
On Randomization in Sequential and Distributed Algorithms

RAJIV GUPTA

GE Corporate R &D, K1-5C39, Schenectady, NY 12301; gupta@crd.ge.com

SCOIT A. SMOLKA

Department of Computer Sc~ence, SUNY at Stony Brook, Stony Brook, NY 11 794; sas@cs.sunysb.edu

SHAJI BHASKAR

Bell Northern Research, 35 Davis Drive, Research Triangle Park, NC 27709; bhaskar@bnr. ca

I returned, and saw under the sun, that the race is not to the swift, nor the battle to the strong, nezther yet

bread to the wise, nor yet riches to men of understanding, nor yet favor to men of skdl; but tzme and chance

happeneth to them all.

EcclesLastes (King James Version)
Chaos umpu-e sits,

And by decision more embrods the fray

By which he reigns: next him high arbiter

Chance governs all.

Paradwe Lost, John Milton

Probabilistic, or randomized, algorithms are fast becoming as commonplace as
conventional deterministic algorithms. This survey presents five techniques that have
been widely used in the design of randomized algorithms. These techniques are
illustrated using 12 randomized algorithms—both sequential and distributed—that
span a wide range of applications, including: prLmalLty testing (a classical problem in
number theory), universal hashing (choosing the hash function dynamically and at
random), irzteractwe probabdwtLc proof systems (a new method of program testing),
dining philosophers (a classical problem in distributed computing), and B.yzanttne

agreement (reaching agreement in the presence of malicious processors). Included with
each algorithm is a discussion of its correctness and its computational complexity.
Several related topics of interest are also addressed, including the theory of probabilistic
automata, probabilistic analysis of conventional algorithms, deterministic amplification,
and derandomization of randomized algorithms. Finally, a comprehensive annotated
bibliography is given.

Categories and Subject Descriptors: D.1 [Software]: Programming Techniques; F.1.2
[Computation by Abstract Devices]: Modes of Computation—probabilistic
computation; G.3 [Mathematics of Computing]: Probability and
Statistics—probabdzstic algorithms (including Monte Carlo)

General Terms: Algorithms
Additional Key Words and Phrases: Analysis of algorithms, Byzantine agreement,
computational complexity, CSP, dining philosophers problem, distributed algorithms,
graph isomorphism, bashing, interactive probabilistic proof systems, leader election,
message routing, nearest-neighbors problem, perfect hashing, primality testing,
probabilistic techniques, randomized or probabilistic algorithms, randomized
quicksort, sequential algorithms, transitive tournaments, universal hashing

The research of S. A. Smolka was supported by the National Science Foundation under grants CCR-
8704309, CCR-9120995, and CCR-9208585, and by the Air Force OffIce of Special Research under grant
AFOSR F49620-93-1-0250DEF.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
01994 ACM 0360-0300/94/0300-0007 $03.50

ACM Computing Surveys,Vol. 26, No. 1, March 1994

8* R. Gupta et al.

CONTENTS

1

2

3

4

INTRODUCTION
11 Probabdmtl cTechnlques
12 Tradeoffs
SEQUENTIAL RANDOMIZED ALGORITHMS
21 The Sock Selection Problem
22 Prlmahty Testing
23 Networks without Large Hierarchies
24 ProbabdmtlcHashmg
25 The Nearest-Neighbors Problem
26 Interactive Probablhstlc Proofs
DISTRIBUTED RANDOMIZED ALGORITHMS
31 The Dlnmg Philosophers Problem
32 Communlcatlon Guard Scheduhng
33 Leader Elect]on
34 Message Routing
35 Byzantine Agreement
ADDITIONAL TOPICS OF INTEREST AND
CONCLUSIONS
Complexity Theory of Randomized Algorithms
Theory of Probablhstlc Automata
Probabdmtlc Analysm of Conventional Algorithms
Randomized Parallel Algorithms
Sources of Randomness and Them Impact on

Randomized Algorithms
Determmlstlc Amphficatlon
Slmulatmg Probablhst,c Algorithms by Weak

Random Sources

Pseudorandom Number Generators

Samphng from a Dmtrlbutlon
Derandomlzatlon
On the Future of Randomized Algorithms
ACKNOWLEDGMENTS
ANNOTATED BIBLIOGRAPHY

1. INTRODUCTION

We examine the field of probabilistic
algorithms, that is, algorithms contain-
ing statements of the form:

x := outcome of tossing a fair coin.

Probabilistic algorithms typically toss
coins in order to make multiway deci-
sions, so in general, the coins in question
are n-sided. One of the goals of this sur-
vey is to illustrate the interesting and
powerful effects coin tossing can have on
the behavior of algorithms.

The action of tossing a coin is often
implicit in a probabilistic algorithm and
may take on various guises. Actions such

as “randomly select an item x from a set
S“ or “randomly choose a process with
which to communicate” are typical exam-
ples. Computationally, tossing a coin can
be viewed as generating a random num-
ber between 1 and n. As such, the term
randomized algorithm is often used in
the literature as a synonym for proba-
bilistic algorithm, and so it shall be here.
An algorithm not having any coin-tossing
statements is said to be deterministic.

Randomized algorithms entered the
computer science spotlight with the pub-
lication of Michael Rabin’s seminal paper
“Probabilistic Algorithms” [Rabin 1976],
although their existence can be traced
back much further [Shallit 1992]. Rabin’s
paper presented surprisingly efficient
~andom~zed algorithms for two well-
known problems: Nearest Neighbors—a
problem in computational geometry, and
Primality Testing—the problem of deter-
mining whether a given integer is divisi-
ble by any number other than itself
and one. The probabilistic algorithm of
Solovay and Strassen [1977; 1978], also
for primality testing, is another cele-
brated result in the field. A resurgence of
interest in randomized algorithms occur-
red in the early 1980’s with the discovery
of the important role randomization can
play in distributed computing, e.g., Ben-
Or [1983], Francez and Rodeh [1980], and
Lehmann and Rabin [1981].

More recently, randomized algorithms
have been the subject of an ACM Turing
Award Lecture [Karp 1986], an ACM
Distinguished Dissertation [Kilian 1990],
and of a number of surveys including
Brassard and Bratley [1988], Harel
[1987], Hopcroft [1981], Karp [1990],
Kronsjo [1985], Maffloli et al. [1985],
National Research Council [1992],
Raghavan [1990], Valois [1987], Weide

[19781, and Welsh [19831. Our survey is
closest in spirit to Brassard and Bratley
[1988], Harel [1987], Karp [1990], and
Valois [1987] in its extensive coverage
of both sequential and distributed
randomized algorithms.

A distinguishing aspect of our survey
is the classification we present in Section
1.1 of general techniques used in the

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms “ 9

design of randomized algorithms.1 In
Section 1.2, we then identify certain
tradeoffs one may encounter in using
these techniques. For example, the
primality-testing algorithm of Rabin
[1976], which uses a technique we call
“random search,” outperforms all known
deterministic algorithms for the problem,
yet cannot, in general, guarantee abso-
lutely that the answer produced is cor-
rect. We next present 12 randomized
algorithms we believe to be represen-
tative of the field; in the least, they col-
lectively make use of the techniques that
we have presented. Seven of these algo-
rithms are sequential (Section 2), and
five are distributed (Section 3). Finally,
in Section 4, we spotlight several remain-
ing issues in the field of randomized
algorithms. A comprehensive annotated
biblio~aphy is included. Due to space
limitations, some entries have been
removed; please contact the second
author for a more complete bibliography.

The intended audience is one with a
basic background in algorithm design and
analysis, but not necessarily familiar
with the use of probabilistic techniques
in algorithm construction. Familiarity
with an imperative, sequential program-
ming language such as Pascal is assumed,
since the algorithms are presented in
pseudocode with a distinctive Pascal fla-
vor. The pseudocode makes use of control
constructs such as REPEAT UNTIL, FOR,
WHILE, and IF THEN ELSE for the
sequential algorithms. For the dis-
tributed case, message-passing con-
structs SEND and RECEIVE, as well as
constructs for shared-memory access, are
added to the language. Their semantics
are discussed in the introduction to
Section 3.

As previously mentioned, we survey
both sequential and distributed random-
ized algorithms, In the sequential case,
we examine:

(1) Sock Selection (S’ocH5’el)

(2) Primality Testing (Prime Test)

1Karp’s [1990] recent and excellent survey contains
a slightly different classification.

(3) Networks without Large Hierarchies

(NetHierarchy)

(4) Perfect Hashing (PerfHash)

(5) Universal Hashing (UniuHash)

(6) Nearest Neighbors (NearNeb)

(7) Graph Isomorphism Program Testing
(GI-Verify)

The distributed randomized algo-
rithms we consider are:

(1)
(2)

(3)

(4)

(5)

Dining Philosophers (DirzPhil)

Communication Guard Scheduling

(CmmGuard)

Leader Election in a Ring (Lead-
Elect)

Message Routing in a Network
(iWsgRoute)

Byzantine Agreement (ByzAgree)

For each algorithm we briefly define
the basic problem and, when appropri-
ate, the model of computation. We then
explain why each algorithm is correct
and examine its computational complex-
ity. Only a limited amount of probability
theory is required to understand the cm--
rectness and complexity analyses, since
our emphasis is on illustrating the tech-
niques involved rather than on providing
formal proofs.

To be able to cogently discuss the com-
putational complexity of randomized
algorithms, it is useful to first introduce
several criteria for evaluating the pez--
formance of algorithms. Let M be a
sequential algorithm with input 1 and
output O. If .@ is deterministic, then an
oft-used yardstick of &’s performance is
its average running time: the average
time taken by .@ when, for input 1 of’ a
given size, each possible instance of 1 is
considered equally likely. That is, a uni-
form distribution on inputs is assumed.

For JZZa randomized algorithm, its run-
ning time on a fixed instance i of 1 may
vary from execution to execution. There-
fore, a more natural measure of perfor-
mance is the expected running time of d
on a fixed instance i of I: the mean time

taken by .@ to solve instance i over and
over.

ACM Computing Surveys,Vol. 26, No. 1, March 1994

10 “ R. Gupta et al.

In the randomized case, it is also use-
ful to talk about the running time of @
with high probability or the running time
of.@ that occurs almost surely. Let 7’(n)
be a bound on the running time of.& on
inputs of size n. The running time of w is
said to be T(n) with high probability if .ti
terminates in time T(n) with probability
at least 1 – I/n. The running time of JZ’
is said to be almost surely T(n) if the
algorithm terminates in time T(n) with
probability at least 1 – 1/2 ‘c, for some
constant c > 0. In this survey, we have
opted, whenever possible, to give the
exact expression for the termination
probability of a randomized algorithm
instead of using qualitative terms such
as “with high probability” or “almost
surely.”

These performance criteria can be
applied to distributed algorithms as well.
In this case, the quantities of interest
include communication complexity, the
total number and size of messages trans-
mitted during the execution of a dis-
tributed algorithm; queuing delay, the
total time spent by messages in message
queues waiting to traverse in-use com-
munication links; and the total num-
ber of accesses to shared variables/
resources.

1.1 Probabilistic Techniques

We now discuss a number of fundamen-
tal techniques used by designers of ran-
domized algorithms. This list is not
meant to be exhaustive, and the tech-
niques considered overlap in the sense
that more than one may apply to a given
randomized algorithm.

Input Randomization. Consider an
algorithm .M with input I and output O.
As discussed above, if we fix the size of I,
then the average running time of .M
refers to the average time taken by the
algorithm when each possible instance of
1 is considered equally likely. That is,
a uniform distribution on inputs is
assumed. However, this may not be the
actual input distribution to which

the algorithm is exposed, making the
average time complexity misleading. On
the other hand, the expected running
time of& on instance i of 1 refers to the
mean time that the algorithm would take
to solve instance i over and over.

Input randomization, i.e., rearrang-
ing or permuting the input to rid it of
any existing patterns, ensures that for
all inputs, the expected running time
matches the average running time. This
technique can be effective on problems
that have algorithms with good average
running time but poor worst-case run-
ning time due to some unfavorable input
~atterns.
‘ A well-known example of this tech-
nique is randomized quick sort [Knuth
1973], Quicksort performs very well if
the list of numbers to be sorted has a
random order to it. However, quicksort
degenerates to a comparison of every
number with every other number if the
input is already nearly sorted. One can
think of randomized auicksort as a two-.
step procedure. In the first step, the input
sequence to be sorted is randomly per-
muted. The usual quicksort algorithm is
then applied to the resulting sequence.
Although the input randomization step
can be performed in linear time, in prac-
tice, it is usually more efficient to simply
pick the pivot element randomly. Our
sock selection problem (SockSel) is
another illustration of the power of input
randomization.

An interesting application of input
randomization is seen in some proba-
bilistic interactive proof systems. Here a
prover, which supposedly can solve a hard
problem, tries to convince a skeptical

verifier of its prowess. For some prob-
lems, the verifier’s task essentially con-
sists of randomizing the input to the
prover. This constitutes an attempt
by the verifier to confuse the prover
about the specific problem instance it is
being asked to work on. In Section 2.6,
we will see this use of input randomiza-
tion in action for verifying the correct-
ness of any program that purportedly
solves the graph isomorphism problem.
The proof system will have the additional

ACM Computmg Surveys, VOI 26, No 1, March 1994

On Randomization in Algorithms ● 11

feature that the prover can convince the
verifier of its isomorphism-checking
prowess without the verifier having to
solve the graph isomorphism problem in
any sense.

Input randomization is not restricted
to sequential algorithms. Some random-
ized message-routing algorithms, e.g.,
Valiant’s algorithm for hypercubes
[Valiant 1982] and Aleluinas’s algorithm
for b-way shuffle networks [Aleluinas
1982], exhibit what may be termed
distributed input randomization. In the
message-routing problem, a set of mes-
sages must be routed from source nodes
to destination nodes in a network of com-
puters. Moreover, the routing must be
done in a distributed manner, i.e., with-
out the help of a central arbiter. In
the algorithms of Valiant [1982] and
Aleluinas [1982], each message is first
sent to a randomly chosen intermediate
node before being transmitted to its final
destination. This randomization step
eliminates “hot points” by distributing
the traffic uniformly over the network.
That is, it rids the input of any patterns
that may exist between source nodes and
destination nodes. In Section 3.4, we
describe the message-routing algorithms
of Valiant and Aleluinas as well as
a technique for multibutterfly net-
works based on randomizing the inter-
connections between nodes.

Random Search. Random search is
one of the most widely used probabilistic
techniques. Many problems naturally
involve searching a large space for an
element having a desired property. If the
property in question is easily verified and
if the elements possessing it are abun-
dant, random search can be very effective.

Consider, for example, the problem of
verif~ng the polynomial identity

)lxl, x,,..., xn)=o

If f is identically zero, then for all
assignments of the Xl’s it will evaluate to
zero. However, if ~ is nonzero, then it
can be shown that for any suitably con-
structed set of inputs, f will possess only

a bounded number of zeros. In particulim,
if S is a set with more than c “ deg(f)
elements from the field generated by the
coefficients of ~, then f can have at most
lS\n/c zeros in Sn, for some constant c
[Schwartz 1979]. Thus, every trial evalua-
tion of f on a randomly picked element
of S” will either prove the falsity of the
identity or yield credence to it with l/c
as the probability of being wrong. In k
trials, therefore, one can either disprove
the identity or come to believe it to be
true with error probability less than
l/c~, a number that can be easily made
smaller than the probability of a stray
a-particle disrupting the computation.
Randomized algorithms for testing poly-
nomial identities and properties of
systems of polynomials are discussed in
detail in Schwartz [1979] and Zippel
[1979].

The probabilistic test for polynomial
identities can also be used for determi-
ning whether a given undirected graph
G(V, E) has a perfect matching, i.e., a
set of edges that covers each vertex
exactly once. To see this, let V = {1,
2 ,. ... n} be the vertex set and associate
variable X,J with edge e,j e E. Define
the n x n matrix 1? = [b,~] as follows. If
there is no edge between vertex i and
vertex j then b, = O. Otherwise, btJ =
x if i > j, and b,] = -x,, if i <j.

T~tte [1947] proved that G has a perfect
matching if and only if det(B) is not
identically equal to zero. It was first
observed by L6V5SZ [1979] that since
det(ll) is a polynomial in the x,~’s, one
can test for the validity of the polynomial
identity det(B) = O using the probabilis-
tic technique described above. L6v6sz, in
the same paper, also describes a proba-
bilistic method for determining the actual
perfect matching, if one exists.

More efficient sequential methods for
computing the perfect matching, though
considerably more complicated, have
been described in the literature. The
beauty of the above scheme is its simplic-
ity. Additionally, it can be efficiently
parallelized: the parallel implementation
has the same resource requirements as
those for evaluating a determinant, viz.,

ACM Computing Surveys,Vol 26, No. 1, March 1994

12 “ R. Gupta et al,

0(log2 n) time using 0(n35, processors
[Karp et al. 1986; Mulmuley et al. 1987].
This is significant since perfect matching
is a fundamental problem that is not
known to be in NC, the class of problems
having parallel algorithms that run in
polylog time while using a polynomially
bounded number of processors. The ran-
domized parallel algorithms of Karp et al.
and Mulmuley et al. do, however, place
perfect matching in Random NC. One
can also determine the actual perfect
matching in parallel; see Karp et al.
[1986] and Mulmuley et al. [1987] for
details.

Random search has also been used in
algorithms on finite fields [Berlekamp
1970; Rabin 1980b]. It can be shown (e.g.,
see Berlekamp [1970]) that one in about
every n polynomials in ZP[x] (the field
of residues (mod p), where p is prime) is
an irreducible monic polynomial of degree
n. This result has been reproved, using
a different technique, in Rabin [1980b].
Thus, a plausible algorithm for find-
ing an irreducible polynomial is to
repeatedly pick one at random and test
it for irreducibility. Since it takes 0(nz

(log n)z log log n log p) steps to test for
irreducibility, one can find an irreducible
polynomial in a reasonable amount of
time. Algorithms for finding roots and
irreducible factors based on random
search are also given in Rabin [1980b].

There is a long history in number the-
ory of using random search. For example,
the result that 1 out of n polynomials of
degree n over a finite field is irreducible,
used above to derive a randomized algo-
rithm for finding an irreducible polyno-
mial, was published in 1856 by Richard
Dedekind, in the J. Reine Angew. Math.
Evidence exists that Gauss knew this
result for the integers (mod p). Even ear-
lier, Galois noted that a good way to
select an irreducible polynomial over a
finite field was by trial. Similarly, a paper
by Pocklington in the Proceedings of the
Cambridge Phil. Society, 1917, on com-
puting square roots mod p gives an esti-
mate of the probability that a random
search will succeed and take no more
than cubic time.

In this survey, the algorithms we pre-
sent for primality testing (PrimeTest)
and perfect hashing (Perflash) also use
random search.

An implicit prerequisite for effective
random search is the ability to randomly
pick an element, more or less uniformly,
from the space under consideration, e.g.,
the space of “witnesses” having a certain
property, the space of spanning trees of a
graph, or the space of degree-n polynomi-
als. Determining the spaces for which
this is possible is in itself an interesting
problem. For example, it is not immedi-
ately clear how one would pick one span-
ning tree, uniformly at random, from the
space of all possible spanning trees of a
connected, undirected graph. This partic-
ular problem was solved by Broder [1989]
who presented a randomized algorithm
with an expected running time of 0(n
log n’) per generated tree for almost all
graphs. In the worst case, the algorithm
requires 0(n3) time per generated tree.
Babai [1991] presents a randomized algo-
rithm that constructs an efficient nearly
uniform random generator for finite
groups in a very general setting. Other
interesting work on the random genera-
tion of combinatorial structures and sam-
ple spaces can be found in Alon et al.
[1990] and Jerrum et al. [1986].

Not all algorithms based on random
search contain a verification step. If
the search space is teeming with ele-
ments possessing the desired property,
one can even dispense with checking the
property. This is particularly useful if the
property in question is not easily checked.
For example, the problem NetHierarchy
calls for constructing a network (a com-
plete directed graph) on n nodes that
does not contain a hierarchy on any sub-
set of m nodes. A hierarchy, also known
as a transitive tournament [Erdos and
Spencer 1974], is a graph in which for all
nodes x, y, and z if the directed edges

(x, y) and(y, z) exist then the edge (x, z)
also exists. We will see that with high
probability, any randomly selected net-
work on n nodes will be devoid of large
hierarchies as long as m is sufficiently
“large.”

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms ● 13

Control Randomization. Consider
a problem for which many algorithms
exist, such as sorting. If each of these
algorithms has good average perfor-
mance but poor worst-case performance,
it is very risky to use any single one of
them. This is especially true if the input
probability distribution is not known. It
may happen that the input is biased in
such a way that it favors the bad cases.
In such a situation, good average perfor-
mance, which is typically computed as-
suming uniform input distribution, does
not guarantee much. A way around this
problem is to randomly pick one of the
algorithms for each input instance. This
strategy assumes, of course, that there is
no significant correlation among the al-
gorithms on what constitutes the bad
inputs.

The randomized string-matching algo-
rithm of Karp and Rabin [1987] exempli-
fies the use of control randomization.
Here the problem is to determine if
a given pattern of m symbols occurs in a
text of length n. A naive algorithm would
compare the pattern to the substrings at
all possible text locations resulting in
O(nm) time complexity. Karp and Rabin
do better by using a fingerprinting func-
tion that associates an integer with a
text string using arithmetic calculations
modulo a given prime number. They need
only compare the fingerprint of the pat-
tern to the fingerprints of all possible
text locations. Control randomization
comes into play as the fingerprinting
function, actually the prime number
underlying the fingerprinting function, is
chosen at random.

Although the worst-case running time
of their algorithm is O((n – m + l)m),
like the naive algorithm, in practice one
can expect it to run in timez O(n + m).

zThe worst-case behavior manifests itself m the
presence of (1(n) occurrences of the pattern in
the text. A more realistic, constant number of
occurrences of the pattern within the text leads
to the O(n + m) running time cited above.

There is, however, a small probability
(l/q, where q is the prime number used
in the fingerprinting function) that the
algorithm detects a false or spurious
match. As a result, the algorithm incurs
the additional overhead needed to check
that detected matches are actually valid.

It is worth noting that a competitllve
alternative to the Karp-Rabin algorithm
is the deterministic Knuth-Morris-Pratt
algorithm [Knuth et al. 1977] which rums
in time O(n + m). The main novel idles
behind this algorithm is the calculation
of the prefix function, which for a given
pattern encapsulates knowledge about
how the pattern matches against shifts
of itself.

As we will see, the problem of univer-
sal hashing (?7niuHash) also admits a
solution based on control randomization.

Random Sampling. Sometimes it is
possible to ascertain, with high probabil-
ity, certain properties of a set S from a
randomly chosen subset of S. This tech-
nique is usually called “random sam-
pling.” As a simple example, consider a
set S of n real numbers and a randomly
chosen subset R of S of size r [Clarkson
and Shor 1989]. R contains a lot of infor-
mation about S. For example, if we let
S> be the subset of numbers in S that
are greater than the maximum value in
R, then the expected size of S, is
O(n/r). Thus the size of S, diminishes
as more and more values from S are
sampled. Similarly, the expected size of
the corresponding set S. is O(n/r).

As another example of random sam-
pling, consider the problem of numeri-
cally computing the integral

I = ~bf(x)dx,
a

using Monte Carlo integration (not to be
confused with Monte Carlo algorithms
discussed in Section 1.2). Assuming that
~(x) is bounded by O and c, for a s x s b,
this is accomplished by first randomly
choosing a set of points that lie within

ACM Computing Surveys,Vol 26, No 1, March 1994

14

Y

c

. R. Gupta et al.

.—— —
1

k
0

miss

n

t
f-f,)

I hit
0

—

Fiwre 1. GraDhlcal deDiction of Monte Carlo inte-
gr~tion from R~binstei~ [1981]: Q is the bounding
rectangle; I, the desu-ed integral, is the area under
the curve; sample points above the curve are misses,
and those below are hits.

the rectangle fl given by

Q={(x, y)la<x<b, O<y <c}.

Next, assuming that our random sample
contains N points, determine the
number NH of these points (the “hit
points”) that lie beneath the curve.
Then the desired integral 1, which is
equal to the area under the curve
within the bounding rectangle 0, is
approximated by

I=c(b–a)*,

i.e., the fraction of hit points in our ran-
dom sample multiplied by the area of [1

(see Figure 1). The error in the computa-
tion depends on the number of points
chosen. The larger the random sample,
the less likely it is that the computed
area differs significantly from the correct
answer.

Note that for the computation of ordi-
nary integrals with “well-behaved” inte -

grands, one is better off efficiency wise
and accuracy wise using traditional
numerical techniques such as the trape-
zoidal and Simpson’s rules. Monte Carlo

integration becomes attractive if the
function fails to be regular, which is often
the case for multidimensional integrals
[Rubinstein 1981].

A more involved use of random sam-
pling will be seen in Rabin’s [1976] algo-
rithm for the nearest-neighbors problem

(NearNeb). Here the distance 8 separat-
ing the closest pair of points in a given
set S is deduced from a random subset of
S containing n213 of the points. The
expected running time of this algorithm
is better than any known deterministic
algorithm, under certain reasonable
assumptions.

Symmetry Breaking. There are
certain problems in distributed comput-
ing, in particular, problems in which
processes must reach some sort of agree-
ment, that do not have deterministic
solutions. This dilemma surfaces when
processes behave in a deterministic and
identical fashion, without making any
concessions toward the goal of reaching
agreement. By introducing randomiza-
tion into the behavior of the processes
themselves, these patterns of identical or
“symmetric” behavior can be broken,
thereby leading to agreement.

For example consider the narrow-door
problem in which two people are trying
to exit a room through a door that at
most one person can squeeze through
at a time. If both persons react to a colli-
sion at the door by backing up two feet
and retrying after five seconds, then an
initial collision could conceivably result
in a never-ending succession of collisions,
with neither party ever succeeding in
leaving the room. A distributed algo-
rithm that guarantees with probability 1
that someone will eventually be able to
leave the room would require

each participant to wait a randomly dis-
tributed amount of time after each colli-
sion before trying again. This essentially
describes the hardware protocol for the
Ethernet. Other examples of symmetry
breaking include the dining philosophers
problem (DinF’hil), communication
guard scheduling (CornnzGuard), and
leader election (LeadElect).

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms ● 15

1.2 Tradeoffs

Tradeoffs are often involved in the use of
randomized algorithms. Benefits to be
reaped by introducing randomization into
algorithms include, in the sequential
case, reductions in time complexity (e.g.,
PrimeTest, SockSel, and NearNeb) and
in space complexity (e.g., PerfHczsh).

In the distributed case, reductions
in communication complexity (e.g.,
ByzAgree) and queuing delay (e.g., iklsg-
Route) can be obtained, and an algo-
rithm’s resiliency to faults can be
improved (e.g., MsgRoute). Perhaps an
even more fundamental benefit of
randomization in the distributed setting
is the ability to solve problems that have
no deterministic solutions (e.g., DinPhil,
CommGuard, and LeadElect).

In addition to these gains, a random-
ized algorithm is almost always simpler
to understand and easier to implement
than its deterministic counterpart. This
is perhaps best illustrated by L6V6SZ’S
probabilistic algorithm for perfect match-
ing discussed earlier. As we will see, con-
ceptual elegance and simplicity are a
hallmark of all the randomized algo-
rithms treated in this survey. In an age
of rising software complexity and cost,
the simplicity of randomized algorithms
will be a key determining factor in their
acceptance by the software community.

To profit from the use of random-
ization, one must often sacrifice the
traditional notion of absolute program
correctness for a notion of “correct with
probability 1 – e.” For the distributed
algorithms DinPhil, CommGuard, and
ByzAgree the ~ is zero, so we have even-
tual agreement with probability 1. In
other cases, such as PrimeTest, the e can
be made exponentially small in the length
of the input by iterating the algorithm
some number of times. The beauty of
these algorithms is that usually only a
small number of iterations are required
to establish a very high degree of con-
fidence in their output.

Another potential problem with ran-
domized algorithms is that sometimes
there is a small probability of taking

an inordinate amount of time to exe-
cute (e.g., NearNeb) or of even failing
to halt (e.g., LeadElect).

Analogous to the space–time tradeoff
inherent to deterministic sequential algo-
rithms, with randomized algorithms,
there is a tradeoff involving resource
requirements and absolute correctness.
In fact, this tradeoff has led to the dis-
tinction of two types of randomized algo-
rithms: Monte Carlo algorithms are
always fast and probably correct, wherleas
Las Vegas algorithms are probably fast
and, upon termination, always correct.
Las Vegas algorithms, however, may fail
to terminate for some inputs. For exam-
ple, the algorithm for primality testing

(PrimeTest) is of the Monte Carlo vari-
ety, while the algorithm for nearest
neighbors (NearNeb) is of the Las Ve,gas
variety.

If a purported solution to a problem is
easily verifiable then a Monte Carlo algo-
rithm MC for it can be converted into a
Las Vegas algorithm by simply repeating
MC until a correct solution is found.
Similarly, any Las Vegas algorithm LV
can be trivially converted into a Monte
Carlo algorithm: one can always return
a wrong answer (efficiently!) if LV
seems to be taking too long. Since
LV is fast with high probability, the
modified algorithm will be correct with
high probability.

The Karp-Rabin string-matching algo-
rithm described above is a good example
of how to convert a Monte Carlo algo-
rithm into a Las Vegas algorithm:
the kernel of the Karp-Rabin algorithm
will, from time to time, report spurious
matches. By first checking if a purported
match is a valid match, the Karp-Rabin
algorithm always gives a correct answer.
Muthukrishnan [1993] gives an effici-
ent parallel algorithm for exactly this
problem.

In Brassard and Bratley [1988], Las
Vegas algorithms possessing bounded
time requirements are called Sherwood
algorithms. Randomized quicksort is an
example of a Sherwood algorithm. It
takes at most 0(n2) time on any problem
instance. Note that a Las Vegas al go-

ACM Computing Surveys, Vol. 26, No 1, March 1994

16 ● R. Gupta et al.

rithm that may possibly not
(e.g., LeadElect) cannot be a
algorithm.

2. SEQUENTIAL RANDOMIZED
ALGORITHMS

terminate
Sherwood

In the first part of this survey, we pre-
sent seven sequential randomized algo-
rithms. The first algorithm (SockSel) is a
simple illustration of the input random-
ization technique. The next three algo-
rithms (Prim eTest, NetHierarchy, and
PerfHash) illustrate the power of random
search. We then give an example of con-
trol strategy randomization (UrziuHash)
and random sampling (NearNeb). We
conclude this section with another ran-
domized algorithm that uses input ran-
domization (GI-Verify).

2.1 The Sock Selection Problem

In this section, we provide a randomized
solution to the Sock Selection problem

(SockSel). This problem, although some-
what contrived, illustrates the technique
of input randomization in a simpler man-
ner. It also bears connections with cer-
tain resource allocation problems.

Consider a dresser drawer of 2 n socks,
half of which are red and half of which
are blue. Person X has just awoken and
is in dire need of a matching pair of
socks; a matching pair of either color will
do. In his elusive search for this “holy
grail,” person X randomly extracts one
sock at a time from the drawer and may
also throw socks away (one at a time) if
he believes he has no use for them. He is
not allowed to put a sock back in the
drawer, The question is, then: How many
socks must person X remove from
the drawer before a matching pair is
obtained?

If there is no limit to the number of
socks person X can have in his possession
at any one time, then the problem is
trivial. He simply removes three socks
from the drawer and discards the sock
that is not needed. Since two socks out of
three must be the same color, this proce-
dure will terminate in constant time.

The problem becomes more interesting
if person X can have in his possession at
most two socks at any one time, and this
is the sock selection problem we study.
The simplest deterministic solution,
which is basically a sequential search
through the sequence of socks extracted
from the drawer, is as follows.

SockSe/l { (* First Try at Sock Selection *)
SI .= get-sock()
S2 = get-sock()
WHILE color-of(sl) () color-of(s2) DO {

discard-sock(s2)
S2 := get-sock()

} (* end while *)
}

It is not difficult to see that in
the worst case this algorithm will take
0(n) time. The worst-case behavior
is manifest when the sequence of
socks returned by get-sock() is either
red, blue, blue, blue, red or
blue, red, red, red, blue, where the
number of intervening socks of opposite
color is O(n). In fact we can make a
stronger statement: any determinis-
tic algorithm will have 0(n) worst-case
running time.

The above “worst-case” sequences of
socks returned by get-sock() capture the
drawer in an adversarial role with respect
to person X. For most of the sequen-
ces returned by get-sock(), however, the
while-loop will terminate before n steps.
Thus it is reasonable to anticipate that
the average running time of SockSell
is much less than O(n). This suggests
the randomized algorithm SockSe12, an
improved version of SockSell.

SockSe/2 { (* Revised Sock Selection
Algorithm *)
SI = get-sock()
S2 .= get-sock()
WHILE color-of(sl) () color-of(s2) DO {

toss a perfect two-sided coin
IF heads THEN {

discard-sock(sl)
S1 = get-sock()}

ELSE {
discard-sock(s2)
S2 := get-sock()}

}(* end while *)
}

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 17

Here we assume that the drawer does
not know the random choices made
by SockSe12, i.e., the coin tosses are pri -
vate.3 This assumption is critical for,
without it. the drawer can force SockSe12
into long 0(n)-step executions. Even
worse, if the coin tosses are public, an
adversarial drawer can force person X to
end up with a mismatching pair of socks
after the drawer has been emptied.

The way SockSe12 is formulated above,
the latter problem does not completely go
away even when the coin tosses are hid-
den from the drawer: with probability
that is exponentially small in n, Sock-
Se12 can return a mismatched pair of
socks. SockSe12 can be made foolproof by
employing two counters, one for the num-
ber of red socks left in the drawer and
one for the number of blue socks left in
the drawer. If it finds that it posses-
ses the last sock of a particular color,
then it should immediately discard that
sock. The next call to get-sock() will
return a matching sock.

Assuming SockSe12’s coin tosses are
private, a viable strategy for the drawer
is to have get-sock() return socks of dif-
ferent colors on the first two calls and
thereafter flip a perfect two-sided coin to
determine the color of the next sock
to return. In this case, the probability
that the while-loop will be executed i
times is (1/2)2, i > 1, and, thus, the
probability that get-sock() is called
exactly (i + 2) times is (1/2)’. The expec-
ted running time, for large n, is given by

~=~

~ (i + 2)(1/2)2 N 4. (1)
~=1

Notice that the running time of Sock-
Sell averaged over all sequences returned

3For a discussion of pmvate versus public coin
tosses, see the last paragraph of Section 2.6 and
Goldwasser and Sipser [1989]. A related concept
called shared randomness, which is weaker than
both private and public coin tosses, is discussed in
Blum et al. [1991].

by get-sock() is 4, the same as the
expected running time of SockSe12
for any input sequence. The following
properties can thus be ascribed to
problems amenable to solution by input
randomization:

(1) The problem should have a determin-
istic algorithm with good averiage
running time.

(2) The random transformation applied
to the input for achieving uniform
running time for all the inputs should
take less time than the algorithm
itself.

The problem of primality testing
considered next illustrates another
technique for randomized algorithms:
random search.

2.2 Primality Testing

The problem of primality testing is: given
a positive integer n expressed in bini~ry
notation, is n a prime number? Recall
that a number n is prime if the only
numbers by which it is divisible are
1 and itselfi otherwise, n is said to be
composite.

Since the dawn of number theory,
prime numbers have enjoyed consider-
able attention. Despite all the progress in
the field, to date there is no formula

(similar to, say, Fibonacci numbers) to
enumerate all the prime numbers.
Fermat’s primes, some of which are actu-
ally not prime, and the ancient Chinese
assertion that n is prime if and only if n
divides 2 n – 2, are wrong results which
exemplify the mysteries enshrined in
prime numbers. (For the latter, consider,
for example, n = 341.)

Of late, extremely large prime num-
bers are in great demand because of their
use in defining trap-door functions for
public-key cryptography systems [Gold-
wasser and Micali 1984; Rivest et al.
1978; Schroeder 1984; Smith 1983]. llor
example, in the Rivest-Shamir-Adleman
(or RSA) cryptosystem [Rivest et al. 19’78]
the keys are 200-digit numbers. An en-
cryption key is the product of two secret

ACM Computmg Surveys,Vol. 26, No 1, March 1994

18 ● R. Gupta et al.

primes, having approximately 100 digits
each, which are known only to the cre-
ator of the key. The corresponding de-
cryption key is computed from the same
two prime numbers using a publicly
known algorithm. Difficulty in factoring
large numbers is at heart of this cryp-
tosystem: it ensures that one cannot eas-
ily deduce, in any reasonable amount of
time, the prime numbers that went into
forming the publicly advertised encryp-
tion key. Clearly, large primes are essen-
tial to this scheme. Using randomized
search for testing whether a given num-
ber is prime—such a test can be used for
generating large prime numbers—is the
subject of this section.

In the absence of a formula, a plausible
strategy for generating large prime
numbers might be:

GenPrime{
REPEAT{

Pick a large number at random;
Test whether it is prime;

}
UNTIL a prime number of desired size IS

found

The mean distance between primes
in the neighborhood of a number n is
O(log n) (see, e.g., Schroeder [1984]).

Thus we do not have to test very many
numbers before finding one in the desired
range. For example, in order to find a
prime number about 10 20 in size, we only
have to test about 48 numbers. The catch,
however, is to test such large numbers
for primality in a moderate amount of
time.

One might contemplate using trivial

division, or even Wilson’s theorem—
which states that a number n is prime if
and only if n divides (n – 1)! + 1 without
remainder—in order to check for primal-
ity. Repeated trial divisions are clearly
very inefficient because even if one were
to try divisions with only the prime num-
bers between 1 and n—notwithstanding
the fact that there is no formula for gen-
erating them—one still has to conduct
0(n/log n) divisions. Since n is encoded
in [log(n + 1)1bits, repeated divisions will

take exponentially long. Furthermore, the
sight of the factorial should dispel any
hope for success in using Wilson’s theo-
rem as a practical test for primality.

Another fundamental result from num-
ber theory also appears promising. Pierre
de Fermat, a French mathematician,
showed that if a number n is prime then,
for all x, “n does not divide x“ implies n
divides x“- 1 – 1 [Schroeder 1984]. This
result has become known as Fermat’s
theorem, not to be confused with his
last theorem. The condition “n divides
Xn–l – 1“ can be restated as x‘ -1 = 1
(mod n), which we refer to as Fermat’s
congruence.

The contrapositive of Fermat’s theo-
rem yields a technique for showing the
compositeness of a number n. That is, n
can be proven composite if we can find
an x such that n does not divide x or
Xn–l – 1 (elementary properties of
modular arithmetic allow the latter con-
dition to be verified without ever comput-
ing the number x n 1 — 1). Let us call
such x witnesses to the compositeness of
n. Note that a reasonable search space
for x are the integers between 1 and
n — 1, inclusively, since these are guar-
anteed not to be divisible by n.

The problem with using Fermat’s theo-
rem, however, is that the converse of the
theorem does not hold, and there there-
fore exist composite n bearing no wit-
nesses to their compositeness. Such n
are known as the Carmichael numbers,
the first three of which are 561, 1105,
and 1729. Interestingly, as pointed out in
Cormen et al. [1990], Carmichael num-
bers are extremely rare; there are, for
example, only 255 of them less than
100,000,000. Furthermore, even if a com-
posite n possesses a witness x, i.e., it is
not a Carmichael number, there is no
obvious way to locate x.

One can also obtain a positive identifi-
cation of composite numbers using the
Lucas-Lehmer heuristic [Lehmer 1927]:
n is prime if and only if x”- 1 - 1 (mod
n) and x(’–l)/~ # 1 (mod n), for each
prime factor p of n – 1. In general,
the prime factors of n – 1 may not be
known. However, this test can be used

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms 9 19

effectively if n = 2 m + 1 for some posi-
tive integer m, a rather restricted subset
of the integers.

Let n = II ~E~ pZ”L be the unique prime
factorization of n. Define A(n) = lcm
{p:,-l (P1 - l),..., p~(pn(pn - l)}. It
was shown by Carmichael [1912], of the
Carmichael numbers fame, that n satis-
fies Fermat’s congruence if and only if
A(n) divides (n – 1).The reader can ver-
ify that A(561) divides 560.

In light of above theorem, a plausible
approach to test primality—actually
compositeness, but for a deterministic
algorithm that always terminates with
the correct answer, it does not matter—is
as follows. Divide composite numbers into
two categories according to whether M n)
divides, or does not divide, (n – 1). If
A(n) does not divide (n – 1), then by
virtue of Carmichael’s result, one can use
Fermat’s test. On the other hand, if A(n)
does divide (n – 1) a new test is neces-
sary. If an attempt to place a number in
either category fails, it must be prime.

A variation of the above strategy was
employed by Miller [1976], in a paper
that has proven to be very useful in pri-
mality testing. This paper defined the
basic concepts that were later used by
Rabin to derive a probabilistic algorithm
for primality testing. To arrive at his
algorithm for primality testing, Miller
divided the composite numbers as sug-
gested above. However, instead of using
Carmichael’s A-function, he used A’(n) =
lcm{(pl – l),..., (Pm – 1)} to pare down
the set of composite numbers that satisfy
Fermat’s congruence. The following is a
simplified version of Miller’s algorithm.
In this algorithm, f is a computable
function.

Miller used the A’ function to charac-
terize the class of composite numbers tlhat
satisfy Fermat’s congruence. He proved
that a function f can be defined
such that, if n is composite, then by test-
ing conditions (1) through (3) repeatedly,
for all x < ~(n), the algorithm will indeed
identify n as composite. Furthermore,
f(n) can be defined so that the above
algorithm terminates in 0(nl’7) steps.
Since n is given in Ilog(n + 1)1 bits,
0(nl/7) is still exponentially long. Using
the Extended Riemann Hypothesis

(ERH), however, Miller proved that f can
be defined so that a slightly more colm-
plex version of the above algorithm ter-
minates in 0(q4 log log q) steps, where
q = [log(n + 1)1 denotes the length of
the binary representation of n. Thus, the
primality of a number can be determined
deterministically in polynomial time
assuming ERH.

Like before, let us call any number
x between 1 and n for which at least
one of conditions (2) and (3) in the main
body of the above algorithm is true a
witness to the compositeness of n. A key
observation which makes randomized
testing for primality feasible is that there
is an abundance of witnesses for compos-
iteness. The probability that a number is
composite and conditions (2) and (3) are
not satisfied is very small. In fact, Rabin
[1976] has shown that more than half the
values of x ● {1, 2, ..., n – 1} satisfy (2)
or (3) if n is indeed composite (see, also,
Cormen et al. [1990, Theorem 33.38]).
Monier [1980] has subsequently
strengthened this result by showing that
at least 3/4 of the x are witnesses.
Even though Miller’s polynomial-tilme
algorithm for testing primality requires

PrimeTest (Mi//er) { (* a deterministic algorithm for primality testing *)
Input n
If n is a perfect power, say m’, output ‘composite’ and HALT
REPEAT FOR EACH x s f(n) {

(1)if x divides n, output ‘composite’ and HALT
(2) if X“-’ # 1 (mod n), output ‘composite’ and HALT
(3) [f there w an 1 such that (rJ – 1)/2;= m IS Integral,

and 1 < gcd(x~ – 1, n) < n, output ‘composite’ and HALT
}

output ‘prime’ and HALT
}

ACM Computing Surveys,Vol 26, No 1, March 1!>94

20 “ R. Gupta et al.

Distribution of witnesses to compositeness of n
I20

I00 . —

80 -

60 -

40 -

20 -

0------ --- -- ----- - ---- -- -- - ---- - --- -- ~~~--- ----

-20
1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 116 118 12

n Xlo’1

Percentage of witnesses to the compositeness of n in the range 10,000 to 12,000. The points at
Y = 0 represent prime numbers.

the ERH, these results about the den-
sity of witnesses hold in general and
can be proven without recourse to this
hypothesis.

Figure 2 illustrates the high density of
witnesses to compositeness. The figure
shows, for each integer n in the range
10,000 to 12,000, the percentage of inte-
gers between 1 and n that are witnesses
to the compositeness of n. As can be

of numbers is almost always more than
98$ZO; for only about 18 numbers out of
2000, the percentage of witnesses lies in
the 85 to 98% range. As is to be expected,
for primes there are no witnesses, result-
ing in a sparse set of points along y = O.

Miller witnesses, in conjunction with
Rabin’s result about their density, gives
a rather powerful primality-testing
algorithm:

PrimeTest (Rabin) { (* a probablllstlc algorithm for pnmahty testing x)
Input n
REPEAT r times{

(1) randomly pick an x between 1 and n
(2) if x“- 1 # 1 (mod n), output ‘composite’ and HALT
(3) If there IS an i such that (n – 1) /2’= m is integral,

and 1 < gcd(x~ – 1, n) < n, output ‘composite’ and HALT
}

output ‘prime’ and HALT
}

seen, if the number is composite, then In the above algorithm, if either condi-
the percentage of witnesses in this range tion (2) or (3) is satisfied then n. is com-

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 21

posite. On the other hand, if (2) and (3) bol; when n is composite, the Jacobi
are not satisfied by x then n may or may symbol is defined to be the product of
not be composite, and the procedure must all the Legendre symbols correspond-
be repeated. If r trials are used, the ing to the prime factors of n, i.e., if n =
probability that n is composite and not Ilp,, then (x/n) = 11(x/p,).
detected is less thanl\2’. Therefore, with In the algorithm by Solovay and
very few trials, one can either prove that Strassen, for x = {1,..., n – 1} to be a
a number is composite or gain a high witness to compositeness of n, either
degree of confidence that it is prime. See gcd(X, rz) > 1 or xc’ - ljfz (mod n) +

also Beauchemin et al. [1988] for some (x\n). Their algorithm can be stated as
intriguing observations about the perfor- follows.

PrimeTest (Solovay-Strassen) { (* another algorithm for primality testing *)
Input n
REPEAT r times{

(1) randomly pick an x between 1 and n
(2) if gcd(x, n) >1, output ‘composite’ and HALT
~3) if x(”- ‘)’2 (mod n) + (x/f?), output ‘composrte’ and HALT
}

output ‘prime’ and HALT
}

mance of Rabin’s primality test and about
its reliability when used to generate a
random integer that is probably prime.

In the mid-seventies, another proba-
bilistic primality-testing algorithm was
discovered by Solovay and Strassen
[1977]. Some basic results in number
theory are needed to describe their
algorithm. For any prime number n, one
can define Z: = {1, n – 1}, a cyclic

group under multiplication mod n. The
Legendre Symbol for any element x G

Z;, denoted by (x/n), is defined to be 1
or — 1 depending on whether or not x is
a perfect square (i.e., a quadratic residue
modulo n) of some other element in Z*.
More precisely, (x\rz) = 1 if x - ~2
(mod n) for some y = Z:, – 1 otherwise.

If x is a perfect square, say x - y2
(mod n), then it is not difficult to see that
~(~ - 1)/z ~ yt~ -1) E 1 (mod n). This leads

to a fast way of computing the Legendre
symbol. One can extend these concepts to
a general n which may or may not be
prime. In this case, for any number n,
one can define Z; = {XIX e {1,n –
1], and gcd(x, n) = 1}. Once again, Z:
is a group under multiplication mod n.
The Legendre symbol is generalized
to the Jacobi symbol: if n is prime, the
Jacobi symbol equals the Legendre sym-

Determining if x and n are relatively
prime (e.g., by Euclid’s algorithm), com-
puting x(n– 1)/z (mod n), and the Jacobi

symbol (x/n), can all be accomplished in
logarithmic time. If n is prime, then it
follows from the fact that Z; is cyclic,
that x(” 1)/2 = (x/n) (mod n). ThUS
when n is indeed prime, no x will qu al-
ify as a witness. When n is composite,
Solovay and Strassen showed that the
set of false witnesses—the numbers in
{1, n – 1} that violate conditions (2)
and (3), i.e., gcd(x, n) = 1 and X(’–1)12 =

(x/n) (mod n)—forms a proper subgroup
of Z;. Hence the cardinality of this set
can be at most (n – 1)/2. Once again,
using the properties of quadratic residues
modulo n, the witnesses for composite-
ness are defined in such a way that they
are both easily checkable and abundant.

An interesting comparison of the
Miller-Rabin and Solovay-Strassen
primality-testing algorithms is given in
Monier [1980], where it is shown that the
former is always more efficient than
the latter. These two algorithms are
of the Monte Carlo variety because when
n is prime they can report so only with a
certain probabilistic measure of cord3-
dence; in particular, no proof is provided
that this is the case. Convincing some-

ACM Computing Surveys,Vol. 26, No. 1, March 1994

22 “ R. Guptaet al.

body that a number is composite is an
easy task: one simply has to exhibit that
it is a product of two other numbers. How
can one demonstrate that a number n is
prime? Certainly it can be done by show-
ing all possible trial divisions, but that is
not an efficient proof since it is exponen-
tially long in the length of n. It was
shown by Pratt [1975], using the Lucas-
Lehmer heuristic for primality testing,
that one can give a succinct proof for
primeness of a number n in O(log n)
lines. While it is easy to verify such a
proof, unfortunately, there is no known
method for coming up with the proof, or
demonstrating the absence thereof, in
polynomial time.

Other algorithms utilizing different
number-theoretic properties for defining
witnesses for compositeness and primal-
ity have also been discovered [Adelman
and Huang 1987; 1988; Goldwasser and
Kilian 1986; Lehmann 1982; Rabin
1980a]. For example, Adleman and
Huang [1988] have devised a new algo-
rithm that, instead of deciding primality
by the inability to demonstrate witnesses
to compositeness, employs a separate
Monte Carlo test for primality. Thus, just
like composite numbers, there exists a
random polynomial-time algorithm for
the set of prime numbers. The algorithm
flip-flops between searching for witnes-
ses to com~ositeness and witnesses to
primality, e~entually finding one in poly-
nomially bounded expected time. This
algorithm, which is of the Las Vegas
variety, will never declare a composite
number to be prime or vice versa. How-
ever, it may not terminate in polynomial
time for some inputs.

The next problem we consider, which
concerns the notion of transitwe tourna-
ment due to Erdos and S~encer [19741.
again illustrates random search. In
this case, however, the sample space is
so abundant with good points that the
“checking” step inherent to primality
testing can be dispensed with.

2.3 Networks without Large Hierarchies

Long ago, in a place called Confusion
Land, there reigned an incompetent

king called Nadir. Nadir had appointed
1000 ministers, generals, and other high-
ranking officials to various portfolios in
his kingdom. As usual, Nadir was afraid
that some of his appointees would orga-
nize, revolt, and finally usurp the throne.
His remedy was simple: keep them
confused. He did this by not allow-
ing a clear-cut line of command—a
hierarchy—to be formed among these
officials. His long experience in politics
had convinced him that even if as few as
25 officials got organized they would
overthrow him.

Nadir’s definition of “being organized”
is as follows: k officials are said to be
organized in a hierarchy if for every three
of them, the “is-a-boss-of’ relation is
transitive. That is, if for all triples of the
form (A, B, C), if A is a boss of B and B
is a boss of C implies A is a boss of C’,
then the k officials are organized.

Having made appointments to the 1000
positions, Nadir is stuck with the fol-
lowing task. He must define the is-a-
boss-of-relation between every pair of
appointees such that no group of 25 or
more officials is organized. At the macro-
level (groups of size less than 25), there
may be organized groups; at the macro-
level, however, confusion should prevail.
How will Nadir assign ranks to these
thousand appointees in order to achieve
his crooked objective?

In this section we consider Nadir’s
problem in detail and provide a general
solution, the key to which is a theorem of
Erdos and Spencer [1974, Chapter 1]. To
make this section self-contained, their
result is proved here as Theorem 1. It
turns out that Nadir’s problem falls in
the category of problems for which (1) the
solution space is abundant with candi-
dates possessing a given property and (2)
random search can be used to derive the
solution.

Nadir’s problem can be described as
that of constructing a network of nodes,
where each node represents an official.
Informally, a network represents an
assignment of precedence between all
possible pairs of nodes. It can be repre-
sented by a complete directed graph

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

On Randomization in Algorithms ● 23

where an edge from x to y represents
the relation “x is a boss of y.”

Formally, a network T on a set V is a
directed graph (V, T) where T c V X V
such that for all x, y = V, x # y, either

(x, Y) e T or (y, x) c T, but not both.
A network T is a hierarchy if (x, y),

(y, z) E T implies (x, z) ● T, Vx, y,
z = V. Networks and hierarchies are
called tournaments and transitive tour-
naments, respectively, in Erdos and
Spencer [1974].

Nadir’s problem then, which we refer
to as the NetHierarchy problem, is to
construct a network that does not have
“large” hierarchies. In particular, he
wants a network T. on n nodes such
that every subnetwork of T. containing
m or more nodes is not a hierarchy. (In
the case at hand, n = 1000 and m = 25.)
A possible approach to constructing such
a network would be to choose a network

()
at random and check that all the ;

subnetworks are not hierarchies. If a
large hierarchy is found, another T. can
be picked randomly and checked. This
process can be continued until a network
with the required property is found. As
we will see below, for appropriate values
of m, one can even dispense with the
check since any random T. would suffice
with a very high degree of confidence.

In a hierarchy it is possible to assign a
unique rank to each node. The top-ranked
node is a boss of all others, and in gen-
eral, the ith-ranked node is a boss of all
but those with a better rank. Hence a
hierarchy is equivalent to a permutation
of the n nodes. Figure 3 shows a six-node
network that contains a hierarchy on five
nodes. The permutation corresponding to
the hierarchy on nodes {1,...,5} is m:
{1,2,3,4,5} ~ {2,3, 1,4,5} since 2 is a
boss of all other nodes; 3 is a boss of 1, 4,
and 5; and so on. Also, note that the full
network is not a hierarchy because of the
cycles among nodes {6, 3, 1}, {6,3, 4}, and
{6, 3, 5},

Erdos and Spencer [1974] have proved
an important property concerning the
size of hierarchies in arbitrary networks,
which we now present. Define x(n) to be

3

6

Figure 3. A network with a hierarchy on five Play-
ers with T: {1,2,3,4,5) ~ {2,3, 1,4, 5}.

the largest integer such that euery nlet-
work on n nodes contains a hierarchy of
x(n) nodes. Unless stated otherwise log
denotes logarithms to the base 2.

THEOREM 1. ([Erdos and Spencer]).

X(n) <1 + 1210g nl.

The theorem is proved by showing that
there exist networks that do not have
any hierarchy on 1 + [2 log nj nodes. ‘l’he
proof is nonconstructive. Let 17~ be
the class of all networks on n nodes, and
let r; be the class of all networks that
have a hierarchy on 1 + [2 log nl nodes.
We show that there are more networks
in r. than in r:.

We first count the number of networks
in I’m. Each network in 17~ consists of n

()vertices and ; edges, each of which can

take two possible directions. Thus,

()n
lrnl =22. (2)

Counting the number of networks in r:
is a bit more involved. Since each net-
work in r; has a hierarchy on q = 1 +
[2 log nl nodes, we first select the q nodes
and assign them a permutation, which

ACM Computing Surveys, Vol 26, No 1, March 1994

24 “ R. Gupta et al,

will uniquely determine a hierarchy on
these nodes. The remaining edges in the
graph consisting of (n – p) nodes can be
assigned arbitrarily. We count the num-

ber of networks for all the (~) possible

choices of q nodes and all the ~! ways of
assigning them a permutation. Formally,

r;= (J lJTA, T (3)
AT

where A is a subset of n nodes such that
IAl = p, m is a permutation of the p
members of A, and TA . is the set of
networks on n nodes consistent with the
hierarchy on A determined by n-. That is,
each network in T~ . will contain a hier-
archv on A uniauelv determined bv n.
The “ structure o; the network on” the

remaining n — p nodes, however, is
unspecified. In particular, the direction

Ofthe(:l-(li
edges between these n

p nodes is unspecified. Hence,

(w:)
lT~,rl= 2 . (4)

Therefore, the total number of networks
in r; is bounded by

This implies (1) that r. – 17~is nonempty
and (2) there exists a T = r. – r; con-
taining no hierarchy on q = 1 + [2 log nj

nodes.
The above theorem establishes an

upper bound on the largest integer x
such that every network on n nodes con-
tains a hierarchy on x(n). It can also be
proved, by induction on n, that x(n) >
1 + hog n]. Clearly, if it were the case in
Nadir’s politics that no hierarchies be
formed on m < 1 + [log nj nodes, then
every assignment of the is-a-boss-of-
relation would violate Nadir’s require-
ment, and he should make arrangements
for a hasty departure. On the other

hand, for values of m slightly greater
than the upper bound of Theorem 1, the
probability that a randomly selected
graph contains a large hierarchy is
minuscule. For m > 1 + 2[log n] this
probability is bounded by

Therefore, if Nadir were to construct
a random network on 1000 nodes, the
probability that it will have a hierarchy
on any subset of 25 nodes is less than
0.0000000000000004. Thus a very
promising strategy for Nadir is to toss a
coin to determine the direction of each
edge in the network; the odds are less
than 4 in 1016 that he will construct a

bad network.
The preceding discussion, unfortu-

nately, leaves a “gray area” in the solu-
tion space: it is not clear how to solve the
NetHierarchy problem for values of m
between 1 + [log n] and 1 + 2[log n]. For
values of m less than the lower bound on
x, the solution is immediate; for values
slightly greater than the upper bound,
Theorem 1 immediately yields a trivial
probabilistic algorithm since basic count-
ing procedures reveal that there is an
abundance of solutions in this region.
However, for the gray area in between
the upper and lower bounds on X—which
can possibly be shrunk by making the
bounds tighter—exhaustive search seems
to be the only way for solving this prob-
lem. The latter is prohibitively expensive
even for moderate values of n and m. For
example, if Nadir required that there be

no hierarchies on 18 nodes,
(1

Iv sub-

networks must be tested.

2.4 Probabilistic Hashing

Many problems require maintaining a
table of values, or keys, and performing
insert, search, and delete operations on
them. Typically, the set of possible keys
is very large, though at any one time
only a small fraction of the keys will
actually be in the table. In this section,

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 25

we study a very popular and potentially
constant-time solution to table manage-
ment called hashing.

Throughout this section, 2’[0... m – 1]
will denote the hash table, and iYIO. . .
IV – 1] will denote the universe of keys.
In general, given a key x = U, we will be
interested in inserting x into T, search-
ing for x in T, or deleting x from T. The
total number of keys in the table will be
limited to n, n < m << N, and S, ISI = n,
will denote the set of keys that are to be
inserted into the table.

Let h: Ue [O... m – 1] be a function
that can be evaluated in constant time.
The basic scheme underlying hashing is
as follows. To insert a key x into the
table, simply store it at T[h(x)], if possi-
ble. To search for or delete x, just check
location h(x) in table T. All these opera-
tions take constant time, fulfilling the
promise made earlier. However, there is
a serious problem with this scheme. If
there is another key, say y, such that
h(x) = h(y), then x and y will try to

occupy the same place in the table. This
phenomenon is called a collision. Much
research has been conducted on finding
hash functions that result in a minimum
number of collisions and on data struc-
tures for storing keys that hash to the
same table location.

For hashing to perform well the follow-
ing two requirements are essential:
the hash function distributes input keys
uniformly over the table, and all the
keys are equally likely. While the first
requirement can be met by appropriately
choosing the function h(x), the second
requirement is hard to fulfill since it pos-
tulates certain behavior on the input dis-
tribution. In practice, this requirement is
not only beyond the algorithm designer’s
control, it is often violated. For example,
a typical application of hashing is the
maintenance of symbol tables for compil-
ers. For most programs, variable names
such as I, J, K are more common than,
say, XQP. Thus it is unreasonable to
expect a uniform probability distribution
from the input to a symbol table. How-
ever, if it is known that the input is
biased, it may be possible to tune the

hash function. Perfect hashing repre-
sents the ultimate form of tuning, i.e.,
total collision avoidance. Another way of
minimizing the risk due to biases in the
input is to choose the hash functl~on
dynamically and at random. These two
schemes are explored in the following
sections.

2.4.7 Perfect Hashing

Heuristic methods for perfect hashing
were first introduced in Sprugnoli [1977].
A recent overview of perfect hashing can
be found in Gonnet and Baeza-Yates
[1991]. Several seminal results that make
perfect hashing possible were proved
in Fredman et al. [1982] and Melhorn
[1982]. The discussion in this section is
based on Section 2.3 of Melhorn [1984a].

A function h: U-[O. ..1]l] is
called a perfect hash function for S c U
if Vx, y = S, h(x) # h(y) if x # y. For
any given set S of input keys such that

IS’ = n < m, clearly there exists a perfect
hash function: take any one-to-one malp-
ping from S to any n distinct elements
in T and map all other elements of U so
that they do not collide with the ele-
ments of S. Such a brute-force approach
to constructing a perfect hash function,
however, is not very beneficial since it
involves a table lookup that may take
0(n) time. For perfect hashing to be
of practical use, the following criteria
should be met:

●

●

●

The program to compute a perfect hash
function should be small in size.

For a given S, m, and N, it should be
easy to find a perfect hash function.

One should be able to evaluate a mx-
fect hash function in O(1) time. ‘

In this section we consider the problem
of finding a perfect hash function given
the values of S, m, and N. The use of
random search, in a suitably constructed
family of functions, will be the principal
probabilistic technique used in the con-
struction of such a function.

Mehlhorn [1984a] has shown that there
exists a program of length O(n2/m +

ACM Computing Surveys, Vol. 26, No. 1, March 1994

26 ● R. Gupta et al.

log log N) that computes a perfect hash
function for a given set S c U. This
result, however, only demonstrates the
existence of such a function. To find an
actual perfect hash function, consider the
following family H of hash functions:

H= {hhlhk(x) = (kxmod IV)modm;

l<k <N}. (7)

Without loss of generality, let U =
[0. . . N – 1]be the universe of keys with
N prime. Primality of iV can be achieved
by adding nonexistent keys to U. The
resulting universe will not be substan-
tially larger than the original U since
prime numbers are sufficiently dense (see
Section 2.2). For a given set S, let

B(i, h) = {xix =Sand

(Aw modiV) mod m = i}

(8)

be the set of all the keys in S that collide
at table location i when h~ is used as the
hash function. Each such set Z3(i, h)
is called a bucket. Also, let b(i, k) =
Il?(i, k)l, O < i < m. Clearly, b(i, k) is one
more than the number of collisions at
2“(i) when the hash function used is hh.
Using elementary counting principles
and properties of modulo arithmetic,
one can verify the following inequality
[Mehlhorn 1984a]:

Zl%b(ik)’)-nl
2n(rz – l)(N – 2)

< (9)
m

The quantity z~=-ol b(i, k)2 – n, for
any particular value of k (and thus
for any particular h~(x)), is a measure of
the number of collisions. Let us define
M~(k) to be this measure. Equation (9)
puts a bound on the sum of MS(k) for all
possible values of k. Since all MS(k) are
always positive, more than half of them
cannot exceed twice the upperbound on
the summation in Eq. (9). Therefore, at
least half of all the possible k‘s must
satisfy the relation M~(k) < 4n(n –
1)/m, since otherwise Eq. (9) would be

invalidated. In other words, for a ran-
domly picked k = [1... N – 1],

[

4rz(rz – 1)
Prob M~(k) <

1
>:, (10)

m

and the class H is rich in functions for
which M~(k) is bounded by 0(n2\m).

Equation (10) provides a way of find-
ing, in 0(n) expected time, an hk such
that M~(k) is bounded by 4rz(n – l)\rn.
Select a random k and compute M~(k).
If it satisfies the bound we are done; else
select another k and do the same thing.
The computation of M,~(k) will take O(n)
time. Equation (10) guarantees that the
expected number of tries will be no more
than two. Thus, there exists a function
h ~ such that

m–1

~ b(i, k)’ <n+
4n(n – 1)

, (11)
L=() m

which can be found in 0(n) expected
time. One can also show that this proce-
dure will terminate in 0(n log n) time
with high probability.

The above procedure forms the basis
for finding a perfect hash function for a
specific table size. In particular, we con-
sider the two table sizes m = n and m =
0(n2) and prove the following results:

(1) If m = n then an h~ satisfying
~~.;l b(i, k)’ < 5n can be found
probabilistically in expected time
O(n).

(2) If m = 2n(n – 1) + 1 then h ~, such
that h~(x) = ((kx)mod N) mod m, is
a perfect hash function for S and can
be determined in O(n) expected time.

The first result follows by substituting
m = n in Eq. (11). For the second result,
substituting m=2n(n–l)+lin
Eq. (11) yields:

m–1

~ b(i, k)2<n +2. (12)
~=o

Since Z~.-Ol b(i, k) = n, Eq. (12) implies
that b, < 1 for all i (the only solution for
X in the set of equations XXI = n and
X’X2 < n + 2 is X, < 1). Since b(i, k) is1—

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 27

the number of elements in S that will
occupy position i in the table, there
will not be any collisions for this value of
k. Hence h~ in Eq. (7) with m = O(n2) is
a perfect hash function if an appropriate
value of k is used.

Thus the class H of functions has a
perfect hash function for any S, ISI = n,
if the size of the table is 0(n2). Further-
more, such a function can be found in
O(n) expected time. The only problem
with this scheme is that the size of the
table is much larger than IS [. Our first
result suggests a way out. We can parti-
tion S so that the square of the sum of
all bucket sizes is no more than 5n. This
can be done with one hash function,
which obviously is not perfect. A second
hash function, which is perfect for the
smaller partition, can be used for each
partition. The following theorem gives a
more precise statement.

THEOREM 2. Let N be prime and S z
[0. . . N – 1], 1S/ = n. A perfect hash
function h: S+[O ...1],], m=
9n, with O(1) evaluation time and O(n
log n) program size can be found in
0(n) expected time.

Proof The perfect hash function is
constructed in two steps. In the first step
we find a k such that (km mod N) mod m
partitions S into subsets B(i, k), where

B(i, k) = {XIX =Sandh~(x) =i} (13)

such that E~.;ll B(i, k)12 < 5n. Such a k
exists and can be found in O(n) expected
time. Let c1 denote 2b(i, k)(b(i, k) –
1)+ 1. In the second step, we find k,, for
all i, such that (kLx mod N) mod c1 is a
perfect hash function for a table of size
c, and the set of keys B(i, k). By the
second result proved earlier, this will
take 0(b(i, k)) expected time. The pro-
gram PerfHash computes the perfect
hash function for a table of size 5n.

PertHash {(* Computes perfect hash function
h(x) *)
i .= (kx mod N) mod n
J “= (kix mod N) mod c,

h = ~j:~cl + j
}

If the starting index for each subtable

(Z;= ~ cl) is stored, h(x) can be evaluated
in O(1) time. Also, it is easily seen that
the total size of the hash table in the
above program is 9 n based on the fact
that one can find a hash function h~,
such that Zb(i, k)2 = 5n. In the second
step each bucket is mapped into a sp,ace
of size 2b(i, k)(b(i, k) – 1)+ 1. Hence
the total space necessary is

=2 ~ b(i, k)z

–2 ~ b(i, k)+n
l<2sn

=2 X5n–2n+n

= 9n.

As for the total space occupied by
PerfHash, itself, each X~j ~ c1 used by the
program can be at most log n bits long
since it is an index into an array of size
9n. Since we have to store n such num-
bers, the size of the program Perf%?ash is
O(n log n).

The time needed to construct Per-fHash
is the time required to find k and all
the ~,’s. Thus it will take O(n) + Z~.~l
O(b(z, k)) = O(n) units of expected time.
The fact that this function is perfect is
guaranteed by the two results proved
earlier. ❑

We close this section by pointing out
why the technique of random search
works for perfect hashing. The class H of
function is particularly rich in functions
that are “nearly perfect.” Thus, a ran-
domly selected function from H will, with
high probability, partition the set S
evenly. A perfect hash function can then
be used for each of these partitions, which
are sufficiently small. The key here is
the richness of the solution space.
Had the perfect hash functions been rare
in H, our random selection and testing
procedure would require a long search
through the m N possible functions from
U to T.

ACM Computmg Surveys, Vol. 26, No 1, March 1994

28 ● R. Gupta et al.

2.4.2 Urvversal Hashing

As seen earlier, for most fixed hash func-
tions, hashing provides us with an 0(1)
expected time and 0(n) worst-case time
procedure for table maintenance. Uniuer-
sal hashing deals with the possibility of
biases in the input, which may result in
the O(n) complexity, by randomizing over
hashing functions. In universal hashing,
first discussed in Carter and Wegman
[1979], one works with an entire class,
H, of hashing functions instead of pick-
ing any one single hashing function
a priori and using it for every run. At the
beginning of each run a function is ran-
domly chosen from H and used for that
run. Since it is unlikely that a “bad”
function would be picked in most runs,
for H properly defined, the running time
averaged over many runs is expected to
be small.

For any randomly selected element of
H to possess a small expected access time
for each set of keys, almost all hashing
functions in H should distribute the set
of input keys fairly uniformly over the
hash table. We define a class H of func-
tions to be c-universal if only a fraction
c\m of functions in H produce a collision
on any pair x, y in the universe of input
~;[OFormally, H c {hlh: [0 . . . N –

. . . m – 1]} is c-universal if Vx,
ye[O. ..l]suchthatx+y, y,

cIHI
I{hlh ~Handh(x)=h(y)}l < —.

m

For N prime, consider the
class HI defined as follows:

Hl={ha,bl

(14)

particular

h~, h(x) =[(ax+b)mod Nl modm,

a, b~[O. ..1]l] }. (15)

It can be shown that the class HI is
c-universal for c = ((N/ml/(N/m))2.
Since each function in HI is fully speci-
fied by a and b, there are N2 functions
in this class, and O(log N) bits are
required to pinpoint any one function.
Also, a random function can be chosen by

randomly picking a and b from [0 . . .
N – 1].

Let us assume that each hash function
in HI has the same probability of being
picked in any run, and hashing with
chaining 4 is used. Under these
assumptions it can be shown that the
time taken by universal hashing to per-
form access, insert, and delete oper-
ations, or any sequence of such
operations, is the same as the expected
time taken by hashing with chaining
when all inputs are assumed to be equally
likely [Mehlhorn 1984a]. In fact this
result holds for any c-universal class of
functions. Thus, universal hashing, with
no assumptions on the input distribu-
tion, should perform as well as hashing
with chaining when the best possible
input distribution (i.e., completely unbi-
ased input) is assumed. Note that even
though the end result, as far as the per-
formance is concerned, is the same for
these two hashing paradigms, there is a
considerable difference between the
assumptions underlying them. In univer-
sal hashing the algorithm controls the
dice and not the user, and therefore
the expected complexity is O(1) even for
maliciously designed inputs.

Universal hashing is an example of
the control randomization technique we
described in Section 1.1. Control random-
ization is useful for other problems for
which many efficient algorithms exist,
such as sorting. If each one of these algo-
rithms has good average performance but
poor worst-case performance, random-
ization over the space of available algo-
rithms is a way to eliminate the risk
involved in using any single one of them.

2.4.3 Some Recent Results

The FKS perfect hashing algorithm dis-
cussed in Section 2.4.1 results in a hash
table size that is larger than the total
number of keys. An algorithm is said to

4In hashing with chaimng, all keys that collide at a
@ven index z in the hash table T are stored as
a linked list at 2’[L],

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms 8 29

be (1) order preserving if it puts entries
into the hash table in a prespecified or-
der and (2) minimal if it generates hash
functions where the table size is the same
as the total number of keys. Recently
there has been a flurry of research activ-
ity in the areas of minimal and order-
preserving perfect hash functions [Chang
1984; Czech et al. 1992; Cichelli 1980;
Jaeschke 1981; Lewis and Cook 1988;
Majewski et al. 1993].

Czech et al. [1992] present a pro-
babilistic algorithm for generating order-
preserving, minimal perfect hash
functions. This algorithm, which runs
very fast in practice, uses expected linear
time and requires a linear number
of words to represent the hash function.
The results of Czech et al. are further
extended in Majewski et al. [1993] to a
family of elegant probabilistic algorithms
that generate minimal perfect hash func-
tions allowing arbitrary arrangements of
keys in the hash table. The idea used is
the following. Certain integer congru-
ences that correspond to acyclic r-graphs
can be solved in linear time. This uses a
result in Erdos and R6nyi [1960], which
states that the majority of random sparse
2-graphs are acyclic. It is extended in
Majewski et al. to r-graphs, with r >2.
Perfect hash functions are obtained by
randomly mapping a set of keys into an
acyclic r-graph. The mapping is achieved
via universal hashing. Once completed
the constructed set of linearly indepen-
dent congruences, corresponding to the
created r-graph, is solved, and the solu-
tion is a minimal perfect hash function.
For this type of set of congruences any
integer solution is legal, so the method
offers total freedom of choice of the
address for each key.

A dictionary is a data structure that
allows the storage of a set S of distinct
elements such that membership queries
of the form “Is x in S?” as well as updates
(i.e., “Add x to S“ and “Delete x from
S“) can be performed efficiently. The FKS
scheme considers only static sets where
no updates to S are allowed. Another line
of investigation by Dietzfelbinger
et al. [1988; 1992] and Dietzfelbinger and

Meyer auf der Heide [1992] attempts to
use perfect hashing for maintaining dic-
tionaries in real-time situations. By using
certain classes of universal hash func-
tions they show that the FKS probabilis-
tic method can construct a perfect hash
function in O(n) time, with probability
1 – O(l\n’) [Dietzfelbinger et al. 1992].
The perfect hash function can be used to
support a real-time dictionary (i.e., a dic-
tionary that allows insertions and dele-
tions of keys, with no knowledge about
subsequent events) in expected constant
time.

For other related developments in
order-preserving minimal perfect hash
functions, which are practical for very
large databases, see Fox et al. [1991;
1992]. A considerable body of literature
exists on minimal and order-preserving
hash functions, and a complete discus-
sion is beyond the scope of this survey.
An overview of some of the results out-
lined above can be found in Meyer auf
der Heide [1990].

Majewski et al. [1993] have classified
numerous algorithms for perfect hashing
into four different broad categories. The
first category is comprised of algorithms
that rely on number-theoretic methods to
determine a small number of numeric
parameters. The very first discussion
of perfect hashing, by Sprugnoli [197’7],
falls into this category. Jaeschke’s
[1981] reciprocal hashing is another
example from this category.

The second category consists of perfect
hash functions that use segmentation of
keys. In these algorithms, the keys are
first distributed into buckets by a non-
perfect hash function. Perfect hash func-
tions are then computed and used for
keys in each bucket. The FKS scheme
described earlier falls in this category.

The third category of perfect hashing
schemes uses some kind of backtracking
procedures to search through the space
of all possible functions—typically an
ordering heuristic is used to cut down the
search space—in order to find a perfect
hash function [Fox et al. 1992]. Finally,
the fourth category consists of algorithms
that map the given n keys into an n X n

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

30 “ R. Gupta et al.

matrix and use matrix-packing algo-
rithms to compress the 2D array into
linear space [Mehlhorn 1984a].

All four categories of perfect hashing
algorithms are rich in probabilistic meth-
ods. For examples of algorithms from
each category, we refer the reader to
Majewski et al. [1993], an excellent guide
to a whole panoply of perfect hashing
schemes that have appeared in the
literature,

Perfect hashing has recently found
application in the area of hardware
design. In Ramakrishna and Portice
[1991], perfect hash functions are used to
construct a simple associative memory.
Gupta [1993] uses it for response check-
ing in digital-circuit test. In both cases,
random search is used to compute a per-
fect hash function for a given set of keys.
This hash function is then implemen-
ted in hardware, and its constant-time,
collision-free indexing property is used to
access a prearranged table of values.

The nearest-neighbors problem consid-
ered next illustrates the technique of
random sampling, which is at the heart
of many randomized algorithms in com-
putational geometry.

2.5 The Nearest-Neighbors Problem

We describe Rabin’s probabilistic algo-
rithm for the nearest-neighbors problem,
one of two probabilistic algorithms Rabin
[1976] presented. The other, a probabilis-
tic algorithm for primality testing, was
the topic of Section 2.2.

Consider a finite set S = {xl, x.} of
points in l-dimensional space, i.e., S c
!Ii ~, where !Ii denotes the reals. The

Nearest-Neighbors problem is to find a
pair of points x,, x~ such that

in S. We refer to the distance separating
nearest neighbors in a set S as am,.(S).

A brute-force algorithm for nearest
neighbors computes all the n(n – 1)/2
relevant mutual distances and their min-
imum. A recursive algorithm in Bentley
[1980] requires O(n log n) distance com-
putations in both the average and worst
case. Rabin’s probabilistic algorithm,
under a certain reasonable assumption
about the problem input (discussed
below), has an expected running time of
0(n) and thus outperforms any known
sequential algorithm. This algorithm,
unlike his algorithm for primality test-
ing, is guaranteed to produce the correct
answer.

The basic idea behind Rabin’s algo-
rithm is one of divide and conquer:
decompose the set of points S into clus-
ters and look for nearest neighbors within
each cluster. Let

s=s1us2u... ush (17)

be a decomposition D of S, and n, the
cardinality of S,. Let N(D) be a measure
of D, defined as

If it is known that a nearest-neighbor
pair falls within one of the S,, then N(D)
represents the number of distance com-
putations needed to find the nearest
neighbors of S: simply use brute force
within a cluster and then compare
the nearest neighbors of each cluster.
Central to the algorithm then is how to
compute, in 0(n) time, a “desirable
decomposition” D of S, such that a
nearest-neighbor pair belongs to the same
cluster of D and N(D) = 0(n). As clari-
fied below, the use of randomization is
key to solving this problem.

l<J?<~<7’Z}, (16) In the tw;-dime&ional case, a desir-
able decomposition can be obtained by
first enclosing the points of S in a square

where d(XL, Xj) is the usual distance lattice I’ of mesh size 8. It is not difficult
function on 011. Notice that x, cannot to see that by choosing 8> ~~1,,(S) we
equal xl and that there may be more are guaranteed that, at worst, nearest
than one such pair of nearest neighbors neighbors x,, x~ lie on squares of r with

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms “ 31

a common corner. By doubling the mesh
size, we can hope to obtain a lattice
in which these points will certainly lie
within a single square. But to ensure
that all adjacent squares of r are tiled
by a single 28-by-28 square, we need to
construct four lattices of mesh size 28.
Assuming, without loss of generality, that
S is a subset of the nonnegative quad-
rant, then the lower left-hand corners of
these lattices should be placed at loca-
tions (O, O), (O, d), (8, O), and (8, 8).

The proof that this lattice-based tech-
nique for decomposing S works as adver-
tised is given in Lemma 1 of Rabin [1976].
An example of this proof, also from Rabin
[1976], is shown in Figure 4. Here X3 and
x ~ are nearest neighbors, and 8 is greater
than or equal to the distance between
them. Doubling ~ encloses the pair in a
single square. This argument generalizes
to any dimensional space.

We now know that 8, the initial mesh
size, should be chosen large enough so
that nearest neighbors at worst fall in
adjacent squares. On the other hand, we
still need to choose 8 small enough so
that IV(D) is O(n), to obtain an efficient
algorithm. Rabin used random sampling
to arrive at such a 8. In particular, he
showed that if 8 is chosen to be 6W,,.(SI),

NearNeb {

Figure 4. Pictorial explanation of Rabin’s
Lemma 1.

decomposition induced by the lattice of
mesh size 8 will be O(n) (Theorems 6
and 7 of Rabin [1976]). Intuitively, this
random sample SI of S is large enough
in size so that a grid of mesh size ?i will
contain a small number of points within
any lattice square. Thus, we have algo-
rithm NearNeb for the nearest-neighbors
problem:

S1 := randomly chosen subset of .S such that ISI = n2’3
8 := 8~,n(Sl) (* how to do this is described below *)
r = square lattice of mesh size 8 and origin (lower left-hand corner) at

(O,O), enclosing the points of S
r,,..., rd .= four lattices with origins (O,O), (O, 8), (8, O), and (8, 6),

respectively, derived from r by doubling mesh size to 28
FORi:=lto4{

find the decomposition S = S/’) u . .. u S/) induced by r,
FOR j := 1 TO k,

(x}’), y,(’)) = nearest-neighbor pair wlthln Iattlce square S}’)
}
ix, y) := nearest pair in {(x)’), ~(’))11 S i S 4, 1 S j S k,}

}

where S’l is a randomly chosen subset of To show the expected running time of
S such that ISI I = nz/3, then with a very O(n), we first observe that an ,.(S1) can
high probability 5 the measure of the be computed by invoking the algorithm

recursively for a second time. A subset S9

5T0 be precise, Rab~~proved that thk probability is
of S1 is” randomly chosen so tha~

at least 1 – 2e–’” , where c = m for A >0 a Iszl = IS112’3 = ““. ‘he brute-force
constant. technique can now be used to compute

ACM Computing Surveys,Vol 26, No 1, March 1994

32 ● R. Gupta et al.

d~, .(S2) in time 0(n) without resorting
to any further recursion.

Next, consider the cost of finding the
decompositions induced by the r,. Rabin
[1976] showed that if n and the x,, nor-
malized to integers with respect to 28,
are within “appropriate ranges,” then
hashing can be used to find the decompo-
sitions in expected time 0(n). Otherwise,
sorting is needed and takes O(n log n)
time. Rabin argued that, in practice,
hashing is almost always applicable.

We have previously argued that the
expected value of N(r,), 1 s i s 4, is
0(n), and hence the total number of dis-
tance computations required is 0(n).
This gives us the desired running time of
0(n) for the algorithm.

There is a small probability that
the remaining n – n2/3 points not in the
sample S1 will cause the algorithm to
behave inefficiently. In the worst case, SI
will contain widely spaced points, result-
ing in a 8 that is so large that all n. –
rZ213 points not in SI fall into the same
square of the grid. As a result, the parti-
tion of S will consist of set S1 with n213
points and the set S2 with the remaining
n – n2i3 points. Using brute-force dis-
tance computation on the set S2 will
require O(n – n213)2 or O(n2) time.

The nearest-neighbors problem has
illustrated the power of random sam-
pling: an algorithm was found that almost
always outperforms all known con-
ventional algorithms for the problem. The
next problem we consider—interactively
checking the correctness of any program
that purportedly solves the graph iso-
morphism problem—provides another
example of the input randomization
technique.

2.6 Interactive Probabilistic Proofs

Two important requirements of any proof
system—a collection of axioms and infer-
ence rules used for proving statements
about some domain of discourse—are
completeness and soundness. Complete-
ness refers to the ability to prove all
theorems (i.e., all true statements) while
soundness requires that the negation of a

theorem is never a theorem. Thus, the
ability to generate proofs and to verify
them can be seen as complementary
tasks. Typically, verification is simpler.

Traditionally, ~ has been considered
the class of problems that can be solued
efficiently, i.e., in polynomial time, and
NP has been considered the class of
problems that can be verified efficiently,
i.e., in nondeterministic polynomial time.
Recent discoveries, however, of efficient
polynomial-time randomized algorithms
for a large number of problems (such as
the ones discussed in this survey) have
led to a new notion of efficient computa-
tion, viz., the class RP of problems that
can be solved in randomized polynomial
time. Likewise, a new notion of efllci-
ent verification has emerged, viz., the
class 1P of problems that can be verified
through the use of an interactive proba-
bilistic proof system. We will have more
to say about RP in Section ~. This section
examines the concept of interactive prob-
abilistic proof system and its applications.

In an interactive probabilistic proof
system (interactive proof system, for
short), an “all-powerful” prover tries to
convince a “skeptical” verifier that it has
a solution to a difficult problem. The
prover’s unlimited computational power
allows it to solve such problems “with
ease.” For example, a prover can poten-
tially find a Hamiltonian path in a graph,
or determine if two graphs are isomor-
phic. The verifier, on the other hand,
is required to be a polynomial-time
randomized algorithm.

The prover and the verifier engage in a
dialogue in which the verifier can toss
coins and ask the prover to solve specific
instances of the problem in question. The
prover is only expected to provide solu-
tions to these instances and nothing else.
It is required that the total length of the
messages sent back and forth between
the prover and the verifier be bounded by
a polynomial in the length of the input.
The objective of the verifier is to convince
itself that the prover does in fact have a
solution to the problem.

Independent formalization of interac-
tive proof systems by Goldwasser et al.

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms “ ,33

[1989], and Babai [1985] and Babai and
Moran [1988], which have been shown to
be equivalent [Goldwasser and Sipser
1989], allow a polynomial-time verifier to
toss coins and arbitrarily interact with
the prover. In Goldwasser et al., the out-
comes of the coin tosses made by the
verifier are hidden from the prover. In
Babai and Moran, the proof system is
considered a game played between two
players called Arthur and Merlin. Once
again, Arthur and Merlin (the verifier
and the prover, respectively) can toss
coins and can talk back and forth. How-
ever, in this proof system, unlike that
of Goldwasser et al.’s, all coin tosses
made by the verifier are seen by
the prover. These formalizations have
led to the emergence of a hierarchy of
probabilistic-complexity classes that
generalizes NP (see Babai and Moran).

One can also view an interactive proof
system in complexity-theoretic terms
where the prover tries to convince a
probabilistic verifier that a string w is in
a language L. Such a proof system yields
probabilistic proofs since the verifier may
accept or reject w based on overwhelm-
ing statistical evidence rather than on
certainties. Recent years have witnessed
a multitude of such complexity-theoretic
results. For example, Ben-Or et al.
[1988a] proposed a multiprover interac-
tive proof model. Using this model, Babai
et al. [1990] proved that the class of lan-
guages that has a two-prover interactive
proof system is nondeterministic expo-
nential time. In his paper entitled “IP =
PSACE,” Shamir [1992] showed that the
set of problems for which interactive
protocols exist is precisely the set
of problems which are solvable within
polynomial space on a Turing machine. A
key result for proving 1P = PSPACE

(and also, MIP = NEXP (Babai et al.)) is
by Lund et al. [1990] who presented a
new algebraic technique for constructing
interactive proof systems and proved that
every language in the polynomial-time
hierarchy has an interactive proof
system.

An interactive proof system must sat-
isfy probabilistic notions of soundness

and completeness:

Completeness. If w = L then, with
very high probability the interaction
between the prover and the verifier must
result in the verifier concluding that w is
indeed in L;

Soundness. If w @ L then, with very
high probability, at the end of the proto-
col the verifier must conclude that w is
not in L.

The proof must be sound even if the
prover acts maliciously and deliberately
tries to fool the verifier. Several proper-
ties of interactive proof systems con-
cerning completeness and soundness,
and methods for constructing them, are
investigated in Furer et al. [1989].
Clearly, ruling by probabilistic evidence
means relaxing the completeness and
correctness criteria. However, it does lead
to interesting applications such as pro-
gram testing [Blum and Kannan 1989;
Blum et al. 1990; Blum and Raghavan
1988].

For an example of how an interactive
proof system—in particular, the verifier
component of the proof—can be used to
test the correctness of a program, coln-

sider the problem of graph isomorphism.
The reader should recall that the exact
complexity of graph isomorphism is not
known: while, to date, no polynomial-time
algorithm for this problem has been dis-
covered, a proof that it is NP-complete
has been equally elusive. The following
efficient procedure for checking the valid-
ity of a graph isomorphism program is
due to Blum and Raghavan [1988] and
Blum and Kannan [1989]. It is based on
an interactive proof system for graph
nonisomorphism by Goldreich et al.
[1991].

Given a program P that purportedly
solves the graph isomorphism problem
and two graphs G and H, the verifier
wishes to determine whether P invoked
on G and H (denoted P(G, H)) gives the
correct result. The verifier GI-Verify,
whose pseudocode is now given, operates
in a randomized and interactive manner.

ACM Computing Surveys,Vol. 26, No 1, March 1994

34 “ R. Gupta et al.

G1-Verify {(* Inputs: a program P and graphs G and H *)
IF P(G, H) = true THEN{

attempt to establish the isomorphlsm
IF successful THEN RETURN “P is correct”
ELSE RETURN “P IS buggy”}

ELSE{
REPEAT k times{

toss a fair coin
IF coin = head THEN{

generate a random permutation G’ of G
IF P(G, G’) = false THEN RETURN “P is buggy”}

ELSE{
generate a random permutation H’ of H
IF P(G, H’) = true THEN RETURN “P IS buggy”}

}(* end REPEAT ~)
RETURN “P IS correct”}

}

GI-Verify starts by invoking P(G, H). If
P pronounces G and H to be isomorphic
(i.e., P(G, H) = true), the verifier’s task is
simple. It attempts to determine the cor-
respondence between the vertices of G
and H (how this is done will be described
shortly) and returns correct or buggy
accordingly. If, on the other hand, P pro-
nounces G and H to be nonisomorphic

(i.e., P(G, H) = false),V will Put f’ thrwgh
a series of tests. Should P fail any one
of these tests, V can conclude that P is
buggy. Otherwise, V can conclude, with
a high degree of confidence, that P is
correct.

Consider the case P(G, H) = true first.
The verifier can establish a l-to-l corre-
spondence between the vertices of G and
H, assuming that P is correct in pro-
nouncing G and H to be isomorphic, as
follows. Starting with G, arbitrarily num-
ber the vertices of G and H from 1 to n.
Attach a clique of n + 1 vertices to node
number 1 of G to obtain the graph G 1.
Successively, attach a similar clique to
each node i in H to obtain Hz, and test if
P(G1, Hi) = true. Clearly, if G and H are
isomorphic, and if node 1 in G can be
mapped to node i in H, then P(GI, Hi)
will return true. Thus, if P returns false
for all i, P is buggy. On the other hand, if
P(GI, Hi) = true for some i, map node 1 of
G to node i of H. Repeat this procedure
for each node j E [1.. n] of G. At any
point, the inability to find a correspond-
ing node in H reflects an error in pro-

gram P. On the other hand, if all the
vertices in G can be mapped to those in H
then the verifier can easily test if the
mapping is an isomorphism and deter-
mine if the original answer P(G, H) = true
was correct.

Consider the case P(G, H) = false next,
i.e., P declares that G and H are not
isomorphic. In this case, the verifier relies
on simple random choice and input ran-
domization as follows. It puts P through
a series of tests or rounds. In each round,
V tosses a fair two-sided coin to randomly
choose between G and H; it ran-
domly permutes the names of the ver-
tices in the selected graph to obtain a
graph K that is isomorphic to the selec-
ted graph; and it then invokes P(G, K).
We will refer to K as G‘, if the selec-
ted graph is G, and as H‘ if the selected
graph is H.

There are two cases depending on
whether or not P is correct. If it is,
i.e., G and H are actually nonisomor-
phic, then in each round we should have
P(G, G’) = true when G is selec-
ted, and P(G, H’) = false when H is
selected. Thus, in just a very small num-
ber of rounds, the verifier can gain a high
degree of confidence in the correctness
of P should it respond correctly in each
round.

On the other hand, if P is buggy, i.e., G
and H are isomorphic, it has no way of
distinguishing between G’ and H‘. This is
because G‘ and H‘ are isomorphic and

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms ● 35

are both drawn from the same distribu-
tion (essentially they are random permu-
tations of the same graph). Since P does
not know whether G‘ or H’ is being passed
as the second argument, the only way it
can distinguish them is by chance. The
probability therefore of P responding cor-
rectly (i. e., “yes” to P(G, G’) and “no” to
P(G, H’) k straight times is only 2 ‘k.
Therefore, the verifier should only need a
few rounds to determine that P is buggy.

The verifier makes use of randomiza-
tion to its advantage at two crucial junc-
tures in the above algorithm. First, it
generates random permutations G’ and
H‘. If G and H are isomorphic there is no
way of telling G‘ and H‘ apart. Addition-
ally, it randomly passes G‘ and H‘ as
the second argument in each iteration
thereby taxing the claimed ability of P
that it can test for graph isomorphism.
The trick is so effective that it will catch
P even if it is maliciously coded and
designed specifically to fool the verifier.

The above example illustrates the
power of input randomization in program
testing and interactive proof systems. The
reader is referred to Blum and Raghavan
[1988] and Blum and Kannan [1989] for
more probabilistic checkers for problems
such as matrix multiplication, sorting,
and several problems in group theory.

It is interesting to note that in the
above example, GI-Verify was able to
do its task without having to solve the
graph isomorphism problem in any sense.
Also, if the graphs are isomorphic, then
the verifier can construct the 1-1 map
between the vertices of the two graphs
(i.e., it gains more information than
a simple yesino answer about the iso-
morphism question). However, if they
are nonisomorphic, the verifier gains no
additional knowledge about how this con-
clusion was reached, other than the fact
that they are nonisomorphic. This latter
property is crucial to the notion of zero-
knowledge proofs described next.

Zero-Knowledge Proofs

Sometimes, an additional requirement is
imposed on the prover, viz., that it com-

pletely hide the details of its solution
from the verifier. In this case, the proof is
referred to as a zero-knowledge
proof [Babai 1985; Babai and Moran
1988; Goldwasser et al. 1989; Goldreich
et al. 1991; Kilian et al. 1989] because,
even though the verifier has an efficient
means of verifying responses provided by
the prover, at the end it has learned
nothing except that the prover is right or
wrong.

The concept of a zero-knowledge proof
has turned out to be especially usefld
in complexity theory [Boppana et al.
1987; Fortnow 1987] and cryptography
[Ben-Or et al. 1988b; Brassard and
Cr4peau 1986; Chaum et al. 1988; Gol-
dreich et al. 1987]. Various notions of
zero knowledge, a classification of these
notions, and several related topics ap-
pear in Fiege et al. [1990], Kilian et al.
[1989], and Oren [1987]. Some complex-
ity-theoretic implications of systems that
admit zero-knowledge proofs are dis-
cussed in Aiello and Hasted [1991], Fort-
now [1987], and Goldreich et al. [1991].

Truly Zero-Knowledge and Multiprover
interactive Proofs

Zero-knowledge proofs, in the traditional
sense, reveal one bit of information to the
verifier, viz., w ● L or w @ L. In Fiege
et al. [1987], a notion of truly zero-
knowledge proof is proposed where the
prover convinces the verifier that it
knows whether w is or is not in L, with-
out revealing any other information.
Thus, at the end of interaction, the veri-
fier only gains knowledge about the state
of the prover’s knowledge and no infor-
mation about the original membership
problem.

Ben-Or et al. [1988a] propose a multi-
prover interactive proof model. In their
model, two provers jointly agree on a
strategy and then try to convince
the verifier, in a polynomially bounded
number of interactions, that a certain
statement is true. Communication
between the provers is disallowed while
they interact with the verifier. The
authors are able to prove several

ACM Computing Surveys, Vol. 26, No. 1, March 1994

36 ● R.’ Gupta et al.

interesting results without making any “well mixedness” of the bits of the shared

intractability assumptions. random string.

Noninteractive Zero-Knowledge Proofs

A zero-knowledge interactive proof sys-
tem typically has three key features that
distinguish it from a traditional proof.
The first is the ability of the prover and
the verifier to interact with each other.
Secondly, the verifier can toss coins that
are hidden from the prover, which means
there is an element of “hidden random-
ization.” Finally, the prover has the abil-
ity to solve a difficult problem that the
verifier cannot solve directly. Thus,
the prover embeds in its proof the com-
putational difficulty of some other prob-
lem. As noted by Blum et al. [1991], this
requires a rather rich set of conditions to
be present before a zero-knowledge inter-
active proof can be devised for a problem.

Another notion that is gaining popu-
larity is that of noninteractive zero-
knowledge proofs, first proposed by Blum
et al. [1988]. A notion of noninteractive
zero-knowledge proofs based on a weaker
complexity assumption than that used by
Blum et al. is presented in DeSantis et al.
[1987]. Most of the work to date is sum-
marized in Blum et al. [19911.

In interactive zero-knowledge proof
systems, the prover P interactively
proves to the verifier V that a cer-
tain theorem is true without giving away
the details of the proof. In noninteractive
zero-knowledge systems, as the name
implies, interaction is forbidden: 1’ copies
the proofs and sends them to V for verifi-
cation under the assertion of zero knowl-
edge. Instead of interaction, P and V are
allowed to share a short random string.
While such a concept of “shared random-
ness” has been used by others (see, for
example, Goldwasser and Sipser [19891),
shared random strings represent a much
weaker requirement than most others
(e.g., public coin tosses) used in the liter-
ature. As observed in Blum et al. [1991],
proofs using shared randomness do
not rely on foiling the adversary by the
unpredictability of the coin tosses, as has
been the case so far, but rather on the

3. DISTRIBUTED RANDOMIZED
ALGORITHMS

In the second half of our survey we look
at several randomized algorithms for dis-
tributed computing, viz., the classic din-
ing philosophers’ problem (DinPhil), the
communication guard scheduling prob-
lem of CSP (CornmGuard), the leader
election problem (LeadElect), the per-
mutation message-routing problem
(MsgRoute), and the Byzantine Generals’
problem (ByzAgree). We saw in the
sequential case that randomization was
used to obtain faster algorithms (some-
times at the expense of absolute accu-
racy) or to guarantee that the worst-case
performance of an algorithm is no worse
than the algorithm’s expected per-
formance. Similar motivations are also
present in the distributed case, as
demonstrated in this section. However
an important additional concern is
present: there are certain problems
in distributed computing that have
no deterministic algorithm—we have no
choice but to toss coins. The probabilistic
algorithm for the dining philosophers
problem typifies this situation.

To obtain a notation for distributed
algorithms, we augment the imperative
language used in Section 2 with con-
structs for shared-memory access and
message passing. For the former we
introduce the instruction TEST &

UPDATE, which is used as follows:

result .= TEST & UPDATE(flag, true–value,
false_value)

The effect of this command is, in one
instruction cycle, to assign to the vari-
able result the old value of the shared
boolean variable flag and to assign to flag
the value true–value if its old value
was true and false_value otherwise. For
example, besides returning the old value
of variable flag, the statement resu It :=
TEST & UPDATE(flag, FALSE, TRUE) in-
verts the value of flag.

ACM Computing Surveys, Vol. 26, No. 1, March 1994

On Randomization in Algorithms ● 37

Because everything happens in one
instruction cycle, the TEST& UPDATE op-
eration cannot be interrupted, and access
to shared variables is therefore atomic.
TEST& UPDATE is also assumed to be-
have fairly in the sense that no process is
ever indefinitely denied access to a shared
variable in favor of other processes. As
such, the phenomenon of “process starva-
tion” is avoided.

Unconditional updates to shared
variables will be expressed using the
standard assignment operator. Such
assignment is also assumed to be atomic
and fair.

For message passing, we introduce
constructs of the form

SEND(exprl,..., expr~) TO P
RECEIVE(X1, . ..> Xl) FROM P

The send command executes asyn-
chronously and results in the transmis-
sion of the values of the expressions
exprl, ..., exprk to the named process P.
The receive command inputs values for
the variables x,, . . ., Xl which have previ-
ously been transmitted by process P. The
underlying communication medium is
assumed to be faultless in that messages
are received intact and in the order of
transmission.

3.1 The Dining Philosophers Problem

We describe the randomized algorithm of
Lehmann and Rabin [1981] for the well-
known dining philosophers problem.
The problem, posed originally in Dijkstra
[1971], is an anthropomorphized resource
allocation problem, and is described in
Hoare [1985] essentially as follows:

There once were n philosophers Po,

Pi,..., Pn_l seated around a circular table
in a clockwise fashion. To the left of each
philosopher laid a golden fork, and in the
center stood a large bowl of spaghetti, which
was constantly replenished.

A philosopher was expected to spend most
of his time thinking, but when he felt hun-

grY, he picked up his own fork on his left
and plunged it into the spaghetti. But such
is the tangled nature of spaghetti that a
second fork is required to carry it to the

mouth. The philosopher therefore had also
to pick up the fork on his right. When he
was finished he would put down both his
forks and continue thinking. Of course,
a fork can be used by only one philosopher
at a time. If the other philosopher wants
it, he just has to wait until the fork is
available again.

Additionally, any algorithm that
coordinates the philosophers in the
above-described manner must be dead-
lock free—if at any time there is a hun-
gry philosopher, then eventually
some philosopher will eat—and lock-
out free—every hungry philosopher
eventually gets to eat.

Many deterministic solutions based
both on shared memory [Hoare 1974] and
message-passing communication [Hoare
1985] have been proposed. However, none
of these algorithms are both: (1) fully
distributed, i.e., devoid of central mem-
ory or a central process with which every
other process can communicate and (2)
symmetric, i.e., all processes execute the
same code, and all variables, local and
shared, are initialized identically. More-
over, processes in a symmetric algorithm
are unaware of their identities and
therefore cannot compare their process id
with the id of another process.

In fact, it is shown in Lehmann and
Rabin [1981] that no fully distributed
and symmetric deterministic algorithm
for dining philosophers is possible. Intu-
itively, this is due to the existence of an
adversary scheduler that can continually
thwart the philosophers in their attempts
to reach agreement on who is to eat next,
thereby leading to deadlock. For exam-
ple, under the influence of an adversary
scheduler, the philosophers could behave
as follows: (1) all n philosophers become
hungry simultaneously, (2) they each pick
up their right fork, again in synchrony,
and (3) because of the symmetry and the
fact that each philosopher’s behavior is
strictly deterministic, they have no choice
but to put down their forks and try again.
Furthermore, the clever adversary sched-
uler can cause this scenario to reoccur
without end, resulting in a deadlock. The
problem then is one of “breaking symme-

ACM Computing Surveys, Vol. 26, No. 1, March 1994

38 ● R. Gupta et al.

try” and this is precisely the reason
for introducing randomness into the
behavior of the philosophers.

In Lehmann and Rabin’s [1981] algo-
rithm, presented below as algorithm
DinPhil, the simple yet key use of ran-
domization is in whether a philosopher
waits to first obtain the left fork or
the right fork. Communication among
philosophers is done strictly in a ring
fashion and uses one shared variable,
fork-available[i], for each P, – P,+ ~ pair.
All additions and subtractions are
to be interpreted modulo n, where n
is the number of philosophers. Moreover,
fork-available[i] is accessed only via
the TEST& UPDATE instruction or via the
unconditional assignment operation for
shared variables. The configuration of
philosophers and forks for the case n = 5
is illustrated in Figure 5.

The algorithm can be shown to be
deadlock free in the following sense: if at
any time there is a hungry philosopher,
then, with probability 1, some philoso-
pher will eventually eat. The proof of this
result rests on the fact that the coin
tosses made by philosophers are indepen-
dent random events. Thus, even if the
adversary scheduler tries to bring on
deadlock, with probability 1, a combina-
tion of tosses will eventually arise that
enables some philosopher to obtain two
forks. Note that the algorithm is indeed
symmetric since the index attached to
a philosopher is for external naming
only; philosophers themselves are not
aware of their own names.

P, P,

fork[l] fork[4]

Figure 5. Arrangement of philosophers and forks
m the dining phdosophers problem.

Algorithm DinPhil is not lockout free;
intuitively, a greedy philosopher P, can
prevent neighbor P,. ~ from ever eating
by continually beating PC, ~ in their race
to pick up their shared fork. The algo-
rithm can be made lockout free by adding,
for each pair of adjacent philosophers P,,
P ,, ~, two pairs of variables. One pair
allows P, to inform P,+ ~ of its desire to
eat (and vice versa), and the other pair is
used to indicate which of P, and P,+ ~ ate
last. Details can be found in Lehmann
and Rabin [1981].

Lehmann and Rabin’s randomized
algorithm was one of the first for dis-
tributed computing and clearly illus-
trated the importance of tossing coins in
a new setting—without this capability,
fully distributed and symmetric algo-

f)inF’hi/ {(* algorithm for P, *)

WHILE TRUE DO{
(* thlnklng section *)
trying .= true
WHILE trying DO{

choose s randomly and uniformly from {O, 1}
wait until TEST & UPDATE(fork-ava! lable [i – s], FALSE, FALSE)
IF TEST& UPDATE(fork-avallable[i – s], FALSE, FALSE) THEN

trying ,= FALSE (* s = complement of s *)
ELSE fork-available[i – s] = TRUE

}
(* eating section *)
fork-available[i – 1], fork-available[l] .= TRUE

}
}

ACM Computmg Surveys, VOI 26, No 1, March 1994

On Randomization in Algorithms ● 39

rithms may not even exist for certain construct a set of one or more pairs of
problems. The next algorithm we con- processes (P, Q) from T such that P and
sider, CommGuard, also illustrates the Q have complementary communication
power of symmetry breaking through guards and no process appears in more
randomization. than one pair.B

For example, consider the system of

3.2 Communication Guard Scheduling processes

In this section we present the random-
ized algorithm of Francez and Rodeh
[1980] for scheduling communication
guards in a CSP-like language. In CSP,
[Hoare 1978], processes execute asyn-
chronously and exchange data by a
“handshaking” style of communication.
There are two types of communication
statements or commands (to use CSP
terminology) in the language: input
statements of the form P?x and out-
put statements of the form Q! e. An
input statement inputs a value from the
named process (P) into a local variable
(x), while an output statement outputs
the value of an expression (e) to the
named process (Q). Thus, for example,
the simultaneous execution of the state-
ment Pz?x by process PI and the
statement Pl! e by process Pz results in
the value of expression e being assigned
to variable x (i.e., x Z= e). The phe-
nomenon is sometimes referred to as
“distributed assignment.” Input and out-
put statements, such as those in the
example, that name each other are said
to be complementary.

Statements within a process, e.g.,
assignment, iteration, and communi-
cation, can be executed nondetermin-
istically through the use of a construct
called the guarded command, having
the following syntax:

PO = [Pl?x * skip oPz!u ~ skip]

PI = [Pz?x ~ skip nPO!v * skip]

Pz = [PO?X e skip CIPl!u ~ skip]

where skip is the CSP notation for the
no-op statement. Each process P, is will-
ing to receive a message from process

Pb+ 1, or send a message to process Pl _ ~,
where the addition and subtraction are
performed modulo 3. There are three pos-
sible solutions to the guard-scheduling
problem in this case: the single pair of
processes (P,, P,+ ~) is chosen such that
P, is receiving and P,, ~ is sending, O <
i <2. An unsatisfactory situation would

arise if each process were allowed to
decide to send, or if each process were
allowed to decide to receive; this is
tantamount to cyclic wait or deadlock.

As in the dining philosophers problem,
an algorithm for guard scheduling must
satisfy two correctness criteria. The algo-
rithm must be deadlock free, i.e., if two
processes P and Q wish to communicate
with each other, then either P or Q will
eventually participate in a communica-
tion (although not necessarily with each
other), and starvation free, i.e., if a pro-
cess P tries to communicate and
infinitely often some process Q, is willing
to reciprocate, then P will eventually
participate in a communication (the pro-
cess Q, need not be the same each time).

Several distributed implementations

Each statement S1 has an associated of guard scheduling ha~e been pro-

communication statement G,, called posed [Bernstein 1980; Buckley and

its communication guard, such that S, is Silberschatz 1983; Schneider 1982;

elixible for selection only if the process Schwartz 1978; van de Snepscheut 1981].

named in its communication guard is
likewise willing to communicate.

The problem of communication guard 6A more general statement of the problem would

scheduling can now be stated as follows. allow processes in T to be waiting to execute an

Given a set T of processes each currently
unguarded communication statement, but such
a statement can always be placed in a guarded

waiting to execute a guarded command, command having one alternative.

ACM Computmg Surveys, Vol. 26, No 1, March 1994

40 “ R. Gupta et al.

Each of these algorithms must resort to
some symmetry-breaking technique such
as priority ordering of processes
[Bernstein 1980; Buckley and Silber-
schatz 1983; Schwartz 1978] or time-
stamps [Schneider 1982]. In fact, like the
dining philosophers problem, the exis-
tence of a fully distributed and symmet-
ric deterministic algorithm for guard
scheduling can be shown to be an impos-
sibility [Francez and Rodeh 1980], In the
presence of symmetry, a fully distributed
deterministic algorithm is susceptible to
the scenario in which a solution exists
but is never found. For example, pro-
cesses may in a cyclic fashion issue com-
munication requests to one another; due
to symmetry, this same circular wait may
reappear with every future attempt by
the processes to establish communica-
tion. The lack of a fully distributed and
symmetric deterministic algorithm for
guard scheduling is indeed one of the
reasons the designers of Ada [U.S. Dept.

invokes upon reaching a guarded com-
mand in order to schedule itself in a
communication. Upon return, a commu-
nication link between P and one of the
processes designated by P’s current
guarded command will have been estab-
lished, and actual data transfer can then
occur.

To simplify the presentation of the
algorithm, we assume that communica-
tion between processes is nondirectional;
that is, a process specifies only the name
of a process in a communication guard
and not the direction (i.e., input or out-
put). Under this assumption, Comm-
Guard can be implemented by providing
each pair of processes a single shared
boolean variable flag; thus, the algorithm
is fully distributed.7 All such flag have
initial value FALSE. Access to shared
variables is through the TEST& UPDATE
instruction, the semantics of which
was described in the introduction to
Section 3.

CommGuard {(* To schedule communlcahons *)
trying = TRUE
WHILE trying DO{

randomly choose a partner with which to attempt a communication
let flag be the shared variable between these two processes
IF TEST& UPDATE(flag, FALSE, TRUE) THEN

trying = FALSE (* communication established *)
ELSE{

wait t seconds
IF NOT(TEST & UPDATE(flag, FALSE, FALSE)) THEN

trying .= FALSE (* communication established *)
ELSE { } (* try another partner *)}

}
}

of Defense 1983] chose an asymmetric
rendezvous construct—nondeterministic
choice in Ada exists only among the ac-
cept alternatives of a select statement.

We now describe the fully distributed
and symmetric randomized algorithm of
Francez and Rodeh [1980]. (Other proba-
bilistic algorithms for guard scheduling,
which have “real-time response,” appear
in [Reif and Spirakis 1984]). The algo-
rithm is given here as the iterative proce-
dure CommGuard, which a process P

To gain some insight into the function-
ing of the protocol, consider two pro-
cesses P and Q having complementary
guards. Intuitively, P sets flag to true to
inform Q of its desire to communicate. P
will wait t seconds for Q to respond,

7Without the simphfying assumption, two shared
variables, flag,, and flagJ,, are needed for each pam
(P,, P,) of processes. Variable flag,, is used to estab-
lish communication between F’, and P, by match-
mg an output guard of P, with an input guard of
~J; fla9J, 1sused in a symmetric fashion,

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 41

which Q does by resetting flag back to
false. If Q does not respond within this
time interval, P will try to establish
communication with another process. The
“timeout interval” t is a predefine
constant to the algorithm.

Randomization enters into the protocol
in the choice of prospective communica-
tion partner. If a request to communicate
with a process is not reciprocated within
t seconds, the WHILE loop is iterated once
again, at which point another partner is
chosen randomly. This act of giving up
on a potential partner and trying another
is called the “retraction phase.” WHILE
loop iterations of this nature persist until,
if possible, a communication channel has
been successfully established.

There are two points in CommGuard
where the variable flag needs to be tested
and then immediately reset. These
actions must be performed atomically
within a process for the algorithm to
function correctly. The TEST & UPDATE
instruction is used for this purpose. Star-
vation is avoided since this instruction is
also fair.

Algorithm CommGuard is deadlock
free and lockout free. The proofs are sim-
ilar to those of the dining philosophers
problem. The main point is that a com-
bination of coin tosses that eventually
enables two processes to establish com-
munication can be shown to occur with
probability 1. As described above, the coin
tosses take place in the retraction phase
of the algorithm and constitute a symme-
try-breaking technique. Symmetry
breaking is also behind the algorithm for
leader election, presented next.

3.3 Leader Election

The coordination of the computers, or
nodes, in a network is often the responsi-
bility of a single, distinguished node. This
node, called the leader of the network,
may enforce mutual exclusion in access-
ing a shared resource, provide services
required by other nodes, or serve other
similar functions. If the leader fails, a
new leader must be selected from among
the surviving nodes of the network using

an election algorithm. In this section we
examine the randomized distributed
algorithm of Itai and Rodeh [1981] for
leader election.

The problem of electing a leader can be
stated as follows. Given a set of n identi-
cal processes {PO, PI, . . . , P~ ~} connected
in a ring fashion (i.e., P, talks to PL+ ~,
where subscript arithmetic is performed
modulo n), elect one of these processes as
the leader of the ring. At the end of the
election, all processes must agree on the
identity of the leader. Additionally, an
election algorithm must guarantee termi-
nation.

Most published leader election algo-
rithms assume that asymmetry exists in
the ring to the extent that individual
processes have unique names, often cho-
sen from some totally ordered set of
names. The problem of leader election is
then reduced to the problem of picking
the process with the smallest, or largest,
name. See, for example, Chang and
Roberts [1979] and Peterson [1982].

Several authors [Angluin 1980; Itai and
Rodeh 1981] have investigated the ccsn-
sequences of the absence of such totally
ordered names on election algorithms.
Angluin has shown that there exists
no deterministic algorithm to carry out
elections in a ring of identical pro-
cesses. Angluin’s argument is based cm
the observation that, in a deterministic
framework, it is possible for an adver-
sary scheduler to force all processes to be
in identical states at all times. For exam-
ple, the adversary scheduler can dictate
that every message is in transit for
exactly the same amount of time, and
that processes proceed in lock-step. Since
processes are identical, they start out in
the same state, and, by induction, end up
in identical states after any k computa-
tion steps. Thus any potential progress
toward the completion of an election is
thwarted by the symmetry of the ring.

Thus, we once again need to toss coins
to solve the problem. In the randomized
algorithm LeadElect of Itai and Rodeh
[1981], the pseudocode of which is given
below, each process is equipped with an
independent random number generator.

ACM Computing Surveys, Vol. 26, No. 1, March 1994

42 “ R. Gupta et al.

Additionally, all processes know n, the
size of the ring. The ring is presumed to
preserve message order in that two mes-
sages sent from a process to its neighbor
are received in the same order in which
they were sent.

The algorithm is easier to understand
if one assumes that the processes operate
synchronously in lock-step and that each
transmitted message reaches its destina-
tion before the processes execute their
next computation step. Each process P,
begins by picking a random name, an
integer in {1, K} for some constant
K > 1. P, then propagates its name
around the ring, copying and forwarding
names of other nodes that it receives. P,
determines the names chosen by all other
processes by the time it receives n mes-
sages. The nth message received by a
process is the one it sent out initially.

Each process determines from its list
of names whether at least one process
has chosen a unique name, i.e., one that
was not chosen by any other process. The
process with the largest unique name is
elected the leader. If no process picked a
unique name, the processes repeat their
election attempt. Each attempt is called
a round.

and the probability that the algorithm
executes forever is

lim(l –p)k = O. (19)
h+.

In other words, the algorithm will termi-
nate with probability 1. The expected
number of rounds for the algorithm to
terminate is clearly I/p.

This algorithm can be improved in
several ways. One way to improve the
expected running time is to change
the termination condition to exa-
mine the pattern of names in the entire
ring to determine if an election is possi-
ble. For instance, if in a ring where n = 5,
and processes PO and Pz chose 1, while
PI, P~, and P1 chose 2, then the algo-
rithm described above would proceed to
another round, since no single node chose
a unique name. However, closer exam-
ination shows that leader election is
possible in this situation: PO can be
elected because it is the only process that
received 2 for the first two values. Itai
and Rodeh provide a mathematical basis
for the use of such techniques.

Leader election in a symmetric ring is
one of the variety of problems where rea-

LeadE/ect {(. algorithm used by process P, m a ring
(*s: a list of names *)
REPEAT {

set s to empty
name = a random number between
REPEAT n times{

add name to s
SEND(name) TO F’,+l
RECEIVE(name) FROM F’-,

}
}
UNTIL at least one name in s is unique

~)

and K

(. the process that picked the largest unique name is the leader *)
}

Every time the processes pick random
names for themselves, there is a nonzero
probability p that at least one node picks
a name that is chosen by no other node.
(The exact value of p depends on the
value of K and on the probability distri-
bution of the random number generators.)
The probability that the algorithm fails
to terminate in z rounds is (1 – p Y,

sonably efficient probabilistic solutions
can be found, even though a determinis-
tic, symmetric solution is impossible. It is
interesting to note that symmetric leader
election in a ring with an unknown num-
ber of processes has no deterministic nor
probabilistic solution that guarantees
both termination and a nonzero probabil-
ity of correctness. The reader is referred

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

On Randomization in Algorithms ● 43

to Itai and Rodeh [1981] for a proof of
this claim.

The next problem we consider, mes-
sage routing in a network, shows how
randomization can be used to reduce
queuing delay and to improve resiliency
to faults.

3.4 Message Routing

An important measure of the perfor-
mance of any message-routing algorithm
is how well it solves the permutation-
routing problem. In permutation routing,
each node in a network is the origin of a
single message destined for another node
in the network, subject to the constraint
that no two messages have the same des-
tination. The problem is to devise a dis-
tributed algorithm to route the messages
to their destinations with the minimum
possible delay, with at most one message
being transmitted over an edge at any
time. Each instance of the problem can
be viewed as a permutation w on the set
of nodes, where W(u) = w means that the
message originating at u has to be deliv-
ered to destination w. This part of the
survey is devoted to randomized algo-
rithms for permutation routing.

In message-routing algorithms, the
normally accepted unit of delay is
the time needed to transmit a single mes-
sage from a node to its neighbor. The
assumption is that the time taken by the
nodes themselves to process individual
messages and decide how they are to be
routed is negligible when compared to
message transmission delays. This is
especially true if the nodes can do parallel
processing.

The overall delay incurred by a
permutation-routing algorithm is obvi-
ously related to the underlying topology.

For instance, the minimum delay in
sending a message from one node to
another depends on the length of the
shortest path between them. Another
type of delay can occur when implement-
ing permutations: the routing algorithm
may determine that a message needs to
be transmitted over an edge that is
already in use for transmitting another

1001 1o11.

0
11

0100 0110

Figure 6. A 4-dimensional binary cube.

message. In this case, the message is
often queued up for transmission at a
later time. Such queuing delays should
also be included in any measure of
the total delay that a message suffers
in transmission from its origin to its
destination.

Deterministic permutation-routing
algorithms have the common drawback
that they have poor worst-case perfor-
mance. In other words, they behave badly
on some specific permutations. In this
section, we consider two algorithms that
use randomization to break up such input
dependencies: Valiant’s [1982] algorithm
for the n-cube, and Aleluinas’s [1982]
algorithm for shuffle networks. A radi-
cally different approach, that of random-
izing the interconnections between nodes,
is also presented. This technique, when
applied to multibutterfly networks, has
been shown to outperform conventional
butterfly networks, particularly with
respect to tolerance to node faults [Leigh-
ton and Maggs 1989; Leighton et al. 1990;
Upfal 1989].

Message Routing on an n-Cube

Valiant [1982] proposed the first
permutation-routing algorithm for an
n-cube. His algorithm implemented
any permutation, with high probability,
in O(log i’V) time. An n-cube is a net-

work architecture shaped like an
n-dimensional cube having IV = 2 n
nodes and is often referred to as an

(n-dimensional) hypercube.
We ammme that each node of an n-cube

is identified by an n-bit binary number u
from O to 2 n – 1. A 16-node 4-cube is
shown in Figure 6. Two nodes can com-
municate with each other if their num -

ACM Computmg Surveys, Vol 26, No. 1, March 1994

44 “ R. Gupta et al.

hers differ in only one bit position or
dimension.

To implement every permutation in
O(log iV) time with high probability,
Valiant’s algorithm requires each mes-
sage to carry O(log N) bits of additional
bookkeeping information. The algorithm
can implement both complete as well as
partial permutations. No global synchro-
nization is required (i.e., no help from a
central arbiter is needed).

For convenience in describing the algo-
rithm, we assume that the message
originating at node u is labeled u. The
algorithm operates in two phases. In the
first phase, a message u is moved from
its origin to a random intermediate desti-
nation u without regard for its ultimate
destination w. The intermediate node u
is chosen randomly: a fair coin with sides
O and 1 is tossed for each of the n dimen-
sions, and the message is moved along
the edge in that dimension if a 1 shows
up. Clearly, at the end of this procedure,
a message may be in any node of the
n-cube with equal probability.

The movement of messages to their
actual destinations occurs in the second
phase. In this phase each node that holds
a message (1) chooses at random a
dimension in which the message needs to
be moved in order to reach its destina-
tion and (2) transmits the message along
that dimension.

The pseudocode of Valiant’s algorithm
appears below. In this algorithm, each
message u has an associated set of book-
keeping information TU G {1,..., n}. In
the first phase, TU consists of the set of
dimensions along which possible trans-
missions have not been considered. In
the second phase, TU consists of the set of
dimensions along which transmissions
remain to be made in order for u to reach
its destination. Also, each node u main-
tains a set of queues QU(i), 1 < i s n,
containing messages to be transmitted
from u to its neighbor in the ith dimen-
sion. This neighbor, denoted by ZIIIi, is
the node whose number is obtained by
toggling the ith bit of the binary repre-
sentation of u. The i th bit of the binary
representation of number u is denoted
by u’.

In both phases, each node t) maintains
a set Loose U of messages that have been
received by u but not been assigned to
any queue. A message u in Loosev with
TU = 0 has u as its destination. The
notation “Transmit u” means that for
each nonempty Q.(i), u transmits the
message u at the head of Qu(i) to node
u IIi and causes u to be added to Loose. ,,1.

A phase is finished when for all mes-
sages u, TU = 0. Valiant’s algorithm is
said to finish successfully if both phases
of the algorithm finish.

MessageRoute Phase 1 {(* algorithm used by node v *)
Loosev = {v};
Tv.={l,..., n};
FOR f=lt oF DO{

FOREACH u IN Loosev WITH T. + 0 DO {
pick i ● TU
TU= TU– {i};
randomly pick a = {O, 1};
lF(a= l){

add u to Qv(i);
LooseV = Loosev – {u];

} (* endlF *)
} (* end FOREACH *)

Transmit v
} (* end FOR *)

}

ACM Computmg Surveys, Vol 26, No. 1, March 1994

On Randomization in Algorithms ● 45

MessageRoute Phase 2 {(* algorithm used by node v *)
FOREACH message u with destination w at v DO

TU:= {ilv’ # W’}

FORg,=l to GDO{
FOREACH u IN Loosev WITH T. # 0 DO {

pick i e TU
TU:= TU– {i};
add u to QV(i);
Loosev := LooseV – {u};

} (* end FOREACH *)
Transmit v

} (* end FOR *)
}

The algorithm is synchronous in the
sense that for each iteration of both
phases, all nodes transmit concurrently,
and that all transmitted messages are
added to the Loose sets of the recipients
before the recipients begin the next itera-
tion. This restriction, however, can be
relaxed [Valiant and Brebner 1981].

Also, note that the two phases run for
F and G iterations, respectively. It is
clear that if G is too small, all messages
might not reach their fhal destinations.
Valiant shows that for both phases
to finish successful ~ with probability
greater than 1 – 2- ‘, for any constant
S, F and G need be no greater than Cn,
where C is a constant that depends on S.
In other words, both phases of the algo-
rithm terminate correctly in 0(n) time
with probability 1 – 2- s n, for any con-
stant S. The assumption of course is that
individual iterations of the algorithm
in both phases run in constant time.
Formally:

THEOREM 3. For any constant S, there
is a constant C such that for F = G = Cn,
both phases of Valiant’s routing algo-
rithm finish with probability greater than
~ – 2-sn.

In both phases, each message takes a
route from an initial node to another
node, where a route is defined as a path
in the n-cube where no two edges tra-
verse the same dimension. It is clear that
no route is longer than n. Therefore,
the theorem is proved once it is estab-
lished that the queuing delays encoun-

tered along the routes are 0(n) with
probability greater than 1 – 2 ‘s’.

Queuing delays can occur for a mes-
sage u only if the route taken by other
messages share common edges with the
route taken by u. Analysis shows that for
C >1, the probability that any fixed
route R shares edges with routes taken
by Cn other messages is less than e-c n/4
in either phase of the algorithm. There-
fore, queuing delays are also 0(n) pro-
vided each of the routes that intersect R
causes no more than a constant delay
with similarly high probability. This part
of the proof involves the estimation of the
probabilities at the tail end of a binomial
distribution and is one instance of the
application of the powerful Cherrzof,f
bounds analysis technique.

The reader is referred to Valiant [1982]
for the detailed probabilistic analysis, but
the Chernoff bounds are repeated here
for completeness. If X is the number of
heads in n independent tosses of a coin
where the probability of a head in a sin-
gle toss is p, then Chernoffs bounds state
that

()

m

Prob[X > m] < X em–rip

m

Prob[X> (1 + ●)np] < e-’2nP/2

Prob[X< (1 – E)np] s e-’2nJ’/3

forany O<e<l, andm>np.
It is interesting to note that Valiant’s

results are obtained by deriving bounds
on the probability that two routes inter-
sect and on the probability that two

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

46 ● R. Gupta et al.

routes share more than a given number
of edges. No assumptions are made about
how messages from a queue are sent.
This means that the implementer is free
to use any queuing discipline. The algo-
rithm also has the advantage that each
route can be chosen independently of any
other route, i.e., no global bookkeeping is
needed.

Message Routing on Finite-Degree
Interconnection Networks

Valiant’s algorithm is designed for
hypercubes, which have the drawback
that the degree of each node increases
with the number of nodes in the net-
work. Aleluinas [1982] extended Valiant’s
results to the common b-way shuffle
networks, where each node has a fixed
degree b, regardless of the size of the
network.

For simplicity of exposition, let us
assume b divides N, the number of nodes
in the network. Then the network inter-
connections of a b-way shuffle network
are as follows: assuming the nodes are
numbered from O to N – 1, they
are divided into N/b blocks, where the
ith block consists of nodes ib, ib +
1 ,. ... ib+b–l, O<i<(N/b)– 1.
Each node in block i is allowed to send
messages to all nodes whose address
modulo (N/b) is i. Note that the commu-
nication paths are directed.

In such a network, there exist paths of
length [log N/log b 1 between any pair
of nodes. However, the best deterministic
routing algorithms known require
0(log2 N) time [Lev et al. 1981] in the
worst case because an appropriate choice
of sources and destinations can cause
congestion on individual communication
lines.

Aleluinas [1982] uses randomization to
overcome this input dependency. As in
Valiant’s algorithm, each node u chooses
(with equal probability) an intermediate
destination. However, the entire path to
the intermediate destination is chosen
by u from among the paths of length
[log iV\log b] originating at U. Node u
then sends its message along that path

to its intermediate destination. This con-
stitutes the first phase of the algorithm.
Once a message has arrived at its inter-
mediate destination, the intermediate
destination picks, uniformly at random,
a path of length [log N\log b 1 leading
from itself to the final destination. The
message then follows this path. This
constitutes the second phase of the algo-
rithm. In both phases, the routing
algorithm, unlike Valiant’s, must enforce
a queuing discipline: there must be only
one output queue per node, and priority
must be given to nodes that have trav-
eled fewer hops, i.e., those that are late.

The delay of a message is DI + Dz,
where D, is the delay incurred in the ith
phase. Analysis of one of the phases is
sufficient, since the two phases mirror
each other. There is statistically no dif-
ference between the delay of messages
proceeding from distinct sources to ran-
dom destinations and the delay of mes-
sages moving to distinct destinations
from sources chosen at random.

Assuming that it takes constant time
to send a message, the expected delay of
Aleluinas’ routing algorithm is no more
than ~, where

b
—[logb(b - l) N].

‘=b–l

Note that J.L is O(log N) when b is
a constant. This matches the expec-
ted delay of Valiant’s algorithm and is
accomplished using a fixed number of
edges per vertex. Additionally, the proba-
bility that the delay exceeds cv for any
message is no more than

b-C/L(l -o(l))

where 0(1) + O as c - ~. Aleluinas has

also analyzed the delay for the more gen-
eral situation where multiple messages
originate at each node. The reader is
referred to Aleluinas [1982] for further
details.

Both algorithms discussed above use
the technique of distributed input ran-
domization. By sending messages to
randomly selected intermediate des-
tinations, any pockets of congestions

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms “ 47

arising because of certain unfavorable
permutations are avoided. This approach
at first sight appears to be unnatural
since it may send messages which actu-
ally may be very close to their final des-
tination to far away intermediate
destinations. However, it is essential. For
instance, in Valiant’s algorithm, it can
be shown that the second phase alone,
though adequate for most permutations,
does not terminate in O(log iV) steps for
some permutations.

Randomly Wired Multibutterfly Networks

Butterfly networks are used in many
parallel computers, such as the BBN
Butterfly and Thinking Machine’s CM-5,
to provide paths of length log A/ connect-
ing IV inputs to IV outputs. For sim-
plicity, IV is usually taken to be a power
of 2. The path between any input and
output is of length log lV. These inputs
and outputs could be processors, mem-
ory, or other resources. An instance of a
butterfly network with N = 8 is shown
in Figure 7. The inputs to the network
are on the left, and the outputs of the
network are on the right. Each node is a
switch that accepts messages from its
neighbors to the left and can send them
to neighboring switches to the right. The
interconnections in this butterfly are
straightforward: each node i at level 1
can send messages to nodes i and j at
level 1 + 1, where j is the number whose
binary representation differs from i in
the (1 + l)st bit position alone. For
instance, in Figure 7, the switch in row
010 at level O can communicate with
switches in rows 010 and 110 at level 1.

There is a simple greedy algorithm
for message routing on a butterfly, best
described by an example. In Figure 7, a
message to destination 010 (regardless of
the source) is routed as follows. The first
edge the message traverses takes it to a
node in the top four rows, so that the
first bit of the row number, in this
instance a O, matches the first bit of the
destination row. The second edge takes
the message to a node in a row where the
first two bits of the row number match

the first two bits of the destination row,
and the last edge takes it to its correct
destination. In general, the ith edge
ensures that bit positions 1 through i
of the row that the message reaches
match bit positions 1 through i of the
destination row.

The main disadvantage with butter-
flies is that they are sensitive to edge or
node failures. Another drawback is the
possibility of congestion, which occurs at
a node when two incoming messages need
to be sent over the same outgoing edge. A
common scheme that provides some pro-
tection against edge failures as well as
some reduction in congestion is to make
each edge capable of transmitting d mes-
sages concurrently, a technique called
dilation, resulting in a d-dilated butter-
fly. In other words, each outgoing edge of
the butterfly is replaced by a bundle of d
edges. As in the butterfly, however, the
shortest-length path between a given
input and a given output still must go
through the same sequence of nodes, and
an adversary scheduler can take advan-
tage of this fact to thwart routing algo-
rithms. This is where randomization of
wiring becomes an advantage. Random-
ized wiring is exploited in multibutterfly
networks [Leighton and Maggs 1992;
Leighton et al. 1990; Upfal 1989]. Multi-
butterflies are a generalization of both
the butterfly and the dilated butterfly.

A butterfly network can be considered
to be built from splitters, each of
which in turn consist of three blocks
of nodes and the edges interconnecting
them. In Figure 7, the different blocks
are highlighted using dark shading, and
one of the splitters is lightly shaded.

All nodes at level O are in the same
block. For each block B of M nodes at
level 1, there are two blocks in level 1 + 1,
B upper and ‘lower. B consists of the
nodes in level 1 + 1 t~~~’are in the same
rows as the upper iVf/2 nodes of B, and
B ~OWe,consists of the nodes in level 1 + 1
that are in the same rows as the lower
M/2 nodes of B. A splitter consists of the
blocks, B, BUPPG, and BIOU,.r, and
the edges interconnecting them. The
nodes in B are called the splitter inputs,

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

48 “ R. Gupta et al.

level

o 1 2 3

r
o
w

000

001

010

011

100

101

110

111

Figure 7. An 8-input butterfly network

and the nodes in BLOW., and BUPP~r are
called the splitter outputs. Any edge
from B to BUPP,, is said to be an
up-edge, and any edge from B to BLOU,,
is said to be a down-edge.

In a butterfly, each splitter input is
connected to exactly one node in the
upper output block, and one in the lower
output block. In a d-dilated butterfly,
each node in an input block is connected
by d edges to a single node in the upper
output block, and by another d edges to a
single node in the lower output block.

A multibutterfZy of multiplicity d, like
a d-dilated butterfly, has d up-edges
from each input node of each splitter
incident on the upper splitter outputs,
and another d down-edges incident on
the lower splitter outputs. In a d-dilated
butterfly, all d up (down) edges would
lead to a single node in the upper (lower)
output block. In a multibutterfly, how-
ever, the restriction that all d nodes be
connected to the same node is relaxed.
Each of the d edges can be connected to
any of the inputs of the corresponding
output block, subject to the restriction
that any two splitters with inputs at the
same level are isomorphic and that each
node has exactly 2 d inputs and 2 d
outputs .

A randomly wired multibutterfly net-
work of multiplicity d, on the other hand,
is one in which the individual output
node to which an edge of a splitter is
connected is chosen at random from the
output blocks, subject only to the con-
straints that each input node has exactly
d up-edges and d down-edges leading
from it and that each output node is fed
by exactly 2 d inputs. It is not necessary
for two splitters at the same level to be
isomorphic.

The greedy routing algorithm described
earlier for butterfly networks can be
extended to multibutterflies. The edges
traversed by a message follow the same
logical sequence of up- and down-edges.
However, at each node, a choice of d
edges is available in a multibutterfly.

Routing on multibutterflies is efficient,
as shown by Upfal’s [1989] algorithm
that implements P permutations
deterministically in O(log IV + P) time.
Multibutterflies also provide protec-
tion against failures [Leighton and
Maggs 1989], since, unlike the butter-
fly and dilated butterfly, there are
edge-disjoint and node-disjoint paths
between inputs and outputs. Also, in a
randomized multibutterfly, the exact
wiring of the network is unknown, and

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 49

therefore an adversary scheduler cannot
force excessive queuing delays to occur.
Simulation results from Leighton et al.
[1990] indicate that multibutterflies may,
in practice, perform better than butter-
flies and dilated butterflies.

A survey of efficient randomized
message-routing algorithms for mesh-
connected computers, a network archi-
tecture not addressed above, is given
in Rajasekaran [1991]. In the next
subsection, we consider the problem
of Byzantine agreement. Besides being
another example of how to over-
come symmetry via randomization,
Byzantine agreement shows how
randomization can lead to reduced
communication complexity.

3.5 Byzantine Agreement

In this section we examine the Byzantine
Generals problem and present Ben-Or’s
[1983] randomized distributed solution.
The Byzantine Generals problem, known

also as “Byzantine agreement,” has
received considerable attention in the
literature, e.g., Bracha [1985], Chor and
Coan [1985], Dolev [1982], Lamport et al.
[1982], Pease et al. [1980], Perry [1985],
and Rabin [1983]. This is due primarily
to its fundamental relevance in dis-
tributed computation and its surprising
complexity given the simplicity of the
problem statement.

The problem concerns the ranks of the
Byzantine Generals, who need to coordi-
nate their rather limited military strat-
egy; that is, they must decide whether to
attack or retreat from encroaching enemy
forces. Each general has his or her own
opinion on the subject. Since their armies
are widely separated, their strategy must
be decided by the exchange of messages
between the generals. Unfortunately,
some of the generals are traitors whose
messages cannot be trusted. We may
assume, without loss of generality, that
the messengers are loyal since a general
with a disloyal messenger may be
regarded as a traitor.

Let u be a boolean value and u = 1 –
u its complement. The problem of
Byzantine agreement can be stated as

follows: consider a set {Pl, Pz, P.} of
asynchronously executing processes.
Each process P, has a boolean variable
x, whose initial value is b,. At most, t of
the n processes are faulty. A distributed
and symmetric algorithm to be followed
by the correct processes is required such
that the following hold on termination:

Condition 1. All correct processes
decide on a common value u, where a
process “decides v” by setting a private,
write-once register to u. Thus, after
deciding, a process can no longer change
its decision.

Condition 2. If all correct processes
start with the same initial value u for x ~,
then their final decision must be u.

Condition 1 is usually referred to as
the “Agreement condition,” and condition
2 the “Validity condition.” The validity
condition eliminates the trivial solution
where each loyal process simply decides
on a prearranged value, say O.

The Byzantine Generals problem
translates to one of consensus building
among a set of n completely connected
processes, some of which may be faulty.
In the synchronous case, where messages
are delivered to their destinations in one
computation step, Pease et al. [1980]
have shown that there exists an algo-
rithm for Byzantine agreement only
if less than one-third of the total num-
ber of processes are faulty. (The pro-
blem of Byzantine agreement among
synchronous processes that are not com-
pletely connected has also been studied
[Lamport et al. 1982], and constraints on
the connectivity required for a solution
have been determined.)

For the asynchronous case, Fischer
et al. [1985] proved that Byzantine
agreement is impossible for determinis-
tic processes, even if the processes are
not symmetric and there is only one
faulty process. In particular, determinis-
tic processes are susceptible to nonter-
mination. As evidenced by Ben Or’s
randomized algorithm, this famous
“impossibility result” does not apply to
processes that may toss coins; in this
case, termination can be guaranteed with

ACM Computing Surveys, Vol. 26, No. 1, March 1994

50 “ R. Gupta et al.

probability 1. Thus, as in dining philo-
sophers, guard scheduling, and leader
election, we must once again resort to
randomization to solve this distributed
computation problem.

We now describe the behavior of the
faulty processes, correct processes, and
the communication medium. Faulty pro-
cesses behave unpredictably, perhaps
even sending messages according to some
malevolent plan or at times choosing to
send no messages at all. For example, in
announcing a decision to the correct pro-
cesses, a faulty process may send dif-
ferent messages to different processes.
However, a faulty process cannot influ-
ence communication between correct pro-
cesses and cannot influence the behavior
of correct processes. In other words, it
cannot alter or delete messages sent
between correct processes, send mes-
sages purporting to originate at a correct
process, alter the algorithm used by a
correct process, or influence any random
choices made by a correct process.

All correct processes are guaranteed
to use the same algorithm. The only
assumption made regarding the relative
speeds of different processes is that
no process will be delayed indefinitely
between computation steps. The commu-
nication medium is such that if a correct

process sends a message to another cor-
rect process, the message will eventually
be delivered unaltered to the intended
recipient. Note that faults in the com-
munication medium can be modeled by
viewing the sender of a message as faulty
if the communication medium does not
behave as stipulated.

Ben-Or’s randomized algorithm uti-
lizes the fact that if independent random
choices are made by each process regard-
ing the consensus value, a sufficient
number of them will eventually pick the
same value to allow agreement among
correct processes. Moreover, agreement
is guaranteed if the number of faulty
processes, t, is less than one-fifth the
total number of processes. This claim is
true even in the presence of an adversary
scheduler which either chooses the next
process to make a step or controls how
long a message is in transit, since the
scheduler cannot influence the outcome
of coin tosses made by the processes.

Each correct process P, executes algo-
rithm ByzAgree given below. Variable x,,
initialized to b,, contains the process’s
current choice for the concensus value.
The algorithm proceeds in rounds, and
the index of the current round is stored
in r. Each round has three phases.

ByzAgree { (* algorithm for a correct process F’, *)
r=l
decided = FALSE
WHILE TRUE DO {

(* The Notification Phase *)
SEND (N, r, x,) TO all processes
wait for (n – t) nohflcation msgs of the form (A/, r, *)

(* The Proposal Phase *)
IF > (n+t)/2ms sareofthe form (fV, r,w)forw=Oorw=l THEN

7SEND (P, r, w TO all processes
ELSE SEND (P, r, ?) TO all processes
IF decided THEN stop
ELSE wait for (n – t) msgs of the form (P, r, *)

(* The Decision Phase *)
IF > tmsgs are of the form (P, r, w) for w = O or w = 1 THEN {

X,=w
IF > 3t messages are of the form (P, r,w) THEN {

decide w
decided = TRUE}

}ELSE set x, to O or 1 with equal probability
r.=r+l

}
}

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms “ 51

In the notification phase, P, outputs
the value of x, to all other processes and
then waits for n – t notification mes-
sages. All messages sent in the notifica-
tion phase are tagged with the enumera-
tion value N.

In the proposal phase, Pl proposes a
concensus value from the set {O, 1, ‘?},
based on the notification messages just
received. It sends its proposal to all other
processes and then waits for n – t pro-
posals in return. In this phase, messages
are tagged with the enumeration value P.

P, proposes O if more than (n + t)/2 of
the notification messages it has received
contain O. Similarly, it proposes 1 if more
than (n + t)/2 of the notification mes-
sages contain 1. If neither of these is the
case, P, proposes ‘?’, a recommendation
that the consensus value be chosen by
each process independently by the toss of
a coin. Note that P, simply terminates
after broadcasting its proposal if it has
made a decision in the previous round.
As will be shown below, if P, decided on
value u in round r, then all correct pro-
cesses will decide on u in round r + 1. So
it is safe for P, to stop at this point.

Finally, in the decision phase, P,
examines the proposals it just received
to determine a new value for x,, which it
uses in the next round. Depending on the
proposals, P, may also output this new
value of x, to a write-once register (the
process has decided). The significance of
the if-statement conditions in the pro-
posal and decision phases is discussed
below.

The round number r is attached to all
messages of round r, so the processes
can distinguish between messages from
different rounds. A m-ocess in a ~articu-
lar round discards messages it ~eceives
from processes in previous rounds, uses
messages it receives from processes in
the same round, and saves messages it
receives from process in later rounds for
use during the correct round. Also, since
for any round faulty processes may
append incorrect round numbers to their
messages or not send any messages
at all, no correct process should wait
for more than n – t messages in a single

phase since arrival of only n – t
messages is guaranteed.

The following lemmas and theorem,
due to Hadzilacos [1986], provide addi-
tional insight into the behavior of the
algorithm and establish its correctness.

LEMMA 1. If a correct process proposes
value v in round r, then no other correct
process will propose the value 5 within
the same round.

A process sends a message (P, r, v) if it
discovers that more than (n + t)/2 pro-
cesses have chosen the value v. At most t
of these processes could be faulty. There-
fore, more than (n + t)/2 – t (i.e., (n –
t)/2) correct processes must have chosen
v. Thus, a majority of the correct pro-
cesses have picked v. For another correct
process to propose o in the same round, a
majority of the correct processes must
have picked il. Since a correct process
sends the same message to all processes,
this is impossible.

LEMMA 2. If at the beginning of round
r all correct processes P, have the same
value v for x,, then all correct processes
will decide v in round r.

In the beginning of a round, each cor-
rect process P, sends messages notifying
the others that it has picked value v for
x,. Each correct process receives n – t
messages, at most t of which are from
faulty processes. Therefore each process
receives at least n – 2 t messages of the
form (N, r, v). Since n > 5t implies n –
2 t > (n + t)/2, each correct process will

consequently propose v in the proposal
phase.

Consider now the proposal phase. In
the worst case, a process can receive t
proposals for o from the faulty processes
and (n – 2 t) proposals for v from correct
processes. Since (n – 2t) > 3t if n > 5t,
each correct process will decide on u.

LEMMA 3. If a correct process decides
v in round r, then all correct processes
will decide v in round r + 1.

If we can now show that whenever
a correct process decides v in round
r, all correct processes propose v at

ACM Computing Surveys, Vol 26, No 1, March 1994

52 ● R. Gupta et al.

the beginning of round r + 1, then
Lemma 3 follows directly from Lemma 2.
For a correct m-ocess P, to decide u in
round r, it m’ust recei~e more than 3 t
proposals for u, and since at most t of
these can be from faulty processes, P,
must have received m proposals for u
from correct processes, for some m >2 t.
Let us now look at any other correct
process P].

Process P] must, in round r, receive
proposals from n – t processes. In other
words, P~ receives proposals from all but
t processes. Therefore, of the m correct
processes that proposed u to P,, all but t
must have had their proposals received
by Pj. But m > 2t implies m – t > t,

and therefore Pj will propose u in the
next round. All correct processes thus
propose u in round r + 1.From Lemma
2. it follows that all correct m-ocesses will
decide u in round r + 1. A

We now have the following correctness
result for Ben-Or’s algorithm [Hadzilacos
1986].

THEOREM 4. Assuming that n > 5t,
Ben-Or’s algorithm guarantees Agree-
ment, Validity, and, with probability 1,
termination.

Agreement follows from Lemma 3 and
validity from Lemma 2, with r = 1. Con-
sider now termination. With probability
1, enough correct processes will eventu-
ally pick a common value u to permit at
least one correct process P, to decide u in
some round r. By Lemma 2, all correct
processes will decide u in the next round.

An upper bound on the expected num-
ber of rounds is 0(2 ‘), the expected
number of tosses of n coins before all n
coins yield the same value. Yet if the

numb~r of faulty processes is O(h), then
the expected number of rounds is con-
stant. This illustrates another advantage
of tossing coins, since any deterministic
solution to the Byzantine Generals prob-
lem cannot reach agreement in less than
t + 1 rounds [Fischer and Lynch 1982].

As for the per-round message complex-
ity, every process sends a message to
every other process in each round. Thus,

assuming that faulty processes do not
send more than 0(n) messages each per
round, the total number of messages
transmitted per round is 0(n2).

Ben-Or’s algorithm, along with Rabin’s
[1983], was one of the first for reaching
asynchronous Byzantine agreement, and
it remains the simplest. Since then a
number of more elaborate, in terms of
efilciency or fault resiliency, randomized
algorithms for the problem have been
developed [Bracha 1985; Chor and Coan
1985; Perry 1985] (see also Chor and
Dwork [1989]).

4. ADDITIONAL TOPICS OF INTEREST
AND CONCLUSIONS

We close our survey with a brief discus-
sion of some additional important topics
in randomized algorithms. It will be seen
that most of the topics are more theoreti-
cal in nature than the material in the
body of the survey.

Complexity Theory of Randomized
Algorithms

A probabilistic Turing machme is a Turing
machine with distinguished states called
“coin-tossing states.” For each coin-tossing
state, the finite control unit specifies two
possible next states. The computation of
a probabilistic Turing machine is deter-
ministic except that in coin-tossing states
the machine tosses an unbiased coin to
decide between the two possible next
states [Gill 1977].

As in the classical setting of deter-
ministic and nondeterministic Turing
machines, a theory of computational
complexity has been developed for proba-
bilistic Turing machines. For example,
consider the class of decision problems
solvable in “polynomial” time. This class
is called P for deterministic Turing
machines and NP for nondeterminis-
tic Turing machines. For probabilistic
Turing machines, the analogous class is
called RP (or simply R by some writers),
standing for Random Polynomial time,

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms ● 53

and is characterized in Harel [1987] as
follows:

The class RP is defined as the class
of decision problems for which there is a
polynomial-time probabilistic Turing
machine with the following property. If the
correct answer for an input X is no,
the machine says no with probability 1,
and if the correct answer is yes, the machine
says yes with probability greater than 1/2.
Of course, the interest in RP problems
stems from the fact that for any given
X these possibly erroneous algorithms
can be reiterated many times, achieving a
diminishing probability of error.

The class CO-RP is defined similarly
except now the probabilistic Turing
machine must respond correctly with
probability 1 on yes answers, and
with probability greater than 1/2 on no
answers. For example, by virtue of the
probabilistic algorithms presented in
Section 2.2, the problem of primality test-
ing is in CO-RP while the complementary
problem, compositeness testing, is in RP.
Interestingly, Adleman and Huang [1987]
showed that primality testing is also in
RP, thereby putting this problem in the
intersection of RP and CO-RP.

Complexity classes for randomized
algorithms extend beyond RP and
include the classes PP (Probabilistic
Polynomial time) and BPP (Bounded
Probabilistic Polynomial time). For a
problem in PP, the requisite probabilis-
tic Turing machine guarantees the cor-
rectness of both yes and no answers only
with probability greater than 1/2. In
BPP, however, the probability of error in
either a yes or no answer is bounded
from above by some constant e < 1/2. It
is likely, in fact, that BPP is much
weaker than PP. For example, in BPP,
the error probability can be made expon-
entially small in the length of the input
at the cost of only a constant-factor
increase in the number of random bits
used by the algorithm [Cohen and
Wigderson 1989].

It is not difficult to see that we have
the following hierarchies of complexity

classes: P c RP c NP and RP v CO-

RP s BPP G PP (see, e.g., Gill [1977] and
Johnson [1990] for more indepth
discussions of randomized complexity
classes). In words, the former reveals that
coin tossing is at least as powerful as
deterministic computation, and nonde-
terminism is at least as powerful as coin
tossing. It is conjectured that these inclu-
sions are strict. Empirical evidence
includes the fact that, as of now, no one
has discovered a polynomial-time ran-
domized algorithm for any NP-complete
problem.

More recently, the quantum Turing
machine has been proposed [Deutsch
1985] as a quantum physical analogue
of the probabilistic Turing machine.
A quantum Turing machine, in its
most general form, produces a random
sample from a probability distribution
on any given input. Quantum Turing
machines give rise to the new complex-
ity classes Quantum Polynomial time
(QP) and Bounded Quantum Poly-
nomial time (BQP) [Bernstein and
Vazirani 1993]. There is evidence to
suggest that it is impossible to simu-
late a quantum Turing machine with a
probabilistic Turing machine without
incurring an exponential slowdown
[Feynman 1982].

Theory of Probabilistic Automata

Just as there is a complexity theory of
probabilistic algorithms which parallels
the complexity theory of deterministic
algorithms, there is a theory of proba-
bilistic automata, e.g., Paz [1971], Rabin
[1963], and Salomaa [1969], which
parallels the classical theory of nondeter-
ministic automata. A seminal paper on
probabilistic automata is Rabin [1963],
where finite-state probabilistic automata
are explored. He defined the notion of
a language accepted by a probabilistic
automaton relative to a cutpoint proba-
bility A. One of his key results was that
there exists finite-state probabilistic
automata that define nonregular lan-
guages, even if the probabilities involved
are all rational. Salomaa [1969] has
expanded on the work of Rabin to pro-

ACM Computing Surveys, Vol. 26, No. 1, March 1994

54 “ R. Gupta et al.

duce a general theory of stochastic
languages.

Probabilistic Analysis of Conventional
Algorithms

Probabilistic analysis of a conventional,
i.e., deterministic, algorithm starts with
the assumption that the instances of a
problem are drawn from a specified prob-
ability distribution. Two major appli-
cations are the analysis of average-case
behavior of sequential algorithms and
data structures (see Vitter and Flajolet
[1990] for an excellent survey) and the
analysis of approximation algorithms for
coping with intractability of combinato-
rial optimization problems [Garey and
Johnson 1979]. For such problems, the
goal is to prove that some simple and fast
algorithm produces “good,” near-optimal
solutions. A classic example is Karp’s
divide-and-conquer algorithm for the
traveling salesman problem in a plane
[Karp 1986]. Bin packing is another
problem for which very good approxi-
mation algorithms have been discovered.

Randomized Parallel Algorithms

As with sequential and distributed algo-
rithms, the performance of parallel
algorithms can be improved through
the introduction of randomized behavior,
i.e., coin tossing. A standard model of
computation for parallel algorithms is the
PRAM, a multiprocessor architecture
where each processor has random access
to a shared memory. PRAM is actually
a family of models including CRCW
(memory may be concurrently read and
written), CREW (memory may be read
concurrently but writes are exclusive),
and EREW (all reads and writes of
memory are exclusive).

The benefits of randomization in paral-
lel algorithms can perhaps be best illus-
trated by the results of Vishkin [1984]
for the following problem: given a linked
list of length n, compute the distance of
each element of the linked list from the
end of the list. The problem has a trivial
linear-time sequential algorithm, but
Wyllie [1979] conjectured that there is no

optimal speedup parallel algorithm for
n/log n processors. Vishkin showed that
such optimal speedup can be obtained
via randomization by exhibiting a ran-
domized parallel algorithm for the prob-
lem that runs in O(n/p) time using p <
n/(log n log* n) processors on an EREW
PRAM. (Note that for all practical pur-
poses, the polylogarithmic term log* n
can be viewed as a constant.)

Other examples of fast randomized
parallel algorithms include the sorting
algorithm of Reischuk [1981], the algo-
rithm for subtree isomorphism by Miller
and Reif [1989], as well as the numerous
algorithms described in the annotated
bibliography (recent surveys can be found
in Chapter 10 of National Research
Council [1992] and in Matias [1993]).
Miller and Reifs algorithm uses O(log n)
time and O(rz/log n) processors and
was the first polylog parallel algorithm
for the subtree isomorphism problem.

Sources of Randomness and their Impact on
Randomized Algorithms

Throughout this survey we assumed that
a randomized algorithm had the ability
to toss unbiased coins. Clearly, this is a
key assumption: any bias in the coin
tosses can adversely affect the accuracy
and performance of the algorithm. In this
section we describe research aimed at
reducing the number of truly random bits
a randomized algorithm requires, and the
usefulness of “weak sources of random-
ness.” We also consider means of gener-
ating bit strings that have the mathe-
matical properties of truly random
strings. Our treatment of these topics is
mainly bibliographic in nature, and we
refer the interested reader to the appro-
priate references for detailed coverage.

Let d be a randomized algorithm that
when supplied with n truly random bits,
produces results with a fixed error proba-
bility ~. The following two questions
naturally arise:

(1) Is it possible to reduce the error prob-
ability of & through a small increase
in the number of truly random bits
that & has at its disposal?

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms “ 55

(2) Can .@ maintain its error m-obabilitv
“

when the random bits come from
a “weak or imperfect source of
randomness?

These two problems, which are com-
monly referred to as deterministic
amplification and simulating probabilis-
tic algorithms by weak random sources,
have received considerable attention in
the recent literature and are discussed
next.

Deterministic Amplification

Let M be a randomized algorithm that
uses q(n) random bits on an input
of length n. One obvious way of boosting
the accuracy of d is to run it repeatedly
with independently chosen q(n)-bit pat-
terns. However, this method “wastes
randomness” since each random bit is
used only once and then discarded. It
turns out that .@ can be deterministically
amplified using fewer random bits if cer-
tain types of expander graphs can be
constructed.

In Karp et al. [1985] the first example
of deterministic amplification is pre-
sented. Using expander graphs, they
show how the error probability of a ran-
domized algorithm can be reduced to n ‘c,
for some constant c. Their technique
requires no additional random bits. Let
us now look at expander graphs more
carefully.

An (1, r, d, k)-expander is a bipartite
graph from L to R such that

(1) ILI = 1 and IRI = r,

(2) the degree of all nodes in L is d, and

(3) every subset of k nodes in L is con-
nected to more than r/2 nodes in R.

In general, given values of 1, r, d, k it
is easy to prove or disprove the existence
of an (1, r, d, k)-expander through pro-
babilistic methods [Erdos and Spencer
1974] or other nonconstructive argu-
ments. For example, the reader may enjoy
proving, using a probabilistic argument,
that there exists (ml”g m, m, 2 logz m, m)-
expanders for any m [Sipser 1988].

Repla~ing m by 2 q certifies the existence
of (2q , 2q, 2q2, 2q)-expanders.

Sipser [1988] reduces the determinis-
tic amplification problem to a graph-
theoretic problem involving expander
graphs. Since his reduction requires
explicit construction of expanders, let us
assume that we have a method for expli-
citly constructing, for any given q, a

(2~2, 2q, 2q 2, 2q)-expander. Label the left

nodes in this graph with bit strings from
Eqz and the right nodes with bit strings
from ~q, where E == {O, 1}. Call such an
expander graph Gq.

Let ~ be the amplifying algorithm for
M that uses q 2(n) random bits and oper-
ates as follows. It genera~es a q 2(n)-bit
random sequence ~ ● Xq f~) and, using

o, generates a multiset B(cr) c Zq(’1. For
each q(n)-bit a ● B(u), the algorithm
% runs .@ on a internally. The multiset
B(u) is generated using the expander

graph Gq(.) (also called a disperser in
Cohen and Wigderson [19891).

The efficiency of algorithm s%’ depends
on the ability to efficiently construct the
multiset of neighbors of w: for a given m,
clearly one should be able to generate, in
polynomial time, each edge (o, a), hence
the earlier assumption about efficiently
constructing the expander Gq(~~.

The accuracy of @ is related to certain
“expansion properties” of Gq(.l (see

Definition 2.2 in Cohen and Wigderscm
[1989] for an exact formulation of these
properties). Under the hypothesis that
G can be explicitly constructed,
a~~ ~andomized algorithm M utilizing
q(n) random bits with error probability
1/2 can be converted into another algo-
rithm .~ that uses q 2(n) bits and has

error probability 2 – (q’{ nJ- q(n~l [Sipser
1988]. The reduction in the error proba-
bility follows from the properties of the
expander graph. It can also be shown
that random bipartite multigraphs are
sufficiently expanding.

While Sipser’s reduction assumes the
constructability of expander graphs, Ajtai
et al. [1987] show how to explicitly ccm-
struct expanders for deterministic ampli-
fication. Using these multigraphs, Cohen

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

56 ● R. Gupta et al.

and Wigderson [1989] proved that the
error probability of any RP or BPP algo-
rithm can be made ex~onentiallv small. .
in the size of the input, with only a con-
stant-factor increase in the number of
random bits used by the algorithm. They
also consider simulations of these algo-
rithms with weak sources of random
numbers.

Simulating Probabilistic Algorithms by Weak
Random Sources

Since most physical sources of random-
ness suffer from correlation, it is natural
to consider imperfect or weak sources
of randomness. Such sources are called
semirandom sources in Santha and Vazi-
rani [1986]. In this model, each bit of the
output is produced by an adversary by
the flip of a coin of variable bias. The
adversary can look at the previously out-
put bits and use these to set the bias in
the coin. The bias, which helps model
correlation among bits, is constrained to
be between two limits, d and (1 – i3).

It has been shown that if a problem
can be solved by a polynomial-time Monte
Carlo algorithm that has access to a true
source of randomness, then the same
problem can be solved using an arbitrar-
ily weak semirandom source [Vazirani
and Vazirani 1985]. In Vazirani [1987],
efficient algorithms for using semi-
random sources are presented, and a
technique for producing a quasirandom
sequence at an optimal rate, using two
semirandom sources, is described.

Zuckerman [1990] exhibits a pseudo-
random generator that depends only on a
weak random source called a 8-source. A
8-source, unlike a semirandom source, is
asked only once for R random bits, and
the source outputs an R-bit string such
that no string has a probability more
than 2- aR of being output, for some fixed
8>0. Zuckerman [1991] also shows how
to simulate BPP and approximation
algorithms in polynomial time using the
output from a &source. Another notion of
an imperfect source of randomness is
introduced in Liechtenstein et al. [1987],

where an imperfect source is modeled by
a discrete control process.

Pseudorandom Number Generators

In the absence of a true source of ran-
domness, randomized algorithms almost
always rely on pseudorandom number
generators (PRGs) as their source of ran-
dom bits. The importance and widespread
use of PRGs is exemplified by a recent
article in the New York Times which
declares that:

Mathematical “models” designed to predict
stock prices, atmospheric warming, air-
plane skin friction, chemical reactions, epi-
demics, population growth, the outcome of
battles, the location of oil deposits and hun-
dreds of other complex matters increasingly
depend on a statistical technique called
Monte Carlo Simulation, which in turn
depends on a reliable and inexhaustible
source of random numbers [“Coin-Tossing
Computers Found to Show Subtle Bias,” by
M. W. Browne, New York TLmes, Jan. 12,

1993].

Browne goes on to point out the dan-
ger inherent in using PRGs, which was
brought to light in a recent paper by
Ferrenberg et al. [Ferrenberg et al.
1992]. This paper recounts how the
authors were puzzled when a simple
mathematical model of the behavior of
atoms in a magnetic crystal failed to give
expected results. They traced the error to
the PRG used in the simulation. Upon
further investigation, they demonstrated
that five of the most widely used PRGs,
all of which passed a sizable battery of
tests designed to test their randomness,
in fact produce correlated pseudorandom
numbers.

PRGs work as follows. They perform a
deterministic process on a short, random
seed to produce a much larger, pseudo-
random string that serves as a substitute
for a truly random string of the same
size. Thus, a PRG can be thought of as a
means to minimize the number of truly
random bits used by an algorithm.

Much research has been conducted on
conserving the number of random bits
used by specific PRG algorithms. An

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms ● 57

analysis justifying the use of pseudoran-
dom substitutes for true random number
generators in a randomized primality
tester and a probabilistic algorithm for
computing square roots is given in Bach
1991]. There Bach shows that an expon-
entially small error can be obtained
for these two problems by increasing
the number of random bits by a con-
stant factor. Karloff and Raghavan
[1988] study pseudorandom substitutes
that use small seeds for purely random
choices in sorting, selection, and oblivi-
ous message routing.

In their seminal paper, Blum and
Micali [1984] introduced the notion of
cryptographically secure pseudorandom
number generators. A PRG is crypto-
graphically secure if given a small seg-
ment of its output, all subsequent output
cannot be predicted in polynomial time.
Otherwise, a PRG is said to be
predictable.

A number of PRGs, both predictable
and secure, have been studied in the lit-
erature. Ajtai and Wigderson [1989] have
demonstrated a family of PRGs that
appear random to any polynomial-
size logic circuit of constant depth and
unbounded fan-in. Such PRGs can be
substituted for random number genera-
tors in applications such as building sim-
ple approximations to complex boolean
functions [Valiant 1984a].

A strong connection exists between
cryptographically secure PRGs and one-
way functions. A one-way function F(x)
is a function that is easily computed,
but given F(x), it should not be possi-
ble to easily recover x, either with a
small circuit or with a fast algorithm. In
Impagliazzo et al. [1989], the existence of
one-way functions is shown to be neces-
sary and sufficient for the existence of
pseudorandom generators, and algo-
rithms for pseudorandom generators that
use one-way functions are provided.

Blum et al. [1986] present two pseudo-
random sequence generators that
from small seeds generate long well-
distributed sequences. The first, the l/P
generator, is completely predictable from
a small segment of its output. The sec-

ond, the x ‘(mod lV) generator, is crypto-
graphically secure since its sequence
is polynomial-time unpredictable. The

x 2(mod IV) generator is based on the
hardness of the quadratic residuacity
problem.

Babai et al. [1989] obtain a lower bound
for the bit complexity of computing func-
tions of n variables, where the ith
variable resides on processor i. The com-
munication mechanism considered is a
shared blackboard. Using this bound,
they develop algorithms that generate, in
polynomial time, pseudorandom se-
quences of length n from a seed of length

exp(c ~~). These pseudorandom se-
quences cannot be distinguished from
truly random sequences by any logspace
Turing machine. Hastad [1990] has ex-
tended the results of Impagliazzo et al.
[1989] to the uniform case.

As noted in Impagliazzo and
Zuckerman [1989], cryptographically
secure PRGs, though theoretically ele-
gant, have several practical problems:
they depend on the unproven assumption
about the one-wayness of some function,
become useful only asymptotically, and
are inefficient when implemented. By
contrast, the most commonly used PRGs,
which typically are based on linear-
congruential generators and are not
cryptographically secure, do quite well
in practice. Impagliazzo and Zuckerman
give a theoretical basis to this empirical
finding. They prove that two very simple
pseudorandom number generators, which
are minor modifications of the linear-
congruential generator and the sim-
ple shift register generator, are good for
amplifying the correctness of probabil-
istic algorithms. They also introduce a
class of PRGs based on universal hash-
ing functions. Some consequences of
the existence of PRGs are discussed in
Allender [1987].

While most of the work in this area
has concentrated on generation of pseu-
dorandom strings, Goldreich et al. [19861
address the issue of generating ran-
dom functions. They introduce a com-
putational complexity measure of the
randomness of functions. Assuming

ACM Computing Surveys, Vol. 26, No. 1, March 1994

58 ● R. Gupta et al.

the existence of one-way functions, a
pseudorandom function generator is
presented.

Sampling from a Distribution

There exists a large class of algorithms
that are designed around the concept of a
random walk. These algorithms, which
borrow heavily from techniques in statis-
tical physics, use random walks to facili-
tate random sampling for approximating
difficult counting problems. For example,
Jerrum and Sinclair [1989] give a
randomized approximation scheme for
approximating the permanent of a matrix
by relating the problem to that of uni-
formly generating perfect matchings in a
graph. The matching problem is solved
by a Markov chain whose states are
matchings in the graph.

In general, the construction of small
sample spaces that have some random-
ness properties is of major theoretical
and practical importance. For example,
in some applications it may be desirable
that in a string selected at random from
a sample space, the probability distribu-
tion induced on every k bit locations be
uniform. This property of random bit
strings is known as k-wise independence,
and its use in the derandomization of
probabilistic algorithms is discussed
below. In Alon et al. [1990], three simple
constructions of small probability spaces
on n bits for which any k bits are almost
independent are presented.

The general study of random walks—a
topic not covered by this survey-has
made an impact on several areas of algo-
rithm design such as space-bounded
algorlthms, on-line algorithms, and
amplification of randomness. For a study
of this area, and the associated back-
ground in Markov chains and techniques
for proving rapid mixing—informally,
a Markov chain is rapidly mixing if
it converges to its stationary distribu-
tion in a short time—the reader is
referred to Broder [1986; 1989], Borodin
et al. [1989], Dagum et al. [1988],
Dyer et al. [1991], Jerrum and Sinclair

[1989], Karp and Luby [1985], and Karp
et al. [1989].

Derandomization

A flurry of activity has recently emerged
around the algorithmic design technique
of derandomization: the act of taking
an efficient randomized algorithm
and removing the coin flipping to obtain
a deterministic algorithm. The beauty
of derandomization is that the resulting
deterministic algorithm retains the
simplicity inherent to randomized algo-
rithms, often outperforms all previously
known deterministic algorithms (e.g.,
Agarwal [1990a; 1990b] and Chazelle and
Friedman 1990], and is always correct.
This last point is particularly appealing
if the randomized algorithm that gave
rise to the deterministic one is of the
Monte Carlo variety.

The idea of derandomization can be
explained as follows [Naor and Naor
1990]. Consider any randomized algo-
rithm d. One can associate a probability
space (0, P) with s%, where 0 is the
sample space and P some probability
measure corresponding to the probabilis-
tic choices that @ makes during execu-
tion. Let @(1, w) denote an execution of
M on input instance 1 in which .@ ran-
domly chooses w from 0. Point w is
called a good point for input instance 1
if .@(l, w) computes the correct solution.
A derandomization of @ means searching
Q for a good point w with respect to a

given input instance 1. Upon turning up
such a point w, the algorithm W(1, w) is
now deterministic and guaranteed to find
the correct solution. The catch is, how-
ever, that the sample space is generally
exponential in size, rendering exhaustive
search infeasible.

Karp and Wigderson [1985] have
devised a technique, based on the con-
cept of k-wise independence, that can
potentially avoid searching exponentially
large sample sizes. A string of bits is said
to be k-wise independent if any k of the
bits in the sequence are mutually
independent. Therefore, if the probabilis-
tic choices of a given randomized algo-

ACM Computmg Surveys, Vol. 26. No 1, March 1994

On Randomization in Algorithms 9 59

rithm are bit strings of length n and
each choice is only required to exhibit
k-wise inde endence, then a sample space

Fof size 0(n) sufllces. Furthermore, when
k is a constant, this sample space can be
exhaustively searched for a good point
(even in parallel) in polynomial time.
Karp and Wigderson, in the same paper,
take advantage of k-wise independence
to derive a fast parallel algorithm for the
maximal independent set problem.

Another approach to derandomization
is the method of conditional probabilities
[Spencer 1994], which was originally
introduced with the aim of conver-
ting probabilistic proofs of existence of
combinatorial structures into determin-
istic algorithms that can actually con-
struct these structures. Applications of
the method of conditional probabilities
to derandomization include problems in
combinatorial optimization [Raghavan
1988] and parallel algorithms [Motwani
et al. 1989].

On the Future of Randomized Algorithms

These days, randomized algorithms are
appearing in the literature almost as
often as conventional algorithms. It is
safe to say that there are at least several
hundred randomized algorithms that
have already been published, and dozens
more are being discovered each year. We
expect this trend to continue since, as we
have tried to demonstrate in this survey,
the benefits of coin tossing are many:
efficiency, conceptual simplicity of the
resulting algorithms, overcoming impos-
sibility, etc. Specifically, we expect to see
a steady stream of randomized algo-
rithms in the areas of computational
geometry, computational biology, graph
and number theory, cryptography, robo-
tics, design automation, operating sys-
tems (paging, task scheduling, load
balancing, etc.), parallel computing, and
distributed computing.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for

their critical reading of the article. Their many
comments and suggestions, including a number of

important pointers to the literature, substantially
helped to improve the quality of this survey. We are

also grateful for valuable interactions with Donna

Albertus, Lauren Cowles, Gudjon Hermannsson,

Ker-I Ko, Joe Mitchell, Steve Skiena, and Joel
Spencer. Finally, we would like to acknowledge the

readers of comp.theory who responded to a call for
comments on an earlier draft, including Olivier
Devillers, Martin Dietzfelbinger, Philippe Flajolet,
Dipankar Gupta, George Havas, Martin Huehne,
Danny Krizanc, Bohdan Majewski, Stanley Selkow,
and Mark Weiss.

ANNOTATED BIBLIOGRAPHY

ABRARAMSON, K., ADLER, A., GILBART, R., HIGHAM,
L., AND KIRKPATRICK, D. 1989. The bit com-
plexity of randomized leader election on a ring.
SL4M J. Comput. 18, 1 (Feb.), 12-29. Under
various assumptions about global knowledge,
the bit complexity of leader election on asyn-
chronous unidirectional rings is studied.

ADLEMAN, L. M. AND HUANG, M. A. 1988. Recog-
nizing primes in random polynomial time. Tech.
Rep., Univ. of Southern California, Los Angeles.
The authors present a Las Vegas algorithm
that looks for witnesses to compositeness as
well as those for primality.

ADLEMAN, L. M. AND HUANG, M. A. 1987. Recog-
nizing primes in polynomial time. In Proceed-

ings of the 19th Annual ACM Symposium

on Theory of Computmg. ACM, New York,
462–471. The probabilistic algorithms of Rabin
[19761 and Solovay and Stassen [1977] placed
the problem of compositeness testing in the
randomized complexity class RP, and thus
the problem of primality testing in CO-RP.
Adleman and Huang show that primality test-
ing is also in RP, thereby putting this problem
in the intersection of RP and CO-RP.

AGARWAL, P. K. 1990a. Partitioning arrange-
ments of lines I: An efficient deterministic algo-
rithm. Discr. G’omput. Geom. 5, 5, 449–483.

Using derandomization techniques due to
Chazelle and Friedman [1990], Agarwal obtains
a deterministic algorithm that, given a set &
of n lines and a parameter 1 < r < n, parti-
tions the plane into 0(r 2) triangles, each of
which meets at most 0(n/r) lines of 9. He
shows that the algorithm is optimal up to a
polylog factor.

AGARWAL, P. K. 1990b. Partitioning arrange-
ments of lines II: Applications. Discr. Comput.

Geom. 5, 533–574. Agarwal uses his partition-
ing algorithm of Agarwal [1990a], which he
derived through derandomization, to obtain
efficient algorithms for a variety of problems
involving line or line segments in the plane
(e.g., computing incidence between points and
lines, implicit point location, and spanning
trees with low stabbing number). These algo-
rithms are deterministic, faster than preti-

ACM Computing Surveys, Vol 26, No 1, March 1994

60 ● R. Gupta et al.

ously known algorithms, and optimal up to a
polylog factor in many cases.

AGGARWAL, A., ANDERSON, R. J., AND KAO, M.-Y.
1990. Parallel depth-first search in general
directed graphs. SIAM J. Comput. 19, 2, 397-
409. This paper gives the first randomized iVC
algorithm for depth-first search m a general
directed graph.

AIELLO, W. AND HASTAD, J. 1991. Perfect zero-
knowledge languages can be recognized m two
rounds. J. Comput. Syst. SCL. 42, 3, 327–345.

This paper shows that if L has a perfect zero-
knowledge proof (see Fiirer et al. [1989] for a
definition), then L has a two-round interactive
proof if the verifier (of this new 1P proof) is
permitted a small probability of error in accept-
ing a string w as being in a language L. An
earlier version of this paper appeared in F’ro-
ceed[ngs of the 28th Annual IEEE Symposl urn
on the Foundations of Computer Sczence

AJTAI, M. AND WIGDERSON, A. 1989. Determinis-
tic solution of probabilistic constant depth cir-
cuits. In Advances tn Computmg Research ,5:

Randomness and Computation. JAI Press,
Greenwich, Corm. A family of pseudorandom
number generators which appear random to
any polynomial-size logic cu-cuit of constant
depth and unbounded fan-in is demonstrated.
Such pseudorandom generators can be substi-
tuted for random number generators m apFll-
cations such as building simple approximations
to complex boolean functions [Valiant 1984a].

AJTAI, M., KOML6S, J., AND SZEMERtiDI, E. 1987.
Determmmtic simulation in LOGSPACE. In
Proceedings of the 19th Annual ACM Sympo-

sium on the Theory of Computmg. ACM, New
York, 132-140. The authors present an expli-
clt construction of multlgraphs based on
expanders for determimstlc amplification,
Using these multlgraphs, Cohen and Wigderson
[1989] show that the error probability of any
RP or BPP algorithm can be made exponenti-
ally small in the size of the input, with only a
constant-factor increase in the number of ran-
dom bits used by the algorlthm,

ALELUINAS, R. 1982. Randomized parallel com-
munication (preliminary version), In Proceed-
ings of the Ist Annual ACM Symposium on the
Prmclples of Distr~buted Computmg. ACM,
New York, 60–72, This paper presents a ran-
domized algorithm for packet dehvery that
delivers a set of n packets traveling to unique
targets from unique sources in O(log n) expec-
ted time on a finite-degree interconnection
network of n processors.

ALLENDER, E. W. 1987. Some consequences of the
existence of pseudorandom generators. In Pro-
ceedings of the 19th Annual ACM Symposzum

on the Theory of Computmg. ACM, New York,
151 – 159. Connections between pseudoran-
dom generation, Kolmogorov complexity, and
immunity properties of complexity classes are
described.

ALON, N. AND AZAR, Y. 1988. The average com-
plexity of deterministic and randomized paral-
lel comparison-sorting algorithms. SIAM J.
Comput. 17, 6, 1178–1192. Even the average-
case behavior of randomized parallel
comparison-sorting algorithms is shown to be
no better than the worst-case behavior of their
deterministic counterparts.

ALON, N. AND NAOR, M. 1993. Coin-flipping
games immune against linear-sized coalitions.
SIAM J. Comput. 22, 2, 403–417. The authors
consider the problem of distributed coin-
flipping and leader-election algorithms where
every process has complete information. They
show that for every constant c < 1 there are
protocols revolving n processes m which no
group of cn processes can influence the out-
come with probabdity greater than Kc, where
K is a universal constant.

ALON, N., BARAI, L., AND ITAI, A. 1986. A fast and
simple randomized parallel algorithm for the
maximal independent set problem. J. Alg. 7, 4,

567–583. An independent set in a graph is a
set of vertices, no two of which are adjacent. A
m ax~mal independent sef m an independent set
that is not properly contained in any other
independent set. The authors present a simple
randomized (Las Vegas) parallel algorithm for
this problem. On an EREW-PRAM, their algo-
rlthm uses IE I processors with expected run-

ning time O(logz n), for a graph with n nodes
and Ill edges. Motivated by Karp and
Wigderson [1985], they also describe a deran-
domization technique to convert any Monte
Carlo parallel algorithm that uses k-wise
independent random choices into a deter-
ministic parallel algorithm without loss of time
and a polynomial increase in the number of
processors for any constant k.

ALON, N., ERD6S, P., AND SPENCER, J, H. 1992,
The Probabzl~stic Me fhod. John Wiley and Sons,
New York. This paper describes the Probabilis-
tic Method as developed by Paul Erd6s and
its applications in discrete mathematics
and theoretical computer science.

ALON, N., GOLDREICH, O., HASTAD, J., AND PERALTA,
R. 1990. Simple construction of almost
k-wise independent random variables. In
Proceedings of the 31st Annual IEEE Sympo-
szum on the Foundations of Compufer Science.
IEEE, New York, 544–553. Three simple con-
structions of small probability spaces on n bits
for which any k bits are almost independent
are presented m this paper.

ANGLUIN, D, 1980. Local and global properties in
networks of processors. In proceedings of the
12th Annual ACM Symposzum on the Theory of

Computmg. ACM, New York, 82–93. The capa-
bilities of networks containing nodes with
nonunique names are analyzed. It M shown
that there exist networks in which lt is not
possible to elect a leader (for example, in a ring

ACM Computmg Surveys, Vol 26, No. 1, March 1994

On Randomization in Algorithms ● 61

with four nodes). Other computations, such as
determining topology, are also considered.

ANGLUIN, D. AND VALIANT, L. G. 1979. Fast prob-
abilistic algorithms for Hamiltonian circuits
and matching. J. Comput. Syst. Set. 18, 2,
82–93. The authors present two algorithms
with O(n(log n)z) running time for
Hamiltonian circuits and an O(n log n) algo-
rithm to find perfect matchings in random
graphs with at least cn log n edges, where c is
any positive constant.

ARAGO~, C. AND SEIDEL, R. 1989. Randomized
search trees. In Proceedings of the 30th Annual
IEEE Symposium on the Foundations of Com-

puter Sctence. IEEE, New York, 540–545. A
simple randomized algorithm for maintaining
balance in dynamic search trees is presented.
The expected time for an update is O(log n) on
a tree with n nodes and involves fewer than
two rotations to rebalance the tree.

ARYA, S. AND MOUNT, D. M. 1993. Approximate
nearest neighbor queries in fixed dimensions.
In Proceedings of the 4th Annual ACM-SIAM
Symposium on Discrete Algorithms. ACM,
New York, 271–280. A randomized algorithm
for approximate nearest-neighbor searching
is given. Consider a set S of n points in d-

dimensional Euclidean space, where d is a con-
stant independent of n. The authors produce a
data structure, such that given any query point,
a point of S will be reported whose distance
from the query point is at most a factor of
(1 + e) from that of the true nearest neighbor.
Their algorithm runs in O(log3 n) expected
time and requires 0(n log n) space. The data
structure can be built in 0(nz) expected time.
The constant factors depend on d and c.

ASPNES, J. AND HERLIHY, M. 1990. Fast random-
ized consensus using shared memory. J. Alg.
11, 3. An expected 0(n4) operations are needed
for the solution presented.

ASPNES, J. AND WAARTS, O. 1992. Randomized
consensus in 0(n log2 n) operations per proces-
sor. In Proceedings of the 33rd Annual IEEE
Sympostum on the Foundations of Computer

Sczence. IEEE, New York, 137– 146. An asyn-
chronous algorithm is presented that achieves
randomized consensus using 0(n logz n) read
and write operations on shared-memory regis-
ters. This improves on the O(n 2 log n) worst-
case complexity of the best previously known
algorithm.

BABAI, L. 1991. Local expansion of vertex-
transitive graphs and random generation in
finite groups. In Proceedings of the 23rd Annual
ACM Symposium on the Theory of Compu-

tmg. ACM, New York, 164– 174. Babai pre-
sents a Monte Carlo algorithm that constructs
an efficient nearly uniform random generator
for finite groups in a very general setting.

BABAI, L. 1985. Trading group theory for ran-
domness. In Proceedings of the 17th Annual
ACM Symposium on the Theory of Compu-

ting. ACM, New York, 421–429. This paper
develops interactive proofs to classify certain
group-theoretic problems and introduces an
alternative notion of interactive proofs for
complexity-theoretic analysis.

BABAI, L. AND ITAI, A. 1986. A fast and simple
randomized parallel algorithm for the maximal
independent set problem. J. Alg. 7, 4 (Dec.),
567–583. An independent set of a graph is a set
of vertices, no two of which are adjacent. A
maxtmal independent set is an independent set
that is not a proper subset of any other
independent set. A simple algorithm which is
always correct and runs in O(log n) time using
O(lEld ~.X) processors on a Concurrent Read
Concurrent Write parallel machine is shown.
Here, d~az is the maximum degree of any
vertex in the graph. The earlier best was
a deterministic algorithm for an Exclusive
Read Exclusive Write architecture that ran
in O((log n)4) time using O((n/log n)3)
processors.

BABAI, L. AND MOBAN, S. 1988. Arthur-Merlin
games: A randomized proof system, and a hier-
archy of complexity classes. J. Comput. Syst.
Sci. 36, 2, 254–276. The proof system is consid-
ered a game played between two players, the
verifier and the prover, called Arthur and
Merlin, respectively. Arthur and Merlin can
toss coins and can talk back and forth. In this
type of proof system, all coin tosses made by
the verifier are seen by the prover. A hierarchy
of complexity classes “just above NP” is
derived.

BABAI, L., FORTNOW,L., AND LUND, C. 1990. Non-
deterministic exponential time has two-prover
interactive protocols. In Proceedings of the 31st
Annual IEEE Symposmm on the Foundations
of Computer Science. IEEE, New York, 16–25.
Babai et al. prove, using the two-prover inter-
active proof systems introduced in Ben-Or et al.
[1988a], that the class of languages that have a
two-prover interactive proof system is nonde-
terministic exponential time.

BABAI, L., NISAN, N., AND SZEGEDY, M. 1989.
Multiparty protocols and logspace-hard pseu-
dorandom sequences. In Proceedings of the 21st
Annual ACM Symposium on the Theory of

Computing. ACM, New York, 1–1 1. A lower
bound is obtained for the bit complexity of
computing functions of n variables, where the
Lth variable resides on processor L. The commu-
nication mechanism considered is a shared
blackboard. Using this bound, algorithms are
developed that generate, in polynomial time,
pseudorandom sequences of length n from a
seed of length exp(c=). These pseudoran-
dom sequences cannot be distinguished from
truly random sequences by any logspace Turing
machine.

BACH, E. 1991. Realistic analysis of some ran-
domized algorithms. J. Comput. Syst. Sci. 42,
1, 30-53. Bach’s analysis justifies the use of

ACM Computing Surveys, Vol. 26, No. 1, March 1994

62 - R. Gupta et al.

pseudorandom substitutes for true random
number generators in a random primahty tester
and a probabihstic algorithm for computing
square roots.

BACH, E., MILLER, G.j AND SHALLIT, J. 1986. Sums
of divisors, perfect numbers and factoring.
SIAM J. Comput. 15, 4 (Nov), 1143-1154. The
authors show that computing the sum of divi-
sors of a number N is as hard as factoring N
They also give three natural sets which are in
BPP (see Gill [1977]) but are not known to be
in RP.

BARTAL, Y., FIAT, A., RARLOFF, H., AND VOHRA, R.
1992. New algorithms for an ancient schedul-
ing problem. In Proceedings of the 24th Annual
ACM Symposwm on the Theory of Comput-

mg. ACM, New Yorkj 51–58. They consider the
on-line version of the original m-machine sche-
duling problem: given m machines and n posi-
tive real jobs, schedule the n Jobs on m
machines so as to minimize the makespan, the
completion time of the last job. In the on-line
version, as soon as job j arrives, it must be
assigned immediately to one of the machines.
They present a competitive deterministic algo-
rithm for all m and an optimal randomized
algorithm for the case m = 2

BEAME, P. AND LAWRY, J. 1992 Randomized vs.
nondeterministic communication complexity In
Proceedings of the 24th Annual ACM Sympo-

smm on the Theory of Computmg. ACM, New
York, 188– 199. The authors show that the two
complexities are not always the same.

BEAUCHEMIN, P., BRASSARD, G., CR6PEAU, C.,
GOUTIER, C., AND POMERANCE, C. 1988. The
generation of random numbers that are proba-
bly prime. J. Cryptol. 1, 1, 53–64. The authors
make two intriguing observations on Rabin’s
[1976] probabilistic primality test, the subject
of Section 2.2 of this survey. The first is a
provocative reason why Rabin’s test is so good.
It turns out that a single iteration of his algo-
rithm has a nonnegligible probability of failing
only on composite numbers that can actually be
split in expected polynomial time. Therefore,
factoring would be easy if Rabin’s test system-
atically faded with a 259Z0probability on each
composite integer (which, of course, it does not).
The authors also investigate the question
of how reliable Rabin’s test m when used to
generate a random integer that M probably
prime, rather than to test a specific integer
for primality.

BEIGEL, R., REINGOLD, N., AND SPIELW, D. 1991.
PP is closed under intersection. In Proceedings
of the 23rd Annual ACM S.ymposlum on the
Theory of Computmg. ACM, New York, 1-9.
The randomized complexity class PP is shown
to be closed under intersection and union.

BELLARE, M. AND MICALI, S. 1989. Non-inter-
active oblivious transfer and applications. In
AdLances m Cryptology -CRYPTO 89. Lecture
Notes in Computer Science, vol. 435. Springer-

Verlag, New York, 547–559, Based on a com-
plexity assumption, Bellare and Micali show
that it M possible to build public-key crypto-
systems in which oblivious transfer is itself
implemented without any interaction.

BELLARE, M. AND PETRANK, E. 1992. Making
zero-knowledge provers efficient. In Proceed-

ings of the 24th Annual ACM Symposium on
the Theory of C’omputzng. ACM, New York,
711–722. They prove that if a language pos-
sesses a statistical zero-knowledge proof then
it also possesses a statistical zero-knowledge
proof in which the prover runs in probabilistic
polynomial time with an NP oracle. Prewously,
this was only known gwen the existence of
one-way permutations.

BELLARE, M., GOLDWASSER, S., LUND, C., AND
RUSSELL, A. 1993. Efficient probabilistically
checkable proofs and applications to approxi-
mation. In Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing ACM,
New York, 294–304. Bellare et al. construct
multiprover proof systems for NP which use
only a constant number of provers to simul-
taneously achieve low error, low randomness,
and low answer size. As a consequence, they
obtain asymptotic Improvements to approxi-
mation hardness results for a wide range of
optimization problems

BELLARE, M., GOLDREICH, 0., AND GOLDWASSER,S.
1990a. Randomness in interactive proofs. In
Proceedings of the 31st Annual IEEE Sym -
posmm on the Foundations of Computer Sct-

ence. IEEE, New York, 563–572. The power
of randomness in interactive proof systems,
m quantitative terms, is considered. A
randomness-efficient error reduction technique
for converting one proof system into another
one using the same number of rounds is
presented.

BELLARE, M., MICALI, S , AND OSTROVSKY,R. 1990b.
Perfect zero-knowledge in constant rounds In
Proceedings of the 22nd Annual ACM Sym-
poszum on the Theory of Computzng. ACM,
New York, 482–493. This paper contains the
first constant-round solutlons with no unproven
assumptions for the problems of graph iso-
morphism and quadratic residuoslty.

BEN-DAVID, S., BORODIN, A., RARP, R. M., TARDOS,
G., AND WI~DURSON, A. 1990. On the powe?
of randomization in online algorithms. In Pro-
ceedings of the 22nd Annual ACM Symposmm
on the Theory of Compu tmg. ACM, New York,
379-386 They prove the existence of an effi-
cient “simulation” of randomized on-line algo-
rithms by deterministic ones, which is the
best possible m the presence of an adaptive
adversary.

BEN-OR, M. 1985. Fast asynchronous Byzantine
agreement (extended abstract). In Proceed-
ings of the 4th Annual ACM Symposium
on the PrmcLples of DLstrzbuted Computmg.
ACM, New York, 149–151 This work extends

ACM Computing Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 63

Bracha’s [1985] algorithm to asynchronous
networks, initially obtaining a polynomial
expected-time protocol. This protocol is refined
with the recursive use of Bracha’s techniques
to get an O(log& n) algorithm, where k is a
large constant.

BEN-OR, M. 1983. Another advantage of free
choice: Completely asynchronous agreement
protocols. In Proceedings of the 2nd Annual
ACM Symposium on the Principles of
D~strtbuted Computing. ACM, New York,
27–30. Ben-Or’s probabilistic algorithm for
asynchronous Byzantine agreement, discussed
in Section 3.5, was one of the first published
solutions to the problem, and it remains the
simplest. Processes toss coins independently to
reach consensus on a value. His algorithm
requires that less than one-fifth of the processes
are faulty for correctness to be guaranteed. The
expected number of rounds is exponential in
the number of processes n, but becomes a con-
stant when the number of faulty processes is

O(VF).
BEN-OR, M. AND LINIAL, N. 1989. Collective coin

flipping. In Advances m Computmg Research
5: Randomness and Computation. JAI Press,
Greenwich, Corm. Ben-Or and Linial consider
the problem of obtaining a distributed coin toss,
where each node is initially assigned either
a head or a tail. The outcome of the distribu-
ted coin toss should not be affected by bias
at individual nodes. To exclude the obvious tri-
vial solution where each nonfaulty node picks
a predetermined value, it is required that if
every node changes its initial value, the result
of the distributed coin toss should also change.
An efficient solution is obtained under the
assumption that unfair (faulty) nodes have
complete knowledge of actions taken by all
nodes.

BEN-OR, M., GOLDWASSER, S., KILIAN, J., AND
WIGDERSON, A. 1988a. Multi-prover inter-
active proofs: How to remove the intractability
assumptions. In Proceedings of the 20th Annual
ACM Symposium on the Theory of Compu-

ting. ACM, New York, 113– 131. A multiprover
interactive proof model is proposed and its
properties examined.

BEN-OR, M., GOLDWASSER, S., AND WIGDERSON, A.
1988b. Completeness theorems for non-
cryptographic fault-tolerant distributed com-
putation. In Proceedings of the 20th Annual
ACM Symposium on the Theory of Comput-

mg. ACM, New York, 1– 10. The problem is the
same as that in Chaum et al. [1988], and
the results obtained are similar.

BENTLEY, J. 1980. Multidimensional divide-and-
conquer. Commun. ACM 23, 4, 2 14–229. This
paper contains an n log(n) deterministic
algorithm for finding nearest neighbors in
two-dimensional space.

BERLEKAMP, E. R. 1970. Factoring polynomials
over large finite fields. Math. Comput. 24,

713–745. This paper presents algorithms for
root finding and factorization, two problems in
finite fields. The latter problem is reduced to
the root-finding problem, for which a proba-
bilistic algorithm is given. This paper is a pre-
cursor of Rabin [1980b].

BERNSTEIN, A. J. 1980. Output guards and non-
determinism in CSP. ACM Trans. Program.
Lang. Syst. 2, 2 (Apr.), 234–238. Bernstein pre-
sents a distributed algorithm for CSP output
guards based on priority ordering of processes.

BERNSTEIN, E, AND VAZIRANI, U. 1993. Quantum
complexity theory. In Proceedings of the 25th
Annual ACM Sympowum on the Theory of
Computing. ACM, New York, 11-20. A quan-
tum Turing Machine, as originally formulated
by Deutsch [1985], may be thought of as a
quantum physical analogue of a probabilistic
Turing Machine: it has an infinite tape, a finite
state control, and, in its most general form,
produces a random sample from a probability
distribution on any given input. Bernstein and
Vazirani prove the existence of a universal

quantum Turing Machine, whose simulation
overhead is polynomially bounded. They also
present the first evidence that quantum TMs
might be more powerful than classical proba-
bilistic TMs. Specifically, they prove that there
is an oracle relative to which there is a language
that can be accepted in polynomial time by a
quantum TM but cannot be accepted in n“’i”g’)
time by a bounded-error probabilistic TM.

BLUM, M. AND KANNAN, S. 1989. Designing pro-
grams that check their work. In Proceedings of
the 21st Annual ACM Symposium on the The-

ory of Computing. ACM, New York, 86–97. A
more detailed version of Blum and Raghavan
[1988]. Also see “Designing programs that
check their work,” Tech. Rep., Computer
Science Div., Univ. of California, Berkeley.

BLUM, M. AND MICALI, S. 1984. How to generate
cryptographically strong sequence of pseudo-
random bits. SIAM J. Comput. 13, 4, 850–864.
This paper introduces the notion of a cryp-
tographically secure pseudorandom number
generator.

BLUM, M. AND RAGHAVAN, P. 1988. Program cor-
rectness: Can one test for it. Tech. Rep. RC
14038 (#62902), IBM T. J. Watson Research
Center, Yorktown Heights, N.Y. They present
“program checkers” for a number of interesting
problems based on interactive proofs.

BLUM, A., KARLOFF, H., RABANI, Y., AND SAKS, M.
1992. A decomposition theorem and bounds
for randomized server problems. In Proceed-

ings of the 33rd Annual IEEE Symposmm on
the Foundations of Computer Science. IEEE,
New York, 197–207. In a k-server problem,
each server is at some point in a metric space.
At each time step, a request arises. Each
request is a point in metric space and must be
serviced by moving one of the k servers to the
point specified. The cost associated with

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

64 . 1?. Gupta et al.

the request is the distance that the server
moves. The competitive ratio of a k-server
system is the worst-case ratio of the cost
of an interactive algorithm on a sequence of
inputs, to the optimal cost that would be
incurred if the entree sequence were known in
advance. The paper proves a lower bound of
Q(~log k\log log h) for the competitive ratio of
a h-server system assuming an oblivious
adversary. This improves on the previously
known bound of Q(log log k).

BLUM, M., DESANTIS, A., MICALI, S., AND PERSMNO,
G. 1991. Noninteractive zero-knowledge.
SIAM J. Comput. 20, 6, 1084-1118. A key
paper that summarizes the previous work
on noninteractive zero-knowledge proofs. The
concept of shared randomness is introd-
uced) and how that can dispose of interaction
between the prover and the verifier is illus-
trated. The authors show that noninteractive
zero-knowledge proofs exist for some number-
theoretic languages for which no efficient
algorithms are known. They also show that
if quadratic residuosity is computationaily
hard, satisfiability also has a noninteractive
zero-knowledge proof.

BLUM, M., LUBY, M., AND RUBINFELD, R. 1990.
Self-testing/correcting with applications to
numerical problems In Proceedings of the 22nci
Annual ACM Sympowum on the Theory of
Computmg. ACM, New York, 73–83. This paper
is a more recent reference on the use of ran-
domization in program testing and adds to the
collection of interesting examples contained m
Blum and Kannan [1989] and Blum and
Raghavan [1988].

BLUM, M., FELDMAN, P., AND MICMI, S. 1988.
Non-interactve zero-knowledge proof systems
and applications. In Proceedings of the 20th
Ann ual ACM Symposmm on the Theory of

Computing. ACM, New York, 103-112. This
paper introduces the notion of noninteractlve
zero-knowledge proofs where the interaction
between the prover and the verifier is replaced
by shared, random strings.

BLUM, M., BLUM, L., AND SHUB, M. 1986. A sim-
ple and secure pseudo-random number gen-
erator. SIAM J. Comput. 15, 2, 364–383. Two
pseudorandom sequence generators are pre-
sented which, from small seeds, generate long
well-distributed sequences. The first, the l/P
generator, is completely predictable from a
small segment of its output. The second, the x 2
(mod N) generator, is cryptographically secure
since its sequence is polynomial-time unpre-
dictable (if the quadratic residuosity problem is
indeed hard).

BOISSONNAT,J.-D. AND TEILLAUD, M. 1993. On the
randomized construction of the Delaunay tree.
Theor. Comput. Scl. 112, 2, 339–354. An on-line
randomized algorithm which computes
Delaunay triangulation and Voronoi diagrams
of points in any number of dimensions is given.

The complexity of the algorlthm M optimal pro-
vided that the points are inserted in a random
order.

BOHSONNAT, J.-D., DEVILLERS, O., SCHOTT, R.,
TEILLAUD, M., AND YWNEC, M. 1992. Applica-
tions of random sampling to on-line algorithms
in computational geometry. LXscr. Comput.

Geom. 8, 1,51–71. This paper treats the same
kind of problems as in Clarkson and Shor
[1989], but in a semidynamic way: the data can
be initially unknown and added one by one.
The analysis assumes that the points are in-
serted in a random order.

BOPPANA, R. B. 1989. Amplification of probabilis-
tic boolean formulas. In Aduances in Compuf -
mg Research 5: Randomness and Computation.
JAI Press, Greenwich, Corm , 27–45. Valiant’s
[1984a] algorithm is shown to be the best pos-
sible. Also, an O(k ~ 3n log n) algorithm for
computing the k th threshold function of n
variables is given

BOPPANA, R. B AND NARAYANAN, B. O. 1993. The
biased coin problem. In Proceedings of the 25th
Annual ACM Sympos~um on the Theory of
Computzng. ACM, New York, 252-257. A
sl~ghtly random source (with bias e) is a
sequence x = (xl, X2, .,., X.) of random bits
such that the conditional probability that x, =
1, given the outcomes of the first z – 1 bits, m
always between (1/2) – c and (1/2) + e. Given
a subset S of {O, I}n, its ●-bzased probabdlty is
defined to be the mimmum of Pr[x ● S] over
all slightly random sources x wth bias c. The
authors show that for every fixed c < 1/2 and
almost every subset S of {O, 1}”, the c-biased
probablhty of S is bounded away from O
They also show that there exists a perfect-
information, collective coin-flipping (leader
election) protocol for n players that tolerates

En cheaters, for every c < (2ti – 5)/3 =
0.44.

BOPPANA, R., HASTAD, J., AND ZACHOS, S. 1987
Does CO-NP have short interactive proofs. Inf.
Process Lett 25, 2, 127– 132 This important
paper, along with Fortnow [1987], provides a
method of gaining high confidence that certain
languages are not NP-complete,

BORODIN, A., COOK, S. A., DYMOND, P. W., Ruzzo,
W. L., AND TOMPA, M. 1989. Two appli-
cations of inductive counting for complementa-
tion problems. SIAM J. Comput. 18, 3 (June),
559–578. A probabilistic algorithm for s – t
connectivity in undirected graphs is presented.

Bwcm, G. 1985. An O(log n) expected rounds
randomized Byzantine generals protocol. In
proceedings of the 17th Annual Symposium on
the Theory of Computmg. ACM, New York,
316-326. Bracha shows how to partition a set
of n synchronous processes (of which at most a
third are faulty) mto overlapping groups of
processes such that the number of faulty groups
M at most the square root the total number of
groups. Ben-Or’s algorlthm for Byzantine

ACM Computing Surveys, Vol 26, No. 1, March 1994

On Randomization in Algorithms ● 65

agreement (see Section 3.5) is then used to
obtain an O(log n) protocol.

BRASSARD, G. AND BRATLEY, P. 1988. Algorith-

ms: Theory and Practwe. Prentice-Hall,
Englewood Cliffs, N.J. This book contains a
very nice chapter on probabilistic algorithms
for a variety of problems such as numerical
integration, sorting, and set equality.

BRASSARD,G. AND CRfiPEAU, C. 1986. Zero-knowl-
edge simulation of boolean circuits. In
Advances m Cryptology-CRYPTO 86. Lecture
Notes in Computer Science, vol. 263. Springer-
Verlag, New York, 223–233. An important
result by Goldreich et al. [1991] in the design
of cryptographic protocols asserts that if one-
way functions exist then every language in NP
has a minimum-knowledge-confirming -inter-
active proof. This paper proves a similar result
under the assumption that certain number-
theoretic computations are infeasible.

BRODER, A. Z. 1989. Generating random span-
ning trees. In Proceedings of the 30th Annual
IEEE Symposium on the Foundat~ons of Com-

puter Science. IEEE, New York, 442–453. This
paper solves the problem of generating a span-
ning tree of a connected, undirected graph G
which has the following special property: it is
chosen uniformly at random from all possible
spanning trees of G. The expected running time
of the probabilistic algorithm is 0(n log n) per
generated tree for almost all graphs. It can be
0(n3) per generated tree in the worst case.

BRODER, A. Z. 1986. How hard is it to marry at
random. (On the approximation of the perma-
nent). In Proceedings of the 18th Annual ACM
Symposmm on the Theory of Computmg. ACM,
New York, 50-58. This paper provides a full-

polynomial randomized approximation scheme

(fprus) for approximating the permanent.
Evaluating the permanent of a n X n matrix is
equivalent to counting perfect matchings in
an associated bipartite graph. The problem of

approximately counting the perfect matchings
in a graph is reduced to that of generating
them uniformly. See Jerrum and Sinclair [1989]
for the definition of fpras and other related
material. An erratum can be found in Proceed-
ings of the 20th Annual ACM Symposium on
the Theory of Computing, 1988.

BUCKLEY, G. N. AND SILBERSCHATZ, A. 1983. An
effective implementation for the generalized
input-output construct of CSP. ACM Trans.
Program. Lang. Syst. 5, 2. They present a
distributed algorithm for CSP output guards
based on priority ordering of processes. Their
algorithm has the property that two processes
that can communicate and do not establish
communication with a third process will com-
mumcate within a bounded time.

CANETTI, R. AND GOLDREICH, O. 1990. Bounds on
tradeoffs between randomness and communica-
tion complexity. In Proceedings of the 31st
Annual IEEE Symposium on the Foundations

of Computer Science. IEEE, New York, 766–
775. Instead of considering the qualitative
question, “Is an algorithm deterministic or ran-
domized?,” the authors try to determine, quan-
titatively, how much randomization does an
algorithm use. Tight lower bounds on the length
of the random input of parties computing
a function f—depending on the number of
bits communicated and the deterministic
complexity of f—are derived.

CANETTI, R. AND RABIN, T. 1993. Fast asynchron-
ous Byzantine agreement with optimal
resilience. In Proceedings of the 25th Annual
ACM Symposium on the Theory of Compu-

ting. ACM, New York, 42–51. The resilience of
a protocol is the maximum number of faults in
the presence of which the protocol meets its
specification. It is known that no Byzantine
agreement (BA) protocol for n players
(either synchronous or asynchronous) can be
[n/31 resilient, and the only know (1n/31 -
1)-resilient BA protocol runs in expected expon-
ential time. The authors show that there exists
a fast ([n/3] – 1)-resilient BA protocol by pre-
senting a randomized protocol such that, with
overwhelming probability, all the nonfaulty
players complete execution of the protocol in
constant expected time.

CARMICHAEL, R. D. 1912. On composite num-
bers p which satisfy the Fermat congruence
UP -1 z p. Am. Math. Mon. 19, 2, 22–27. Let
n = ~L=m L,t

,=1 p, be the unique prime factoriz-
ation of n, and let A(n) = lcm{p~l–l(pl –
1),..., p~~-l(pm – 1)}. Carmichael shows that
n satisfies Fermat’s congruence if and only if
A(n) divides (n – 1).

CARTER, J. L. AND WEGMAN, M. N. 1979, Univer-
sal classes of hash functions. J. Comput. Syst.

Sci. 18, 2, 143-154. This paper contains the
first discussion on universal hashing. An ear-
lier version appeared in Proceedings of the 9th

Annual ACM Symposium on the Theory of
Computing, 1977, pp. 106-112.

CASPI, P., PIOTROWSRI, J., AND VELZACO, R. 1991.
An a priori approach to the evaluation of signa-
ture analysis efficiency. IEEE Trans. Comput.
40, 9 (Sept.), 1068– 1071. This paper presents
an interesting application of control random-
ization for compressing the results from a digi-
tal circuit under test. Instead of imposing any
distribution on the input sequence, the linear
feedback shift register used for compression is
chosen at random.

CHANG, C. C. 1984. The study of an ordered min-
imal perfect hashing scheme. Commun. ACM
27, 4 (Apr.), 384–387. Chang uses hash func-
tions of the form h(x) = (C mod P(x)) where C
is an integer constant and where P(x) gener-
ates a different prime for each integer x. No
general method for finding p(z) is given.

CHANG, E. AND ROBERTS, R. 1979. An improved
algorithm for decentralized extrema finding in
circular configurations of processors. Commun.

ACM Computing Surveys, Vol. 26, No. 1, March 1994

. R. Gupta et al.

ACM 22, 5 (May), 281–283. They present a
deterministic distributed algorithm for finding
the largest of a set of n uniquely numbered
processes in a ring. The algorithm uses 0(n
log n) messages on the average and 0(rL2) mes-
sages in the worst case and does not assume
that n is known a priori.

CHARI, S., ROHATGI, P., AND SRINIVASAN, A. 1993.
Randomness-optimal unique element isolation,
with applications to perfect matching and
related problems. In Proceedings of the 25th

Annual ACM Symposium on the Theory of
Computing. ACM, New York, 458-467. The
authors give a randomness-efficient RNC 2
algorithm for perfect matching that uses
O(log Z + log n) random bits, where Z is any
given upper bound on the number of perfect
matchings in the given graph.

CHAUM, D., CR14PEAU)C., AND DAMGARD, I. 1988.
Multiparty unconditionally secure protocols. In
Proceedings of the 20th Annual ACM Sympo-

sium on the Theory of Computing. ACM, New
York, 11–19. Assuming the existence of
authenticated secrecy channels between each
pair (P,, P,) of participants, this paper shows
that if at least 2 n/3 of the P,s are honest then
a function f(xl, Xz, x.), where x, is known
only to P, for each t, can be computed without
any P, revealing its reformation.

CH.LWELLE, B. AND FRIEDMAN, J. 1990. A deter-
ministic view of random sampling and its use
in geometry. Combinatorics 10, 3, 229–249,

Using techniques due to Lov&z and Spencer,
the authors present a unified framework for
derandomizing probabilistic algorithms that
resort to repeated random sampling over a fixed
domain. In the process, they establish results
of independent interest concerning the cover-
ing of hypergraphs. Specifically, via a modifi-
cation of Lov&sz’s greedy couer a lgorlthm,
they give an algorithm that, given a hyper-
graph with n vertices and m edges, each of
size > an, computes an r-sample that inter-
sects every edge e of the hypergraph in
O(lelr/n) vertices, where r = O((log n + log
nz)/a). This improves upon Lov&sz’s algorithm
in terms of the number of covered vertices.
The tools they use for computing covers
“are powerful enough to derandomize just
about every probabilistic algorithm proposed in
computational geometry.”

CHERmAN, J. 1993. Random weighted Lapla-
cians, Lov&z minimum dlgraphs and finding
mmimum separators. In Proceedings of the 4th
Annual ACM-SIAM Sympo.wum on Dwcrete
Algorithms. ACM, New York, 3 1–40. Cheriyan

23s time randomized algorithm
gives an O(n)-
for the problem of finding a minimum X –
Y separator m a digraph and of finding a
minimum vertex cover in a bipartite graph,
thereby improving on the previous best bound
of 0(n2 5/log n).

CHOR, B. AND COAN, B. 1985. A simple and effi-
cient randomized Byzantine agreement algo-

rithm. IEEE Trans. Softw. Eng. SE-11, 6

(June), 531–539. Char and Coan present a ran-
domized algorithm for synchronous Byzantine
agreement when n > 3 t + 1, where n M the
total number of processors and t is the number
of faulty processors. Their algorithm reaches
agreement in 0(t/log n) expected rounds and
0(n2 t/log n) expected message bits, indepen-
dently of the distribution of processor failures

CHOR, B. AND DWORK, C. 1989. Randomization in
Byzantine agreement. In Advances m Comput-
mg Research 5: Randomness and Computation.

JAI Press, Greenwich, Corm., 443–497. A use-
ful survey of the myriad of randomized dis-
tributed algorithms for Byzantine agreement.

CHOR, B. AND GOLDREICH, O. 1988. Unbiased bits
from sources of weak randomness and proba-
bilistic communication complexity. SIAM J.
Comput. 17, 2, 230–261. Given sources of
strings in which no string is “too probable,” a
method of extracting almost unbiased random
bits is presented.

CICHELLI, R. 1980 Minimal perfect hash func-
tions made simple. Commun. ACM 23, 1 (Jan.),
17–19 A heuristic for computing a simple, fast,
and machine-independent hash function m pre-
sented. Because of these properties, several
attempts have been made to extend this paper
since its publication.

CLARKSON, K. L. AND SHOR, P. W 1989. Apphca-
tions of random sampling in computational
geometry, II Dlscr Comput. Geom. 4, 5,
387–421. Efficient probabilistic algorithms are
presented for the problems of line segment
intersection, convex hull, polygon triangula-
tion, and halfspace partitions of point sets. Each
algorithm is of the Las Vegas variety and uses
the technique of random sampling. An earher
version of this paper appeared in Proceedings

of the 4th ACM Symposwm on Computational
Geometry, 1988

COHEN, A. AND WIGDERSON, A. 1989. Dispensers,
deterministic amplification, and weak random
sources (extended abstract). In Proceedings

of the 30th Annual IEEE Symposl urn on the
PoundatLons of Computer ScLence. IEEE Com-
puter Society Press, Los Alamitos, Calif., 14-25.
The authors use highly expanding bipartite
multlgraphs (dispensers) to show that the error
probablhty of any RP or BPP algorlthm can be
made exponentially small in the size of the
input at the cost of only a constant-factor
increase in the number of random bits used by
the algorithm. The simulation of these algo-
rithms with weak sources of random numbers
is also considered.

CONDON,A., FEIGENBAUM, J., LUND, C., AND SHOR, P.
1993. Probabilistically checkable debate
systems and approximation algorithms for
PSPACE-hard functions. In proceedings of the
25th Ann ual ACM Symposwm on the Theory
of Computmg. ACM, New York, 305–314

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms 8 67

A probabilistwally checkable debate system
(PCDS) for a language L consists of a proba-
bilistic polynomial-time verifier V and a debate
between player 1, who claims that the input x
is in L, and player O, who claims that the input
x is not in L. The authors show that there is a
PCDS for L in which V flips O(log n) random
coins and reads 0(1) bits of debate if and only
if L is in PSPACE. This characterization
of PSPACE is used to show that certain
PSPACE-hard functions are as difficult to

approximate as they are to compute exactly.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L.
1990. Introduction to Algorithms. The MIT
Press, Cambridge, Mass. This well-written
encyclopedic introduction to algorithms covers
a number of randomized algorithms including
those for boolean matrix multiplication, binary
search trees, primality testing, partitioning,
universal hashing, and parallel prefix.

CZECH, Z. J., HAVAS, G., AND MAJEWSKI, B. S. 1992.
An optimal algorithm for generating minimal
perfect hash functions. Infi Process. Lett. 43, 5

(Oct.) 257-264. The authors describe a ran-
domized algorithm for generating perfect hash
functions that are space optimal and allow an
arbitrary arrangement of keys in the hash
table. The algorithm is based on the result of
P. Erdos and A. R6nyi [1960], which states that
the majority of random sparse 2–graphs are
acyclic. The authors present a method of map-
ping a set of keys, using universal hash func-
tions, into a random graph. Once the mapping
is computed it is refined to a perfect hash
function in linear deterministic time. The
method strongly improves on the space require-
ments of the other probabilistic methods for
generating minimal perfect hash functions.

DAGUM, P., LUBY, M., MIHML, M., AND VAZIRANI,
U. V. 1988. Polytopes, permanents and
graphs with large factors. In Proceedings of the
29th Annual IEEE Symposium on the Founda-

tions of Computer Science. IEEE, New York,
412–421. Randomized algorithms for approxi-
mating the number of perfect matchings in

a graph based on a geometric reasoning are
presented.

DE LA VEGA, F., KANNAN, S., AND SANTHA, M. 1993.
Two probabilistic results on merging. SIAM J.
Comput. 22, 2, 261–271. Two probabilistic algo-
rithms for merging two sorted lists are
presented. When m < n, the first algorithm
has a worst-case time better than any deter-
ministic algorithm for 1.618< n/m <3. The
algorithm is extended to perform well for any
value of n\m.

DE SANTLS,A. AND YUNG, M. 1990. Cryptographic
applications of non-interactive metaproofs
and many-prover systems. In Admznces
in Cryptology -CRYPTO 90. Lecture Notes in
Computer Science, vol. 537. Springer-VerIag,
New York. The authors show how many provers
can share the same random string in proving

DE

DE

multiple theorems noninteractively in zero
knowledge.

SANTIS, A., MICALI, S., AND PERSIANO, G. 1988.
Non-interactive zero-knowledge proof-systems
with preprocessing. In Advances in Cryptology-

CRYPTO 88. Lecture Notes in Computer
Science, vol. 403, Springer-Verlag, New York,
269–283. The authors show that if any one-
way function exists after an interactive pre-
processing stage then any sufficiently short
theorem can be proven non interactively in zero
knowledge.

SANTIS, A., MICALI, S., AND PERSLANO,G. 1987.
Non-interactive zero-knowledge proof-systems.
In Advances in Cryptology -CRYPTO 87. Lec-
ture Notes in Computer Science, vol. 293.
Springer-Verlag, New York, 52–72. This paper
introduces the notion of noninteractive zero-
knowledge proofs based on a weaker complex-
ity assumption than that used in Blum et al.
[1988].

DEUTSCH, D. 1985. Quantum theory, the
Church-Turing principle and the universal
quantum computer. Proc. Royal Sot. London
A400, 97– 117. Deutsch introduces the qwzn-

tum physical computer, later referred to as the
“quantum Turing Machine” in Bernstein and
Vazirani [1993], which can be thought of as a
quantum physical analogue of a probabilistic
Turing Machine: it has an infinite tape, a finite
state control, and, in its most general form,
produces a random sample from a probability
distribution on any given input.

DEVILLERS, O. 1992. Randomization yields sim-
ple O(n log’ n) algorithms for difficult Q(n)

problems. Int. J. Comput. Geom. Appl. 2, 1,
97-111. This papers provides two O(n log’ n)
randomized algorithms. One computes the
skeleton of a simple polygon and the other
the Delaunay triangulation of a set of points
knowing the euclidean minimum spanning tree.
The existence of deterministic O(n log n) algo-
rithms for both problems is an open problem.

DEVILLERS, O., MEISER, S., AND TEILLAUD, M. 1992.
Fully dynamic Delaunay triangulation in loga-
rithmic expected time per operation. Comput.
Geom.: Theor. Appl. 2, 2, 55–80. This paper
extends the results of Boissonnat and Teillaud
[1993] by considering the deletion of points.
The Delaunay triangulation of n points is
updated in O(log n) expected time per inser-
tion and O(log log n) expected time per deletion.
The insertion sequence is assumed to be in a
random order, and deletions are assumed to
concern any currently present point with the
same probability.

DIETZFELBINGER, M. AND MEYER AUF DER HEIDE, F.
1992 Dynamic hashing m real t,me. In Info.
matik Festschrift zum 60. Geburtstag von
Giinter Holtz, Teubner-Texte zur Informatik,
Band 1. B. G. Teubner, Stuttgart, Germany,
95–1 19. The FKS probabilistic procedure is
extended to real time. See Theorems 6.1 and

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

68 “ R. Gupta et al.

7.1 in Dietzfelbinger et al. [1992]. A prelimi-
nary version of this paper appeared as “A New
Universal Class of Hash Functions and Dy-
namic Hashing in Real Time,” Proceedings of
the 17th International Colloquium on Auto-
mata, Languages and Program mmg, 1990, pp.
6-19.

DIETZFELBINGER, M. AND MEYER AUF DER HEIDE, F.
1990. How to distribute a dictionary in a com-
plete network. In Proceedings of the 22nd
Annual ACM Sympo.wum on the Theory of

Computmg. ACM, New York, 117-127. A
randomized algorlthm M given for implement-
ing a distributed dictionary on a complete net-
work of p processors. The algorithm is based
on hashing and uses 0(n\p) expected time to
execute n arbitrary instructions (insert, delete,
lookup). The response time for each lookup is
expected constant.

DIETZFELBINGER, M., GIL, J., MATIAS) Y., AND
PIPPENGER, N. 1992. Polynomial hash func-
tions are reliable. In Proceedings of the 19th
International Colloquium on Automata, Lan-
guages and Programmmg. Lecture Notes in
Computer Science, vol. 623. Springer-Verlag,
New York, 235-246. This paper, along with
Dietzfelbinger and Meyer auf der Helde [1992],
shows how to construct a perfect hash function
in 6)(n) time, which is suitable for real-time
applications (Theorems 6.1 and 7.1).

DIETZFELBINGER, M., KARLIN, A., MEHLHORN, K.,
MEYER AUF DER HEIDE, F., ROHNERT, H., AND
TMN, R. E. 1988. Dynamic perfect hash-
ing: Upper and lower bounds. In Proceedings
of the 29th Annual IEEE Symposium on the

Foundations of Computer Science, IEEE, New
York, 524-531. A randomized algorithm for the
dictionary problem based on perfect hashing is
presented.

DIJKSTRA, E. W, 1971. Hierarchical ordering
of sequential processes. Acts InformatLca 1,
2, 115–138. Reprinted in Operating Systems
Techniques, C. A. R. Hoare and R. H. Perrot,
Eds., Academic Press, New York, 1972, pp.
72–93. This paper introduces the classical syn-
chronization problem of dmmg philosophers.

DOLEV, D. 1982. The Byzantine generals strike
again. J. Alg. 3, 1, 14–30. This is an intro-
ductory paper on Byzantine Generals. Dolev
prove~ that Byzantine agreement is achievable
in any distributed system if and only if the
number of faulty processors in the system is (1)
less than one-third of the total number of pro-
cessors and (2) less than one-half the connec-
tivity of the system’s network. In cases where
agreement is achievable, deterministic algo-
rithms for obtaining it are given.

DWORK, C. AND STOCKME~R, L. J. 1990. The
time-complexity gap for 2-way probabilistic fi-
nite-state automata. SIAM J. Comput. 19, 6,
1011–1023. Among other results, this paper
shows that any 2-way probabilistic finite auto-
maton recognizing a nonregular language must

use exponential expected time infinitely often.
Since any regular language can be recognized
in linear time, a time-complexity gap M estab-
lished. Similar results were published in the
paper entitled “On the Power of 2-Way Proba-
bilistic Finite Automata,” in Proceeduzgs of the
30th Annual IEEE Symposwm on the Founda-
tions of Computer ScZence, 1989.

DWORK, C., SHMOYS, D,, AND STOCRMEYER,L. 1990.
Flipping persuasively in constant time. SIAM
J. Comput. 19, 2, 472–499. An efficient ran-
domized protocol is presented that tolerates
up to n /(log n) mahcious processors that
requires constant expected number of rounds
to achieve a distributed coin toss. Also given is
a Byzantine Generals algorithm that tolerates
n /(log n) failures and runs in constant expec-
ted number of rounds. A preliminary version of
this paper appeared in proceedings of the 27th
Annual IEEE Symposium on the Foundations

of Computer Sczence, 1986.

DWORK, C., KANELLAKIS, P. C., AND STOCKMEYER,
L. J. 1988. Parallel algorithms for term
matching. SIAM J. Comput. 17, 4, 711–731. In
the context of a parallel algorlthm for the
term-matching problem, this paper shows how
randomization can be used to reduce the mitlal
processor complexity from 0(n5) to O(M(n)),
where M(n) M the processor complexity of
multiplying two n X n matrices,

DYER, M., FRIEZE, A., AND KANNAN, R. 1991. A
random polynomial time algorithm for approxi-
mating the volume of a convex body. J. ACM
38, 1,1–17. A constant-time oracle is assumed
for determining if a point in space is inside or
outside a convex body in n-dimensional
Euclidean space The algorithm runs in time
bounded by a polynomial in n, the dimension
of the body, and 1/~, where c is the relative
error bound With probability 3/4, it finds an
approximation satisfying the error bound.

ERD6S, P. AND R12M, A. 1960. On the evolution
of random graphs. Pub. Math. Inst. Hung. Acacl,
SCL. 5, 1, 17–61. A seminal paper on random
graphs. Reprinted in Paul Erdos: The Art of

Counting. Selected WrLtmgs, J. H. Spencer, Ed,,
Mathematicians of Our Ttme, vol. 5, MIT Press,
Cambridge, Mass,, 1973, pp. 574-617.

ERDOS, P. AND SPENCER, J. 1974, Probabdlsttc
Methods in Combinatorics Academic Press.
New York. Recognized experts in the field pre-
sent a small, power-packed monograph on
nonconstructive probabilistic methods in com-
binatorics. Our algorithm for networks without
large hierarchies is based on the discussion in
Chapter 1 of this book. Other highlights include
Ramsey’s theorems and evolution of random
graphs.

FEIGE, U. AND SHAMIR, A. 1992 Multiple oracle
interactive proofs with constant space verifiers.
J. Comput. Syst. SCL. 44, 2, 259-271. The
authors show that the expected payoff of rea-
sonable games of incomplete information are

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

On Randomization in Algorithms ● 69

undecidable. The Turing-machine simulation
uses polynomial cost and stops with probability
1.

FEIGE, U., LAPIDOT, D., AND SHAMIR, A. 1990.
Multiple non-interactive, zero-knowledge proofs
based on a single random string. In Proceed-
ings of the 31st Annual IEEE Symposium on
the Foundations of Computer Science. IEEE,
New York, 308–3 17. The following two prob-
lems posed in De Santis et al. [1988], associ-
ated with noninteractive zero-knowledge proof
systems, are solved: (1) how to construct NIZK
proofs under general complexity assumptions
rather than number-theoretic assumptions and
(2) how to enable multiple provers to prove, in
writing, polynomially many theorems based on
a single random string. The authors show that
any number of provers can share the same
random string and that any trap-door permuta-
tion can be used instead of quadratic residu-
osity. Also, if the prover is allowed to have
exponential computing power, then one-way
permutations are sufficient for bounded non-
interactive zero-knowledge proofs.

FEIGE, U., FIAT, A., AND SHAMIR, A. 1987. Zero-
knowledge proofs of identity. In Proceedings of

the 19th Annual ACM Sympostum on the The-

ory of Computing. ACM, New York, 210–217.
Zero-knowledge proofs, in the traditional sense,
reveal 1 bit of information to the verifier, viz.,
w c L or w @L. This paper proposes the notion
of “truly zero-knowledge” proofs where the
prover convinces the verifier that he/she knows
whether w is or is not in L, without revealing
any other information. An RSA-like scheme
based on the difficulty of factoring, which
is much more effkient than RSA, is also
presented.

FERRENBERG,A. M., LANDAU, D. F., AND WONG, Y. J.
1992. Monte Carlo simulations: Hidden errors
from “goo@ random number generators. Phys.

Rev. Lett. 69, 23 (Dec.), 3382-3388. The authors
unveil subtle correlations in five widely used
pseudorandom number generators. They
undertook this investigation when a simple
mathematical model of the behavior of atoms
in a magnetic crystal failed to give the expec-
ted results. They traced the error to the
pseudorandom number generator used in
the simulation.

FEYNMAN, R. P. 1982. Simulating physics with
computers. Int. J. Z’heoret. Phys. 21, 6/7,
467–488. Feynman points out the curious prob-
lem that it appears to be impossible to simulate
a general quantum physical system on a proba-
bilistic Turing Machine without an exponential
slowdown, even if the quantum physical sys-
tem to be simulated is discrete (like some kind
of quantum cellular automaton).

FISCHER, M. J. AND LYNCH, N. 1982. A lower
bound for the time to assure interactive consis-
tency. In~ Process. Lett. 14, 4, 182-186. They
prove that no deterministic solution to the

Byzantine Generals problem can reach agree-
ment in less than t+ 1 rounds, where t is the
number of faulty processes.

FISCHER,M. J., LYNCH, N., AND PATERSON,M. 1985.
Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2 (Apr.). This paper
proves that every completely asynchronous,
deterministic algorithm for Byzantine agree-
ment has the possibility of nontermination,
even with only one faulty processor. This
impossibility result does not hold in the syn-
chronous case. For completely asynchronous
probabihstic algorithms, the problem is avoided
since termination is only required with proba-
bility 1. See Section 3.5 for an example of such
a probabilistic algorithm for asynchronous
Byzantine agreement.

FLAJOLET, P. 1990. On adaptive sampling. Com-
puting 43, 4, 391–400. Adaptive sampling is a
probabilistic technique due to Wegman that
allows one to estimate the cardinality (number
of distinct elements) of a large file typically
stored on disk. This problem naturally arises
in query optimization of database systems.
Flajolet shows that using m words of in-core
memory, adaptive sampling achieves an expec-

ted relative accuracy close to 1.20/6. This
compares well with the probabilistic counting
technique of Flajolet and Martin [1985b]: adap-
tive sampling appears to be about 50% less
accurate than probabilistic counting for compa-
rable values of m. Adaptive sampling, however,
is completely free of nonlinearities for smaller
values of cardinalities (probabilistic counting is
only asymptotically unbiased).

FLAJOLET, P. 1985. Approximate counting: A
detailed analysis. BIT 25, 1, 113-134. In 19’78,
R. Morris published an article in CommunLca-
tiorzs of the ACM entitled “Counting Large
Numbers of Events in Small Registers.” It
presented a randomized algorithm, known as
Approximate Counting, that allows one to

approximately maintain a counter whose val-
ues may range in the interval 1 to M using
only about log log M bits, rather than the
log M bits required by a standard binary
counter. The algorithm has proven useful in
the areas of statistics and data compression.
Flajolet provides a complete analysis of approx-
imate counting which shows (among other
things) that, using suitable corrections, one can
count up to M keeping only log log M + 8 bits

with an accuracy of order 0(2 a12).

FLAJOLET, P. AND MARTIN, G. N. 1985a. Proba-
bilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Sci. 25, 31, 182–209.
This paper presents a probabilistic counting
technique for determining the number of dis-
tinct records in a file.

FLAJOLET, P. AND MARTIN, G. N. 1985b. Proba-
bilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Scl. 31, 2, 182–209.
Probabdistic counting is a technique for esti-

ACM Computing Surveys, Vol. 26, No. 1, March 1994

70 . R. Gupta et al.

mating the cardinality (number of distinct ele-
ments) of a large file typically stored on disk.
This problem naturally arises in query opti-
mization of database systems. Using m words
of in-core memory, probabilistic counting
achieves an expected relative accuracy close to

0.78/ k. Moreover, it performs only a con-
stant number of operations per element of the
file. The technique requires O(1) storage and a
single pass over the file. It also appeared as
“Probabilistic Counting,” Proceedings of the
24th Annual IEEE Symposwm on the Founda-
tions of Computer Science, 1983, pp. 76–84.

FORTNOW, L. 1987. The complexity of perfect
zero-knowledge. In Proceedings of the 19th
Annual ACM Sympowum on the Theory of
Computmg. ACM, New York, 204-209. The
notion of perfect zero knowledge requires that
the verifier, no matter how powerful it is, not
learn any additional information. Fortnow
proves, that for any language which has a per-
fect zero-knowledge protocol, its complement
has a single-round interactive protocol. This
result Implies that for lW’-complete languages,
there are no perfect zero-knowledge proto-
cols (unless the polynomial-time hierarchy
collapses).

Fox, E., HEATH, L. S., CHEN, Q. F., AND DAOUD, A.
1992. Practical minimal perfect hash func-
tions for large databases. Commun. ACM 35, 1
(Jam), 105-121. This paper presents two ran-
domized algorithm for minimal perfect bash-
ing functions that are designed for use with
databases with as many as a million keys. The
algorithms have been experimentally evalu-
ated. The first algorithm generates hash func-
tions that are less than 0(n) computer words
long, and the second generates functions that

approach the theoretical lower bound of Q(n/
log n) words. This work is a predecessor of Fox
et al. [1991].

Fox, E., CHEN, Q. F., DAOUD, A., AND HEATH, L. S.
1991. Order preserving minimal perfect hash
functions and information retrieval. ACM
Trans. Znf Syst. 9, 2 (July), 281–308. This
algorithm combines the techniques of embed-
ding the keys into an r-graph and two-level
hashing to design hash functions that are
optimal in terms of hashing time and space
utilization. The algorithm to generate the hash
functions uses near-optimal space and time.
Any desired order can be maintained.

FRANCEZ, N. AND RODEH, M. 1980. A distributed
abstract data type implemented by a proba-
bilistic communication scheme. In R-oceecimgs
of the 21st Annual IEEE Sympostum on the
Foundations of Computer Sczence. IEEE, New
York, 373–379. They also give a deadlock-free,
truly distributed and symmetric solution to the
dining philosophers problem based on a proba-
bilistic implementation of CSP. In particular,
they present a randomized algorithm for the
scheduling of input/output guards in CSP,

which we discuss in SectIon 3.2. This was one
of the first papers on probabihstic distributed
algorithms. A revised version appears as TR
80, IBM Scientific Center, Halfa, Israel, April,
1980 (same title).

FREDMAN, M. L., KOML6S) J., AND SZEMEREDI, E.
1982. Sorting a sparse table with 0(1) worst
case access time. In %oceedmgs of the 23rd

Annual IEEE Sympos~um on the Foundations

of Computer ScLence. IEEE, New York, 165–
169. This paper proves many fundamental
results that are essential for constructing a
perfect hashing function for a given set of keys,

FURER, M., GOLDREICH, O., MANSOUR, Y., SIPSER, M.,
AND ZACHOS, S. 1989. On completeness and
soundness in interactive proof systems. In
Adoances in Computmg Research 5: Random-
ness and Computation JAI Press, Greenwich,
Corm., 429-442. An interactive proof system
for a language L is said to have perfect com-

pleteness if the verifier always accepts w If
w ● L This paper proves that any language
having an interactive, possibly unbounded proof
has one with perfect completeness. Only lan-
guages in NP have interactive proofs with per-
fect soundness. This paper first appeared under
the title “Interactive Proof System: Provers
that Never Fad and Random Selection,” by
O. Goldreich, Y. Mansour, and M. Sipser,
in Proceedings of the 28th Annual IEEE

Sympostum on the Foundations of Computer
Sczence, 1987, pp. 449-461.

GALIL, Z., HABER, S., AND YUNG, M. 1989.
Mmimum-knowledge interactive proofs for
decision problems. SL4M J. Comput 18, 4

(Aug.), 711-739. This paper extends the work
of Goldwasser et al. [1989]; the concept of mini-
mum knowledge is defined, and a minimum-
knowledge protocol for transferring the results
of any fixed computation from one party to
another (e.g. prover to verifier) is described.

GAREY, M. R. AND JOHNSON, D. S. 1979. Comput-
ers and Intractablhty: A GuLde to the Theory of

NP-Completeness. W. H. Freeman and Com-
pany, New York. This well-known book on the
theory of NP-completeness contains a section
on the probabdistic analysis of approximation
algorithms for NP-complete combinatorial
optimization problems.

GAZIT, H. 1991. An optimal randomized parallel
algorithm for finding the connected compo-
nents of a graph. SIAM J. Comput. 20, 6,

1046-1067. The expected running time of this
algorithm is O(log n) with O((m + n)/log n)
processors, where n is the number of vertices
and m the number of edges. It uses 0(m +
n) space. The algorlthm is optimal in the
time–processor product sense, as well as m
space complexity.

GEREB-GRAUS, M. AND KRIZANC, D. 1992 The
average complexity of parallel comparison
merging. SIAM J. Comput. 21, 1, 43–47. The
authors establish a lower bound on the time

ACM Computing Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 71

complexity of randomized merging of two sorted
lists in a parallel-computation tree model. An
earlier version of this paper, entitled “The
Complexity of Parallel Comparison Merging,”
appeared in Proceedings of the 28th SYmPo-
siurn on the Foundations of Computer Science,
1987.

GILL, J. T. 1977. Computational complexity of
probabilistic Turing machines. SL4M J. Com-
put. 6, 4 (Dec.), 675–695. This paper defines
the basic notion of a probabilistic Turing
machine (PTM). A PTM computes a partial
function that assigns to each input the output
which occurs with a probability greater than
half. It is shown that an NDTM can be simu-
lated by a PTM in the same space but with a
small error probability. Gill also considers the
complexity classes RP, PP, and BPP for poly-
nomial-time probabilistic Turing Machines (see
Section 4.1). He shows that P c RP G BPP G
PP G PSPACE and that RP GNP G PP.

GODDARD, W., KING, V., AND SCHULMAN, L. 1993.
Optimal randomized algorithms for local sort-
ing and set-maxima. SIAM J. Comput. 22, 2,
272-283. Nearly optimal randomized algo-
rithms are presented for the local sorting
problem (i.e., determining the relative order in
every pair of adjacent vertices in a graph
in which each vertex is assigned an element
of a total order) and the set-maxima problem
(i.e., determining the maximum element of each
set in a collection of sets whose elements are
drawn from a total order).

GOLDREICH, O., MICALI, S., AND WIGDERSON, A.
1991. Proofs that yield nothing but their vali-
dity or all languages in NP have zero-knowledge
proof systems. J. ACM 38, 1, 691-729. They
show that for a language L in NP and a string
w in L, there exists a probabilistic interactive
proof that efficiently demonstrates member-
ship of x in L without conveying additional
information. Previously, zero-knowledge proofs
were known only for some problems that were
in both NP and CO-NP. A preliminary version
of this paper appeared in Proceedings of the
27th Annual IEEE SymposLum on the Founda-
tions of Computer ScLence, 1986, under the title
“Proofs that Yield Nothing but their Validity
and a Methodology of Cryptographic Protocol
Design”

GOLDREICH, O., MICALI, S., AND WIGDERSON, A.
1987. How to play any mental game or a com-
pleteness theorem for protocols with honest
majority. In Proceedings of the 19th Annual
ACM Symposmm on the Theory of Comput-

ing. ACM, New York, 2 18–229. Goldreich
et al. demonstrate the use of zero-knowledge
proofs on proving the completeness theorem for
protocols with honest majority.

GOL~REICH, O., GOLDWASSER, S., AND MICALI, S.
1986. How to construct random functions. J.
ACM 33, 4, 792–807. A computational complex-
ity measure of the randomness of functions is

introduced, and, assuming the existence of one-
way functions, a pseudorandom function
generator is presented.

GOLDWASSER,S. AND KILIAN, J. 1986. AImost all
primes can be quickly certified. In Proceedings
of the 18th Annual ACM Symposium on the
Theory of Computing. ACM, New York, 316-
329. The authors show that if Cram&’s conjec-
ture about the spacing of prime numbers is
true then there exists a random polynomial-
time algorithm for primality testing.

GOLDWASSER,S. AND MACALI, S. 1984. Probabilis-
tic encryption. J. Comput. Syst. Sci. 28, 2,

270-299. This paper introduces a new proba-
bilistic encryption technique. It also contains
an excellent introduction to other public-key
cryptosystems with discussion on objections
to cryptosystems based on trap-door functions.

GOLDWASSER, S. AND SIPSER, M. 1989. Private
coins versus public coins in interactive proof
systems. In Advances in Computing Research
5: Randomness and Computation, S. Micali,
Ed. JAI Press, Greenwich, Corm. This work
establishes equivalence between the notions of
interactive proofs introduced in Babai and
Moran [1988] and Goldwasser et al. [1989]. A
preliminary version appeared in Proceedings of

the 18th Annual ACM Sympo.swm on the The-
ory of Computing, 1986, pp. 59–68.

GOLDWASSER,S., MACALI, S., AND RACKOFF, C. 1989.
The knowledge complexity of interactive proof
systems. SIAM J. Comput. 18, 1,186–208. This
paper first appeared in Proceedings of the
17th Annual ACM Symposium on the Theory
of Computing. ACM, New York, 291–304.
It introduces the important notion of zero-
knowledge interactive proofs. The authors show
that it is possible to prove that certain theorems
are true without divulging why this is so.

GOLDWURM, M. 1992. Probabilistic estimation of
the number of prefixes of a trace. Theoret. Com -

put. Scl. 92, 2, 249–268. The author uses the
result to determine the behavior of several
algorithms relating to trace languages.

GOLIN, M., RAMAN, R., SCHWARZ, C., AND SMID, M.
1993. Randomized data structures for the
dynamic closest-pair problem. In Proceedings

of the 4th Annual ACM-SIAM Sympowum on
Dtscrete Algorithms ACM, New York, 301-310.
The authors describe a new randomized data
structure, the sparse partitLon, for solving the
dynamic closest-pair problem. Using this data
structure, the closest pair of a set of n points in
k-dimensional space, for any fixed h, can be
found in constant time. If the points are chosen
from a finite universe, and if the floor function
is available at unit cost, then the data struc-
ture supports insertions into and deletionfi from
the set in expected O(log n) time and requires
expected O(n) space. Herej it is assumed that
the updates are chosen by an adversary who
does not know the random choices made by the
data structure.

ACM Computing Surveys, Vol. 26, No 1, March 1994

72 “ R. Gupta et al.

GONNET, G. H. AND BAEZA-YATES, R. 1991.
Handbook of Algorithms and Data Structures.

Addison-Wesley, Reading, Mass. Section 3.3.16
gives an overview of perfect hashing.

G~, R. AND YAO, A. 1989. On the improba-
bility of reaching Byzantine consensus. In Pro-
ceedings of the 21st Annual ACM Symposium

on the Theory of Computmg. ACM, New York,
467–478. The maximum probability & , of
obtaining consensus is attacked for t> 72/3
(For smaller values, deterministic algorithms
are available, so (3n,~ = 1.) The smallest non-

trivial case, PJ, ~, M shown to be (k – 1)/2,
the reciprocal of the golden ratio. In a
restricted model, it is shown that for all e,
O< E<l, if t/n> l–(1–logl– ●lj’)/
(logfl – (1 – 6)11Z)), then ~n , < e.

GREENBERG, R. I. AND LEISERSON, C. E. 1989.
Randomized routing on fat-trees. In Aduan-

ces in Computmg Research: Randomness and

Computation. JAI Press, Greenwich, Corm.,
345–374. Fat-trees are a class of routing net-
works m parallel computation. Given a set of
messages to send, the choice m made at ran-
dom of which message is to be sent at what
time. This approach 1s different from that of
Valiant [1982]. See also Proceedings of the 17th
Annucd ACM Symposutm on the Theory of
Computing, 1985, pp. 241-249.

GUIBAS, L. J., KNUTH, D. E., AND SHARIR, M. 1992
Randomized incremental construction of
Delaunay and Voronoi diagrams. Algorithnuca

7, 4, 381-413. They give a new randomized
incremental algorithm for the construction of
planar Voronoi diagrams and Delaunay trian-
gulations. Their algorithm takes expected time
O(n/log n) and space O(n), is very practical to
implement, and along with the algorithm
of Boissonnat and Teillaud [1993], is more
“on-line” than earlier similar methods

GUPTA, R. 1993. @-test: Perfect hashed index test
for response vahdatlon. In Proceedings of the
1993 IEEE International Conference on Com-
puter DesLgn. IEEE, New York, A scheme for
checking the fidelity of test responses gener-
ated by a specially tailored sequence of test
inputs is described. Randomized search is used
to compute a special perfect hashing function
h(x) that maps the expected test outcomes
to the sequence [1. m]. This sequence is
checked by a hardware implementation of h(x)
and an up-counter.

HADZILACOS, V, 1986. Ben-Or’s randomized pro-
tocol for consensus m asynchronous systems.
Course notes: Computer Science 2221F, Dept.
of Computer Science, Univ. of Toronto, Toronto,
Canada. An elegant proof of the correctness
of Ben-Or’s [1983] probabilistic algorithm for
Byzantine agreement is presented.

HALTON, J. H. AND TERADA, R. 1982. A fast algo-
rithm for the euclidean traveling salesman
problem, optimal with probability one. SIAM J.
Cornput. 11, 1 (Feb.). Halton and Terada pre-

sent an algorithm for the traveling salesman
problem over n points, which, for appropri-
ate choice of a function a takes less than
n a (n) time and asymptotical] y converges to
the minimum-length tour, with probabihty one,
asn~~.

HAREL, D. 1987. Algortthmzcs: The Spmt of

Compututg. Addison-Wesley, Reading, Mass.
This book contains a well-written chapter on
probabilistic algorithms and their complexity
theory.

HASTAD, J. 1990. Pseudo-random generators
under uniform assumptions. In Proceedings of

the 22nd Annual ACM Symposium on the The-
ory of Computzng. ACM, New York, 395–404.
Hastad proves that given a function f that is
one-way in the uniform model (i.e., cannot
be inverted except on a vanishing fraction of
the inputs by a probabilistic polynomial-time
Turing Machine), it is possible to construct a
pseudorandom blt generator that passes all
probabilistic polynomial-time statistical tests.

HOARE, C. A. R. 1985. Communicatmg Sequen-

tial Processes. Prentice-Hall International,
Londonj U.K. Hoare’s book contains an elegant
message-passing solution to the dining philoso-
phers problem. A probabilistic algorithm for
this problem is the subject of Section 3.1.

HOARE, C. A. R. 1978. Communicatmg sequen
tial processes. Commun. ACM 21, (Aug.),
666–677, Hoare’s novel language CSP com-
bined nondetermimsm and synchromzed
message passing. Since its inception, various
schemes have been proposed to add output
guards to the language, In Section 3.2, we
dmcuss a probablhstic algorithm for output
guards.

HOARE, C. A, R. 1974. Monitors: An operating
system structuring concept. Commun. ACM 17,
2 (Oct.), 549–557. Erratum in Commurucatzons
of the ACM, Vol 18, No. 2, 1975. This paper
contains one of the first solutlons to the
dining philosophers problem. A probabilistic
algorithm for this problem lS the subject of
Section 3.1.

HOPCROFT,J, E. 1981. Recent directions in algo-
rithmic research. In Proceedz ngs of the 5th

Conference on Theoretical Computer Science.
Springer-Verlag, New York, 123-134. This
work is an early survey of probabilistic
algorithms.

IMPAGLIAZZO, E. AND ZUCKERMAN, D. 1989. How
to recycle random bits. In proceedings of the
30th Annual IEEE Symposium on the Founda-
tions of Computer Sczence. IEEE, New York,
248–253. This paper proves that two very sire.
ple pseudorandom number generators, which
are minor modifications of the linear congruen-
tial generator and the simple shift register gen-
erator, are good for amplifying the correctness
of probabilistic algorithms.

IMPAGLIAZZO, R., LEVIN, L., AND LUBY, M, 1989.
Pseudorandom generation from one-way func-

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms w 73

tions. In Proceedings of the 21st Annual ACM
Symposium on the Theory of Computmg. ACM,
New York, 12–24. The existence of one-way
functions is shown to be necessary and suffi-
cient for the existence of pseudorandom gener-
ators. A one-way function F(z) is one that is
easily computed, but given F(x), it should not
be possible to easily recover x, either with a
small circuit or with a fast algorithm. Algo-
rithms for pseudorandom generators are
provided that use one-way functions whose
inverses are difficult to obtain using small
circuits or fast algorithms. See also Hastad
[1990].

ITAI, A. AND RODEH, M. 1981. The lord of the ring
or probabilistic methods for breaking symme-
try in distributed networks. Tech. Rep. RJ 3110,
IBM, San Jose, Calif. Itai and Rodeh consider
the problems of choosing a leader and deter-
mining the size of a ring of indistinguishable
processors. If the size of the ring is known,
efficient probabilistic algorithms exist for
choosing a leader. However, there exists no
probabilistic solution to the problem of deter-
mining the size of a ring that can guarantee
both termination and a nonzero probability of
correctness.

JAESCHKE, G. 1981. Reciprocal hashing: A
method for generating minimal perfect hash-
ing functions. Commun. ACM 24, 12 (Dec.),
829–823. Hash functions, for a key .x in a set
S of positive integers, of the form h(x) = (C/

(Dx + E)) mod IV are considered. Though the
existence of h is guaranteed, the scheme suffers
from many practical problems because of the
exhaustive nature of the search for h.

JERRUM, M. R. AND SINCLAIR, A. 1989. Approxi-
mating the permanent, SIAM J. Comput. 18, 6,

1149-1178.Broder [1986] related the task of
approximating the permanent of a matrix to
that of uniformly generating perfect matchings
in a graph. This paper gives a randomized
approximation scheme for the latter prob-
lem by simulating it as a Markov chain whose
states are matchings in the graph. For this
scheme to be efficient the Markov chain must
be rapidly mixing, i.e., converge to its stationary
distribution in a short time.

JERRUM, M. R., VALIANT, L. G., AND VAZmANI, V. V.
1986, Random generation of combinatorial
structures from a uniform distribution. Theo-
ret. Comput. SCL. 43, 2/3, 169–188. This paper
considers the class of problems involving the
random generation of combinatorial structures
from a uniform distribution. It is shown that
exactly uniform generation of “efficiently verifi-
able” combinatorial structures is reducible to
approximate counting.

JOHNSON, D. S. 1990. A catalog of complexity
classes. In Handbook of Theoretical Computer
Science. Vol. A. Algorithms and Complex-
ity. Elsevier and The MIT Press, New
York/Cambridge, Mass., 67–161. Johnson

presents an extensive survey of computational-
complexity classes. Of particular interest
here is his discussion of randomized, proba-
bilistic, and stochastic complexity classes.

KALA1, G. 1992. A subexponential randomized
simplex algorithm. In Proceedings of the 24th
Annual ACM Symposium on the Theory of

Computmg. ACM, New York, 475-482. A ran-
domized variant of the simplex algorithm
is presented that, given a linear program
with d variables and n constraints, uses an
expected subexponential number of arithmetic
operations.

KAO, M.-Y., REIF, J. H., AND TATE, S. R. 1993.
Searching in an unknown environment: An
optimal randomized algorithm for the cow-path
problem. In Proceedings of the 4th Annual
ACM-SIAM Symposium on Discrete Algo-
rithms. ACM, New York, 441–447. The first
randomized algorithm for the w-lane cow path
problem, a problem of searching in an unknown
environment, is given. The algorithm is opti-
mal for w = 2, and evidence is supplied that it
is optimal for larger values of w.

KARGER, D. R. 1993. Global rein-cuts in RNC,
and other ramifications of a simple rein-cut
algorithm. In Proceedings of the 4th Annual
ACM-SIAM Symposkum on DLscrete Algo-
rithms. ACM, New York, 2 1–30. Given a graph
with n vertices and m (possibly weighted)
edges, the rein-cut problem is to partition the
vertices into two nonempty sets S and T so as
to minimize the number of edges crossing from
S to T (if the graph is weighted, the problem is
to minimize the total weight of crossing edges).
Karger gives an RNC algorithm for the rein-cut
problem which runs in time 0(log2 n) on a
CRCW PRAM with mnz log n processors.

KARGER, D. R. AND STEIN, C. 1993. An 0(n2)

algorithm for minimum cuts. In Proceedings of
the 25th Annual ACM Symposium on the The-
ory of Computmg. ACM, New York, 757–765. A
min Lmum cut is a set of edges of minimum
weight whose removal disconnects a given
graph. Karger and Stein give a strongly polyno-
mial randomized algorithm which finds a mini-
mum cut with high probability in 0(nz log3 n)

time. Their algorithm can be implemented in
RNC using only n2 processors and is thus the
first efficient RNC algorithm for the rein-cut
problem.

KARLOFF, H. AND RAGHAVAN, P. 1988. Random-
ized algorithms and pseudorandom numbers.
In Proceedings of the 20th Annual ACM Sym-

posium on the Theory of Computmg. ACM, New
York, 310-321. Following up on Bach [1991],
this paper studies pseudorandom substitutes
(with small seeds) for purely random choices in
sorting, selection, and oblivious-message rout-
ing. An interesting result is that the Iinear-
congruence pseudorandom number generator
proposed by Knuth [1973] can interact with
some quicksort algorithms.

ACM Computmg Surveys, Vol 26, No. 1, March 1994

74 “ R. Gupta et al.

KmP, R. M. 1991. Probabilistic recurrence rela-
tions In Proceedings of the 23rd Annual ACM

Symposmm on the Theory of Computmg. ACM,
New York, 190-197 In order to solve a prob-
lem instance of size x, a divide-and-conquer
algorithm invests an amount of work cdz) to
break the problem into subproblems of sizes
hi(z), hz(x), hk(x), and then proceeds to

solve the subproblems. When the h, are ran-
dom variables—because of randomization
within the algorithm or because the instances
to be solved are assumed to be drawn from a
probability distribution—the running time of
the algorithm on instances of size x is also a
random variable 2’(z). Karp gives several easy-
to-apply methods for obtaining fairly tight
bounds on the upper tails of the probability
distribution of T(x) and presents a number of
typical applications of these bounds to the
analysis of algorithms. The proofs of the bounds
are based on an interesting analysis of optimal
strategies in certain gambling games.

KmP, R. M. 1990. An introduction to random-
ized algorithms. Tech. Rep. TR-90-024,
Computer Science Div., Univ. of California,
Berkeley. A recent, comprehensive survey of
randomized algorithms.

KmP, R. M. 1986. Combmatorics, com~lexitv and
randomness. Commun. ACM 29,’ 2 (Feb.),
98–109. This M the 1985 Turing Award Lecture.
It traces the development of combinatorial opti-
mization and computational complexity theory.
It discusses probabilistic algorithms and proba-
bilistic analysis of approximation algorithms
for AP-complete optimization problems.

IGmP. R. M. AND LUBY. M. 1985. Monte-Carlo
algorithms for plana’r multitermmal rehability
problems. J. Complex. 1, 1, 45–64. They pre-
sent a general Monte Carlo technique for
obtaming approximate solutions of several enu-
meration and rehability problems including.
counting the number of satisfying assignments
of a propositional formula given in disjunctive
normal form (a #P-complete problem) and esti-
mating the failure probability of a system An
earlier version appeared in Proceedings of the
24th Annual IEEE Sympo.wum on the Founda-
tions of Computer Science, 1983, pp. 56–64. See
Karp et al. [1989].

KmP, R M AND RAEUN. M O 1987 Efficient
randomized pattern-matchmg algorithms. IBM
J. Res Deuel. 31, 2 (Mar.), 249–260. An elegant
randomized algorithm for the string-matchmg
problem is presented. Mismatches reported
by the algorithm are always correct, while a
claimed match may be erroneous with small
probability. The algorithm uses a fingerprint-
ing function (on the finite field of mod p
residues, where p is chosen at random) to
efficiently check for occurrences of the pattern
string in the text string. The running time of
the algorithm is O((n – m + l)m) in the worst
case, where the text is of length n and the

pattern is of length m, but can be expected to
run m time 0(n + m) in practzce. The pro-
bability that the algorithm reports a false
match is 1/n. Two-dimensional patterns are
also considered. An earlier version of this paper
appeared as Tech. Rep. TR-31-81, Aiken
Computation Lab, Harvard Univ., 1981.

IQaP, R. M. AND WIGDERSON, A 1985. A fast par-
allel algorithm for the maximal independent
set problem. J. ACM 32, 4, 762–773. This
important paper showed that the maximal
independent-set problem for graphs can be
solved in polylogarithmic time using a poly-
nomial number of processes on a PRAM in
which concurrent reads and writes are dis-
allowed They derive them algorithm from a
randomized one using a technique that has
become known as derandomization via k-wise
independence.

IGwzP, R, M., LUBY, M., AND MEYER AUF DER HEIDE,
F. 1992. Efflclent PRAM simulation on a
distributed memory machme. In Proceedings
of the 24th Annual ACM Symposium on the
Theory of Computing. ACM, New York,
318–326. They present a randomized simu-
lation of an n log log(n)log”(n)-processor
shared-memory machine (PRAM) on an n-
processor distributed-memory machme (DMM)
with optimal expected delay O(log log(n)log’
(n)) per step of simulation.

~P, R M., LUBY, M., AND MADRAS, N. 1989.
Monte-Carlo approximation algorithms for
enumeration problems, J. Alg. 10, 3, 429–448.
A compamon paper of Karp and Luby [1985];
an earlier version appeared in Proceedt ngs of

the 24th Annual IEEE Sympostum on the
Foundations of Computer Sctence. IEEE, New
York, 56-64.

KARP, R. M., UPFAL, E., AND WIGDERSON, A. 1986.
Constructing a perfect matchmg in Random
NC, Cornblnatortca 6, 1,35-48. Perfect match-
mg m a fundamental problem that is not known
to be solvable by an NC algorlthm, i.e., a paral-
lel algorlthm running in time polynomial in
log n and using a number of processors polyno-
mial in n, This paper proves that perfect
matching is m random NC and gwes a fast,
parallel, randomized algorithm for finding a
perfect matching in a simple graph

KARP, R. M., PIPPENGER, N., AND SIPSER, M, 1985.
A time randomness tradeoff. In the AMS Con-
ference on Probabdlstlc Computational Com-
plexity. AMS, New York. This paper gives the
first example of deterministic amplification
using expander graphs.

KEDEM, Z. M., PALEM, K. V., RABIN, M. 0,, AND
RAGHUNATHAN, A. 1992 Efficient program
transformations for resilient parallel computa-
tion via randomization. In Proceedings of the
24th Annual ACM SymposZum on the Theory of
Computmg. ACM, New York, 306-317, The
authors show how randomization can be used
to automatically transform an arbitrary pro-

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 75

gram written for an ideal parallel machine to
run on a completely asynchronous machine,
such that the resulting program is work and
space efficient relative to the ideal program
from which it was derived.

KELSEN, P. 1992. On the parallel complexity of
computing a maximal independent set in a
hypergraph. In Proceedings of the 24th Annual
ACM Symposium on the Theory of Compu-

tmg. ACM, New York, 339–35o. A maximal
independent set in a hypergraph is a subset
of vertices that is maximal with respect
to the property of not containing any edge of
the hypergraph. Kelsen derandomizes the ran-
domized algorithm of Beame to Luby to obtain
the first sublinear-time deterministic algo-
rithm for hypergraphs with edges of size O(l).

KILIAN, J. 1992. A note on efficient zero-
knowledge proofs and arguments. In Proceed-

ings of the 24th Annual ACM Symposium on
the Theory of Computing. ACM, New York,
723–732. The standard definition of an interac-
tive proof requires that the verifier accept a
correct proof and reject an incorrect assertion
with probability at least 2/3. This paper shows
how to efficiently reduce the error probability
to less than 2 ‘k, where k is some easily
adjustable security parameter.

KILL4N, J. 1990. Uses of Randomness in Algo-
rithms and Protocols. MIT Press, Cambridge,
Mass. Kilian’s Ph.D. dissertation, which was
selected as an ACM Distinguished Disserta-
tion, 1989, is in three parts. The first part
describes a randomized algorithm to generate
large prime numbers which have short, easily
verified certificates of primality. The algorithm
provides short, deterministically verifiable
proofs of primality for all but a vanishing frac-
tion of prime numbers. The second part consid-
ers the secure circuit evaluation problem in
which two parties wish to securely compute
some function on their private information.
Kilian reduces this problem to an oblwzous
transfer protocol. The third part of the disser-
tation generalizes probabilistic interactive proof
systems to multiple provers. He shows that any
language that has a multiprover interactive
proof system has a zero-knowledge multiprover
interactive proof system.

KILMN, J., MICALI, S., AND OSTRCNWRY,R. 1989.
Minimum resource zero-knowledge proof. In
Proceedings of the 30th Annual IEEE Sympo-
sium on the Foundations of Computer Science.
IEEE, New York, 474–479. The various
resources such as number of envelopes, num-
ber of oblivious transfers, and total amount of
communication required by zero-knowledge
protocols are considered The paper presents a
technique of executing h rounds of a protocol,
which guarantees that any polynomial number
of iVP-theorems can be proved noninteractively
in zero knowledge, with the probability of
accepting a false theorem below 1/2 ~. The main

result in this paper assumes the existence of
trap-door permutations in order to implement
the oblivious-transfer protocol.

KLEIN, R. AND LIN~AS, A. 1993. A linear-time
randomized algorithm for the bounded Voronoi
diagram of a simple polygon. In Proceedings of
the 9th Annual ACM Symposium on Computa-
tional Geometry. ACM, New York, 124–132.
For a polygon P, the bounded VeronoL diagram

of P is a partition of P into regions assigned to
the vertices of P. Klein and Lingas present a
randomized algorithm that builds the bounded
Voronoi diagram of a simple polygon in linear
expected time.

KLEIN, P. N. AND SAIRAM, S. 1992. A parallel ran-
domized approximation scheme for shortest
paths. In Proceedings of the 24th Annual ACM
Symposium on the Theory of Computmg. ACM,
New York, 750–758. A randomized algorithm is
given for approximate shortest-path computa-
tion in an undirected weighted graph.

KLEIN, P. N., STEIN, C., AND TARDOS, E. 1990.
Leighton-Rao might be practical: Faster
approximation algorithms for concurrent flow
with uniform capacities. In Proceedings of

the 22nd Annual ACM Symposium on the
Theory of Computing. ACM, New York, 310-
321. They give an 0(m2 log m) expected-time
randomized algorithm for approximately solv-
ing the concurrent multicommodity flow
problem with uniform capacities.

KNUTH, D. E. 1973. The Art of Computer

Programming. Vol. 3 Sorting and Searching.
Addison-Wesley, Reading, Mass. This volume is
a repository of sorting and searching algo-
rithms and their analysis. It contains a detailed
and thorough treatment of hashing.

KNUTH, D. E., MORRIS, J. H., AND PRATT, V. R.
1977. Fast pattern matching in strings. SIAM
J. Comput. 6, 2, 323–350. This paper presents
a fast deterministic algorithm for the problem
of determining if a given pattern of m symbols
occurs in a text of length n. Their well-known
algorithm runs in time 0(n + m), making judi-
cious use of a prefix function, which for a given
pattern encapsulates knowledge about how the
pattern matches against shifts of itself.

Ko, K. 1982. Some observations on probabilistic
algorithms and NP-Hard problems. Znf Pro-
cess. Lett. 14, 1 (Mar.), 39–43. Ko shows that if
there is a probabilistic algorithm for an NP-
hard problem with a small “two-sided error,”
then there is a probabilistic algorithm for any
iVP-complete problem with a small “one-sided
error.”

KRONSJO, L. 1985. Computational Complexity

of Sequential and Parallel Algorithms.
John Wiley and Sons, New York Chapter 5,
Section 5.3 addresses probabilistic algorithms.
Rabin’s algorithms for primality and the
nearest-neighbors problem are described.

KURTZ, S. A. 1987. A note on random polynomial
time. SIAM J. Comput. 16, 5 (Oct.), 852-853.

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

. R. Gupta et al.

Kurtz shows that PA ~ P B == BPP with proba-
bility 1 for independent random sets A and B.
Here, A and B are sets consisting of strings
chosen at random, and PA and P E are rela-
tlvized to A and B, respectively. See Gill [1977]
for additional notation.

KUSHILEVITZ, E., MANSOUR, Y., RABIN, M. O., AND
ZucsmRw, D. 1993. Lower bounds for ran-
domized mutual exclusion. In F’i-oceedmgs of
the 25th Annual ACM Symposwm on the The-
ory of Computmg. ACM, New York, 154–163.
The authors establish a lower bound of ~(log
log n) bits on the size of the shared variable
required by randomized mutual exclusion algo-
rithms ensuring strong famness, Slightly
weakening the fairness condition results in an
exponential reduction m the size of the required
shared variable.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982.
The Byzantine generals problem ACM Trans
Program. Lang Syst. 4, 3 (July), 382–401. They
proved that Byzantine agreement (the subJect
of Section 3 5) cannot be reached unless fewer
than one-third of the processes are faulty. This
result assumes that authentlcatlon, I.e., the
crypting of messages to make them unforgeable,
is not used. With unforgeable messages, they
show that the problem M solvable for any n >
t >0, where n is the total number of proces-
ses and t the number of faulty processes.

LEHMANN, D. 1982. On primality tests. SIAM

J. Comput. 11, 2 (May), Lehmann presents
two algorithms for testing primality based on
the extended Riemann hypothesis. The second
algorithm is faster than that proposed by
Soloway and Strassen [1977] since it does not
involve computing the Jacobi symbol.

LEH WN, D. AND RABIN, M, O. 1981. On the
advantage of free choice: A symmetric and fully
distributed solution to the dining philosophers
problem. In Proceedings of the 8th Annual ACM
S.ympostum on the Prlnclples of Programming
Languages. ACM, New York, 133–138. A clas-
sic paper m the area of randomized distributed
algorithms. They show there is no deter-
ministic, deadlock-free, truly distributed and
symmetric solution to the dining phdosophers
problem and describe a simple probabilistic
alternative.

LEHMER, D. H. 1927 Tests for primality by the
converse of Fermat’s Theorem, Bull. Am. Math,
Sot. 33, 1, 327–340. This paper presents the
Lucas-Lehmer heuristic for primality testing,

LEIGHTON, F. T. 1992. Methods for message rout-
ing on parallel machines. In Proceedings of the
24th Annual ACM Sympos~um on the Theory of
Computmg. ACM, New York, 77–96. This sur-
vey includes the topic of randomized wiring.

LEIGHTON, F. T. AND MAGGS, B. M. 1992. Fast
algorithms for routing around faults in
multibutterflies and randomly-wired splitter
networks. IEEE Trans. Comput. 41, 5 (May),
578–587. This paper describes simple deter-

ministic O(log N)-step algorithms for routing
permutations of packets in multlbutterflies and
randomly vnred splitter networks. The algo-
rithms are robust against faults (even m the
worst case) and are efficient from a practical
point of view.

LEIGHTON, F T AND MAGGS, B M. 1989
Expanders might be practical. Fast algorithms
for routing around faults m rnultlbutterfhes In
Proceedings of the 30th Annual IEEE Sympo-

sium on the Foundations of Computer Sctence.
IEEE, New York, 384–389. This paper contains
a simpler version of Upfal’s [1989] results and
algorithms for routing on randomized multl-
butterflies in the presence of faults,

LEIGHTON, F. T, M-~oix, F , PLOTKI~, S , STEIN,
C., TARDOS,E , AWDTRAGOUDAS,S. 1991 Fast
approximation algorithms for multlcommod-
ity flow problems. In %oceedmgs of the 23rd
Annual ACM Symposium on the Theory of

Computmg ACM, New York, 101-111, The
paper presents randomized algomthms for
approximately solving the multlcommodlty
flow problem, The algorithms run m poly-
nomial time mth high probability.

LEIGHTON, F. T., LISINSKI, D., AND MAGGS, B. M.
1990 Empirical evaluation of randomly-wmed
multistage networks, In Proceedings of the 1990
IEEE International Conference on Computer

Design. IEEE, New York, 380-385. This paper
presents simulation results comparmg the fault
tolerance, delay, and other characteristics of
butterfhes, dilated buttertles, and randomly
wined multibutterfhes. Randomly wired multi-
butterfhes perform better by many yardsticks.

LEV, G , PIPPENGER, N., AND VALIANT, L. 1981, A
fast parallel algorithm for routing in permuta-
tion networks. IEEE Trans. Comput. C-30, 2
(Feb.), 93–100. This paper presents determinis-
tic algorithms for routing in permutation net-
works. The fastest algorithms requme global
knowledge and fl(logz N) parallel txme,

LEWIS, T. G. AND COOK, C. R. 1988. Hashing
for dynamic and static internal tables. Com-
puter 21, 1, 45–56. The authors survey the
classical hashing function approach to infor-
mation retrieval and show how general hash-
ing techmques exchange speed for memory, It
M a tutorial paper that co~ers, among other
topics, dynamic and static hash tables, perfect
hashing, and mmimal perfect hashing.

LIECHTENSTEIN,D., LINIAL, N., AND Sins, M. 1987.
Imperfect random sources and discrete con-
trolled processes. In Proceeding.s of the 19th
Annual ACM SymposLum on the Theory of

Computmg. ACM, New York, 169– 177. Imper-
fect sources are modeled by discrete control
processes where the output string of zeros and
ones has been tampered with by a controller
who can specify certain bits. Several questions
concerning the membership of such a string in
a prespecified set L are answered.

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 77

LINIAL, N., LOVASZ, L., AND WIGDERSON, A. 1988.
Rubber bands, convex embedding, and graph
connectivity. Combinatorics 8, 1, 91– 102. Sev-
eral probabilistic algorithms for connectivity
computation, both of the Monte Carlo and Las
Vegas variety, are given, as is a formalization
of the connectivity problem in terms of embed-
ded graphs. Efficient parallel implementations
are included. This paper first appeared under
the title “A Physical Interpretation of Graph
Connectivity and its Algorithmic Applications”
in Proceedings of the 27th Annual IEEE Sym-

posium on the Foundations of Computer Sci-
ence, 1986, pp. 39–53.

LIN, J.-H. AND WTTER, J. S. 1992. e-approxi-
mations with minimum packing constraint
violation. In Proceedings of the 24th Annual
ACM Symposium on the Theory of Compu-

ting. ACM, New York, 771–782. Efficient ran-
domized and deterministic algorithms are
presented for transforming optimal solutions
for a type of relaxed integer linear program
into provably good approximate solutions
for the corresponding NP-hard discrete
optimization problem.

L6v&sz, L. 1979. On determinants, matchings
and random algorithms. In Fundamentals of
Computing Theory. Akademia-Verlag, Berlin.
L6V6SZ describes a probabilistic method for
determining the perfect matching in a simple
graph, if one exists, using Tutte’s theorem.

LUND, C., FORTNOW,L., KARLOFF, H., AND NMN, N.
1990. Algebraic methods for interactive proof
systems. In Proceedings of the 31st Annual
IEEE Symposium on the Foundations of Com-

puter Science. IEEE, New York, 2–10. The
authors present a new algebraic technique for
constructing 1P systems and prove that every
language in the polynomial-time hierarchy has
an interactive proof system. This is a key paper
for proving 1P = PSPACE [Shamir 1992] and
MZP = NEXP [Babai et al. 1990].

LUTZ, J. 1992. On independent random oracles.
Theoret. Comput. Sci. 92, 2, 301–307. This
paper shows that for every random language
A @ B, P(A) n P(B) = BPP, where P(A) and
P(B) are the class of languages in polynomial
time relativized to A and B. This improves on
the results of Kurtz [1987].

LUTZ, J. AND SCHMIDT, W. 1993. Circuit size rela-
tive to pseudo-random oracles. Theoret.
Comput. SCL. 107, 1,95–120. Assuming pseudo-
random oracles, circuit size complexity is com-
pared with deterministic and nondeterministic
complexity. The paper also shows that for every
p-space random oracle A and almost every ora-
cle A in EPSPACE, NP A is not contained in
SIZE*(2 ““) for any real a < 1/3, and E* is
not contained in SIZE* (2” /n).

MAFFIOLI, F., SPERANZA, M. G., AND VERCELLIS, C.
1985. Randomized algorithms. In Combinato-
rial Optimization—Annotated Bibliography.
Wiley Interscience, New York, 89–105. This is

a useful annotated bibliography on randomized
algorithms.

MAGGS, B. M. AND SITARAMAN,R. K. 1992. Simple
algorithms for routing on butterfly networks
with bounded queues. In Proceedings of the
24th Annual ACM Symposium on the Theory of
Computmg. ACM, New York, 150-161. The
authors present a simple, but nonpure, algo-
rithm for routing a random problem on a fully
loaded N-input butterfly with bounded-size
queues in O(log N) steps, with high probability.

MAJEWSKI, B. S., WORMALD, N. C., HAVAS, G., AND
CZECH, Z. J. 1993. Graphs, hypergraphs and
hashing. In Proceedings of the 19th Interna-
t~onal Workshop on Graph-Theoretic Concepts
m Computer Science (WG93). The authors gen-
eralize the method presented in Czech et al.
[1992] by mapping the input set into a hyper-
graph rather than a graph. This modification
allows a reduction in the size of the program,
while maintaining all other features of the
method. Also, the hash function generation time
is reduced.

MANBER, U. AND TOMPA, M. 1985. Probabilistic,
nondeterministic and alternating decision
trees. J. ACM 32, 3 (July), 720–732. This paper
compares lower bounds on the running times of
algorithms that allow probabilistic, nondeter-
ministic, and alternating control on decision
trees. Decision trees that allow internal ran-
domization at the expense of a small pro-
bability of error are shown to run no faster
asymptotically than ordinary decision trees for
a collection of problems. An earlier version of
this publication appeared in Proceedings of the

14th Annual ACM Symposium on the Theory of
Computing, 1982, pp. 234-244.

MANSOUR,Y., NISAN, N., AND TIWARI, P. 1993. The
computational complexity of universal hashing.
Theoret. Comput. Sci. 107, 1,121-133. They
prove that any implementation of universal
hashing from n-bit strings to m-bit strings
requires a time–space tradeoff of TS = Q(nm).

MATIAS, Y. 1993. Highly parallel randomized
algorithms. In Proceedings of the 3rd ACM

Workshop on Parallel Algorithms. ACM, New
York. Matias surveys highly efficient ran-
domized parallel algorithms including nearly
constant-time algorithms for hashing, dictio-
nary implementation, approximate compaction,
approximate sum, and automatic processor
scheduling in parallel algorithms.

MATIAS, Y. AND VISHKIN, U. 1991. Converting
high probability into nearly constant time—
with applications to parallel hashing. In Pro-
ceedings of the 23rd Annual ACM Symposzum
on the Theory of Computmg. ACM, New York,
307–316. Randomized parallel algorithms are
given for constructing a perfect hash function
in expected polylogarithmic time and for gener-
ating a random permutation in polyloganthmic
time.

ACM Computing Surveys, Vol. 26, No. 1, March 1994

78 “ R. Guptaet al.

MATIAS, Y., VrrTER, J. S., AND NI, W.-C. 1993.
Dynamic generation of discrete random vari-
ables. In Proceedings of the 4th Annual ACM-
SIAM Symposmm on Discrete Algor~thms.
ACM, New York, 361–370. Efficient random-
ized algorithms are given to generate a random
variate distributed according to a dynamic
set of weights. The base version of each algo-
rithm generates the discrete random variate in
O(log” N) expected time and updates a weight
in 0(210g’~) expected time in the worst case.
It is shown how to reduce the update time to
O(log” N) amortized expected time.

MATOUi3EK, J., MOUNT, D. M., AND NETANYAHU, N. S.
1993. Efficient randomized algorithms for the
repeated median hne estimator. In Proceedings
of the 4th Annual ACM-SIAM Symposmm on
Discrete Algorithms. ACM, New York, 74-82
Computing a statistical estimator can be viewed
as the problem of fitting a straight line to a
collection of n points in the plane. The break-
down point of an estimator is the fraction of
outlying data points (up to 50%) that may
cause the estimator to take on an arbitrary
large aberrant value. The authors present
a (not-so simple) 0(n log n) randomized
expected-time algorithm for the problem of
computing a 50~o breakdown point estimator,
namely, the Siegel, or repeated-median, esti-
mator. A simpler 0(n logz n) randomized algo-
rithm for the problem is also given, which
the authors contend actually has 0(n log
n) expected time for “many realistic input
distributions.”

MCKAY, B. AND WORMALD, N. 1990. Uniform gen-
eration of random graphs of moderate degree.
J. Alg. 11, 1, 52–67. A randomized algorithm is
given for generating k-regular graphs on n
vertices, uniformly at random. The expected
running time of the algorithm is 0(nk 3) for
k = 0(nlj 3). Special cases, such as bipartite
graphs with given degree sequences, are con-
sidered.

MEGIDDO, N. AND ZEMEL, E. 1986. An 0(n log n)
randomizing algorithm for the weighted
Euclidean l-center problem. J. Alg. 7,3 (Sept.),
358–368. A set of points p, = (z,, y,) and their
weights w,, 1< t s n, are given. It is required
to find a point p that minimizes the maxi-
mum first moment of the weights of the p,, i.e.,
the that minimize. II(p) =
MAXI _~ ~ . w, d(p, p,) where d(p, p,) is the
magmtude of the distance between p and p,. A
randomized algorithm that does this with a
small probability of error is presented.

MEHLHORN, K. 1984a. Data Structures and Algo-
rithms 1: Sorting and Search mg. EATCS
Monographs on Theoretical Computer Science,
vol. 1. Springer-Verlag, New York. Volume 1 of
this three-volume series is an excellent source
for searching and sorting algorithms. It con-
tains sections on quicksort (Section II. 1.3), per-
fect hashing (Section 111.2.3), and universal
hashing (Section 111.2.3).

MEHLHORN, K. 1984b. Graph Algorithms and

NP-Completeness. EATCS Monographs on The-
oretical Computer Science, vol. 2. Springer-
Verlag, New York. Section IV.9.2 gives a
probabilistic algorithm for graph connectivity,
and Section VI.8 deals, in part, with primality
testing.

ME HLHORN, K. 1984c. Multl-Dlmenslonal

Searching and Computatmnal Geometry.
EATCS Monographs on Theoretical Computer
Science, vol. 3. Springer-Verlag, New York. This
book is the last of three volumes. Chapter 7 is
devoted to multidimensional data structures
and Chapter 8 to problems in computational
geometry.

MEHLHORN, K. 1982. On the program size of per-
fect and universal hash functions. In Proceed-

ings of the 23rd Annual IEEE Symposwm on
the Foundations of Computer Scwnce. IEEE,
New York, 170– 175. A must for readers inte-
rested in perfect hashing. It proves that for n
distinct keys from [0. N – 1], there exists a
prime number p = 0(n 2in(N)) such that for
any two keys x, and .xj, .r, (mod p) + xj(mod p),
Further, a good determimstic algorithm exists
for finding p; it can be determined even more
efllciently using a randomized algorithm. Sev-
eral other results concermng the construction
and length of perfect and universal hashing
functions are proved,

MEHLHORN, K. AND SCHMIDT, E. 1982. Las Vegas
is better than determinism in VLSI and dis-
tributed computing. In Proceedings of the

14th Annual ACM Symposrum on the Theory
of Computing. ACM, New York, 330–337
This paper demonstrates a problem where the
theoretical lower bounds for distributed deter-
ministic solutions can be improved using

) Y=randomness. Let X = (xl, X2, , x. ,
(-yI, yz, yn), be stored on two different sites,
where x, and y, are integers between O and
2 n – 1. The function jlX, Y)—which is defined
to be 1 if there exists an z such that x, = y,,
and O otherwise—is to be computed with mini-
mum communication. This problem requires nz
message bits in the deterministic case, but an
O(n log n log n) average running-time proba-
bilistic algorithm is demonstrated.

MEYER AUF DER HEIDE, F. 1990. Dynamic hash-
i ng strategies In pvoceedzngs of the 15th Sym-
posium on the Mathematical Foundations of
Computer ScLence. Lecture Notes in Computer
Science, vol. 452. Springer-Verlag, New York,
76–87. This paper contains a survey of dyna-
mic hashing techniques. It evaluates hashing
algorithms with respect to probability of colli-
sions, bucket sizes, evaluation time, and the
time needed to construct a hash function. Par-
allel, distributed, and sequential algorithms are
considered.

MEYER AUF DER HEIDE, F. 1985. Simulating
probabilistic by determining algebraic compu-
tation trees. Theoret. Comput. SCZ. 41, 2/3,

ACM Computmg Surveys, Vol. 26, No 1, March 1994

On Randomization in Algorithms “ 79

325–330. This paper overlaps with the paper
“Nondeterministic Versus Probabilistic Linear
Search Algorithms,” Proceedings of the 26th
Annual IEEE Symposium on the Foundations

of Computer Science, 1985, pp. 65–73. It is
shown that nondeterministic algorithms are
less complex than their probabilistic counter-
parts even when the probabilistic choices are
assigned zero cost and error is allowed in all
computations. The specific algorithms consid-
ered are linear search algorithms.

MIGNOTTE, M. 1980. Tests de primalite. Theoret.

Comput. Sci. 12, 1, 109–117. In French. Sur-
veys the field of primality testing from a com-
putational complexity perspective.

MILLER, G. L. 1976. Reimann’s hypothesis and
test for primality. J. Comput. Syst. Sci. 13, 3,
300-317. A seminal paper in the development
of primality-testing algorithms. It presents two
algorithms for primality testing. The first one
runs in 0(nl/ 7) time. The second one, which is
actually a polynomial-time algorithm
(O(log~ n)), assumes the Extended Riemann
Hypothesis. This paper, which first appeared in
Proceedings of the 7th Annual ACM Sympo-
sium on the Theory of Computing, 1975, pp.
234–239, also proves that a certain class of
functions is computationally equivalent to fac-
toring integers.

MILLER, G. L. AND REIF, J. H. 1991. Parallel tree
contraction, Part 2: Further applications. SL4M
J. Comput. 20, 6 (Dec.), 1128–1147. In this
followup of Miller and Reif [1989], the authors
present many applications of their parallel tree
contraction technique, including algorithms for
subexpression evaluation, tree and graph iso-
morphism, and building canonical forms of
trees and planar graphs.

MILLER, G. L. ANI) REIF, J. H. 1989. Parallel tree
contraction, Part 1: Fundamentals. In Aduan -

ces in Computing Research 5: Randomness and
Computation. JAI Press, Greenwich, Corm.
They exhibit a randomized parallel algorithm
for subtree isomorphism that uses O(log n)
time and 0(n/log n) processors. This was the
first polylog parallel algorithm for the problem.
See also the related paper “Parallel Tree Con-
traction and Its Applications,” in Proceedings

of the 26th Annual IEEE Symposium on the
Foundations of Computer Science, 1985, pp.
478-489, and the companion paper [Miller and
Reif 1991].

MITRA, D. AND CIESLAK, R. A. 1987. Randomized
parallel communication on an extension of
the Omega network. J. ACM 34, 4, 802-824.
This is an extension of Valiant and Aleluinas’
algorithm to eliminate the need for schedul-
ing. This algorithm also works on networks of
fixed-degree nodes.

MONIER, L. 1980. Evaluation and comparison of
two efficient probabilistic primality testing
algorithms. Theoret. Comput. SCL 12, 1, 97– 108.
Monier presents an interesting comparison of

the Miller-Rabin [Rabin 19761 and
Solovay-Strassen [1977] primality-testing
algorithms, showing that the former is always
more efficient than the latter. In the process,
he proves that at least 3/4 of the numbers in
the set (1, 2,..., n – 1}are witnesses to the
compositeness of n, for n composite. This
strengthens the bound given in Rabin [1976].

MoTwAN1, R., NAOR, J., AND NAOR, M. 1989. The
probabilistic method yields deterministic paral-
lel algorithms. In Proceedings of the 30th

Annual IEEE Symposium on the Foundations

of Computer Sctence. IEEE, New York, 8–
13. This paper presents a method of con-
verting randomized parallel algorithms into
deterministic parallel (NC) algorithms. Their
approach is based on a parallel implementation
of the method of conditional probabilities due
to Spencer [1994], which was originally intro-
duced with the aim of converting probabilistic
proofs of existence of combinatorial structures
into deterministic algorithms that can actually
construct these strictures. Restrictions on the
technique to a certain class of randomized NC
algorithms are discussed.

MULMULEY, K. 1994. Computational Geometry:

An Introduction through Randomized Algo-
rithms. Prentice-Hall, Englewood Cliffs, N.J.
This book presents a number of randomized
algorithms for problems in computational ge-
ometry. It is meant to serve as an introduction
to computational geometry; the author chooses
randomized algorithms to do the job since they
are usually simpler to understand than their
determinis-
tic counterparts. The book is divided into
two parts: basics and applications. Applica-
tion areas considered include arrangements
of hyperplanes, convex polytopes, range
search, and computer graphics. A chapter on
derandomization is also given.

MULMULEY, K. 1992. Randomized geometric
algorithms and pseudo-random generators. In
Proceedings of the 33rd Annual IEEE Sympo-

sium on the Foundations of Computer Science.
IEEE, New York, 90–100. This paper shows
that a generalization of the familiar linear con-
gruential pseudorandom generator that uses
O(log n) bits can be substituted for the random
source in many randomized incremental algo-
rithms used in computational geometry with-
out affecting the order of complexity of the
expected running time, thereby reducing
the number of truly random bits needed.

MULMULEY, K., VAZIRANI, U. V., AND VAZE+MW,V. V.
1987. Matching is as easy as matrix inver-
sion. Combznatorica 7, 1,105–113. An elegant
parallel, randomized algorithm for finding a
perfect matching in a simple graph based on
Tutte’s matrix is presented. The algorithm,
which is made possible by a probabilistic lemma
called the isolation lemma, requires inversion
of a single integer matrix which can be
parallelized.

ACM Computmg Surveys, Vol 26, No. 1, March 1994

80 ● R. Gupta et al.

MUTHUKRISHNAN, S. 1993. Detecting false
matches in string matching algorithms. In Pro-

ceedings of the 4th International Conference
on Combmatorial Pattern Matching. Lecture
Notes in Computer Science, vol. 684. Springer-
Verlag, New York, 164-178. The Karp and
Rabin [1987] randomized string-matching algo-
rithm may report, with a small probability, a
false match. Muthukrishnan presents a paral-
lel algorithm to detect the existence of such a
false match. His algorithm runs in O(1) time
and uses 0(n) CRCW PRAM processors, where
n is the length of the input text, and can
be used to efficiently convert the Monte Carlo-
type string-matching algorithm of Karp
and Rabin into a Las Vegas-type algorithm.
Muthukrishnan also considers the problem of
detecting all false matches.

NAOR, J. AND NAOR, M. 1990. Small-bias pro-
bability spaces: Efficient constructions and
applications. In Proceedings of the 22nd Annual
ACM Symposium on the Theory of Compu-
tzng. ACM, New York, 213–223. This paper
shows an efficient construction of a small prob-
ability space on n binary random variables
such that for every subset its parity is either
zero or one with “almost” equal probability
Applications are shown in problems such as the
derandomization of algorithms and reducing
the number of random bits required by certain
randomized algorithms.

NAOR, M. AND STOCKMEVER, L. 1993. What can
be computed locally In Proceedings of the 25th
Annual ACM Symposium on the Theory of

Computing ACM, New York, 184-193. In the
context of a distributed network, Naor and
Stockmeyer investigate Locally Checkable
Labe[mg (LCL) problems, where the legality
of a labeling (e.g., coloring) can be checked
locally, i.e., within time (or distance) indepen-
dent of the size of the network. Among their
results they show that randomization cannot
make an LCL problem local, i.e., if a problem
has a local randomized algorithm then it has a
local determirustic algorlthm.

NATARA.JAN, B. K. 1992. Probably approximate
learmng over classes of distributions. SIAM J.
Comput. 21, 3 (June), 438–449. NataraJan gen-
eralizes the model of probably approximate
learmng proposed by Valiant [1984bl.

NATIONAL RESEARCH COUNCIL. 1992 Probabillt.y
and Algordh ms. National Academy Press,
Washington, D.C. This book M an outgrowth of
a panel on Probabdity and Algorithms assem-
bled by the National Research Council in 1991.
The panel was charged with writing a survey
on probabilistic algorithms and on the pro-
bablhstlc analysls of conventional algorithms.
The result is a collection of 12 indepen-
dent, yet somewhat complementary, articles on
the following topics: simulated annealing
(D. Bertsimas and J. Tsitsikhs); approximate
counting wa Markov chains (D. Aldous); pro-

babilistic (BPP) algorithms for speedup
(J. Feigenbaum and J. C. Lagarias); cryptogra-
phy and authentication (J. Feigenbaurn);
generation of pseudorandom numbers (J. C.
Lagarias); probabilistic analysis of packing and
related problems (E. G. Coffman, Jr., D. S.
Johnson, P. W. Shorj and G. S. Lueker); prob-
lems in Euclidean combinatorial optimization
(J. M. Steele); probabilistic analysis in linear
programming (R. Shamir); randomized parallel
algorithms N. Ramachandran); randomly
wired multistage networks (B. M. Maggs); and
derandomization (J. M. Steele).

NISAN) N. 1993. On read-once vs. multiple access
to randomness in logspace. Theoret. Comput.

SCL. 107, 1,135-144. This paper shows that
every language accepted with bounded two-
sided error by a read-once randomized logspace
machine can be accepted with zero error by a
randomized logspace machine with multlple
access to the random bits. Also, the class of
languages accepted with two-sided error by a
randomized logspace machme with multiple
access to the random bits is shown to be the
class of languages that are in Iogspace relative
to almost every oracle.

NISAN, N. AND ZUCKERMAN, D. 1993. More deter-
ministic simulation in logspace. In Proceedings
of the 25th Annual ACM Symposvum on

the Theory of Computmg. ACM, New York,
235–244. It is shown that any randomized
space(S) algorithm that uses only poly(S) ran-
dom bits can be simulated deterministically in
space(S), for S(n) 2 log n.

OREN, Y. 1987. On the cunning power of cheat-
ing verifiers: Some observations about zero
knowledge proofs. In Proceedings of the 28th
Annual IEEE Symposium on the Foundations

of Computer Scwnce. IEEE, New York, 462–
471. Oren differentiates between auxdlary -

mput zero knowledge and blackbox .nmulation
zero knowledge. He shows that all known zero-
knowledge proofs are in the latter category.
Additionally, it is proved that black box sim ula -
tlon zero knowledge implies a uxiltary input
knowledge and that the latter corresponds
to the original defimtion given m Goldwasser
et al. [1989].

PACHL, J. 1987. A lower bound for probabilistic
distributed algorithms. J. Alg. 8, 1,53-65. The
minimum number of messages required to
find the extremal value of node ids in an
asynchronous network deterministically is
@)(n log n). This paper shows that this bound
holds even for probabilistic algorithms.

PAZ, A. 1971. Introduction to Probabdlst~c
Automata. Academic Press, New York. Paz
develops a theory of equivalence among
probabilistic automata.

PEASE, M., SHOSTAK, R., AND LAMPORT, L. 1980.
Reaching agreement in the presence of faults.
J. ACM 27, 2, 228–234. This paper is similar to
their 1982 publication Lamport et al. [1982],

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms ● 81

but contains a rigorous proof of the impossibil-
ity of Byzantine agreement for the case n = 3,
t = 1. As usual, n is the total number of pro-
cesses, and t is the number of faulty processes.

PELLEGRINI, M. 1993. On line missing polyhedral
sets m 3-space. In Proceedings of the 9th
Annual ACM Symposium on Computational

Geometry. ACM, New York, 19–28. Pellegrini
gives an O(nl 5+’) randomized expected-time
algorithm that tests the separation property:
does there exist a direction u along which a set
of n red lines can be translated away from a
set of n blue lines without collisions?

PERRY, K. 1985. Randomized Byzantine agree-
ment. IEEE Trans. Softw. Eng. SE-11, 6 (June),
539–546. Perry presents randomized algo-
rithms for Byzantine agreement that, like the
algorithm of Rabin [1983], terminate in an
expected number of rounds which is a small
constant independent of n and t. As usual, n is
the total number of processes, and t is the
number of faulty processes. However, Perry’s
algorithm can tolerate a greater number of
faulty processes. He requires only n > 6t + 1
in the asynchronous case and n > 3 t + 1 in the
synchronous case.

PETERSON, G. L. 1982. An 0(n log n) unidirec-
tional algorithm for the circular extrema prob-
lem. ACM Trans. Program. Lang. Syst. 4, 4

(Oct.), 758-762. Peterson presents a deter-
ministic distributed algorithm for finding the
largest of a set of n uniquely numbered pro-
cesses in a ring. The algorithm requires 0(n
log n) messages in the worst case and is uni-
directional. The number of processes is not
initially known.

Pwm, V. R. 1975. Every prime has a succinct
certificate. SIAM J. C’omput. 4, 3, 2 14–220.
This paper proves, using the Lucas–Lehmer
heuristic for testing primeness, that just
like composite numbers, the primeness of a
prime number n can be demonstrated by an
O(log n)-long proof.

PUGH, W. 1990. Skip lists: A probabilistic alter-
native to balanced trees. Commun. ACM 33, 6

(June), 668-676. This paper presents skip lists,
lists in which a node may have a pointer to a
node some number of places ahead on the list.
Such pointers, called “forward pointers,” there-
fore “skip” over intermediate nodes. A node
with k forward pointers is said to be a leuel-k
node. Skip lists are probabilistic in that the
level of a node is chosen randomly with
the property that a node’s tth forward pointer
points to the next node of level L or higher. It is
shown that skips lists can efficiently imple-
ment abstract data types such as dictionaries
and ordered lists in that the expected time to
search for an Item m O(log n).

RABIN, M. O. 1983. Randomized Byzantine Gen-
erals. In Proceedings of the 24th Annual IEEE
Symposium on the Foundations of Computer
Science. IEEE, New York, 403–409. Rabin pre-

sents a randomized algorithm for asynchronous
Byzantine agreement that terminates in a con-
stant expected number of rounds. Cryptogra-
phy is used to simulate a trusted dealer that
distributes random coin tosses before the start
of the algorithm. Rabin’s algorithm works only
if less than one-tenth of all processes are faulty.

RABIN, M. O. 1980a. A probabilistic algorithm
for testing primality. J. Num. Theor. 12, 1,
128– 138. Rabin’s paper introduces another cel-
ebrated algorithm for fast, randomized primal-
ity testing. This paper is based on a different
number-theoretic property than that used by
Solovay and Strassen [19771.

RABIN, M. O. 1980b. Probabilistic algorithms in
finite fields. SIAM J. Comput. 9, 2 (May),
273–280. Rabin presents probabilistic algo-
rithms for finding an irreducible polynomial
of degree n over a finite field, the roots of
a polynomial, and the irreducible factors
of a polynomial.

RABIN, M. O. 1976. Probabilistic algorithms. In
Algorithms and Complexity: New Directions

and Recent Results. Academic Press, New York,
21–39. This classic paper on probabilistic algo-
rithms features algorithms for primality test-
ing and nearest neighbors.

RABIN, M. O. 1963. Probabilistic automata. Iizfi
Contr. 6, 3, 230–245. This is a seminal paper
on the theory of probabilistic automata. Rabin
defined the notion of a language being accepted
by a probabilistic automaton relative to a cut-
point lambda. One of his key results was to
show that there exist finite-state probabilistic
automata that define nonregular languages.

RABIN, M. AND VAZIRANI, V. 1989. Maximum
matchings in general graphs through random-
ization. J. Alg. 10, 4, 557–567’. This paper
presents a conceptually simple algorithm for
maximal matching in a graph of n nodes with
complexity 0(M(n)n log log n), where M(n) is
the number of operations needed to multiply
two n X n matrices.

RAGHAVAN, P. 1990. Lecture notes on random-
ized algorithms. Res. Rep. RC 15340 (#68237),
IBM T. J. Watson Research Center, Yorktown
Heights, N.Y. This report consists of lecture
notes from a course taught by the author.
These notes give a thorough introduction to
many randomized algorithms in computational
geometry, graph theory, VLSI, and networks.
The basic mathematical background essen-
tial for understanding these algorithms is
presented in detail.

RAGHAVAN, P. 1988. Probabilistic construction of
deterministic algorithms: Approximating pack-
ing integer problems. J. Comput. Syst. SCZ. 37,
130–143 Based on the derandomization tech-
mque of conditional probabilities, Raghavan
develops a methodology for converting the
probabilistic existence proof of a near-optimum
integer solution to an integer program into a
deterministic approximation algorithm.

ACM Computmg Surveys, Vol. 26, No. 1, March 1994

82 ● R. Guptaet al.

RAJASEKARAN, S. 1991. Randomized algorithms
for packet routing on the mesh. Tech. Rep.
M-CIS-91-92, Dept. of Computer and Infor-
mation Sciences, Univ. of Pennsylvania,
Philadelphia. Efficient randomized algorithms
for store and forward, multipacket, and cut
through routing of packets on a mesh-connected
computer are surveyed. The expected runn-
ing times and queuing complexity of these
algorithms are analyzed.

RAJASEIiARAN, S. AND REIF, J. H. 1989. Optimal
and sublogarithmic time randomized parallel
sorting algorithm. SIAM J. Comput. 18, 3

(June), 594-607. This paper presents an opti-
mal, randomized, parallel algorithm for sorting
n numbers in the range [1 . . . n] on a parallel
random-access machine that allows both con-
current reads and concurrent writes of a global
memory.

RAMAKRISHNA, M. V AND PORTICE, G. A. 1991.
Perfect hashing functions for hardware appli-
cati ens. In Proceedings of the 7th International

Conference on Data Engineering. IEEE, New
York. A hardware scheme for constructing an
associative memory using a perfect hash func-
tion is described. A simple trial-and-error
scheme is used to find a perfect hash function.

RAMESH, H. 1993. On traversing layered graphs
on-line. In proceedings of the 4th Annual
ACM-SIAM Symposutm on Dwcrete Algo-

rithms. ACM, New York, 412–421. A layered
graph is a connected weighted graph whose
vertices are partitioned mto sets (i.e., layers)
LO, Ll, Lz,. . . . and all edges connect vertices
m consecutive layers. Ramesh presents a
randomized on-line algorithm for traversing
width-w layered graphs with a competitwe
ratio of 0(w 15). His algorithm represents the
first polynomially competitive randomized
algorithm for layered-graph traversal.

REIF, J. H. 1985. Optimal parallel algorithms
for integer sorting and graph connectivity.
In proceedings of the 26th Annual IEEE

Symposium on the Foundations of Computer
Science. IEEE, New York. This paper con-
tains some results on the use of randomization
in parallel algorithms.

REIF, J. H. AND SEN, S. 1992. Optimal parallel
randomized algorithms for three-dimensional
convex hulls and related problems, SL4M J.
Conzput. 21, 3 (June), 466–485. An optimal,
parallel, randomized algorithm for computing
the intersection of half-spaces in 3D is given.
The algorithm provides efficient solutlon tech-
mques for convex hulls in 3D and Vornol dia-
grams of point sites on a plane, An earlier
version of the paper appeared as “Polling:
A New Random Sampling Technique for Com-
putational Geometry,” m Proceedings of the
21st Annual ACM Sympos~um on the Theory of
Computmg, 1989, pp. 394-404.

REIF, J. H. AND SPIRAWS, P. G. 1984, Real time
synchronization of interprocess communication.

ACM Trans. Program. Lang. Syst. 6, 2,

215–238. They present probabilistic distributed
algorithms for the guard-scheduling problem
(Section 3.2) that guarantee real-time response.
A preliminary version of this paper appeared
as “Distributed Algorithms for Synchronizing
InterProcess Communication in Real Time,”
in Proceedings of the 13th Annual ACM
Sympos,um on the Theory of Computing, 1981.

REISCHUK, R. 1985. Probabihstic parallel algo-
rithms for sorting and selection. SIAM J. Com-

put, 14, 2 (May), 396–409. This paper considers
the problems of selecting the k smallest ele-
ments out of a set of n keys and sorting the n
keys using n processors in parallel. Relschuk
showed that the former can be d,o~e in constant
time with probability 1 – 2” n and the lat-
ter in O(log n) time. Both algorithms meet the
corresponding information-theoretic lower
bounds in terms of processor–time product as
well as the optimal speedup attainable using n

processors. An earlier version appeared as
Reischuk [1981].

REISCHUK, R. 1981. A fast probabilistic parallel
sorting algorithm. In Proceedings of the 22nd
Annual IEEE Symposium on the Foundations

of Computer Sczence. IEEE, New York, 212–
219. Reischuk considers the problems of select-
ing k smallest elements out of a set of n keys
and sorting the n elements using n processors
in parallel. He shows that the former can be
done m constant time with probability 1 –
Z-,nll,]

and the latter in O(log n) time. This
achieves the information-theoretic lower bound
in terms of processor–time product as well
as the optimal speedup attainable using n
processors.

RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. 1978.
A method for obtaimng digital signatures and
public key cryptosystems. Commun. ACM 21, 2

(Feb.), 120. The basics of trap-door functions
and the famous RSA public-key cryptosystem
are presented m thm paper.

RUBINSTEIN, R. Y. 1981. SzmulatLon and the
Monte Carlo Method John Wiley and Sons,
New York, This work is an indepth look at
the use of random sampling (the Monte Carlo
method) m the context of simulation and
numerical integration.

SALOMAA, A. 1969. Theory of Automata.
Pergamon Press, New York. Chapter 2 of
this book discusses probabilistic automata and
develops a general theory of stochastic
languages.

SANTHA, M. AND VAZIRANI, U. V. 1986. Generat-
ing quasi-random sequences from semi-random
sources. J. Comput. Syst SCZ. 33, 1 (Apr.),
75–87. The authors introduce the notion of
semirandom sources where the next bit of the
output 1s produced by an adversary by the flip
of a coin of variable bias, The adversary can
look at the previously output bits and use them
to set the bias in the coin. The bias, which

ACM Computmg Surveys, Vol 26, No 1, March 1994

On Randomization in Algorithms “ 83

helps model correlation among bits, is con-
strained to be between two limits.

SCHMIDT, J. P. AND SIEGEL, A. 1990. The spatial
complexity of oblivious k-probe hash functions.
SIAM J. Comput. 19, 5, 77’5-786. ‘I’his paper
gives, among other results, a lower bound for
the average space required by programs
for oblivious k-probe hash functions. A proba-
bilistic construction of a family of oblivious
k-probe hash functions that nearly match this
bound is also given.

SCHMIDT, J. P., SIEGEL, A., AND SRINIVASAN, A.
1993. Chernoff–Hoeffding bounds for
applications with limited independence, In
Proceedings of the 4th Annual ACM-SIAM

Symposium on Discrete Algorithms, ACM, New
York, 331–340. Chernoff-Hoeffding bounds are
frequently used in the design and analysis of
randomized algorithms to bound the tail pro-
babilities of the sums of bounded and inde-
pendent random variables. The authors give a
simple technique which gives slightly better
bounds than these and which requires only
hmited independence among the random
variables.

SCHNEIDER, F. B, 1982. Synchronization in dis-
tributed programs. ACM Trans. Program.
Lang, Syst, 4, 2 (Apr.). Schneider presents
a timestamp-based distributed algorithm for
CSP output guards. A probabilistic algorithm
for output guards is described in Section 3.2.

SCHONHAGE, A. 1988. Probabilistic computation
of integer polynomial GCDS. J. Alg. 9, 3 (Sept.),
365–371. The GCD of two univariate integer
polynomials of degree s n,with their 11 norms
bounded by 2“, is shown to be reducible to
GCD computation for long integers. A proba-
bilistic approach yields an expected complexity
of O(n(rz + h)l + 0(1)) bit operations.

SCHROEDER,M, R. 1984. Number Theory in Sci-

ence and Commurucatton w~th Appllcat~ons m
Cryptography, Phys~cs, B~ology, Digital Infor-

mation and Computmg. Springer-Verlag, New
York. Schroeder presents intuitive discussions
on prime numbers, their distribution, fractions,
congruences, etc. Several applications of num-
ber theory in such diverse fields as cryptogra-
phy and Fraunhofer diffraction are discussed.
A good source of basic number theory results
for algorithm designers.

SCHWARTZ, J. T. 1979. Probabilistic algorithms
for verification of polynomial identities. In
ISSAC ’79: Proceedings of the Internat~onal

Symposium on Symbolw and Algebra~c
Computation. Lecture Notes in Computer Sci-
ence, vol. 72. Springer-Verlag, New York. This
paper, which aiso ~ppeared-in J. ACM 27, 4
(Otit. 1980). Du. 701–717. uresents urobablllstlc
methods for- ~esting poly~omial id~ntities and
properties of systems of polynomials.

SCHWARTZ, J. 1978. Distributed synchronization
of communicating sequential processes. Tech.
Rep., DAI Res. Rep. 56, Univ. of Edinburgh,

U.K. Schwartz presents a distributed algorithm
for CSP output guards based on priority order-
ing of processes. A probabihstlc algorlthm for
output guards is described in Section 3.2.

SCHWARZKOPF,O. 1991. Dynamic maintenance of
geometric structures made easy. In Proceed-

ings of the 32nd Annual IEEE Symposium on

the F’oundattons of Computer Science. IEEE,
New York, 180–196. Schwarzkopf presents
a randomized algorithm for maintaining Con-
vex Hulls with m points that runs in expected
time O(log m) per update for dimensions
2 and 3, 0(m log m) for dimensions 4 and
5, and O(ml~ ‘z ~ 1) for dimensions greater
than 5.

SEIDEL, R. 1991. A simple and fast incremen-
tal randomized algorithm for computing
trapezoidal decompositions and for triango-
Iating polygons. Comput. Geom. Theor. Appl. 1,

1,51–64. Seidel’s randomized algorithm runs
in 0(n log* n) expected time and is simpler
than the deterministic O(n) algorithm due to
B. Chazelle.

SHALLIT, J. 1992. Randomized algorithms in
“primitive cultures “ SIGACT News 23, 4, ’77-

80. Shallit, in a slightly tongue-in-cheek
manner, traces back some of the con-
cepts of randomized algorithms to the native
American society of the Naskapi and the
Central African society of the Azande. Roots
in the works of Pierre Laplace and Lord Kelvin
are also pointed out.

SHAMIR, A. 1992. IP = PSPACE. J. ACM 39, 4.
This paper shows that the set of problems for
which interactive protocols exist is precisely
the set of problems which are solvable within
polynomial space on a Turing machine.

SHOUP, V. 1993. Fast construction of irreducible
polynomials over finite fields. In Proceedings of
the 4th Annual ACM-SIAM Symposium on Dis-
crete Algorithms. ACM, New York, 484-492. A
randomized algorithm is presented that con-
structs an irreducible polynomial of given
degree n over a finite field Fq. It uses an
expected number of O‘ (n2 + n log q) opera-
tions in F~, where the “soft-O O‘ indicates an
implicit factor of (log n)0(1’.

SIEGEL, A. 1989. On universal classes of fast high
performance hash functions, their time-space
tradeoff, and their applications. In Proceedings
of the 30th Annual IEEE Symposium on the
Foundations of Computer Science. IEEE, New
York, 20-25. An algorithm for constructing log
n-wise independent hash functions that can be
evaluated in constant time is presented.

SIPSER, M. 1988. Expanders, randomness, or
time versus space. J. COm~ut. SYst. S.2 36. 3.

379-383. Contains a discussion on efficiently
reducing the probability of error in randomized
algorithms. It also describes a relationship
between pseudorandomness, time, and space
used by certain algorithms if certain types of
expander graphs can be explicitly constructed.

ACM Computing Surveys, Vol 26, No 1, March 1994

84 ● R. Gupta et al.

SMITH, J. 1983. Public key crypto~aphy. Byte 8,
1 (Jan.), 198–218. This is a simple exposition of
public-key cryptography.

SOLOVAY,R. AND STRASSEN,V. 1978. Erratum: A
fast Monte-Carlo test for primality. SIAM J.
Comput. 7, 1 (Feb.). A minor correction in the
analysis presented in Solovay and Strassen
[1977] is reported by the authors. The basic
results of the earlier work, however, still hold.

SOLWAY, R. AND STRASSEN, V. 1977. A fast
lWonte-Carlo test for primality. SIAM J. Com-

put. 6, 1 (Mar.), 84–85. Another test for primal-
ity based on the abundance of witnesses to
compositeness of n is presented. The test
entails picking a random number a (1 < a <
n) and computing ● = ~t~– lJ/2(mod ~),

where – 1 s ● < n – 2. If the Jacobi symbol
,$= (a/n) equals e then n is prime; else, if
either gcd(a, n) > 1 or 8 + e, decide n to be
composite. The second decision has less than
1/2 probability of being wrong.

SPENCER, J. 1994. Ten Lectures on the Proba-
bilistic Method. 2nd ed. CBMS-NSF Regional
Conference Series in Mathematics. SIAM,
Philadelphia, Pa. Spencer presents a method of
converting probabilistic proofs of existence of
certain combinatorial structures into deter-
ministic algorithms that construct these struc-
tures.

SPIRms, P. G. 1982. Probabilistic algorithms,
,algorithms with random inputs and random
combinatorial structures. Ph.D. thesis (UMI
Order Number DA 8216206), Harvard Univ.,
Cambridge, Mass. This thesis puts forth a new
]model, Random Independence Systems, for
the probabilistic analysis of deterministic
algorithms with random inputs, i.e., algorithms
for which the space of all inputs has a known
probability distribution. It also presents two
probabilistic algorithms with real-time
response for the problem of communication
guard scheduling.

SPRUGNOLI, R. 1977. Perfect hash functions: A
single probe retrieval method for static sets.
Commun. ACM 20, 11, 841–850. This is the
first discussion on perfect hashin~ it describes
heuristics for constructing perfect hash
functions.

STOCKMEYER, L. 1985. On approximation algo-
rithms for #P. SIAMJ. Comput. 14, 4, 849–861.
The author explores the effect of approximation
and randomization on the complexity of count-
ing problems (Valiant’s class #P which has
problems such as counting the number of per-
fect matchings in a graph, the size of backtrack
search trees, etc.).

TODA, S. AND OGIWARA,M. 1992. Counting classes
are at least as hard as the polynomial-time
hierarchy. SIAM J. Comput. 21, 2 (Apr.),
316–328. Many counting classes are shown to
be computationally as hard as the polynomial-
time hierarchy, under a notion of random-
ized reducibility, unless the polynomial-time
hierarchy collapses.

TUTTE, W. T. 1947. The factorization of linear
graphs. J. London Math. Sot. 22, 107-111. Let
G(V, E) be a given simple graph where V =
{1, 2,... n}. Associate a variable x,, with each
edge e,] G E and define the n X n matrix B =

[b,J] as follows. If there is no edge between
vertex i and vertex j them b,~ = O. Otherwise,
b,j = x,] if i > J and b,~ = –x,~ if 1 <J. This

paper proves that G has a perfect matching if
and only if det(B) # O.

ULLMAN, J. D. .&m YANNAKAKIS, M. 1991. High-
probability parallel transitive closure algo-
rithms. SL4M J. Comput. 20, 1 (Feb.), 100–125.
Parallel transitive-closure algorithms are pre-
sented for the case when the graph is sparse or
only a single source information is desired. The
algorithms presented can converted to the Las
Vegas type.

UPFAL, E. 1989. An O(log IV) deterministic
packet routing scheme. In Proceedings of the
21st Annual ACM Symposium on the Theory of

Computing. ACM, New York, 241-250. This
paper presents the first deterministic O(log N)
permutation routing algorithm for a multi-
butterfly network. A multibutterfly network is
a special instance of a delta network. Upfal
also shows that P instances of the permutation
problem can be routed in O(log N + P) steps
using a pipelining approach.

UNITED STATES DEPARTMENT OF DEFENSE. 1983.
Reference Manual for the Ada Programmmg
Language. MIL-STD 1815A, U.S. Dept.
of Defensej Washington, D.C. Section 3.2 of
our survey discusses a randomized distribu-
ted algorithm for the scheduling of input
and output guards. The designers of Ada
chose only to allow nondeterministic choice
among the accept alternatives of a select
statement. This design decision makes the
guard-scheduling problem in Ada much easier
and, in particular, obliviates the need for
randomization.

V.mmfT, L. G. 1984a. Short monotone formulae
for the majority function. J. Alg. 5, 3, 363-366.
A probabilistic approximation of a determinis-
tic boolean function can yield simple circuits
having a small proportion of inputs that cause
wrong outputs. Independent probabilistic

approximations of the same function can be
combmed to reduce the probability y of error. In
this paper Valiant uses such a technique to
obtain 0(n53)-size monotone formulas that
compute the majority function of n boolean
variables.

VmImT, L. G. 1984b. A theory of the learnable.
Commun. ACM 27, 11, 1134-1142. Valiant
introduces a formal framework for the proba-
bilistic analysis of algorithms that learn sets
defined on a predetermined universe.

VNmT, L. G. 1982. A scheme for fast parallel
communication. SIAM J. Comput. 11, 2 (May),
350–361. Valiant gives a distributed ran-
domized algorithm for routing packets from

ACiV[Computing Surveys, Vol. 26, No. 1, March 1994

On Randomization in Algorithms “ 85

unique sources to unique destinations in an
n-dimensional binary cube in O(log N) time,
where N = 2 n is the number of nodes in the
network, with high probability.

VALIANT, L. AND BREBNER, G. 1981. Universal
schemes for parallel communication. In Pro-
ceedings of the 13th Annual ACM Symposium
on the Theory of Computmg. ACM, New York,
263-277. This paper extends Valiant’s [1982]
message-routing algorithm to asynchronous
networks.

VALOIS, D. 1987. Algorithms probabilistes: Une
anthologies. Master’s thesis, D6partement
d’informatique et de recherche op&-ationnelle,
Universit6 de Montr6al. This paper covers a
number of probabilistic algorithms including
matrix multiplication and inversion, manipu-
lation of polynomials, set equality, Byzantine
Generals, and cryptography.

VAN DE SNEPSCHEUT, J. L. A. 1981. Synchronous
communication between asynchronous compo-
nents. Infi Process. Lett. 13, 3 (Dec.), 127–130.
The author presents a distributed algorithm
for CSP output guards in which processes
are related by a tree structure. A probabilistic
algorithm for output guards is described in
Section 3.2.

VAZIRANI, U. V. 1987. Efficiency considerations
in using semi-random sources. In Proceedings
of the 19th Annual ACM Symposmm on the
Theory of Computing. ACM, New York,
160– 168. Efficient algorithms for using semi-
random sources are presented.

VAZIRANI, U. V. AND VAZIRANI, V. V. 1989. The
two-processor scheduling problem is in random
NC. SIAM J. Comput. 18, 6, 1140-1148. An
efficient, randomized, parallel solution to the
well-studied two-processor scheduling problem
is presented.

VPiZIRANI, U. V. AND VAZIRANI, V. V. 1985. Ran-
dom polynomial time is equal to semi-random
polynomial time. In Proceedings of the 26th
Annual IEEE Symposium on the Foundations

of Computer Science. IEEE, New York,
417-428. This paper analyzes the behavior of
randomized algorithms where perfectly ran-
dom sources are substituted with sources which
have small bias and dependence. It shows that
if a problem can be solved by a polynomial-time
Monte Carlo algorithm which has access to a
true source of randomness, then the same prob-
lem can be solved using an arbitrarily weak
semirandom source.

VISHKIN, U. 1984. Randomized speed-ups in par-
allel computation. In Proceedings of the 16th
Annual ACM Symposium on the Theory of
Computmg. ACM, New York, 230-239. Vishkin
considers the problem of computing the posi-
tion of each element of a linked list, given the
length n of the list. He presents a probabilis-
tic algorithm for this problem with running
time 0(n/p + log n log* n) using p processors.

VITTER, J. S. AND FLAJOLET, P. 1990. Average-
case analysis of algorithms and data struc-
tures. In Handbook of Theoretical Computer

Science. Vol. A. Algorithms and Complexity.
Elsevier and The MIT Press, New York/
Cambridge, Mass., 432-524. Vitter and Flajolet
present analytic methods for average-case
analysis of algorithms, with special emphasis
on the main algorithms and data structures
used for processing nonnumerical data. Prob-
lems considered include sorting, searching,
pattern matching, register allocation, tree
compaction, retrieval of multidimensional data,
and efficient access to large files stored on
secondary memory. The main mathematical
tools used include generating functions (for
recursively defined structures), statistics of
inversion tables (for sorting algorithms), and
valuations on combinatorial structures (for
trees and structures with tree-like recursive
decomposition, such as plane trees, multi-
dimensional search trees, quicksort, and algo-
rithms for register allocation and tree
compaction).

VON ZUR GATHEN, J. 1991. Tests for permutation
polynomials. SIAM J. Comput. 20, 3 (June),
591–602. An element of a finite field Fg[x] is
called a permutation polynomial if the map-
ping Fq e F~ induced by it is bijective. A prob-
abilistic algorithm for testing this property is
given.

VON ZUR GATHEN, J. AND SHOUP, V. 1992. Com-
puting Frobenius maps and factoring polyno-
mials. In Proceedings of the 24th Annual ACM

Symposium on the Theory of Computing. ACM,
New York, 97–105. A probabilistic algorithm
for factoring univariate polynomials over finite
fields is presented whose asymptotic running
time improves upon previous results.

WEIDE, B. W. 1978. Statistical methods in algo-
rithmic design and analysis. Ph.D. thesis, Rep.
CMU-CS-78-142, Computer Science Dept.,
Carnegie-Mellon Univ., Pittsburgh. An early
survey of probabilistic algorithms and analysis.

WELSH, D. J. A. 1983. Randomized algorithms.
Discr. Appl. Math. 5, 1, 133-146. This is a
well-written introduction to randomized algo-
rithms. Welsh discusses probabilistic algo-
rithms for checking polynomial identities, pri-
mality, matrix and polynomial multiplication,
and deciding whether a graph has a perfect
matching. The work also contains a nice discus-
sion on random polynomial time, random log-
space, and the probabilistic hierarchy.

WHANG, K.-Y., VANDER-ZANDEN, B. T., AND TAYLOR,
H. M. 1990. A linear-time probabilistic
counting algorithm for database applications.
ACM Trans. Database Syst. 15, 2 (Sept.), 208-

229. A probabilistic technique called linear
counting, based on hashing, for counting the
number of unique values in the presence of
duplicates is presented in this paper.

ACM Computing Surveys, Vol. 26, No 1, March 1994

86 “ R. Gupta et al

WYLLIE, J. C. 1979 The complexity of parallel
computation. Tech Rep TR 79-387, Dept of
Computer Science, Cornell Univ , Ithaca, N.Y.
Wyllie conjectures that there M no optimal
speedup parallel algorlthm for n/log n proces-
sors for the problem: given a hnked list of
length n, compute the distance of each element
of the linked lmt from the end of the hst.
However, Vishkin showed that such optimal
speedup can be obtained via randomization
(see Section 4).

ZIPPEL, R. 1979. Probabdistlc algorithms for
sparse polynomials. In LSSAC ’79: Proceedings

of the Intern at~onal Symposium on Symbohc

and AlgebraLc Computation. Lecture Notes m
Computer Science, vol. 72. Springer-Verlag,
New York, Zlppel discusses probablhstlc meth-
ods for testing polynomial identities and prop-
erties of systems of polynomials.

ZUCKERW, D. 1991. Simulating BPP using a
general weak random source. In Proceedings of

the 32nd Annual IEEE Symposium on the

YAO, A. C. 1991. Lower bounds to randomized
Foundations of Computer Science. IEEE, New

algorithms for graph properties. J. Corn-
York, 79–89. Using the weak random source

put Syst. Set 42, 3, 267–287. Yao shows that
defined in Zuckerman [1990], this paper shows

O(n(log n)l 112) edges must be examined by any how to simulate BPP and approximation algo-

randomized algorithm (as opposed to Q(nz) rithms m polynomial time using the output

by any determimstic algorithm) for determin-
from a such a source.

ing any nontrivial monotone-graph property ZUCKERMAN, D 1990. General weak random

An earlier version of this paper appeared in
Proceedings of the 28th Annual IEEE Sympo-

sium on the Foundations of Computer Science,
1987

YAO, A. C. 1979 The complexity of pattern
matching for a random string. SIAM J. Com-

put. 8, 3 (Aug.), 368-387. Yao proves that the
minimum average number of characters which
need be exammed in a random string of length
n for locating patterns of length m, in an
alPhabet Wth q symbols, iS @([log~((n –

m/in m) + 2)]) lf m S n < 2m and
O(([logq ml/m)n) if n >2 m. This confirms
Knuth et al’s [1977] conjecture.

sources. In proceedings of the 31st Annual

IEEE Symposium on the Foundations of Com-

puter Science IEEE, New York, 534-543. A
pseudorandom generator that depends only on
a weak random source is exhibited By a weak
random source it is meant that (1) the source is
asked only once for R random bits and (2)
the source outputs an R-bit string such that no
string has a probability more than 2-a R of
being output, for some fixed 8>0. This paper
shows how to simulate RP using a string from
a ~-source in time n 0 ‘lOgn‘, or in polynomial
time under the Generalized Paley Graph Con-
jecture. See Zuckerman [1991] for a correction
to a result in this paper.

Recewed May 1991; final revlslon accepted October 1993

ACM Computmg Surveys, Vol 26, No 1, March 1994

