updates on uj .t, only a single change in IOI
is required. The user uj sends a signed update request to LS
for his record indexed by eki(xc, yc, gi, uj .rnk) to be updated
to eki(uj .x

′, uj .y
′, uj .t

′). LS verifies the signature and updates
the IOI tuple. For inter-cell movements, three rounds of more
complex communications between the client and server are
needed. The basic steps taken are querying the old and new
cell information for uj , replacing uj’s position with the last
user who has joined uj’s old cell and finally updating the ACI
and IOI records affected by uj’s move in old and new cells.

Although the cell count cnt remains encrypted in ACI and
IOI during the above process, the server knows the initial
value of cnt for each cell C. Therefore, each new (repeated)



encrypted value of cnt would imply an increase (decrease)
in the number of objects in C. To avoid this vulnerability, we
always attach a timestamp to each cnt before encryption. This
makes an increase or decrease equiprobable (during updates)
from the server’s point of view. Therefore, after i updates,
the server can guess C.cnt only with probability 1

d i2 e
which

quickly declines after a short time. Note that even a right cnt
guess reveal neither the actual location of C nor the identity
of its enclosed objects at any time.

Privacy Mode Request: As we discussed in Section I, users
sometimes prefer to stop sharing their location information
even with their peers due to a variety of reasons [2]. PBS
allows users to efficiently go to a Privacy Mode by sending
an IOIremove request to temporarily remove their location
information from IOI, as well as an ACIupdate request to
accordingly adjust the count value of their current cell after
querying the server for the cell’s current information. To
switch back to the original Privacy Mode and start sharing
location information, the above process is simply reversed.

VII. EXPERIMENTAL EVALUATION

In this section, we empirically examine the overall efficiency
of PBS. We conducted extensive experiments to determine
the effectiveness of our framework in terms of (i) PBS
operations overhead (ii) the effect of different datasets and grid
granularity on spatial queries (iii) the client/server computation
and communication overhead for Algorithms 1 and 2 and (iv)
comparing PBS with similar approaches.

(a) Oldenburg (b) Hennepin
Fig. 5. Datasets

A. Datasets and Experimental Setup

We used the widely accepted network-based generator for
moving objects [1] to generate our datasets. The generator
takes the road map of a region (e.g., a city) and outputs
for each object, a set of locations along the road network
of the given region. We used as input the city of Oldenburg
in Germany and the Hennepin County in Minnesota. Figure
5 illustrates simulated user locations for these two datasets.
The second dataset is also used to compare PBS with Capser
[13] which also enables querying moving users through a
trusted anonymizer. For Oldenburg, we generated three user
datasets O1, O2 and O3 containing 500, 5K and 50K users,
respectively. We fixed the group number to 5 in these three
datasets to generate groups with average size of 100, 1K and
10K users, respectively. Similarly, we used 50K users in 5
groups for the Hennepin County dataset, denoted by HC.

Experiments were run on two different Intel P4 2.66 GHz
machines with 4 GB of RAM acting as clients and the server.
We used sockets for the client server communications over
the TCP/IP protocol to measure the actual network latency,
DES for symmetric key encryption/decryption, 1024 bit DSA

for public key cryptography and authentication and SHA1 for
one way functions and pseudorandom number generation.

From the algorithms and operations introduced in previous
sections, it is obvious that most of computation complexity
is transferred to the client side in order to achieve both
security and scalability. Therefore, throughout the following
experiments, we focus on average end-to-end response time
from client side, denoted by TC , in milliseconds as a key
metric for PBS efficiency. Later in Section VII-D, we provide
a comprehensive breakdown of the response time in terms of
client and server computation and communication time.

B. PBS Operations

As our first set of experiments, we measure the overall
response time for joining groups (tjoin), location update
(tupdate) and buddy tracking (ttrack) operations. Results for
tjoin and ttrack were averaged over 1K requests. As for
tupdate, we averaged the overhead for 1K, 100K, 1M and
1.5M location updates for the O1, O2, O3 and HC datasets,
respectively. The results are shown in Figure 6.

Fig. 6. PBS Operations

We observe that the overhead of all three operations is
almost invariant to the choice of the dataset and stays around
15 to 20ms for tjoin and tupdate and less than 1ms for location
tracking (due to its simplicity). Also, due to the plain structure
of ACI and IOI and non-spatial nature of these operations, they
are not significantly affected by grid granularity.

C. Spatial Queries

In this section, we evaluate the effect of the grid granularity
(δ) on the performance of Algorithms 1 and 2. We first study
the effect of δ on the response time for 100 randomly selected
range queries. Figure 7a illustrates the overall response time
trange for different datasets with 1% selectivity (i.e., relative
range size). While having very similar trends, shrinking selec-
tivity to 0.5% and 0.1% resulted in smaller values of trange.

There is a trade-off in choosing the right value of δ for
space-driven queries. For coarse grids, users have to falsely
query numerous objects from IOI simply because they are co-
located in a large cell with other objects relevant to the query.
This increases the communication and processing overhead.
Alternatively, fine-grained grids result in numerous cells over-
lapping with range queries (or expanded with kNN queries)
whose information has to be queried from ACI which in turn
increases the client/server communication overhead.

One important observation from Figure 7a is that while
optimum grid granularity is a function of the number of users
[16], trange is not affected by the number of objects for highly
fine-grained grids and converges to very similar values across
all datasets. This is because trange = n1 × tACI + n2 × tIOI
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Fig. 7. (a) Range Queries (b) NN Queries

and for very small values of δ, the number of cell queries
from ACI significantly dominates the number of object queries
from IOI (i.e., n1 >> n2). Given that both indexes are plain,
tACI ≈ tIOI and hence trange will be dominated by the
common value of n1× tACI across different datasets. Finally,
it is obvious from Algorithm 1 and Figure 7a that trange
increases for more dense datasets due to an increase in average
IOI tuple requests from the server per each query.

Next, we examined the response time of Algorithm 2 for
evaluating kNN queries (tkNN ). Figure 7b illustrates tkNN
for 100 randomly generated nearest neighbor queries for all
datasets (similar trends were observed for higher values of
k). Similar to range queries, there is a trade-off for choosing
the right value of δ for optimum query performance. There
is however, a distinct trend observed for processing kNN
queries which is caused by the fundamental difference between
these two queries. While processing range queries in densely
populated areas requires more accesses to IOI tuples, kNN
queries are evaluated more efficiently in dense areas simply
because the region containing the result set is relatively small.
This explains the trend change in Figure 7b for fine-grained
grids. While the number of IOI requests remains the same,
sparse datasets examine significantly more ACI tuples to find
the result set. Finally, the slight variation between the response
times of HC and O3 are caused by different mobility patterns
of simulated users in these two cities.

D. End to End Query Processing
As our next set of experiments, we measure the overall

efficiency of PBS based on (i) ts, the time it takes to process a
query at the server (ii) tc, the client side processing time (iii)
tcs, client to server communication time and (iv) tsc, server to
client communication time. For this experiment, we generated
100 randomly chosen range queries with 0.1%, 0.5% and 1%
selectivity and measured the above four values.

Several observations can be made from our findings sum-
marized in Figure 8. The first noticeable trend is an increase
in client and server’s overhead for larger datasets, as well
as for higher selectivity (notice the different scales of Y
axes). To explain these trends we first note that trange =
n1 × tACI + n2 × tIOI . For a fixed selectivity, increasing the
dataset size will only increase n2 in the above equation and
higher selectivity for a fixed dataset causes both n1 and n2 to
increase. The graphs also show that both client and server’s
overhead are reasonable for all 6 different cases always staying
below 60 milliseconds. We also see that the HC dataset
consistently yields better results than O3 despite having the
same number of objects. This is caused by more uniform
distribution of objects in the HC dataset. Finally, tcs in Figure

8 increases more rapidly than tc as dataset size grows due to
higher server overhead for larger datasets causesing the client
to spend more time communicating with the server.

Fig. 9. Comparison with Casper

E. Comparison with Other Approaches

The closest work to PBS in terms of enabling private queries
over dynamic user locations is the Casper system [13] which
allows users to perform range and kNN queries to request
other users’ locations. However, privacy in Casper is achieved
by relying on a trusted anonymizer to cloak users, per query,
in an anonymity set which contains at least K−1 other users.

We used the HC dataset with 50K moving users to compare
PBS with Casper for evaluating NN queries. Aside from the
drawbacks of relying on an anonymizer (detailed in Section
IX and [12], [6], [15], [11]), as illustrated in Figure 9,
Casper suffers from a costly privacy/efficiency trade-off. To
achieve comparable performance with PBS, Casper provides
significantly lower privacy guarantees by making a user indis-
tinguishable among a small anonymity set of (K < 50) users.

VIII. SECURITY ANALYSIS

In this Section, we briefly review some key security
strengths and weaknesses of PBS.

Multiple Group Affiliation and Variable Privacy: So far
we have assumed a binary notion of trust between two users
(i.e., buddies vs. adversaries). However, users might have a
more flexible approach towards privacy. For instance, while a
user is willing to continuously share her exact location with
her family or close friends, she might prefer to share much
coarser information during certain times with her co-workers.
This notion of variable privacy can be supported in PBS by
allowing users to join multiple groups with different levels
of privacy where members of each group negotiate a group-
specific δ (i.e., spatial resolution) based on their common
privacy preferences. Users with multiple group affiliations use
a different vp for each of their group memberships. This
technique, however, exposes PBS to a powerful attack where a
user uj ∈ gi, g′i shares gi’s secret key ki with someone in his
buddy list from g′i 6= gi. Addressing this attack is challenging
and existing approaches do not provide a solution for it. One
solution is to store each group key in a client’s tamper-resistent
device to prevent users from accessing and hence being able
to share keys with their peers from other groups.

Server Collusion with Adversaries and Trusted Users:
While group keys prevent the sever (or multiple adversaries) to
collude against a user, PBS cannot protect user privacy against
an adversary colluding with a seemingly trusted user in one’s
buddy list who might share the group key with an outsider.
This powerful attack remains an open problem in our system
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Fig. 8. Response Time for (a,b) 0.1%, (c,d) 0.5%, and (e,f) 1% Selectivity

as well as other privacy management systems such as [3].
However, it can only affect users of the compromised group.

Statistical Cryptanalysis: The server can compile query
frequencies for different IOI tuples to find the most frequently
queried user, or the user with most number of location updates.
While such known plaintext attacks are powerful with querying
static data (e.g., restaurants), the server cannot infer the
original and encrypted objects mapping to identify or locate
users due to the highly dynamic nature of users. Similarly,
the server might infer relative cell positions by the sequence
ACI tuples are requested by clients in Algorithms 1 and 2.
To thwart this attack, users can randomly break their requests
packets into two or more sub-requests to protect the expansion
sequences of cells.

IX. RELATED WORK

Privacy issues in mobile social networking systems have
been the focus of several social and technical studies [2],
[3], [5]. Perhaps the most relevant study to our work is the
SmokeScreen framework [3] proposed for private location
sharing. SmokeScreen supports presence sharing with trusted
users, as well as with strangers which is a feature PBS does
not support. However, this work bears strong differences with
our approach. First, SmokeScreen operates under a model with
users “periodically broadcasting their identity via short-range
wireless technology such as BlueTooth or WiFi”. Second, it
does not study query processing. Third, it employs a complex
trusted broker which maintains a user interest graph and other
sensitive information about user relationships.

Numerous research studies have also examined user privacy
in location based services [11], [12], [6], [15]. However,
they mostly rely on cloaking or trusted anonymizers to blur
a user’s location and do not focus on querying dynamic
user locations. The only study in this group which addresses
querying dynamic user data is the Casper framework proposed
in [13]. Although Casper supports range and kNN queries, it
suffers from several privacy issues shared among cloaking-
based approaches. For instance, under certain distributions,
cloaking might reveal exact user locations to malicious entities
[11]. Furthermore, the quality of service degrades significantly
for users with strict privacy preferences. Finally, Casper does
not address the issues of trust among users and assumes that
all users trust each other and a central anonymizer.

To the best of our knowledge, PBS is the first work to
address privacy issues of enabling mobile users to execute a
set of spatial queries predominantly used in social networks.
While supporting these queries, PBS does not suffer from
privacy implications of cloaking techniques or their costly
query overhead by utilizing decentralized and self-maintaining
encrypted index structures stored at a central untrusted server.

X. CONCLUSION AND FUTURE WORK
In this paper we presented the Private Buddy Search

(PBS) framework which enables users to privately perform
a variety of queries and interactions with other users in a
highly dynamic social network. Our experimental evaluation
verified that PBS is highly scalable due to its distributed query
workload. PBS provides various user interactions currently
supported in social networks while protecting the privacy of
its users. As part of our future work, we are performing an
in-depth study of PBS components’ security. We are also
extending PBS to employ more complex indexing schemes
to achieve more scalability for various user distributions. We
also plan to focus on the social aspects of PBS such as relaxing
the single group affiliation assumption.
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