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1.1 Introduction

Under utilization of radio spectrum in traditional wireless communications
systems [30], along with the increasing spectrum demand from emerging wire-
less applications, is driving the development of new spectrum allocation poli-
cies for wireless communications. These new spectrum allocation policies,
which will allow unlicensed users (i.e., secondary users) to access the radio
spectrum when it is not occupied by licensed users (i.e., primary users) will be
exploited by the cognitive radio (CR) technology. Cognitive radio will improve
spectrum utilization in wireless communications systems while accommodat-
ing the increasing amount of services and applications in wireless networks.
A cognitive radio transceiver is able to adapt to the dynamic radio environ-
ment and the network parameters to maximize the utilization of the limited
radio resources while providing flexibility in wireless access [45]. The key fea-
tures of a CR transceiver include awareness of the radio environment (in
terms of spectrum usage, power spectral density of transmitted/received sig-
nals, wireless protocol signaling) and intelligence. This intelligence is achieved
through learning for adaptive tuning of system parameters such as transmit
power, carrier frequency, and modulation strategy (at the physical layer), and
higher-layer protocol parameters.

Implementation of a cognitive radio will be based on the concept of dy-
namic spectrum access (DSA). Through DSA, frequency spectrum can be
shared among primary users and cognitive radio users (i.e., secondary users)
in a dynamically changing radio environment. There are two major flavors
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of dynamic spectrum access: dynamic licensing (for dynamic exclusive use
of radio spectrum) and dynamic sharing (for coexistence) [3, 120]. Dynamic
sharing can be of two types: horizontal spectrum sharing and vertical spec-
trum sharing. In the former case, all users/nodes have equal regulatory status
while in the latter case all users/nodes do not have equal regulatory status
(i.e., there are primary users and secondary users) and secondary users op-
portunistically access the spectrum without negatively affecting the primary
users’ performance.

In this chapter, we focus on vertical spectrum sharing in a cognitive radio
network. In particular, we outline the recent information theoretic advances
pertaining to the limits of such networks. Information theory provides an ideal
framework as well as tools and metrics for analyzing the fundamental limits of
communication. The limits obtained provide benchmarks for the operation of
cognitive networks, allowing researchers and engineers to gauge the efficiency
of any practical network and guide their design. Spectrum sensing is one of
the major functions of a cognitive radio the goal of which is to determine
the activity of licensed user by periodically observing signals on the target
frequency bands. We discuss some theoretical results on the effect of side
information (e.g., spatial locations of the users, transmission probability of
primary users) on the cognitive sensing performance. Analysis of interference
is required to design cognitive radio parameters so that the the impact of
interference to the primary users can be minimized. We provide examples of
this interference analysis in a cognitive radio system.

To this end, we discuss the practical implementation aspects of vertical
spectrum sharing employing either an interference control or an interference
avoidance approach and discuss open research challenges. An interference
avoidance approach requires spectrum sensing and secondary users are al-
lowed to access a particular spectrum band only if primary users are not
detected on that band by certain sensing technique [88, 102]. An interference
control approach allows primary and secondary users to transmit simultane-
ously on the same frequency band. Transmission powers of secondary users,
however, should be carefully controlled such that the total interference created
by secondary users at each primary receiver be smaller than the maximum
tolerable level. In fact, this maximum interference level corresponds to an
interference temperature limit which is mandated by FCC and/or primary
network operators.

The rest of the chapter is organized as follows. Section 1.2 focuses on the in-
formation theoretic limit of communication in a cognitive radio channel shared
by a primary transmitter-receiver pair and a secondary transmitter-receiver
pair. Section 1.3 describes some specific results on the cognitive sensing perfor-
mance with side information on the spatial locations of the users. Section 1.4
focuses on the impact of cognitive users on the primary users in terms of in-
terference power. Sections 1.5 and 1.6 describe the modeling and engineering
design approaches for the two spectrum access paradigms, namely, the inter-
ference control and the interference avoidance paradigms, respectively. In the
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rest of the chapter, we will use the terms “cognitive user” and “secondary
user” interchangeably.

1.2 Information Theoretic Limits of Cognitive Networks

In this section, we emphasize and explore the impact of cognition, defined as
extra information (or side information) the cognitive radio nodes have about
their wireless environment, on the information theoretic limits of communica-
tion.

1.2.1 Cognitive Behavior: Interference Avoidance, Control, and
Mitigation

Cognitive networks should achieve better performance than standard homoge-
neous networks5 as they are able to (1) exploit the nodes’ cognitive abilities,
i.e. sensing and adapting to their wireless environment, and (2) often (but
not necessarily) exploit new policies in secondary spectrum licensing scenar-
ios in which the agile cognitive radios are permitted to share the spectrum
with primary users. Naturally, the extent to which the performance of the
network can be improved depends on what the cognitive radios know about
their spectral environment, and consequently, how they adapt to this. Cog-
nitive behavior, or how the secondary cognitive users employ the primary
spectrum, may be grouped into three categories, as also done with slight vari-
ations in [22, 26, 28, 39], each of which exploits varying degrees of knowledge
of the wireless environment at the secondary user(s):

• Interference avoidance (spectrum interweave): The primary and
secondary signals may be thought of as being orthogonal to each other:
they may access the spectrum in a Time-Division-Multiple-Access (TDMA)
fashion, in a Frequency-Division-Multiple-Access (FDMA) fashion, or in
any fashion that ensures that the primary and secondary signals do not
interfere with each other. The cognition required by the secondary users
to accomplish this is knowledge of the spectral gaps (in for example time,
frequency) of the primary system. The secondary users may then fill in
these spectral gaps.

• Interference control (spectrum underlay): The secondary users trans-
mit over the same spectrum as the primary users, but do so in a way
that the interference seen by the primary users from the cognitive users is
controlled to an acceptable level, captured by primary QoS constraints.6
The cognition required is knowledge of the “acceptable levels” of inter-
ference at primary users in a cognitive user’s transmission range as well

5 Networks is which no nodes are cognitive radios.
6 What constitutes an acceptable level will be described later and it may vary from

system to system.
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as knowledge of the effect of the cognitive transmission at the primary
receiver. This last assumption boils down, in classical wireless channels, to
knowledge of the channel(s) between the cognitive transmitter(s) and the
primary receiver(s).

• Interference mitigation (spectrum overlay): The secondary users
transmit over the same spectrum as the primary users, but in addition
to knowledge of the channels between primary and secondary users (na-
ture), the cognitive nodes have additional information about the primary
system and its operation. Examples are knowledge of the primary users’
codebooks, allowing the secondary users to decode primary users’ trans-
missions, or in certain cases even knowledge of the primary users’ message.

We consider a simple channel in which a primary transmitter-receiver pair
(white, PT x,PRx) and a cognitive transmitter-receiver pair (grey, ST x,SRx)
share the same spectrum, shown in Fig. 1.1. For this simple channel we will
derive fundamental limits on the communication possible under each type of
cognitive behavior. One information theoretic metric that lends itself well to
illustrative purposes and is central to many studies is the capacity region of
the channel. Under Gaussian noise, we will illustrate different examples of
cognitive behavior and will build up to the right illustration in Fig. 1.1, which
corresponds to the rates achieved under different levels of cognition.

The basic and natural conclusion is that, the higher the level of cognition
at the cognitive terminals, the higher the achievable rates. However, increased
cognition often translates into increased complexity. At what level of cognition
future secondary spectrum licensing systems will operate will depend on the
available side information and network design constraints.
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Fig. 1.1. The primary users (white) and secondary users (grey) wish to transmit
over the same channel. Solid lines denote desired transmission, dotted lines denote
interference. The achievable rate regions under four different cognitive assumptions
and transmission schemes are shown on the right. (a) - (d) are in order of increasing
cognitive abilities.

1.2.2 Information Theoretic Basics

A communication channel is modeled as a set of conditional probability den-
sity functions relating the inputs and outputs of the channel. Given this prob-
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abilistic characterization of the channel, the fundamental limits of communi-
cation may be expressed in terms of a number of metrics of which capacity
is one of the most known and powerful. Capacity is defined as the supremum
over all rates (expressed in bits/channel use) for which reliable communication
may take place. While capacity is central to many information theoretic stud-
ies, it is often challenging to determine. Inner bounds, or achievable rates, as
well as outer bounds to the capacity may be more readily available. For more
precise information theoretic definitions we refer the reader to [18,19,114].

The additive white Gaussian noise (AWGN) channel with quasi-static fad-
ing is the example most used in this section. In the AWGN channel, the
output Y is related to the input X according to Y = hX + N , where h is
a fading coefficient (often modeled as a Gaussian random variable), and N
is the noise which is N ∼ N (0, 1). Under an average input power constraint
E[|X|2] ≤ P , the well-known capacity is given by C = 1

2 log2

(
1 + |h|2P

)
=

1
2 log2 (1 + SINR) := C(SINR), where SINR is the received signal to interfer-
ence plus noise ratio, and C(x) := 1

2 log2(1 + x).
We now proceed to analyzing three different classes of cognitive behavior.

1.2.3 Interference Avoidance: Spectrum Interweave

Secondary spectrum licensing and cognitive radio was arguably conceived with
the goal and intent of implementing the interference-avoiding behavior [45,82].
Cognition in this setting corresponds to the ability to accurately detect the
presence of other wireless devices; the cognitive side-information is knowl-
edge of the spatial, temporal and spectral gaps, or white-spaces a particular
cognitive Tx-Rx pair would experience. Cognitive radios would adjust their
transmission to fill in the spectral (or spatial/temporal) void, as illustrated
in Fig. 1.2, with the potential to drastically increase the spectral efficiency of
wireless systems.

This type of behavior requires knowledge of the spectral white spaces. In
a realistic system the secondary transmitter would spend some of its time
sensing the channel to determine the presence of the primary user. As an il-
lustrative example and idealization, we assume that knowledge of the spectral
gaps is perfect: when primary communication is present the cognitive devices
are able to precisely determine this presence, instantaneously. While such as-
sumptions may be valid for the purpose of a theoretical study, and provide
outer bounds on what can be realistically achieved, practical methods for de-
tecting primary signals have also been of great interest recently. A theoretical
framework for determining the limits of communication as a function of the
sensed cognitive transmitter and receiver gaps is formulated in [55,95]. Stud-
ies on how detection errors may affect the cognitive and primary systems are
found in [92,100,101]. Because current secondary spectrum licensing proposals
demand detection guarantees of primary users at extremely low levels in harsh
fading environments, a number of works have suggested improving detection
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capabilities through allowing multiple cognitive radios to collaboratively de-
tect the primary transmissions [20,32,37,81].
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Fig. 1.2. Interference-avoidance: A cognitive user senses the time/frequency “white
spaces” and opportunistically transmits over the detected spaces.

Under our idealized assumptions, the rates R1 of the primary Tx-Rx pair
and R2 of the cognitive Tx-Rx pair achieved through ideal white-space filling
are shown as the inner white triangle of Fig. 1.1. When a single user transmits
the entire time in an interference-free environment, the intersection points on
the axes are attained. The convex hull of these two interference-free points may
be achieved by time-sharing (TDMA fashion). Where on this line a system
operates depends on how often the primary user occupies the specific band.
If the primary and secondary power constraints are P1 and P2, respectively,
then the white-space filling rate region may be described as:

White-space filling region (a)
= {(R1, R2)|0 ≤ R1 ≤ tC(P1), 0 ≤ R2 ≤ (1− t)C(P2), 0 ≤ t ≤ 1} .

Interference Avoidance through MIMO

In addition to detecting the spectral white-spaces, interference at the pri-
mary user may be avoided or controlled if the cognitive user is equipped with
multiple antennas, and is able to place its transmit signal in the null space
of the primary users receive channel. In this scenario, the channel between
the secondary transmit antennas and the primary receive antennas must be
known. Studies where the cognitive rates are maximized subject to primary
user communication guarantees (such as maximum average interference power
constraints) are considered in [53, 54, 115, 117–119]. The scenarios considered
in these papers can be considered as an interference-avoiding scheme if the
tolerable interference at the primary receivers is set to zero, other-wise it
falls under the interference-controlled paradigm we look at in the following
subsection.

1.2.4 Interference Control: Spectrum Underlay

When the interference caused by the secondary users on the primary users is
permitted to be below a certain level (according to QoS constraints), the more
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flexible interference controlled behavior emerges. We note that this type of
interference controlled behavior covers a large spectrum of cognitive behavior
and we highlight only three examples: an example of the resulting achievable
rate region in small networks, and throughput scaling laws in two different
types of large spectrum underlay networks.

Underlay in Small Networks: Achievable Rates

A cognitive radio may simultaneously transmit with the primary user(s) while
using its cognitive abilities to control the amount of harm it inflicts upon them.
One common definition of harm involves the notion of interference tempera-
ture, a term first introduced by the FCC [66] to denote the average level of
interference power seen at a primary receiver. In secondary spectrum licensing
scenarios, the primary receiver’s interference temperature should be kept at a
level that will satisfy the primary user’s desired quality of service. Provided
the cognitive user knows (1) the maximal interference temperature for the
surrounding primary receivers, (2) the current interference temperature level,
and (3) how its own transmit power will translate to received power at the
primary receiver, then the cognitive radio may adjust its own transmission
power so as to satisfy any interference temperature constraint the primary
user(s) may have. The work in [33, 38, 110, 113] consider the capacity of cog-
nitive systems under various receive-power (or interference-temperature-like)
constraints.

As an illustrative example, we consider a very simple interference-temperature
based cognitive transmission scheme. Assume in the channel model of Fig. 1.1
that each receiver treats the other user’s signal as noise, a lower bound to
what may be achieved using more sophisticated decoders [103]. The rate re-
gion obtained is shown as the light grey region (b) of Fig. 1.1. This region is
obtained as follows: we assume the primary transmitter communicates using
a Gaussian codebook of constant average power P1. We assume the secondary
transmitter allows its power to lie in the range [0, P2] for P2 some maximal
average power constraint. The rate region obtained may be expressed as:

Simultaneous-transmission rate region (b)

=
{

(R1, R2)|0 ≤ R1 ≤ C
(

P1

h2
21P

∗
2 + 1

)
,

0 ≤ R2 ≤ C
(

P ∗
2

h2
12P1 + 1

)
, 0 ≤ P ∗

2 ≤ P2

}
.

The actual value of P ∗
2 chosen by the cognitive radio depends on the interference-

temperature, or received power constraints at the primary receiver.

Underlay in Large Networks: Scaling Laws

Information theoretic limits of interference controlled behavior has also been
investigated for large networks, i.e. networks whose number of nodes n→∞.
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We illustrate two types of networks: single hop networks and multi-hop net-
works. In the former, secondary nodes transmit subject to outage-probability-
like constraints on the primary network. In the latter, the multi-hop secondary
network is permitted to operate as long as the scaling law of the primary net-
work is kept the same as in the absence of the cognitive network.

Single-hop cognitive networks
In the planar network model considered in [107] multiple primary and sec-

ondary users co-exist in a network of radius D (the number of nodes grows
to ∞ as D → ∞). Around each receiver, either primary or cognitive, a pro-
tected circle of radius εc > 0 is assumed in which no interfering transmitter
may operate. Other than the receiver protected regions, the primary trans-
mitter and receiver locations are arbitrary, subject to a minimum distance D0

between any two primary transmitters. This scenario corresponds to a broad-
cast network, such as the TV or the cellular networks, in which the primary
transmitters are base-stations. The cognitive transmitters, on the other hand,
are uniformly and randomly distributed with constant density λ. We assume
that each cognitive receiver is within a Dmax distance from its transmitter,
the channel gains are path-loss dependent only (no fading or shadowing) and
that each user treats unwanted signals from all other users as noise.

The quality of service guarantee of the primary users is of the form
Pr[primary user’s rate ≤ C0] ≤ β. That is, the secondary users must trans-
mit so as to guarantee that the probability that the primary users’ rates fall
below C0 is less than a desired amount β. Some of the questions answered
in [107] and [105] that relate to this single-hop cognitive network setting may
be summarized as:

• What is the scaling law of the secondary network? By showing
that the average interference to the cognitive users remains bounded due
to the finite transmission ranges Dmax of the cognitive users and D0 of the
primary users, one can show that the lower and upper bounds to each user’s
average transmission rate are constant and thus the network throughput
grows linearly with the number of users [107].

• How should the network parameters be chosen to guarantee
Pr[primary user’s rate ≤ C0] ≤ β? This interesting question is ad-
dressed in [48,105], and is discussed in Section 1.4.2.

Multi-hop cognitive networks
We now consider a cognitive network consisting of multiple primary and

multiple cognitive users, where there is no restriction on the maximum cog-
nitive Tx-Rx distance. We assume Tx-Rx pairs are selected randomly, as in
a classical [41] stand-alone ad hoc network. Both types of users are ad hoc,
randomly distributed according to Poisson point processes with different den-
sities. Here the quality of service guarantee to the primary users states that the
scaling law of the primary ad hoc network does not diminish in the presence
of the secondary network.
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In [57] it is shown that, provided that the cognitive node density is higher
than the primary node density, using multi-hop routing, both types of users,
primary and cognitive, can achieve a throughput scaling as if the other type
of users were not present. Specifically, the throughput of the m primary users
scales as

√
m/ log m, and that of the n cognitive users as

√
n/ log n.

What is of particular interest in this result is that, to achieve these
throughput scalings, the primary network need not change anything in its
protocols; it is oblivious to the secondary network’s presence. The cognitive
users, on the other hand, rely on their higher density and a clever routing
technique (in the form of preservation regions [57]) to avoid interfering with
the primary users.

1.2.5 Interference Mitigation: Spectrum Overlay

In interference-mitigating cognitive behavior, the cognitive user transmits over
the same spectrum as the primary user, but makes use of this additional
cognition to mitigate (1) interference it causes to the primary receiver and (2)
interference the cognitive receiver experiences from the primary transmitter.
In order to mitigate interference, the cognitive nodes must have the primary
system’s codebooks. This will allow the cognitive transmitter and/or receiver
to opportunistically decode the primary users’ messages, which in turn may
lead to gains for both the primary and secondary users, as we will see. We
consider two types of interference-mitigating behavior:

1. Opportunistic interference cancellation: The cognitive nodes have
the codebooks of the primary users. The cognitive receivers opportunis-
tically decode the primary users’ messages which they pull off of their
received signal, increasing the secondary channel’s transmission rate.

2. Asymmetrically cooperating cognitive radio channels: The cog-
nitive nodes have the codebooks of the primary users, and the cognitive
transmitter(s) has knowledge of the primary user’s message. The cognitive
transmitter may use this knowledge to carefully mitigate interference at
the cognitive receiver as well as cooperate with the primary in boosting
its signal at its receiver.

Opportunistic Interference Cancellation

We assume the cognitive link has the same knowledge as in the interference-
temperature case (b) and has some additional information about the primary
link’s communication: the primary user’s codebook. Knowledge of primary
codebook translates to being able to decode primary transmissions; Next we
suggest a scheme which exploits this extra knowledge.

In opportunistic interference cancellation, as first outlined in [89] the cog-
nitive receiver opportunistically decodes the primary user’s message, which it
then subtracts off its received signal. This intuitively cleans up the channel
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for the cognitive pair’s own transmission. The primary user is assumed to be
oblivious to the cognitive user’s operation, and so continues transmitting at
power P1 and rate R1. When the rate of the primary user is low enough relative
to the primary signal power at the cognitive receiver (or R1 ≤ C

(
h2

12P1

)
) to

be decoded by SRx, the channel (PT x,ST x → SRx) will form an information
theoretic multiple-access channel, whose capacity region is well known [18].
In this case, the cognitive receiver will first decode the primary’s message,
subtract it off its received signal, and proceed to decode its own. When the
cognitive radio cannot decode the primary’s message, the latter is treated as
noise. The region (c) of Fig. 1.1 illustrates the gains opportunistic decoding
may provide over the former two strategies.

Asymmetrically Cooperating Cognitive Radio Channels

We increase the cognition even further and assume the cognitive node(s) has
the primary codebooks as well as the message to be transmitted by the pri-
mary sender(s). For simplicity of presentation we consider again the two trans-
mitter, two receiver channel shown in Figs. 1.1 and 1.3. This additional knowl-
edge allows for a form of asymmetric cooperation between the primary and
cognitive transmitters. This asymmetric form of transmitter cooperation, first
introduced in [23,25], can be motivated in a cognitive setting in a number of
ways. For example, if ST x is geographically close to PT x (relative to PRx),
then the wireless channel (PT x → ST x) could be of much higher capac-
ity than the channel (PT x → PRx). Thus, in a fraction of the transmission
time, ST x could listen to, and obtain the message transmitted by PT x. Other
motivating scenarios may be Automatic Repeat reQuest (ARQ) systems and
heterogeneous sensor systems [22,111].

Background: Exploiting Transmitter Side Information

A key idea behind achieving high data rates in an environment where two
senders share a common channel is interference cancellation or mitigation.
Costa, in his famous paper “Writing on Dirty Paper” [17] applied the results
of Gel’fand-Pinsker [36] to the AWGN channel, where he showed that in a
channel with AWGN of power Q, input X, power constraint E[|X|2] ≤ P ,
and additive interference S of arbitrary power known non-causally to the
transmitter but not the receiver,

Y = X + S + N, E[|X|]2 ≤ P, N ∼ N (0, Q)

the capacity is that of an interference-free channel, or

C = max
p(u|s)p(x|u,s)

I(U ;Y )− I(U ;S) (1.1)

=
1
2

log2

(
1 +

P

Q

)
. (1.2)
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This remarkable and surprising result has found its application in numerous
domains including data storage [46, 69], watermarking/steganography [96],
and most recently, dirty-paper coding has been shown to be the capacity
achieving technique in Gaussian MIMO broadcast channels [5, 109]. We now
apply dirty-paper coding techniques to the Gaussian cognitive channel.

Bounds on the Capacity of Cognitive Radio Channels

Although in practice the primary message must be obtained causally, as a
first step, numerous works have idealized the concept of message knowledge:
whenever the cognitive node ST x is able to hear and decode the message of
the primary node PT x, it is assumed to have full a priori knowledge.7 The
one way double arrow in Fig. 1.3 indicates that ST x knows PT x’s message
but not vice versa. This asymmetric transmitter cooperation present in the
cognitive channel, has elements in common with the competitive channel and
the cooperative channels of Fig. 1.3, which may be explained as follows:

1. Competitive behavior/channel: The two transmitters transmit inde-
pendent messages. There is no cooperation in sending the messages, and
thus the two users compete for the channel. This is the same channel as
the 2 sender, 2 receiver interference channel [7]. The largest to-date known
general region for the interference channel is that described in [43] which
has been stated more compactly in [12]. Many of the results on the cog-
nitive channel, which contains an interference channel if the non-causal
side information is ignored, use a similar rate-splitting approach to derive
large rate regions [25,59,80].

2. Cognitive behavior/channel: Asymmetric cooperation is possible be-
tween the transmitters. This asymmetric cooperation is a result of ST x

knowing PT x’s message, but not vice-versa.
3. Cooperative behavior/channel: The two transmitters know each oth-

ers’ messages (two way double arrows) and can thus fully and symmetri-
cally cooperate in their transmission. The channel pictured in Fig. 1.3 (c)
may be thought of as a two antenna sender, two single antenna receivers
broadcast channel, where, in Gaussian MIMO channels, dirty-paper coding
was recently shown to be capacity achieving [5, 109].

Cognitive behavior may be modeled as an interference channel with asym-
metric, non-causal transmitter cooperation. This channel was first introduced
and studied in [23, 25]8. Since then, a flurry of results, including capacity
results in specific scenarios of this channel have been obtained. When the in-
terference to the primary user is weak (h21 < 1), rate region (d) has been

7 This assumption is often called the genie assumption, as these messages could
have been given to the appropriate transmitters by a genie.

8 It was first called the cognitive radio channel, and is also known as the interference
channel with degraded message sets.
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shown to be the capacity region in Gaussian noise [61] and in related dis-
crete memoryless channels [111]. In channels where interference at both re-
ceivers is strong both receivers may decode and cancel out the interference, or
where the cognitive decoder wishes to decode both messages, capacity is also
known [60,73,80]. However, the most general capacity region remains an open
question for both the Gaussian noise as well as discrete memoryless channel
cases.
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Fig. 1.3. Three types of behavior depending on the amount and type of side-
information at the secondary transmitter. (a) Competitive: the secondary terminals
have no additional side information. (b) Cognitive: the secondary transmitter has
knowledge of the primary user’s message and codebook. (c) Cooperative: both trans-
mitters know each others’ messages. The double line denotes non-causal message
knowledge.

When using an encoding strategy that properly exploits this asymmetric
message knowledge at the transmitters, the region (d) of Fig. 1.1 is achievable
in AWGN, and in the weak interference regime (h21 < 1 in AWGN) corre-
sponds to the capacity region of this channel [61,112]. The encoding strategy
used assumes that both transmitters use random Gaussian codebooks. The
primary transmitter continues to transmit its message of average power P1.
The secondary transmitter, splits its transmit power P2 into two portions,
P2 = ηP2 + (1 − η)P2 for 0 ≤ η ≤ 1. Part of its power, ηP2, is spent in a
selfless manner: on relaying the message of PT x to PRx. The remainder of its
power, (1− η)P2 is spent in a selfish manner on transmitting its own message
using the interference-mitigating technique of dirty-paper coding. This strat-
egy may be thought of as selfish, as power spent on dirty-paper coding may
harm the primary receiver (and is indeed treated as noise at PRx). The rate
region (d) may be expressed as [21,61]:

Asymmetric cooperation rate region (b) (1.3)

=
{

(R1, R2)|0 ≤ R1 ≤ C
(

(
√

P1 + h12
√

ηP2)2

h2
12(1− η)P2 + 1

)
, (1.4)

0 ≤ R2 ≤ C ((1− η)P2) , 0 ≤ η ≤ 1} . (1.5)
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By varying η, we can smoothly interpolate between strictly selfless behav-
ior to strictly selfish behavior. Of particular interest from a secondary spec-
trum licensing perspective is the fact that the primary user’s rate R1 may be
strictly increased with respect to all other three cases (i.e. the x-intercept is
now to the right of all other three cases). That is, by having the secondary
user possibly relay the primary’s message in a selfless manner, the system es-
sentially becomes a 2× 1 multiple-input-single-output (MISO) system which
sees all the associated capacity gains over non-cooperating transmitters or an-
tennas. This increased gain could serve as a motivation for having the primary
share its codebook and message with the secondary user.

While Fig. 1.1 shows the impact of increasing cognition (or side infor-
mation at the cognitive nodes) on the achievable rate regions corresponding
to protocols which make use of this side information, Fig. 1.4 shows the im-
pact of transmitter cooperation. In this figure, the region achieved through
asymmetric transmitter cooperation (cognitive behavior) is compared to the
(1) Gaussian MIMO broadcast channel region (in which the two transmit-
ters may cooperate, cooperative behavior, from [5, 109]), (2) the achievable
rate region for the interference channel region obtained in [43] (the largest
known to date for the Gaussian noise case, competitive behavior)9, and (3) the
time-sharing region where the two transmitters take turns using the channel
(interference-avoiding behavior). We note that the framework for the Gaussian
MIMO broadcast channel region may also be used to express an achievable
rate region for the Gaussian asymmetrically cooperating channel [21].
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Fig. 1.4. Capacity region of the Gaussian 2 × 1 MIMO two receiver broadcast
channel (outer), cognitive channel (middle), achievable region of the interference
channel (second smallest) and time-sharing (innermost) region for Gaussian noise
powers N1 = N2 = 1, power constraints P1 = P2 = 10 at the two transmitters, and
three different channel parameters h12, h21.

While the above channel assumes non-causal message knowledge, a variety
of two-phase half-duplex causal schemes have been presented in [25,67], while
9 The achievable rate region of [43] used in these figures (as the “interference chan-

nel” achievable region) assumes the same Gaussian input distribution as in [25]
and is omitted for brevity.
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a full-duplex rate region was studied in [4]. Many achievable rate regions
are derived by having the primary transmitter exploit knowledge of the exact
interference seen at the receivers (e.g. dirty-paper coding in AWGN channels).
The performance of dirty-paper coding when this assumption breaks down has
been studied in the context of a compound channel in [83] and in a channel
in which the interference is partially known [40].

Cognitive channels have also been explored in the context of multiple
nodes and/or antennas. Extensions to channels in which both the primary
and secondary networks form classical multiple-access channels have been
considered in [11, 24]. Cognitive versions of the X channel [78] have been
considered in [27, 56], while cognitive transmissions using multiple-antennas,
without asymmetric transmitter cooperation have been considered in [119].

1.3 Cognitive Sensing with Side-information

Sensing is an inherent problem in a cognitive network that requires non-
overlapping primary and secondary operations. Spectrum sensing has been
pursued by a great number of researchers. We mention here only a specific re-
sult about the effect of side-information on cognitive sensing performance [47].
This side information can consist of spatial locations of the primary and cog-
nitive receivers and a priori primary transmission probability. For sensing
algorithms based on Bayesian energy detection, such side information affects
the detection threshold and the resulting performance. Specifically, informa-
tion on spatial locations can help stabilize the performance for a wide range
of the primary activity factor. Highly skewed a priori primary-transmission
probability further helps improve the performance significantly.

In particular, consider a circular network with a single primary Tx-Rx pair
and a single secondary Tx-Rx pair, as shown in Fig. 1.5. The primary receiver
is at the center of the network, while both the primary and secondary trans-
mitters are randomly and uniformly located within the disc. To the secondary
transmitter, knowledge of the locations of the primary receiver (Stx) and the
secondary (its own) receiver (Srx) are considered as side information.

For sensing based on Bayesian energy detection, the sensing threshold is
chosen to minimize a total cost consisting of the interference caused from
the secondary transmitters when the spectrum is in-use and the transmis-
sion opportunity loss experienced by the secondary users not operating when
the spectrum is idle. Fig. 1.6 shows the sensing performance with various
combinations of side information on the spatial locations. Comparisons with
the standard Constant False Alarm Detector (CFAR) [63] with PFA = 0.001
and 0.01, without any side information, are also included. Spatial location
information can improve the performance between 1.5 to 3 times, depending
on the primary activity factor and the combination of information available.
Fig. 1.710 shows the performance with additional information on the primary
10 The authors would like to thank Dr. Seung-Chul Hong for providing this figure.
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Fig. 1.5. Network configuration.

a priori transmission probability ρ. When ρ is skewed (ρ (= 0.5), then the
knowledge of ρ further improves the detector performance dramatically.
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While spectrum sensing is fundamental to the design of a cognitive radio
network based on the interference avoidance approach, interference analysis is
a fundamental part of cognitive radio design based on the interference control
and mitigation paradigms. The next section deals with interference analysis
in a cognitive radio network.

1.4 Interference Analysis

Interference analysis has been studied by a number of authors (see for exam-
ple [15, 33, 66, 110, 113]). The results can be used to design various network
parameters to guarantee a certain performance to the primary users. Our ob-
jective here is to provide only an example of this interference analysis and its
application in two different network settings: a network with beacons and a
network with exclusive regions for the primary users.

Consider an extended, circular network in which the cognitive users are
uniformly distributed with constant density λ. The network radius D increases
with the number of cognitive users n. The interference generated by these cog-
nitive users depends on their locations, which are random, and on the random
channel fading. This leads to random interference. The average interference
power to the worst-case primary users, which may be shown to be at the
center of the circular network, can be computed as [106]

E[In] =
2πλP

(α− 2)

(
1

εα−2
− 1

Dα−2

)
(1.6)
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where α is the path-loss exponent, ε is a receiver-protected radius, and P is the
cognitive transmit power. Provided that the path-loss exponent α > 2, then
the average interference is bounded, even with an infinite number of cognitive
users (n→∞ or D →∞).

The average interference can be used to either limit the transmit power
of the cognitive users, or to design certain network parameters to limit the
impact of interference on the primary users. Next, we discuss two examples of
how the interference analysis can be applied to design network parameters.

1.4.1 A Network with Beacons

In a network with beacons, the primary users transmit a beacon before each
transmission. This beacon is received by all users in the network. The cogni-
tive users, upon detecting this beacon, will abstain from transmitting for the
next duration. Such a mechanism is designed to avoid interference from the
cognitive users to the primary users. In practice, however, because of chan-
nel fading, the cognitive users may sometime mis-detect the beacon. They
can then transmit concurrently with the primary users, creating interference.
This interference depends on certain parameters, such as the beacon detection
threshold, the distance between the primary transmitter and receiver and the
receiver protected radius. By designing network parameters, such as the bea-
con detection threshold, one can control this interference to limit its impact
on the primary users’ performance.

Using a simple power detection threshold, the missing beacon probability
can be shown to be

q = 1− e−γdα

(1.7)

where again α is the path-loss exponent, γ denotes the ratio between power
threshold and beacon transmit power (or the beacon detection threshold),
and d is the distance from the cognitive user to the primary transmitter (the
beacon transmitter). Given a certain activity factor of the cognitive users
when missing the beacon, the generated interference can then be computed
analytically [106]. Bounds on the interference can then help in the design of
network parameters.

For example, the interference bound versus the beacon detection threshold
can be plotted as in Fig. 1.8. This graph provides a specific rate at which the
intereference increases as the beacon threshold increases. The rate depends
on other parameters such as α,D, ε, and P . The case when the cognitive
transmitters are always transmitting (a beacon-less system) corresponds to
γ =∞.

1.4.2 A Network with Primary Exclusive Regions

Another way of limiting the impact of cognitive users on primary users is to
impose a certain distance from the primary user, within which the cognitive
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Fig. 1.8. An upper bound on the average interference versus the beacon threshold
level.

users cannot transmit. This configuration appears suitable to a broadcast net-
work in which there is one primary transmitter communicating with multiple
primary receivers. Examples include the TV network or the downlink in the
cellular network. In such networks, primary receivers may be passive devices
and therefore are hard to be detected by cognitive users, in contrast to the
primary transmitter whose location can be easily inferred. Thus it may be
reasonable to place an exclusive radius D0 around the primary transmitter,
within which no cognitive transmissions are allowed. Such a primary-exclusive
region (PER) has been proposed for the upcoming spectrum sharing of the
TV band [48, 79]. The cognitive transmitters are randomly and uniformly
distributed outside the PER, within a network radius D from the primary
transmitter. As the number of cognitive users increases, D increases. The
network model is shown in Fig. 1.911.

Of interest is how to design the exclusive radius D0, given other network
parameters, to guarantee an outage performance to the primary users. This
outage performance guarantees a certain data rate for a certain percentage of
time for all primary receivers within the PER. The ‘worst case’ receiver is at
the edge of the PER in a network with an infinite number of cognitive users
(D →∞).

Using the interference power analysis (1.6), coupled with the outage con-
straint, an explicit relation between D0 and other parameters, including the
protected radius ε, the transmit power of the primary user P0 and cognitive
users P , can be established [105]. For example, the relation between D0 and
the primary transmiter power P0 is shown in Fig. 1.10. The fourth-order in-
crease in power here is inline with the path-loss exponent α = 4. The figure

11 We would like to thank Dr. Seung-Chul Hong for providing us with this figure.
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shows that a small increase in the receiver-protected radius ε can lead to a
large reduction in the required primary transmit power P0 to reach a receiver
at a given radius D0 while satisfying the given outage constraint.
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1.5 Practical Cognitive Network Engineering:
Interference Control Approach

Interference control based spectrum sharing allows simultaneous transmis-
sions of primary and secondary users given the total interference constraints
at primary receivers. These interference power constraints, in essence, require
a sophisticated power control scheme for secondary transmitters. In order to
meet interference constraints and QoS requirements for secondary users, chan-
nel gains among secondary users and from secondary users to primary receivers
is usually required for proper power allocation. While collecting the channel
gain information among secondary users are possible in many cases, obtain-
ing channel gains from secondary transmitters to primary receivers is usually
not trivial because primary networks may not assist secondary networks in
measuring/estimating the channel gains. Hence, although in theory the in-
terference control approach can be used in both centralized or distributed
wireless networks, this spectrum access paradigm would be more applicable
for networks with infrastructure such as cellular networks where channel state
information can be readily obtained.

One typical example where the interference control approach can be em-
ployed for cellular-type networks is shown in Fig. 1.11. In this example, base
stations (BSs) in the secondary network transmit in the downlink direction
exploiting the licensed frequency bands used by primary users in the uplink
direction. For this particular network setting, channel gains from secondary
transmitters (i.e., secondary BS) to primary receivers (i.e., primary BS) can
be estimated by the secondary networks using pilot signals transmitted from
the primary BSs. Similar network setting was considered in [71], [65] where
secondary users (i.e., cognitive radios) use an ad hoc mode for communication.
In this section, we describe a typical spectrum sharing model with QoS and
fairness constraints for secondary users and interference constraints for pri-
mary users. For ease of exposition, we refer to the network setting in Fig. 1.11
in the model description where single-hop traffic flows are considered. We will
discuss the scenario with multi-hop traffic flows later on.

1.5.1 Single-Antenna Case

Engineering of wireless networks is in general much more challenging than
engineering of the wireline counterpart. This is due to inherent transmission
characteristics of a wireless channel with fading and shadowing. As a result,
users who are assigned the same quantity of radio resources would achieve
different throughput performances. Therefore, wireless network engineering
should maintain certain fairness among different users such that users with
unfavorable channel conditions still have satisfactory performance. In addi-
tion, most wireless applications have certain QoS requirements which can be
usually described by different performance measures such as throughput, de-
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lay, delay jitter, etc. These QoS requirements usually correspond to certain
minimum transmission rates or signal to noise ratio for wireless users.

The problem of optimal spectrum sharing among secondary users can be
formulated as an optimization problem with a suitable objective function and
a set of constraints which capture user fairness, QoS constraints for secondary
users, and interference constraints for primary users. Suppose there are n
secondary users and m primary receivers. For the sake of brevity, the term
secondary user here refers to a pair of secondary users who communicate with
each other in an ad hoc mode or a secondary user communicates with the BS
in a cellular setting.

Let Ri denote an achievable rate for secondary user i which depends on the
amount of allocated power, bandwidth, noise and interference it receives from
other primary and secondary users. To engineer the cognitive radio network,
we would choose a suitable objective function for the underlying spectrum
sharing optimization problem which could balance good overall network per-
formance as well as fairness for the secondary users. In [85], one such objective
function, which is parameterized by a parameter κ, was proposed as follows:

U(R1, R2, · · · , Rn) =
n∑

i=1

fκ (Ri) (1.8)

where fκ (x) is the utility function for one user which can be written as

fκ (x) =
{

ln(x), if κ = 1
x1−κ

1−κ , otherwise.
(1.9)

This general objective function can achieve different types of fairness de-
pending on parameter κ. Specifically, for κ = 0 the total throughput is maxi-
mized, while κ = 1 achieves the proportional fairness for different users [64],
κ = 2 achieves harmonic mean fairness, and κ → ∞ provides max-min fair-
ness. In general, the higher the value of κ the fairer the solution of the under-
lying optimization problem. Let hij denote the channel gain from the trans-
mitter of secondary user j to primary receiver i, Pi denote transmission power
of secondary transmitter i, and Ij denote the maximum tolerable interference
level at primary receiver j. Suppose each secondary user i has a minimum QoS
requirement described in terms of minimum rate Bi. The spectrum sharing
problem for secondary users under QoS and interference constraints can be
formulated as follows:

maximize U(R1, R2, · · · , Rn)
subject to

Ri ≥ Bi, i = 1, 2, · · · , n

µj =
n∑

i=1

hj,iPi ≤ Ij , j = 1, 2, · · · , m
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where µj is the total interference created by secondary users at primary re-
ceiver j.

The optimization problem formulated above can be solved efficiently in
cases where it is convex. For scenarios where the formulated problem is non-
convex, a fast and suboptimal algorithm may be required. It is noted that
the formulated optimization problem may not be feasible when its constraints
are too stringent and/or the network load is too high. If this is the case,
an admission control mechanism needs to be invoked to limit the number
of admitted secondary users. Then, power allocation for the set of admitted
secondary users can be performed. Using this framework, in [71], a solution
approach was proposed for the joint admission control and power allocation
problem for secondary users assuming code-division multiple access (CDMA)
technology at the physical layer.

In order to obtain power allocation solutions for the aforementioned spec-
trum sharing problems, channel gains among secondary users and from sec-
ondary transmitters to primary receivers should be estimated frequently. Un-
fortunately, instantaneous channel gains from the secondary transmitters to
primary receivers may be not readily obtained. The secondary network, how-
ever, can estimate the corresponding channel gains in the reverse direction by
exploiting pilot signals transmitted by primary receivers (i.e., primary BSs).
Due to the reciprocal characteristic of the wireless channel, the secondary net-
work can obtain required mean channel gains averaged over short-term fading.
Let h̄ij be the average channel gain from secondary transmitter j to primary
receiver i which is estimated by exploiting the pilot signal. The interference
constraints at primary receiver j can be written as

µ̄j =
n∑

i=1

h̄j,iPi ≤ θIj , j = 1, 2, . . . ,m (1.10)

where θ < 1 is a conservative factor which should be chosen to make the
interference constraints be violated with a small probability. Mathematically,
we should have

Pr [µj > Ij | µ̄j ≤ θIj ] ≤ Γ0, j = 1, 2, . . . ,m (1.11)

where Γ0 is the desired interference constraint violation probability. Given in-
formation about fading channel statistics, the interference constraint violation
probability written in (1.11) can be calculated. Hence, the power allocation
solution can be obtained by determining the factor θ and the corresponding
transmission powers for secondary transmitters [65]. In [74], a related spec-
trum sharing problem was solved which maximizes throughput of secondary
networks while sufficiently protecting primary users by maintaining a suffi-
ciently high probability of detection. This paper, however, did not consider
fairness among secondary users but tried to quantify the throughput and sens-
ing tradeoff by finding an optimal sensing time.
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Fig. 1.11. Typical example of spectrum access using interference control paradigm.

1.5.2 Multiple Antenna Case

In scenarios where multiple antennas are available at secondary users and/or
primary receivers, more care should be taken in performing power allocation
for secondary users [74,116,119]. In general, the availability of multiple anten-
nas at secondary transmitters and/or receivers provides potential multiplex-
ing and diversity gains which would enhance performance of a cognitive radio
network. In addition, if each primary receiver has multiple antennas, there
are two different ways to impose interference constraints, namely, one total
interference-power constraint over all receive antennas or a set of interference-
power constraints applied to each individual receive antenna. Also, if each
primary transmitter has multiple antennas, power allocation among trans-
mit antennas under total transmit power constraints and interference-power
constraints at primary receivers should be jointly considered.

In [116], joint beamforming and power allocation for a single-input multiple-
output (SIMO) MAC of a cognitive radio network with multiple secondary
transmitters and primary receivers each with one antenna was investigated.
In this paper, solutions for sum-rate maximization problems with or with-
out minimum SINR requirements for secondary users were proposed. In [119],
power allocation for capacity maximization of a single pair of secondary users
using MIMO was considered. Both the cases with one and multiple channels
were investigated. Under this MIMO setting, optimal transmit power over
transmit antennas was performed. It was shown that by exploiting multiple
antennas, secondary users can balance between spatial multiplexing for their
transmission while limiting interference to primary receivers. Note that these
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initial works on cognitive radio networks using multiple antennas consider
either a MIMO setting for a single pair of secondary users or SIMO setting
for multiple secondary users. Because sum-rate maximization usually favors
users in good conditions, tradeoff between throughput and fairness should be
considered by maximizing a suitable utility function such as that in (1.8).
Solving a spectrum sharing problem with fairness consideration for secondary
users and interference constraints for primary receivers in a multi-user MIMO
cognitive radio network is still an open problem.

1.6 Practical Cognitive Network Engineering:
Interference Avoidance Approach

In an interference avoidance approach, secondary users need to sense a fre-
quency band of interest and transmit only if primary users are not detected
on the chosen band. The interference avoidance approach is, therefore, more
conservative than the interference control approach. However, no strict power
control is required for this spectrum access paradigm. In this section, we dis-
cuss both scheduling and random access based medium access control (MAC)
techniques for this spectrum access approach. Both single-hop and multi-hop
transmission scenarios are considered. Since the spectrum of interest to a sec-
ondary network is usually very broad, fast wideband spectrum sensing is very
challenging. To solve this problem, the spectrum of interest can be divided
into multiple narrow frequency bands where spectrum sensing can be done
by cheap radio devices. For this reason, we only describe multi-channel MAC
issues in the following.

1.6.1 Single-hop Case

Scheduling-Based MAC

The scheduling-based MAC for single-hop flows would be mostly applicable
for a point-to-multi-point network. This would be the case when multiple sec-
ondary users communicate with a base station (BS) or an access point (AP)
using available licensed frequency bands [75, 76]. Given spectrum sensing re-
sults, a scheduler at a BS or an AP has full information about availability
of all channels to make scheduling decisions. The scheduler can also oppor-
tunistically exploit fluctuations in channel quality of available channels due
to fading to enhance throughput performance [75, 104]. As in a traditional
scheduling problem, fairness among users should be taken into account in
designing a scheduling algorithm. The key difference in a cognitive schedul-
ing problem is that some channels may not be available for secondary users
at some particular time. Therefore, statistical information regarding channel
availability should be considered to maintain good long-term throughput and
fairness performance for secondary users. Note that opportunistic scheduling
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considering multiple channels has been investigated in some recent works (e.g.,
in [68], [76]).

Random Access-Based MAC

A random access based MAC protocol is needed when there is no network
controller to coordinate spectrum allocation for multiple users. A typical ap-
plication for the random access-based MAC is in ad hoc networks where a
node can establish data connections with one or several neighboring nodes. In
this case, a MAC protocol should perform the following functions:

• Channel contention and reservation: Each user with data to transmit needs
to choose one or several available channels. The chosen channels should be
available at both transmitter and receiver sides to avoid collision with pri-
mary users. Channel reservations should be informed to other neighboring
users to avoid possible transmission collisions among secondary users.

• Spectrum sensing: Due to the presence of primary users, some channels
may not be available for secondary users. Therefore, secondary users should
sense their chosen channels to avoid collision with primary users.

In the following, we present some key design aspects and engineering ap-
proaches for a random access-based cognitive MAC protocol in single and
multi-user scenarios.

 

Idle Busy 

Fig. 1.12. Two-state Markov channel describing the availability of each channel.

1. Optimal MAC design for a single-cognitive-user scenario: If there is a
single pair of secondary users communicating with each other, there is
no need to perform channel reservation and contention resolution. The
key design problem for this setting is to exploit spectrum holes in all
channels to optimize the secondary network performance. It is obvious
that if the secondary user can sense all the channels quickly then it would
simply find available channels and transmit data using these channels.
In practice, sensing time is usually non-negligible and a user can only
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sense one or a small number of channels at once. Therefore, an optimal
sensing and access strategy plays an important role in obtaining good
network performance [8–10]. Such an optimal sensing and access strategy
depends strongly on statistical properties of channel availability. In the
following, we describe design approaches under two different assumptions
about channel availability.
• Markovian assumption: When data transmission of primary users

shows correlation, availability of the channels can be modeled as a
Markov chain [35], [121]. If the availability of one channel is indepen-
dent of other channels, a two-state Markov chain can be used to model
evolution between idle and busy states (i.e., available and not available
for secondary users’ transmission, respectively) of each channel.
Fig. 1.12 shows a transition diagram of a two-state Markov chain for
one particular channel. Suppose there are L channels and time is di-
vided into equal-sized time slots. Also, assume that a secondary user
can sense L1 channels at the beginning of each time slot and trans-
mit data on available channels in the remaining interval of a time slot
based on sensing outcomes. In the following, we will discuss the typical
optimal spectrum and access problem where a secondary user wishes
to find an optimal set of channels to sense in each time slot to achieve
maximum long-term throughput performance.
Specifically, the secondary user makes the decision in choosing the set
of channels to sense in one particular time slot based on its decisions
and sensing outcomes in all previous time slots. In [121], it has been
shown that this problem can be solved using the theory of Partially
Observable Markov Decision Process (POMDP) [93]. This is because
by sensing only a subset of channels in each time slot, the secondary
user can obtain only partial information about availability of all the
channels. According to the POMDP theory, knowledge of the system
state can be summarized in a belief vector [93].
Let V = 2L denote the number of system states each of which repre-
sents idle/busy status on all L channels. Then, the belief vector can
be denoted as Ω(t) = [ω1(t), ω2(t), · · · , ωV (t)] where ωi(t) is the con-
ditional probability (given the decision and observation history) that
the network is in state i at the beginning of time slot t. In addition, the
belief vector is the sufficient statistic for the optimal sensing policy.
In [93], it has been shown that the optimal solution of the POMDP
problem can be found using a linear programming approach. Given
the optimal solution, the secondary user can find a set of channels
to sense in each time slot. It then updates the belief vector based on
the sensing outcomes which are used to find a solution for the next
time slot. Although the optimal solution for this opportunistic spec-
trum access problem can be calculated, the computational complexity
grows exponentially with the number of channels. Therefore, a good
and suboptimal spectrum sensing policy is usually preferred [121].
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• Independence assumption: In this case, the availability of each channel
is assumed to be independent of time. Assume that each channel is
either available or busy in each time slot and its transmission rate is
chosen from a finite set of rates. Let Ts be the time slot interval, Tm

be sensing and channel probing time. Here, sensing is used to verify
availability of a particular channel and probing is used to find a current
feasible rate on a channel. If a secondary user senses k channels, the
normalized remaining time for data transmission is

ck = 1− k
Tm

Ts
. (1.12)

We are interested in the optimal spectrum access problem where the
secondary user wishes to maximize its total transmission rate by adopt-
ing an optimal sensing/probing strategy. Here, the more channels the
secondary user senses, the more likely it finds available channels with
a cost of reducing the data transmission time. Let pi denote the proba-
bility that channel i is available for the secondary user. If the secondary
user knows pi, it would sense channels in the order of decreasing pi.
Otherwise, it can simply sense channels in a random order. Without
loss of generality, we number the channels in the order they are sensed
by the secondary user. Assume that there are K possible transmis-
sion rates on any channel each of which corresponds to one particu-
lar modulation and coding scheme. Also, assume that the probability
that rate k is chosen on any channel is sk. We further assume that
the secondary user has to make a decision after each sensing/probing
regarding transmitting on the current channel (if it is available) or
continue sensing/probing other channels. The operation of this opti-
mal spectrum sensing/probing problem is shown in Fig. 1.13. Note that
the problem discussed here generalizes the opportunistic multi-band
access problem in [90] to the cognitive radio context.
Let rk be the transmission rate of channel k, ηk be the achieved
throughput after sensing/probing channel k, and Λk be the average
throughput accumulated from the k-th sensing/probing. Using opti-
mal stopping theory [13], we have

ηk =
{

ckϕkrk if ckϕkrk > Λk+1

Λk+1, otherwise (1.13)

where ϕk = 1, 0 represents the event that channel k is available or
busy, respectively. Equation (1.13) can be interpreted as follows. If
the obtained throughput due to the k-th sensing/probing is larger
than the expected throughput that would be achieved if the secondary
user keeps sensing/probing further channels (i.e., ckϕkrk > Λk+1),
the secondary user would stop sensing/probing and transmit on the
current channel. Note that the optimal sensing strategy is completely
determined by Λk. We have
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ΛL = cLE [ϕLrL] = cLpLE [rL] = cLpL

K∑

l=1

slrl. (1.14)

Other values of Λk (k < L) can be calculated using backward induc-
tion. Specifically, let us define Ψk = {l : ckrl > Λk+1} and let Ψ̄k be
the complement of Ψk. Then, we have

Λk = ckpk

∑

l∈Ψk

slrl + Λk+1



(1− pk) + pk

∑

l∈Ψ̄k

sl



 . (1.15)
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Fig. 1.13. Timing diagram for spectrum sensing/probing and access.

The aforementioned optimal sensing/probing strategies are applied to sce-
narios with a single cognitive user. However, they can be used to develop
a multi-user MAC protocol by taking a winner-take-all approach which
can be described as follows. Secondary users who are currently backlogged
perform contention on a control channel. The secondary user that wins
the contention employs an optimal sensing/probing strategy to find good
available channels for data transmission as being discussed above. These
contention and access operations are repeated in each fixed-size time slot.
This method has been employed in [58], [98] to develop multi-channel
MAC protocols for cognitive radio networks. This design approach, how-
ever, has several limitations. On the one hand, for the discussed optimal
control strategies a winning secondary user explores spectrum opportuni-
ties only in a subset of channels to limit the sensing/probing overhead.
Therefore, spectrum holes in unexplored channels are wasted. On the other
hand, a secondary user may find several available channels among explored
channels as in the POMDP-based control strategy; however, its queue
backlog may be smaller than the transmission capacity offered by these
available channels. As a result of this, some valuable radio resources are
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wasted because user backlogs are not taken into consideration. Therefore,
it is desired that a cognitive MAC protocol should exploit transmission
opportunities on all channels and avoid over-allocating capacity for sec-
ondary users considering users’ queue backlogs.

2. MAC protocol design for a multiple-cognitive-user scenario: Design of a
multi-channel MAC protocol is challenging due to the following reasons.
First, as in a single-channel CSMA-based MAC protocol, the well-known
hidden and exposed terminal problems still exist in a corresponding multi-
channel MAC protocol. It is known that employment of RTS/CTS could
not completely solve these problems. Although a dual busy tone approach,
which employs two separate tones transmitted by a transmitter and a re-
ceiver in two narrow bands to protect RTS transmission and data recep-
tion, could remove the hidden terminal problem, this approach requires
extra bandwidth and one more transceiver per user [44]. Second, different
approaches for channel contention and reservations should be adopted de-
pending on radio capabilities of cognitive devices. Therefore, there would
be no universal MAC protocol that works well in all different scenarios.
In general, users are expected to hear channel reservations made by other
users to prevent possible collisions. Therefore, if each secondary user has
only one transceiver, a user transmitting on one particular channel may
not hear channel reservation negotiated on other channels. This problem
is referred as a multi-channel hidden terminal problem [94]. Third, it is
necessary to balance traffic load on different channels to reduce exces-
sive contention overhead. Finally, a MAC protocol should provide fairness
among different users.
Design of a multichannel MAC protocol in general and for a cognitive
network in particular strongly depends on radio capabilities of wire-
less/cognitive users, i.e., the number of radios each user has [84]. In the
cognitive radio context, it also depends on dynamics of primary users
and evacuation time requirements in case primary users return to a
previously-available channel. These aspects determine how fast secondary
users can update a “spectrum map” and how frequent spectrum sens-
ing/evacuation should be performed. There are some recent works on
MAC protocol design for multichannel and/or multiuser cognitive radio
networks [16,42,49,52,58,70,77,97,98]. In the following, we discuss some
important design principles and point out open research issues.
In general, there are two popular approaches to designing a multi-channel
MAC protocol, namely, common control channel and channel-hopping
based approaches [84]. In a common control channel approach, one cho-
sen channel is used to exchange control information which determines
data channels for contending users. This design approach usually works
well under low traffic load but may have degraded performance under
high traffic load due to congestion of the common control channel. In the
channel-hopping based approach, users hop through all channels by fol-
lowing a common or different hopping patterns. Two users who wish to
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communicate with each other must meet on one particular channel to per-
form channel reservations for data transmission. This design approach can
resolve the congestion problem of the common control channel approach;
however, its implementation is more complicated. In the following, we de-
scribe typical designs for scenarios where each cognitive user has two or
one transceiver.
• Each cognitive user has two transceivers: We describe a typical MAC

protocol design based on the common control channel approach for
this setting here. For this design, each cognitive user employs one
transceiver for channel contention and reservation and employs the
other transceiver to transmit data on a chosen channel. Specifically,
the control transceiver of any user is always tuned to a chosen control
channel to transmit control messages and listen to channel reserva-
tions made by other users. With the dedicated control transceiver,
each cognitive user always has up-to-date information about traffic
load on each channel to make its own channel reservation. In addition
to making channel reservations, each cognitive user should perform
spectrum sensing frequently to have an up-to-date spectrum map. To
avoid confusion between primary and secondary transmissions, spec-
trum sensing can be performed in pre-determined quiet periods during
which secondary users shut off their transmissions to perform spectrum
sensing.
If the spectrum map changes slowly, cognitive users would have cor-
rect information about spectrum opportunities on all channels. When
a cognitive user wants to transmit data to its neighbors, it transmits
a CRTS message which contains a list of preferred channels to its in-
tended receiver. The list of preferred channels consists of available
channels learned from spectrum sensing with low secondary traffic
load. The receiver upon receiving CRTS chooses one “best” channel
in the received channel list and sends the chosen channel in a CCTS
message to the transmitter. The transmitter upon receiving CCTS
switches to the chosen channel for data transmission.
Here, two different channel negotiation strategies can be adopted in de-
signing a cognitive MAC protocol. In the first strategy, each available
channel is only allocated for a single pair of cognitive users. Therefore,
after a particular available channel is chosen by a pair of cognitive
users, other cognitive users in their neighborhood should remove this
channel from their available channel lists. A pair of secondary users
should release their chosen channel after successfully transmitting a
packet, i.e., they have to perform new channel negotiation/reservation
through exchanging CRTS/CCTS messages before transmitting an-
other packet. This channel negotiation strategy, however, creates a
large amount of overhead due to CRTS/CCTS messages when the
number of cognitive users is large. In the second channel negotia-
tion strategy, multiple pairs of secondary users can choose the same
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channel. Hence, after exchanging CRTS/CCTS messages, cognitive
users need to perform contention with other cognitive users choos-
ing the same channel. Operation of this MAC protocol is illustrated in
Fig. 1.14. Users reside on their chosen channels until they detect the
presence of primary users or a pre-determined period Tmax has been
expired. Tmax can be chosen to be equal to the required channel evacu-
ation time (e.g., this value is 2s in 802.22 standard). This design could
alleviate congestion on the control channel and reduce overhead. This
is due to the reason that the traffic load on each channel is much lower
than the total traffic load of all cognitive users, and cognitive users
contend on the control channel less frequently.
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Fig. 1.14. MAC protocol with two transceivers per cognitive user.

• Each cognitive user has one transceiver: In this case, the transceiver
is used to exchange control information as well as transmit/receive
data. To resolve the multi-channel hidden terminal problem mentioned
above, a synchronous MAC protocol can be employed as proposed
in [94]. Specifically, time is divided into periodic beacon intervals as
illustrated in Fig. 1.15. Periodic beacon transmissions are used to syn-
chronize all users. Cognitive users choose their channels by exchanging
CRTS/CCTS messages during a channel reservation phase. If multi-
ple cognitive users are allowed to choose the same channel, contention
on each channel is resolved through exchanging RTS/CTS messages
by the corresponding cognitive users. This design can potentially im-
prove channel utilization when the beacon interval is large and several
packets from different users can be transmitted in a data transmis-
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sion phase. Moreover, sensing should be performed to find available
channels by each cognitive user. In Fig. 1.15, sensing is performed at
the beginning of each beacon interval based on which cognitive users
reserve channels for a data transmission phase. In the case where a
beacon interval is longer than a channel evacuation time, one or more
sensing periods should be placed in the data transmission phase to
protect primary users.
In the above MAC protocol, the control channel may be congested
when the number of cognitive users is large. In addition, transmission
time on all channels other than the control channel is wasted dur-
ing the channel reservation phase. These problems can be resolved by
channel-hopping based MAC protocols [84], [2] where cognitive users
hop through the channels by following a common or different hop-
ping patterns. Cognitive users who want to communicate with each
other wait until their partners hop to the same channel to exchange
control information. For the case where users following different hop-
ping sequences, each user learns hopping patterns of their neighbors by
listening to corresponding broadcast seeds. When a user wants to com-
municate with its neighbor, it follows the intended neighbor’s hopping
pattern to exchange control information and negotiates data channels.
In addition, sensing can be performed during pre-determined quiet
periods to detect available channels.
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Data transmission phase 
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……
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Fig. 1.15. MAC protocol with one transceiver per cognitive user.
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Although some recent works have compared different multi-channel MAC
protocols based on simple analysis and simulation [84], an accurate analytical
model to quantify performance of multi-channel MAC protocols in wireless
networks in general and in cognitive radio networks in particular is still an
open problem. In addition, optimal control design for spectrum sensing and
access was only done for a single-user scenario [8–10]. Developing an optimal
MAC protocol for the multi-user scenario is an open and challenging prob-
lem. This is because throughput analysis needs to be performed for optimal
design of a MAC protocol. Unfortunately, this is a complicated problem by
itself. In fact, calculating throughput performance usually requires tracking
detailed protocol evolutions which capture complicated relationships among
many protocol parameters. Given the fact that a closed form equation to cal-
culate network throughput is usually difficult to obtain, finding an optimal
design for channel sensing and negotiation operations of a MAC protocol is a
very difficult task.

1.6.2 Multi-hop Case

In a multihop setting, cognitive users establish multihop transmissions with
its peers where traffic is transmitted from sources to destinations through
multiple communication links. Engineering multihop cognitive networks re-
quires more care due to possible existence of different sets of primary users
with different channel activity. Either an interference control or an interfer-
ence avoidance approach can be employed to protect active primary users
in the multihop setting. Employment of the interference control approach is,
however, challenging because network-wide estimation of channel gains from
secondary users to primary receivers may not be easy. Using the interference
avoidance approach, if primary users are present on some channels, secondary
users are simply prohibited to use these busy channels for their transmis-
sions [91]. Detection of primary users using a certain spectrum sensing tech-
nique can be performed by each cognitive users to construct its local spectrum
map.

In general, multihop communications can be established by scheduling
or random access-based transmissions. It has been known that CSMA/CA
based MAC protocols are quite inefficient for a multihop wireless network
[72]. This is due to the hidden terminal problem and suboptimality of the
backoff mechanism. Although implementation of a dual tone approach could
remove the hidden terminal problem, more control bands and transceivers
per user are required [44]. The scheduling-based approach could potentially
achieve better throughput performance; however, a scheduling-based MAC
usually requires centralized implementation where information about source-
destination pairs, network topology, link conflict relationship or channel gains
needs to be gathered at a central control point to calculate optimal network
configuration [1,6,62,91]. A scheduling-based MAC is, therefore, more suitable
to stationary wireless networks (e.g., wireless mesh networks) with slowly-
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changing source-destination demands (e.g., in networks with aggregated traffic
flows [62]).

The scheduling-based MAC design strongly depends on an interference
model. In particular, the interference model determines sets of wireless links
which can be activated simultaneously. There are two popular interference
model models, namely protocol model and physical model [41]. In the pro-
tocol model, interference relationship among wireless links is binary where
wireless links outside interference range of one another can be transmitted si-
multaneously. Therefore, any two wireless links can be either conflicting with
each other or can be activated simultaneously. This interference relationship
is usually captured in a conflict graph to find an optimal network configu-
ration [1] (e.g., optimal rate control, routing and scheduling for wireless net-
works). The physical model determines a set of active links by a corresponding
set of constraints on minimum signal to noise plus interference ratio (SINR).
In essence, a minimum SINR requirement for each wireless link is imposed to
guarantee the desired bit error rate performance. Under the physical model,
transmit power and channel gains among wireless links need to be gathered to
determine sets of active links and corresponding optimal network configura-
tion [62]. The physical model is more accurate but it is also more complicated
than the protocol model. In general, the scheduling sub-problem in a cross-
layer design problem is a bottleneck where sets of simultaneously-activated
wireless links must be determined such that desired end-to-end performance
for all multihop flows can be achieved.

Conclusion

Results on the achievable rate of a cognitive radio link have been summarized
for three different types of cognitive behavior, namely, interference avoidance,
interference control, and interference mitigation. In a spectrum underlay sce-
nario with the interference controlled behavior of the cognitive radio nodes,
scaling laws of both single-hop and multi-hop cognitive networks have been
described. Bounds on the capacity of a cognitive radio channel have been de-
scribed for two types of interference-mitigating cognitive behavior, namely,
opportunistic interference cancellation (or decoding) and asymmetrical coop-
eration with primary transmitter. The general conclusion is, the higher the
level of cognition (i.e., side information) at the cognitive radio nodes, the
higher is the maximum achievable rate for the cognitive radio channel. A
similar conclusion holds for the cognitive sensing performance - specifically,
information about spatial location of the primary and secondary receivers and
primary user activity can improve the sensing performance significantly. To
limit the impact of interference on primary users, network parameters have to
be designed based on interference analysis. Examples of interference analysis
have been provided for a beacon-enabled network and a network with primary
exclusive regions.
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Practical issues and potential approaches in design and engineering of
channel access methods in a cognitive radio network have been described.
With the interference control approach, a spectrum sharing method has to
ensure the rate (or SINR) and fairness constraints for secondary users as well
as interference constraints for primary users. With the interference avoidance
approach, spectrum sensing has to be performed efficiently so that the uti-
lization of spectrum holes can be maximized and also the QoS requirements
for the secondary users are met. Economic aspects of spectrum sharing (e.g.,
pricing), which have not been addressed in this chapter, will also need to be
considered for practical design of cognitive radio systems [50, 51, 86, 99, 108].
Design and engineering of multiuser (single-hop and multihop, single-antenna
and multiple-antenna) cognitive radio networks is still in its infancy which
deserves more research investigation.
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of cognitive interference channels with and without secrecy,” Submitted to IEEE
Trans. Inf. Theory, Dec. 2007.

74. Y. C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, “Sensing-throughput
tradeoff for cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7,
no. 4, pp. 1326–1337, April 2008.

75. X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic transmission schedul-
ing with resource-sharing constraints in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 19, no. 10, pp. 2053–2065, Oct. 2001.

76. X. Luo and K. Kar, “Joint scheduling and power allocation in multi-channel
access point networks under QoS constraints,” in Proc. IEEE ICC’08, May 2008.

77. L. Ma, X. Han, and C. C. Shen, “Dynamic open spectrum sharing MAC protocol
for wireless ad hoc networks,” in Proc. DySPAN’05, Nov. 2005.

78. M. Maddah-Ali, A. Motahari, and A. Khandani, “Signaling over MIMO multi-
base systems: combination of multi-access and broadcast schemes,” in 2006 IEEE
International Symposium on Information Theory, July 2006.

79. M. Marcus, “Unlicensed cognitive sharing of TV spectrum: The controversy at
the federal communications commission,” IEEE Comm. Magazine, pp. 24–25,
May 2005.

80. I. Maric, R. Yates, and G. Kramer, “Capacity of interference channels with
partial transmitter cooperation,” IEEE Trans. Inf. Theory, vol. 53, pp. 3536–
3548, Oct. 2007.

81. S. M. Mishra, A. Sahai, and R. W. Brodersen, “Cooperative sensing among
cognitive radios,” in Proc. IEEE Int. Conf. Commun., Istanbul, Turkey, June
2006.

82. J. Mitola, “Cognitive radio,” Ph.D. dissertation, Royal Institute of Technology
(KTH), 2000.

83. P. Mitran, N. Devroye, and V. Tarokh, “On compound channels with side-
information at the transmitter,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp.
1745–1755, Apr. 2006.

84. J. Mo, H.-S. W. So, and J. Walrand, “Comparison of multichannel MAC pro-
tocols,” IEEE Trans. Mobile Computing, vol. 7, no. 1, pp. 50–65, Jan. 2008.

85. J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,”
IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567, Oct. 2000.

86. D. Niyato and E. Hossain, “Competitive spectrum sharing in cognitive radio
networks: A dynamic game approach,” IEEE Trans. Wireless Commun., vol. 7,
no. 7, pp. 2651–2660, July 2008.

87. D. Niyato, E. Hossain, and L. Le, “Competitive spectrum sharing and pricing
in cognitive wireless mesh networks,” in Proc. IEEE WCNC’08, Mar.-April 2008.

88. M. Oner and F. Jondral, “On the extraction of the channel allocation informa-
tion in spectrum pooling systems,” IEEE J. Sel. Areas Commun., vol. 25, no. 3,
pp. 558–565, April 2007.

89. P. Popovski, H. Yomo, K. Nishimori, R. D. Taranto, and R. Prasad, “Oppor-
tunistic interference cancellation in cognitive radio systems,” in Proc. 2nd IEEE
International Symposium on Dynamic Spectrum Access Networks (DySPAN),
Dublin, Ireland, Apr. 2007.

90. A. Sabharwal, A. Khoshnevis, and E. Knightly, “Opportunistic spectral usage:
Bounds and a multi-band CSMA/CA protocol,” IEEE/ACM Trans. Networking,
vol. 15, no. 3, pp. 533–545, June 2007.



40 E. Hossain, L. Le, N. Devroye, and M. Vu

91. Y. Shi and Y. T. Hou, “A distributed optimization algorithm for multi-hop
cognitive radio networks,” in Proc. INFOCOM’08, April 2008.

92. O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Stable throughput of cognitive
radios with and without relaying capability,” IEEE Trans. Commun., vol. 55,
no. 12, pp. 2351–2360, Dec. 2007.

93. R. Smallwood and E. Sondik, “The optimal control of partially observable
Markov processes over a finite horizon,” Operations Research, pp. 1071–1088,
1971.

94. J. So and N. Vaidya, “Multi-channel MAC for ad hoc networks: Handling multi-
channel hidden terminals using a single transceiver,” in Proc. ACM Mobihoc’04.

95. S. Srinivasa, S. Jafar, and N. Jindal, “On the capacity of the cognitive tracking
channel,” Proc. IEEE Int. Symp. Inf. Theory, July 2006.

96. Y. Steinberg and N. Merhav, “Identification in the presence of side information
with application to watermarking,” IEEE Trans. Inf. Theory, vol. 47, pp. 1410–
1422, May 2001.

97. H. Su and X. Zhang, “Channel-hopping based single transceiver MAC for cog-
nitive radio networks,” in Proc. CISS’08, Mar. 2008.

98. H. Su and X. Zhang, “Cross-layer based opportunistic MAC protocols for QoS
provisionings over cognitive radio wireless networks,” IEEE J. Sel. Areas Com-
muns., vol. 26, no. 1, pp. 118–129, Jan. 2008.

99. J. Sun, E. Modiano, and L. Zheng, “Wireless channel allocation using an auction
algorithm,” IEEE J. Sel. Areas Commun., vol. 24, no. 5, pp. 1085–1096, May
2006.

100. R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE J. Select.
Areas Commun., vol. 2, no. 1, pp. 4–17, Feb. 2008.

101. A. Tkachenko, “Testbed design for cognitive radio spectrum sensing experi-
ments,” Ph.D. dissertation, Berkeley, 2007.

102. J. Unnikrishnan and V. V. Veeravalli, “Cooperative sensing for primary detec-
tion in cognitive radio,” IEEE J. Sel. Signal Processing, vol. 2, no. 1, pp. 18–27,
Feb. 2008.
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