StarCligue: Guaranteeing User Privacy in Social Networks
Against Intersection Attacks

Krishna P. N. Puttaswamy, Alessandra Sala, and Ben Y. Zhao
Computer Science Department, University of California at Santa Barbara

{krishnap, alessandra, ravenben}@cs.ucsb.edu

ABSTRACT

Building on the popularity of online social networks (OSIssch
as Facebook, social content-sharing applications all@rsite form
communities around shared interests. Millions of userddwide

1. INTRODUCTION

Building on the popularity of online social networks (OShkg
Facebook, social content-sharing applications allowsuseform
communities around shared interests. Millions of userddwide

use them to share recommendations on several resource® on th
web. Facebook application platform alone hosts nearlyGRdp-

use them to share recommendations on everything from maodic a
books to resources on the web. However, their increasing-pop

larity is beginning to attract the attention of maliciousaakers.
As social network credentials become valued targets ofhpids
attacks and social worms, attackers look to leverage camipeal
accounts for further financial gain.

In this paper, we analyze the state of privacy protectionoin s

cial content-sharing applications, describe effectiveguy attacks
against today’s social networks, and propose anonymiza¢ioh-

niques to protect users. We show that simple protection mxech
nisms such as anonymizing shared data can still leave upers o

to social intersection attacks, where a small number of compro-
mised users can identify the originators of shared contdodel-
ing this as a graph anonymization problem, we propose toigeov

users withk-anonymity privacy guarantees by augmenting the so-

cial graph with “latent edges.” We identiftarClique, a locally
minimal graph structure required for users to atteianonymity,
where at worst, a user is identified as onekgbossible contrib-

utors of a data object. We prove the correctness of our approa

using analysis. Finally, using experiments driven by tsatem
the del.icio.us social bookmark site, we demonstrate thetjmal-
ity and effectiveness of our approach on real-world systems

Categories and Subject Descriptors

H.3.5 [Information Systemg): Online Information Services-Bata
sharing, Web-based services; K.6.5 [Computing Milieux]: Secu-
rity and Protection—Hwvasive software, Unauthorized access

General Terms
Security, Design, Measurement

Keywords

Online Social Networks, Privacy, Intersection Attakkanonymity,
Graph Anonymization

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CoNEXT' 09, December 1-4, 2009, Rome, Italy.

Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

plications [26], many of them provide recommendations leefv
friends for everything from music and books to restaurants)-
sites, and travel recommendations [1, 2]. Given the suczkete
social application model, we envision a future where sacialit
can dramatically improve the effectiveness of Internetiapfions.
For example, users can share browsing histories to help avali-
cious web sites, or share web search results to improve teyqu
of searches [19].

While the benefits of these applications are unquestiontisg
can potentially expose their users to significant compresiis pri-
vacy by revealing private information about their users.isTih
particularly a cause for concern given recent reports @fcitrs
trying to compromise social network accounts using botlsiihg
attacks [3, 28] and social worms [12, 25]. In addition, recstnd-
ies have shown that social network user credentials arenzapyi
target of botnets, and thousands of social network useruatso
have been stolen by active Internet botnets [10, 27]. In tawly-
sis of the Torpig botnet [27] shows that five of the top ten doa
targeted for user credentials were social networks. Madvear-
thors can use a compromised account to stealthily monitsedsu
friends’ activity over a long period of time to gather sensitinfor-
mation. This data can later be used to customize spam tofigpeci
users to increase the effectiveness of spam attacks [13].

Defending against these client-side attacks is a chalermiob-
lem. Our analysis shows that traditional anonymizatioihmépues
are insufficient, and a mathematically rigorous solutioméses-
sary. For example, simply removing the identities of useomf
the data they contribute cannot protect user privacy — ugisg
two compromised accounts in a user’s neighborhood, ankattac
can perform asocial intersection attack and identify the source of
shared data with very high accuracy. More compromised axsou
leads to improved accuracy. This attack is highly effedtiveocial
content sharing applications, and uses only data avaiiagige the
applications, making it nearly impossible to detect.

The goal of this paper is to improve user privacy against such

client-side attacks and make it impossible for attackerdetini-
tively identify the source of a piece of shared data. Iniglgi, our
approach “augments” the structure of the social network séiec-
tive friendship edges we call “latent edges,” so that eaeh atsains
guaranteed privacy in the form &fanonymity. This means any at-
tacker(s) can at best identify the source of a data objecnasna-
ber of a group of users [29]. We model this problem as a social

AppServer

AppServer

Figure 1: A typical social network architecture: third party apps. ar e
hosted on remote servers, and are accessed via the socialwetk.

graph anonymization problem, where users are protectedaby “
tent” edges between her and her socially-close (two or thogg
neighbors. Our objectives are to provig@vable k-anonymity for
application users, and to do so usingiaimal number ofsocially-

close latent edges. The resulting system is tunable, so OSN oper-
ators can use parameters to navigate the tradeoff betwHeredt
levels of guaranteed privacy and the associated costs ofatent
edges.

This paper makes four key contributions: First, we analywe t
privacy problem in today’s social content sharing appiaa, and
identify the social intersection attack in Section 2. Using real
datasets, we show that this attack can be highly effectivéoen
day’s social networks using only a small number of compreuhis
accounts. We also show that this attack cannot be addregsed b
prior graph anonymization techniques in Section 3. Secuom,
reduce this privacy problem to a graph anonymization prokile
Section 4, and describe a graph evolution approach to maufy
social graph to protect user privacy. We identify a grapbhcstre
calledSarClique that guaranteek-anonymity. Deleting any edge
from this structure invalidates theanonymity property provided
by this structure. We also present several optimizationedoce
the number of latent edges added to the social graph. The@dnw
alyze our solution in Section 5 to prove its privacy and miality
properties, and bound the number of latent edges addedllyFina
in Section 6, we evaluate our design using real social gréphs
several online social networks, and use a detailed casg sfulle
del.icio.us social bookmark service to demonstrate thsilbdiy
of our approach.

2. THREATS AND POTENTIAL DEFENSES

We begin by examining the issue of privacy in social content-
sharing applications. To start, we present the standardeosbcial
network (OSN) architecture and describe a sample conteartrgy
application. We then show how compromised users (alsoreafer
to as attackers) can launchsacial intersection attack to identify
the owner of shared content, and evaluate its effectiveness-
day’s social networks. Finally, we discuss several poatisiolu-
tions, their tradeoffs, and the intuition behind our choapproach.

2.1 OSNs and Application Background

Figure 1 depicts the architecture of a typical OSN like Facéb
which supports third-party applications run on remote sexvThe
social graph and user data are stored at the OSN site in a&rclust
or a “cloud.” Third party applications run on their own sas/@s-
ing the API provided by the OSN, store and process applicatio
content locally, but interact with users through the OSN:dBaok
Application Platform and OpenSocial are two popular exas oif
platforms with this architecture. The threats to privacyidentify
in this paper are common to these centralized architegtasasell
as distributed architectures used by Tribler [24], FTN [EHd So-
cialSearch [19]. However, given that centralized arcliitess are

Figure 2: The social interaction attack: UserC' has 6 friends in the
social network. Compromised friendsA and B perform the attack by
intersecting their respective social circles, yielding”.

Social Network Crawl Date | % of the Graph Source

del.icio.us Dec. 2008 6.4 our crawlers

Facebook NY Network| March 2008 45.0 30

Flickr Jan 2007 26.9 20

LiveJournal Dec 2006 95.4 20

MySpace Oct 2006 0.08 [6]

Orkut Oct 2006 11.3 [20]

Youtube Jan 2007 unknown [20]

Table 1: Statistics of the Social Network Datasets.

highly prevalent today, with millions of users, we focusyah the
centralized architecture in this paper. We leave extenttiisgyvork
to the distributed architectures for future work.

While users in this application model are vulnerable to lootim-
promised users as well as malicious third-party applicatiove
will focus on user-level attacks in this paper. Verifying ttrust-
worthiness of third party applications is a challengingijpeon that
requires both technical and non-technical solutions. Gfweteo
address this is the Facebook verified application prograhichw
attempts to authenticate and “verify” applications forgep data
access by hand [14]. In contrast, just two malicious or campr
mised users can launch a client-side attack passively wiitinmal
start-up costs, and is much more difficult to detect.

Example application. To illustrate the threats to user pri-
vacy in current social applications, we consider the exangpla
social web-reputation application where users sharegsiifi the
safety/trustworthiness of web sites they visit and warir fhiends
against potential phishing or malware sites. Users inatplug-in
in their browser that stores the URLs they visit in this sbeja
plication. Each user’s browsing history is stored on a tipiagty
server. Using this data, application users can coopehativdge
the credibility of a site based on how many of their friends tie
site often, and discover similar websites. For example nwehaser
visits a new sitewww.airtickets.com, the local browser plugin
queries the application server for this URL, and returnsitimaber
of friends that regularly use this website, and any postethings
about the website.

Recent events have shown that a user’s web browsing habhits ca
reveal extremely personal information about them [8]. Efane,
users wary of revealing too much private information migigitate
to adopt applications like this. To encourage user padiap,
current applications adopt the standard approach of jusbvang
the contributing user’s identity from any shared data. Buie
will show next, this simple approach can be easily circurntegn
by more intelligent privacy attacks such as the social ggetion
attack.

100

©
o

80

70

Percentage of Nodes (CDF)

60 LiveJournal == SV |
Delicious oo
50 : : ‘ ‘ . Facebook —H—
1 2 3 4 5 6 7 8 9 10

Worst Case Intersection Set Size for 2 Colluders

Figure 3: Worst case impact of intersection attack whertwo compro-
mised users intersect their local graph.

2.2 The Social Intersection Attack

A social intersection attack can identify the original owner of
anonymized shared data objects. It can be used by compmbmise
users, for example, to find out about the web browsing halits o
a common friend. In this attack, two or more compromisedsaiser
in nearby social circles can periodically perform an ingeton of
their friend lists, as well as of the shared content theyinftam
the social application. The common content observed bytall a
tackers is likely to have come from a common friend. Therehinig
be false positives for popular conteety. different friends might
have all visited jwwv.google.com)], but for uncommon content, this
technique will identify the owner with high accuracy.

Figure 2 shows an example of this attack. Compromised fsiend
A and B are attacking usef'. In the URL reputation sharing ap-
plication, A and B both input the same URL to the application, and
perform an intersection of their results and the local gtapblogy.
SinceC is the only friend they share, common content (URLS) can
be attributed ta”.

2.2.1 Impact of the Intersection Attack

There are three key properties of this attack: First, #aglica-
tion independent in that it only relies on the social network struc-
ture. Second, users can perform this attpatsively by sending
regular application queries to the target without fear dedgon.
Third, this attack requires only two attackers and becomesem
powerful with additional attackers. Supernodes with higgrée in
the social graphi.e. very popular users with many friends, are ex-
tremely vulnerable. Their privacy can be compromised if smgall
fraction of their friends turn into compromised users (tackers).

A natural question to ask next isiow vulnerable are users to
this intersection attack in social networks today? We answer this
question by analyzing real social graph topologies fronesguop-
ular OSNs: del.icio.us, MySpace, Facebook, Flickr, Livedal,
Orkut, and YouTube. We use traces from prior measuremedt stu
ies [6, 20, 22], our prior work [30], and newly crawled datarfr
del.icio.us (Table 1).

We run an experiment to evaluate each node’s vulnerabdity t
this attack if some of her friends are compromised. For eacken
x with degree> 2, we list its one-hop friends. We then take every
possible pair of her friendg, and f,, and compute the number
of common friendsf, and f; share. Iff, and f, perform a social
intersection attack, this number indicates the size ofritersection
set containinge. For each of our social network graphs, we choose
10,000 random nodes and perform this test on each node. étor ea
user, we take the minimum intersection set size from all ik

100

0
[
8
3 80
©
o 60
8
c
g 40
[*
e 20 sgg e Facebook NY Worst —— |
LQL Facebook NY Median =&
) 0 ‘ ‘ ‘ Facebook NY Best -
1 2 3 4 5 6 7 8 9 10

Size of the Intersection Set (2 Colluders)

Figure 4: Distribution of the intersection attack results whentwo com-
promised users attack Facebook.

attacks. We plot the distribution of this value for all 10Kets in
Figure 3. We see that across all social networks, nearly 70%eo
users have a worst case size of 1. This means that, for thesg us
there exists a subset of only two friends that can uniquednticly
this user via intersection attack.

In Figure 4, we plot the minimum intersection set size (worst
case), the best case, and median values for the Facebodk grap
Roughly half of all Facebook users are likely to be uniquelgni-
tified (value of 1) if two of their random friends are compreenl.
These results are consistent across all seven networkeebpiiot
only Facebook for brevity.

2.3 Potential Defenses and Shortcomings

We now consider several potential approaches to defendgtiser
vacy against social intersection attacks. First, sincedtiack does
not rely on knowledge about the user identity, removing fities
from shared content is ineffective. A second option is fa &p-
plications to return data only from a random selection of-bop
friends for each query, instead of data from all one-homfite The
compromised users do not know which random friends areteelec
by the application, and hence cannot exactly match dataexsus
However, this approach hurts application functionalitg: protect
user privacy, a significant amount of data cannot be shartecebea
friends.

A third option is for the applications tdilute the data returned
to users by returning data from a random set of two or thrge-ho
friends, in addition to the data from one-hop friends, inpmse
to each query. This technique is also ineffective, sincackérs
can submit the same query multiple times and associate the co
mon data across queries with the one-hop friends that arayalw
common — thus eliminating the cover traffic from two or thtess
friends. Instead, a user’s friends-of-friends must be wsighl the
same frequency as her one-hop friends. This, in fact, leadsit
chosen approach: Alter the social graph to provide provpkle
vacy guarantees for each user by selectively adding “laeéges”
that connect her to her friends-of-friends.

Note that there is a fundamental tension between privadgero
tion and additional content sharing overhead across latiggs. At
one extreme, applications may return shared content frousets
to each user, effectively creating social links betweenuabrs.
This provides maximum privacy by hiding each user amongihe e
tire population, but completely removes any social “reteed of
shared data, and imposes significant load on the applicstivers.
The other extreme is to only share content from a user’s direc
friends, which provides no privacy. To manage this tradeot

adapt a solution based @éranonymity — a tunable approach to pri-
vacy first introduced in the database community [4, 5, 29]thla
context, we definé-anonymity to mean the property that the owner
of a data object can at worst be identified as one out of a grbup o
k users, each of which is equally likely to be its owner. This-pr
vides provably strong privacy, reduces the overheads frdding

too many links to the social graph, and allows the systemaimetr
off privacy and overheads using the paraméter

3. RELATED WORK

k-Anonymity in Databases. k-Anonymity was first introduced
in order to generalize entries in a table with sensitive dateh
that each tuple in the modified table has at ldast 1 other tuples
that are identical [29]. Several papers have used this pbrté:-
anonymity since then [5,16,18,23] to provide protectioprigacy-
sensitive user records while publicly releasing the datagee pro-
cess ofk-anonymization of a database is a NP-Hard problem [29],
and hence approximate-anonymity algorithms have been pro-
posed before [5]. However, the primary issue in applyings¢he
techniques to the problem in this paper is that the attacketom-
sider is “online,” within the system, and can gain some iegidor-
mation about the system. But the work branonymity assumes an
attacker that attempts to de-anonymize the data after itli$igly
released.

Social Network Anonymization. Recently, several social graph
anonymization algorithms are proposed to enable publéass of
social graphs without compromising user privacy [7,9, 1T, 3he
main goal here is to prevent attackers from identifying a osa
link between users based on the graph structure. There @se, h
ever, some key differences that set apart our work. Firsthén
graph anonymization problem also, similar to the work oadases,
the attacker is outside the system. In this paper, we conside
stronger attacker that is a participant of the network (dmeiy,
and can relate content received locally from the neighborhé
network. Second, the definition of privacy breach is diffetia the
two cases. In graph anonymization, a user privacy is brehithe
either a user is identified in the anonymized graph, or a liek b
tween two users is established. Our goal, however, is toeptev
attackers from linking the data transmitted by applicaiwith the
users. Given the abundance of the application data as wétleas
social graph, it is more challenging to provide anonymitgrgun-
tees. Finally, the solutions proposed by prior graph andrgtion
work [9, 31] provide global privacy properties (as in, cedfaiden-
tical neighborhoods, ot identical-degree nodes in the graph, etc.).
These global properties do not ensure that each node in tiverke
has sufficient degree to defend against the intersectiaclkatfor
example, the graph in the Figure 5 is the result of applyiegsthiu-
tion from the work on neighborhood anonymization [31] to eiab
graph — there are at least two identical neighborhoods igitigh.
While this graph is2-anonymous against neighborhdoattacks,
it does not protect against intersection attacks: Any twiuding
neighbors of any node in the graph can successfully perfarm a
intersection attack. This example can be extended suclit vat
videsk-anonymity against neighborhood attacks for arbitiabut
still any node remains vulnerable to intersection attackiy two
of its neighbors.

Social Network Measurement Studies. Recent measurement
studies [6, 20, 22] crawled various social networks and yeeal
the social graph properties. Facebook study [30] analyzedlif-
ference between the social graph, and the user interactaphg

LA vertexv's neighborhood is the induced subgraphssfone-hop
neighbors.

Figure 5: An example anonymized graph to defend against neighbor-
hood attacks [31], which is still vulnerable to intersectio attacks.

Facebook application study [22] analyzed the graph stractd
social applications. We thank the authors of these studieprb-
viding the traces.

4. GRAPH EVOLUTION FOR PRIVACY

Naturally formed social graphs tend to exhibit power-lawrée
distributions and high skew in node connectivity. Localstéring
is limited, and the lack of common friends makes users vaher
ble to the social intersection attack. Our solution to thishem
is to “evolve” the graph by adding “privacy buddies” to ussugh
that all users havé-anonymity, for some value of chosen by
the OSN operator. Adding these buddies creédit edges be-
tween buddies and users. The real and latent edges together p
vide k-anonymity. The evolved graph with privacy guarantees is
used by the applications to transfer data between usershisut
evolved graph is never revealed to the users directly. Asaltre
attackers do not know the list of friends sending data to theoh
cannot identify the exact source of the data they receive. ortty
change existing social networks need to do, to use our salus
to evolve the graph, and send the evolved graph to the afiplica
servers instead of the real social graph.

4.1 Assumptions, Goals and Attacker Model

We next list our assumptions, goals, and the attacker madel f
this paper. And later we describe detailed design of ourtieoiu
followed by our algorithms and optimizations.

4.1.1 Assumptions

We make two simple assumptions in our design. First, we as-
sume that the OSN operators and third-party applicationeser
are secured by the owners and do not compromise their users’ p
vacy. These sites have significant financial incentives &pkaeir
service secure: To attract and retain their users. The ed,usn
the other hand, may be lax in applying security patches andehe
be compromised due to various malware attacks. Second risur p
vacy mechanisms are irrelevant if user identities can beickstl
directly from shared data. So we assume that all data is lseclib
to remove identifiable user information. This scrubbing bap-
pen before the data leaves a trusted endpoint. Similarlassame
that the attackers cannot cross correlate applicationwigheout-
of-band information to identify its owner, as was done inergc
NetFlix privacy attack [21].

41.2 Goals

Our goal is to provide three key propertiesdd users in the
network irrespective of their social connectivity.
Provable k-Anonymity. We aim to provide:-anonymity to so-
cial application usersk-anonymity provides source anonymity and
the data receiver cannot tell the source even with sociatsattion
attack. Formallyk-anonymity is:

DEFINITION 1. The system provides k-anonymity to the source
(z) of an event &, if the probability that the attackers assign for x
to be the source of ¢ isless or equal to 1/k. In other words, the
attackers suspect at least & different nodes to be the likely sources
of &, with equal probability.

Low Overhead. Itis necessary to addinimal number of latent
edges to reduce the additional overhead on the social infcdsre
due to processing and data transfer of cover traffic alondptieat
edges.

Preserve Relevance of Cover Traffic. The latent edges added
should connect nodes that alese in social distance, so that the
cover traffic is still relevant to users. Nodes that are fartpart
have fewer “similarities” in interests and connecting themght
send highly irrelevant data to users.

4.1.3 Attacker Model

In the social application setting we consider, we assuméolhe
lowing attacker model:

1. A fraction) of the one-hop friends of a given userare

Source

Virtual edge

O —— Social edge
O Sparsely connected nodes

© Well connected nodes

Figure 6: The graph evolution process for a node. The node first se-
lects a subset of its neighbors. Then it builds a clique withie members
of this subset. Finally, it connects the clique members witlall the non-
clique members in the neighborhood. Latent or virtual edgesire added
in the process.

neighborhood nodes. The clique ferconsists ofr along with its
(k + f — 1) neighbors, that together form(a + f)-clique. The
Star consists of the one-hop friendsaofhat do not belong to the
cligue. Each member of the Star is connected witlffal- f — 1)

compromised. They can work both independently, and in members of the clique.

collusion to compromise honest user’s privacy.

StarClique provides two key properties: (a) StarCliquesjoles
provablek-anonymity to noder againstf one-hop colluders, (b)

2. The attackers have the entire social graph. They know thei giarclique is a locally minimal structure in the sense tiagdges

local graph, and can crawl the rest of the graph.

can be removed while still providing-anonymity againsy one-

3. We assume that only the attackers within one hop from a user hoP colluders. We formally prove the above properties int§,

x collude together to break’s privacy via passive intersec-
tion attacks.

we describe the intuition behind these two properties next.

k-Anonymity Intuition. There aref malicious nodes around
x. After building StarClique, thesg¢ nodes are either all in the

This is a stronger attack model compared to prior work onlyrap clique, or all of them are in the Star, or are distributed ket Star

anonymization [9,17,31] as the attackers here use bothpihleea-
tion data and the social graph to attack. In addition, passitacks
are harder to detect compared to active attacks. For example
active attacker can delete all but one of her friends, anigmasise
new data received to that friend. However, such attacks heill
easily detected. Finally, note that the actual number ofcicais
nodes around a nodedepends on its degreé,) and the fraction

p. We usef to represent the number of malicious neighbors of a

node throughout the paper, bfiis node specific, and = [d.p].
4.2 Graph Evolution

Here we present the details of our social graph evolutiorharec
nisms. First we introduce the StarClique graph structurd,then
present a simple algorithm to evolve the graph.

4.2.1 Overview of the Evolution Algorithm

We propose a heuristic that builds a structure around eagé no
by adding latent edges. This structure is called StarCligod is
shown in Figure 6. StarClique is mainly responsible for acinig
thek-anonymity property. We build this structure around eadateno
by going through all the nodes in the network one at a timeceSin
this structure is built locally around each node, it progideveral
opportunities to optimize the evolution algorithm to reeltice total

number of latent edges added to the entire network. We explor

several such optimizations to reduce the overall numbeateit
edges added to the graph.

4.2.2 SarClique Structure

Figure 6 depicts the StarClique structure and its formafidrere
are two main parts in the structure: The portion to the rightt{e
central sub-figure) is the clique, and the portion to theitetalled
the Star. Let the node that is evolved beand letf be the num-
ber of attackers around. A StarClique is built around: using its

and clique. If all of them are in the clique, since the cliqimss
(k+f), the attackers all séecommon friends. If allf attackers are
in the Star, then they all see at leastommon friends. If they are
distributed, between Star and clique, we still have thergetetion
of all the attackers one-hop neighborhood size t&bélence k-
anonymity is preserved in all the three cases (proof in §5).

Edge Minimality Intuition. Deleting any one edge in a Star-
Clique eliminates thé&-anonymity property above. For example,
if one of the edges in the clique is removed, then we can always
find a combination off nodes in the clique whose one-hop neigh-
borhood intersection giveg: — 1) common nodes instead &fin

the clique. Since we do not know the attacker a priori, we rieed
protect against every possible combinationfofiodes to achieve
k-anonymity. Along similar lines, we can show that removimg a
edge between Star and clique doesn’t preskraaonymity of Star-
Clique (proof in §5).

Function of Latent Edges. The latent edges added during
evolution are treated just like real edges between frierydshe
social applications. These latent edges, however, are isittles

to the users. As a result, the users do not know exactly which o
the new friends help them achieve privacy. Even if the neanfis
are revealed to the usefsanonymity is still preserved. However,
not revealing the latent edges further enhances privacttaskars
have to first guess the right latent friends protecting argivede,
and then attack a node. Hence we hide these latent frienastifr®
users.

4.2.3 Evolution Algorithm

With this background in mind, now we describe the evolution
algorithm. The evolution algorithm works on one node (st
a time, and it works in three steps. The first step in evolving a
nodez is to identify the closest neighborhood othat has at least

Algorithm 1 Evolution Algorithm: evolves the input graph to
produce an evolved graph.

Algorithm 2 Optimized Evolution Algorithm: evolution algorithm
annotated with the optimizations.

Graphg’ = Evolve_Graph (Graph)
l:g =g
2: [* Copy the original graph g into the evolved graph g’ */
3: forall z € V do
N(z)=10; i=1
while [N(z)| < (k+ f —1) do

4

5

6: N(z) = N(z) U g.neighbors(z,1)

7. /* Neighborhood is selected in the original graph */

8: i=1i41

9: end while

10: C =select(k + f — 1) random nodes fronV (z)

11: Cc=CuU{x}

12: Build_Clique(g’,C)

13: /* Edgesadded in g to build the clique structure around x */
14: Buwild_Star(g’, N(z),C)

15: /* Edgesadded in g to build the Sar structure around x */

16: end for
17: Returng’

(k + f — 1) nodes in it. Evolution starts with one-hop neighbor-
hood, and moves to two-hop, and beyond until it gets a biggmou
neighborhood. Selecting nearest neighbors first ensusgsttib
privacy buddies are closer in social distance. The secam ait
evolution is to select a subset@ + f — 1) nodes from the neigh-
borhood obtained from the first step, and builgka- f)-clique out

of them by adding latent edges. These cligue members acele
at random in this simple algorithm. The final step of evolati®

to connect all the members ofs neighborhood that do not belong
to the clique with all the members of the cliqgue by addingriate
edges. This process forms a structure as shown in Figurei§. Th
structure around: providesk-anonymity to the node:. We an-
alyze the security properties of this structure in more itléger.
The Evolve_Graph algorithm, described here, is presented in Al-
gorithm 1, and the notations used are listed in the Table 2.

4.3 Optimizing the Evolution Algorithm

Graphg’ = Evolve_Graph_Optimized (Grapj)

l:g =g

2: S(z) = {V’ nodes sorted in the decreasing order of dejgree
3: | Applying Optimization 3: Ordered Evolution above |

4: for all =z € S in decreasing order of degrele

5. N(z) = g.neighbors(z,1); i =1

6: | g (instead of ¢’) is used above to handle the side-effects of Edge Reuse
7. while |[N(z)| < (k+ f—1)do

8: N(z) = N(z) U g’ .neighbors(z,i)

9: Applying Optimization 2: Edge Reuse above |

10: if IN(z)] > (k+ f — 1) then

11: Apply Optimization 4: Limit to k Friends here |
12: end if

13: 1=1i+1

14: end while

15: C = Select_Clique(N(z))

16: | Applying Optimization 1: Select Clique above

17: C=CuU{x}

18: Build_Clique(g’)

19: Buwild_Star(g’, N(z),C)

20: end for

21: Returng’

the highest number of common nodes betwagiir) and N (z;),
where V¢ () includes only the nodes in the one-hop neighborhood
of a node.

Optimization 2: Edge Reuse. Sharing latent edges among the
neighboring nodes reduces the total number of latent edges intro-
duced. Before evolving a node, this optimization considers’s
most recent and evolved state that includes the latent exfges
instead ofz’s connectivity in the original graph. This reduces the
new edges added: As evolution progresses, more and mong late
edges are added, and the connectivity of nodes aroundreases.

As we mentioned before, our approach uses a local graph aug_ThiS means that’s neighborhood is more connected than in the

menting approach to protect users from malicious nodegrhad
link data to a particular user. This local approach may adatgel
number of latent edges to the graph. Therefore, we propesezse
optimizations to reduce the number of latent links addedhé¢oein-
tire graph. These optimizations significantly reduce thelber of
new latent edges added to the graph during evolution. Wey apl
optimizations toEvolve_Graph, and present an optimized algo-
rithm calledOptimized_FEvolve_Graph (shown in Algorithm 2)
that is annotated to show where each optimization is applied
Optimization 1: Select Cliqgue. Choosing the nodes that share
the maximum number of friends with z as the clique members dur-
ing the construction of StarClique around x decreases the number

of new latent edges added. While selecting the clique members
from the neighborhood, choosing the most well-connected-

f — 1) nodes, instead of random nodes, reduces the latent edge€Optimization 3: Ordered Evolution.

added significantly.Select_Clique function in the Algorithm 2
implements this optimization, where the well-connectedasoare

original graph and hence the number of new edges necessary to
evolve x is reduced significantly. Extending this optimization to
the whole network iteratively further reduces the total bemof
new edges added to the network during evolution. This optimi
tion implies that Algorithm 1 should use the evolved grgph the
loop instead of the original graph

Sde-effectsof Edge Reuse. This optimization should be carefully
applied. Whene is about to be evolved, if its new degree>is
k + f — 1 but its original degree was k + f — 1, then only the
original neighbors anéi= (k + f — |g.neighboréz, 1)) (that are
necessary to get a setof- f — 1 nodes) new neighbors need to be
considered. Similarly, if the new degree (after evolvingnsmf the
neighbors) is> k+ f — 1 and the old degree was alsok + f — 1,
then only the original degree needs to be considered.
Constructing the Star-
Clique structure from high degree nodes to low degree nodes re-
ducesthe overall number of latent edges added in the evolved graph.

chosen based on the number of friends shared between the nodeThe intuition behind this optimization is that when a sujoeie is

in the neighborhood and. This selection leads to clique reuse in
the neighborhood af, reducing the new edges added. Similarly,
applying this optimization iteratively to every node in thetwork
(V node x € V) leads to significant reduction in the overall number
of new latent edges added in the network.

Formally, the most well-connecte@ + f — 1) nodes used in
the optimization are thék + f — 1) nodesz;, in Ni(z), with

evolved, many of its neighbors can reuse the latent edgesdadd
to evolve the supernode. Since supernodes have a large numbe
of neighbors, many neighbors can benefit from the edges added
evolve the supernodes.

Optimization 4: Limit to k& Friends. Limiting the size of

the extended neighborhood of a node during evolution reduces the
number of latent edges added. If a nodex has< k + f — 1 nodes,

G = (V,E) Graph definition
T,y 2 Nodese G
N(x) Set of nodes in the neighborhood of the nade
g.neighbors(x,1) Set of all neighbors af at most hop away ing

dy Degree of the node
P Fraction of malicious one-hop neighbors
i Number of malicious neighbors of (f = [d.p])
C Subset of nodes iV (x)

Table 2: Notations used in this paper.

the unoptimized algorithm considers the larger neighbodhin-
crementally one hop at a time. It is quite likely that when the
neighborhood increases by one hop, the neighborhood sie go
significantly beyondk + f — 1. However, all the nodes in this
y-hop are not necessary to provideanonymity: We need only

l = (k+ f — |g.neighbor$zx, 1)|) additional nodes. Thus, we se-
lect only thel most well-connected nodes from outside the one-hop
neighborhood in this optimization.

Optimized Evolve Graph. The evolution process is depicted in
Figure 6, and the pseudo-code @ptimized_Evolve_Graph is
shown in Algorithm 2. In this algorithm, first, the nodes aneted

by their degree, and evolved in the order of their degreetista
from the highest. Second, evolution is applied on the ewbraph
repeatedly — this applies the edge reuse optimization. ekhdee
use the original graph to get the original degrees, and the evolved
graphg’ to maximize the number of reused edges during the neigh-
bor selection. This is necessary to handle the side-eftéatslge
reuse optimization, as described before. When the nodeelsas |
thank + f — 1 friends, its neighborhood in the evolved graph is
selected. We apply the Limit tb Friends optimization at this step.
Finally, Select Clique optimization is applied in this aopitzed al-
gorithm while choosing the clique members out of the neigkbo
StarClique is built for each evolved node aginolve_Graph.

5. ANONYMITY ANALYSIS

This section has three main parts. First, we introduce forma
notations and identify the conditions under whictanonymity is
preserved (see Theorem 1). Second, we present the prepeftie
StarClique that are necessary to providanonymity. Finally, we
quantify the total number of new edges added while builditag-S
Clique around a node.

5.1 Formal Notations andx-Anonymity

We represent the social network as a graghs (V, E), where
each user is mapped to a unique verteX” and the friend rela-
tionship between two usetisandy € V' is represented as an edge
(z,y). V isthe set of all vertices, anfl is the set of all edges. Each
edge is undirected, as it represents the friendship bettwaenser.
And an undirected edgér,y) € E is equivalent to two directed

a—

edges(z,y) and(y, x), where(x, y) represents that is a friend

of y and(y, =) represents thaj is a friend ofx.

In our model, each edge also represents the flow of informatio
—the flow of events between users in the social network. There
we can formally define:

e (z,y) is an undirected edge whefeandy are both senders
and receivers of events;

D e—
e (z,y) is a directed edge wheteis the sender ang is the
receiver of events.

An event is usually a message generated by the applicatioh, s
as a bookmark event in del.icio.us, that needs to be detivere

O X's neighbors

@ Source X @ Attackers in the X’s neighborhood

Figure 7: The attackers may be located in any position in StarClique,
we identify the three cases that cover the possible positisn

the source’s one-hop neighborhood. We aim to disseminatet&v
while providing provable privacy that the user’s identity pro-
tected no matter whictf one-hop neighbors collude (the com-
promised friend accounts). In order to prove the guarantées
our solution, we introduce the following definitions: (aj lebe

a nodec V andd, its degree; (b) letf (>= 2) be the num-
ber of one-hop neighbors af that are colluding against; (c) let

v =< T1,%2,...,Tf > be a vector of randomly selected nodes
from z’s one-hop neighborhood, and finally (d) let

B = {vg,|ve;, =< a},2%,...,a% > and zj € N(z)} be the
set of all possible combinations gf neighbors ofz, which has
size|B| = (%). According to our Definition 1 and the attacker
model, a noJe’sk-anonymity is preserved as long as there are at
leastk common friends in all possible intersections of theol-
luding one-hop neighbor subsets.

n_,

THEOREM 1. Given a user x in the social graph, if ;

N(z%) >k Vv, € B thenz’'sk-anonymity is preserved.

PROOF Letz be the source of a particular message sent to all
nodes inz’s neighborhood. Assuming that a random sef afodes
{z1,22,...,25} € N(z) that are receiving the message are mali-
cious, the probability that is recognized as the real sender has to
be less or equal t(%. In order to guarantee this bounded prob-
ability, at leastk nodes around thg attackers have to look as
possible sources. This means that thattackers have to share
k common neighbors. Formally, let, 12, .., y» ben nodes which
€ N(z1) N N(z2)N,...,\N(xy). So, if {y1,y2,.,yn}| > k
(note thatvi and j, y; # x;), then there are at leaktnhodes which
could have sent the message aridl identity is covered among
those nodes {y1,y2, .., yn }.

On the other hand, if{y1,y2, .., yn}| < k, then the real source
is identified with a probability> % which violates thé:-anonymity
requirement. Since we do not know the colluding neighbors of
a priori, any combination of’s neighbors of sizef should have
an intersection neighbor size greater than or equaltmpreserve
k-anonymity. This can be formalized &s., = {«},25, ..., 2%},
withi = 1,2, .., (%), N_ N(zi) >k O

5.2 Privacy via the StarClique Structure

The evolution algorithm protects privacy by building SthgGe
around nodes. The first step to prove #ianonymity property of
evolution is to identify the necessary conditions that ttegGlique
structure has to satisfy in order to provifleanonymity for a par-
ticular source). StarClique (Figure 6) is constructed arounth
two steps as follows: (1 lique: Build a cliqueC of k + f — 1
nodesc N(z) aroundz. Note that the edges i@ are bidirec-
tional. (2) Star: The remaining nodes N(z)\C are connected

to a total ofk + f — 1 nodes in the cliguie Each edge in this step is
directedfromthe clique nodeto the Star nodes. Directed edges are
necessary only to prove the structure minimality. We nea/gyin
Theorem2, that StarClique guarantédeanonymity, and no edge
can be removed from it to satisfy this property.

100

©
©

THEOREM 2. TheSarCliqueisalocally minimal structure pro-
viding k-anonymity against f one-hop colluding neighbors: It al-
ways guarantees this property and, if any one edgeisremoved from
it, it cannot guarantee the property in general.

Monterey Bay k=4 ——
Monterey Bay k=6 -3¢
Monterey Bay k=8 -
Monterey Bay k=10 »fz-

% of L. Edges of Path Len. x

PROOF. There are three possible locations tlfaattackers can 97
occupy in StarClique, as shown in Figure 7. For each of these, 2 3 4
prove k-anonymity and the minimality property. Latent Edge Length in the Original Graph

Case 1: f colluding nodes{y:,y2, ..., ys} are all in the clique.
Since the C'!Q!Je size is exacthy + f., each a.ttacker is connected Figure 10: Distribution of latent edge lengths in evolved Facebook
to the remainingk + f — 1 nodes in the clique and when they Monterey Bay graph ask changes.
collude, there aré remaining non-malicious nodes in the clique.
This implies thatk nodes appear to be the sender with probability

%, which means that the-anonymity property is preserved. Let us PROOF. The proof is divided in two parts as follows:

assume that one of thecolluding nodes hasé + f — 2 edges in Case 1. If d. < k + f, we still need each node to be hidden
the clique instead of + f — 1 (i.e. itis connected t& — 1 non- among at leask other possible senders, and hence our algorithm
malicious nodes instead &). In this caseﬂf:lN(yj) =k-1 will pick the nodes in its nearest neighborhood which corgtait
which does not satisfy the-anonymity property. leastk nodes before building a clique. Therefore, because a clique

Case2: [attackers{y:,ys, ..., ys} arein the Star. Eachnode in of k nodes has*-2t+/—1) gdges, the maximum number of edges
the star haé + f — 1 edges coming from the clique by construction are introduced when the nodes lie on a line topology. Herhee, t
even though there afe+ f nodes in the clique. Having attack- maximum number is:
ers in the star means that, in the extreme case, each attzaker

(k+)+ f-1)

exclude one different nodes in the clique, and so at nfasbdes —(k+f-1)=

in total. As a result, the final intersection set size of thackiers 2

is: m{;lN(yi) = k, which preserveg-anonymity. Now, let's as- K

sume that one of th¢ colluding nodes haél + f — 2 edges coming (k+ f— 1)(Lf —1) < (k+ f)2

from the clique instead df + f — 1. In this setting, the extreme 2

case intersection set size of the attacker@@lN(yi) =k—1. Case 2. If d, > k + f, the topological structure that adds the
This does not satisf§-anonymity, which means no edge can be maximal number of latent edges is thtar structure with the node
cut, proving the minimality. we are evolving at its center. In the star structure, eacghfeir

Case 3: Some of thef attackers are in the clique and some are of the central node has no edges to any other nodes. As a,result

in the Star. Formally, let be €]0, 1], and let[ef] be the number in order to construct the StarClique structure around a nogéh
of attackers in the clique anid1 — €) f | the number of attackers in degreed,,, our algorithm adds:w —(k+f—-1) =
the Star. Becausk f] attackers are part of the clique, the possible (k+ f — 1)(E£L — 1) edges to build the clique around As each
number of sources i + f — [ef]. There are[(1 — ¢)f] other i Indi i

' - of them is an undirected edge, the total numbékis- f — 1)(k +
attackers in the Star that are connected tp f — 1 nodes in the f —2). The remainingl, — (k + f — 1) of ’s neighbors need
clique instead of + f, as before. The attackers in the Star can 13 pe connected ttk + f — 2) nodes, which produces additional

at most eliminate one node each out of the possible f — [¢ /] [do — (k+ f — 1)](k + f — 2) edges. Therefore, the total number
sources. Putting together the results from the two setsathrs, of new edges is:

the remaining possible sources &r¢ f — [e¢f] — [(1—¢€)f] = k.

As a result,k-anonymity is preserved. To prove minimality, note k+f-Dk+f-2)+[de—(k+f-D)(k+f-2) =
that, if we cut an edge either from a node in the clique or a niode

the Star, we break the-anonymity property. Thg attackers can (k+f=2)(de) <de(k+f). U
be anywhere in the clique or in the Star. So if the removed &lge

incident on one of the attackers, thefl N (y;) = k + f — 1 — 6. EVALUATION

[ef1 = [(1 —€)f] = k — 1 < k, which breaksi-anonymity, thus We present experimental evaluation of evolution here.tFive
proving minimality. [J describe the experimental setup. Then, we evaluate thecingpa
5.3 Edges Introduced by StarCquue the various optimizations in terms of the total number of eelges

added to the evolved graph. Finally, we evaluate the imp&ct o
Here we bound the number of new edges added to the evolvedy, o tion on the social graghs. ¥ P

graph using the worst connectivity among a source’s neidtdom.
In this analysis we treat an undirected latent edge to besalguit 6.1 Setup

to two directed latent edges. We evaluate evolution using different OSN traces from priea-

THEOREM 3. In the worst case, the number of directed latent surement studies [6, 20,22,30]. Since the graphs from stesées
edges introduced for a node = with degree d,, islessthan are very large in size, running evolution on the full grapivasy
2
maz{(k + /)", du(k + f)} 3Itis 2 less thar(k + f) because each node in the star needs to be

2Note that the star members need to be connected with a total ofconnected with{k + f — 1) nodes by construction, and each node
only k + f — 1 nodes in the clique, and nét+ f, for minimality. is already connected to the source

G) + T T
& 1000 Unoptimized —+— E
n With Edge Reuse -
2 With Select Clique
4 With Order =B
o 100 With K Limitation ==-k==: .= ;
= "
24
s 10 3
5
g
- 1

5 10 15 20 25

k

Figure 8: Impact of optimizations on evolution of Facebook NY graph.
One additional optimization added to plots from top to bottom. The
plots are ordered in the order of the legends.

resource intensive. As a result, we use a combination oflsmdl
large graphs in our evaluation. We use smaller subgrapheate e
uate evolution in detail, to understand the impact of vegiopti-
mizations and measure evolution’s performance on diftenet-
works. Then, we use larger graphs from Facebook and deligio
to validate evolution’s performance on larger datasets.

We used Snowball sampling (or BFS), to sample smaller sub-
graphs from the social network traces. Snowball samplirtipés
methodology used in the crawls of many measurement stuéljes |
20,22,30]. In addition, snowball sample of a certain minimsize
is expected to preserve many of the topological propertieheo
social network [6,15]. The smaller subgraphs we used wesezef
20K nodes. For each experiment on a smaller subgraph, we-gene
ated 5 different subgraphs using Snowball sampling staftiom
different random points in the full network graph, ran evigo on
each subgraph 5 times, and present the averaged results.

25

20

15

10

-~ del icio.us —4—
Livejournal == >V |

Evolution Ratio

5
------- Facebook (NY) Y
0 MySpace -fzd-
5 10 15 20 25
k

Figure 9: Ratio of the total number of edges in the evolved graph to
the total number of edges in the original graph ask changes.

around 1350 in the unoptimized version to around 5 afteryappl
ing all optimizations. Similarly, the values fér= 25 goes down
from 2064 to 22. The main improvement comes from the Edge
Reuse optimization, with a relative reduction in the rafimearly

10 times. The next major reduction comes from Select Cligitle w

a reduction of nearly 4 times. Optimizations are applieceher
one particular order, but we expect the gain from each op&mi
tion to remain the same irrespective of the order. We useuthe f
optimized algorithm for the rest of the evaluation.

Evolution Ratio in Different Graphs. Figure 9 plots the evo-
lution ratio for different networks using the optimized aifghm.
For k = 5 most networks produce a ratio around 5. However, the
ratio for different networks diverges for highkr The observed ra-
tio mainly depends on the connectivity of the nodes in thelyes
measured using clustering coefficient. Myspace, for exantyals a
large clustering coefficient (nodes are densely conneatezhgst

To complement the results from smaller subgraphs, we use aeach other), hence leading to fewer new edges. We confirnaed th

crawl of the Facebook Monterey Bay network crawl of 260K aser
and a del.icio.us crawl with 320K users for a second set oéexp
iments. Given that Facebook had 60 Million users and dellisi
had 5 Million users during our crawl, the sample sizes of %43
and 6.4% (respectively) exceed the minimum portion of tip®to
ogy that preserves the topological structure of the graptb]J6 We
use these larger samples to validate our results from thdlesma
samples.

Finally, we implemented our algorithm using the Python Net-
workX module. We used two machines each with 32GB of RAM
and Quad-core processors to run our experiments.

6.2 Evolution Algorithm Evaluation

We first present the impact of various optimizations, anchthe
use the optimized algorithm for the rest of evaluation.
Metric: Evolution Ratio. We use the ratio of the total number
of edges in the evolved graph to the number of edges in thé orig
nal graph to evaluate evolution. The lower the ratio, theégoehe
algorithm.
Impact of Optimizations. We use subgraphs from the Face-
book New York network to evaluate the impact of our optimiza-
tions. Figure 8 plots evolution ratio for different valuefskg and
f = 1, for all four optimizations. The top line is for the unop-
timized algorithm, and one optimization is added to the joev
as we go down the plots. Figure 8 shows two orders of magni-
tude improvement in the performance of evolution due toouesi
optimizations. The ratio for a value é&f = 5 goes down from

networks with higher average clustering coefficient apedow
networks with lower coefficient in Figure 9.

The evolution ratio approaches the valué:difecause, to achieve
k-anonymity, each node must have a degree of at leaSince the
majority of nodes in our subgraphs have a degteg, to protect
these nodes, close toedges must be added, leading to a increase
by k. We ran this test on 20K subgraphs of seven different netsvork
(del.icio.us, Facebook, Flickr, LiveJournal, Myspacek@y and
YouTube). As the results were very similar across netwownkes,
present the results for the networks with the lowest ratip$hce)
and high ratios (del.icio.us, Facebook, LiveJournal).

Impact of Increasing f. In the experiments so far, we explored
the impact of the parametérwhile keepingf fixed at 1. Next, we
explored the impact of larger values pfwhile keeping the value
of k fixed. In these experiments, we found that increasing theeval
of f increases the evolution ratio linearly, thus leading toarall
evolution ratio proportional t& + f. As the result of varying: or

f is similar, we do not discuss this further.

Validation Using Larger Graphs. To validate the impact of
evolution on larger graphs, we used del.icio.us and Fadeblon-
terey Bay graphs. Because of the large size of these grapts, a
the associated time and memory necessary for evolution, eve w
restricted to values of < 10. Table 3 summarizes the results
from our runs. As expected, we see that the evolution ratinésar

on the value of in larger graphs as well. Given that these larger
graphs are sufficiently large to preserve the topologicaperties

of the social networks (as described before), we believettiea

k 4 6 8 10
del.icio.us 415]| 5.73| 7.32| 89
Monterey Bay 414 | 568 | 7.22 | 8.76

Table 3: The variation of evolution ratio with & for large graphs.

100

80
60

40

Random Friends
20

Given Social Distance (CDF)

Percentage of User Pairs at a

3-Hop Friends -- J
2-Hop Friends
0 ‘ ‘ 1-Hop Friends
0 2 4 6 8 10

of Common Bookmarks

Figure 11: CDF showing the relationship between the number of com-
mon bookmarks between users vs. their social distance.

evolution ratio resulting from running evolution on thelfsbcial
graphs to be linear oh.

Social Distance of Privacy Buddies. Next, we validate if evo-
lution chooses privacy buddies from nearby neighbors. \&ketpe
distribution of social distances in the original graph usréatent
edges for Monterey Bay in Figure 10. More than 99% of the edges
are only two hops away fdr < 6. This number goes down slightly
(to 98%) for larger values df (10). However, most of the chosen
privacy buddies are close to the evolved node in socialmistaWe
saw similar results in other networks as well.

6.3 Case Study: del.icio.us

Now we use our del.icio.us crawl to understand the relakigms
between the relevance of data exchanged between the uddirgean
social distance of the users. Then, we evaluate the applickvel
impact of evolution using the del.icio.us bookmark data.

6.3.1 del.icio.us Measurement
del.icio.us is a social bookmarking site where users care sto

bookmarks online, organize them by tags, and share them with

friends. The social networking feature lets users find otlsars
with interesting bookmarks, friend them, and obtain upsiatken
new bookmarks are created by their friends. The social rmtigo
the primary channel for discovering new content in del.igso As
a result, this data is ideal for understanding the relevaficiose-
distance privacy buddies.

Data Collection Methodology. We implemented a distributed
crawler in Python, and crawled del.icio.us from 32 machiaea

Random
0.316237

2-Hop
1.83435

3-Hop
1.05939

Hop Length
Common Bookmarks

1-Hop
8.45197

Table 4: Average number of common bookmarks between friends x-
hop away. Random represents the test where pairs of users weran-
domly chosen. Each value is averaged across 1M links (pairg$ osers).

k Orig Graph 3 4 5 6
Bookmarks/Node 5K 21.2K | 27.5K | 34.2K | 39.5K
Bookmark Ratio 1 4.2 5.5 6.8 7.9

Table 5: The number of bookmarks del.icio.us users receive from thei
one-hop friends before and after evolution, for differentk values.

6.3.2 Common Content vs. Social Distance

Now we examine the number of bookmarks that friends share
(have in common), and its relationship to social distancem<
mon bookmarks count is a measure of similarity in interesmsitsl
will help us to understand the utility of socially-closev@aty bud-
dies. Figure 11 shows the distribution of the number of boartks
shared between one-hop, two-hop, and three-hop friends;aam
domly selected pairs of users in the network. Randomly sedec
pairs are most likely far away in social distance. Figure idws
that content sharing between one-hop friends is the highast
expected, this sharing decreases with increase in thel stisia
tance: two-hop friends share much less than one-hop, btérbet
than three-hop. Finally, even three-hop sharing is muctebttan
content sharing between random pairs of users. Table 4 sth@vs
average number of bookmarks users share with their friearatiff
ferent social distance, which also shows the same trend.

6.3.3 Application-Level Impact

Evolution increases the total number of edges in the network
This increase in edges makes each user in the network send-and
ceive more data along these new edges. We quantify thisasede
data transfer using the del.icio.us bookmarks as exampalble b
shows the impact of increase in edges on del.icio.us useesrirs
of the ratio of total number of bookmarks users receive leeéod
after evolution. Since del.icio.us users get all the ong-fniends’
bookmarks, we calculated the number of total bookmarks ef th
one-hop users to obtain the numbers in the Table. Cleadyinth
crease in the total number of bookmarks (and hence the deadr
is also proportional to the value &f

In summary, these results (a) clearly support our decisi@ive
preference to nearby nodes as privacy buddies during éwolut
rather than random nodes, and (b) show that the OSN operators
can tune the overhead incurred on the application servesiiyg
the value ofk.

7. CONCLUSIONS

In this paper, we studied privacy risks involved in shariadgad
in today’s social content-sharing applications due to camgsed

very slow pace (1 request per second) from 17th of December to yser accounts. We identify tisecial intersection attack, a low-cost

26th of December 2008. We crawled both the social networfigra
and all the bookmarks stored by the users over their entatntie

on del.icio.us. Users have the option to make bookmarksaterjv
and hence we crawled all the publicly viewable bookmarksef t
users.

High-Level Statistics. In our crawls, we collected 480K user
profiles, 127 million bookmarks in total, with an averageusrd
267 bookmarks per user. This crawl accounts for 6.5% of tta to
user population, as of December 2008, and 80% of the tot&-boo
marks.

privacy attack that can be used by two or more compromise use
to identify the source of shared data objects in all conséatring
applications. It effectively links data objects with thewners rely-
ing only the social graph topology and the data shared byppk-a
cations. This attack invalidates naive solutions to mtégarivacy
risks.

Social networks can provide their users with privacy guaran
tees in the form ofc-anonymity by adding new edges to the so-
cial graph. We identify a graph structure we call StarCljcared
prove that it is a locally minimal structure providing eadeuwith

k-anonymity. A privacy-conscious OSN provider can buildrSta
Cliques around each user, and utilize several optimizatiordra-
matically reduce the cost of new edges. This type of “grahuev
tion” is practical for today’s social content-sharing nets, and
provides sufficient flexibility for OSN operators to makedbde-
cisions about the privacy and overhead tradeoff.

Acknowledgments

We thank Christo Wilson, the anonymous reviewers, and cep-sh
herd Augustin Chaintreau for many suggestions to improee th
paper. This work is supported by the National Science Founda
tion under grants 11S-847925, CNS-0916307 and CAREER CNS-
0546216. Any opinions, findings, and conclusions or recondae
tions expressed in this material are those of the authorsiamabt
necessarily reflect the views of the National Science Faimmla

8. REFERENCES
[1] Living social.
http://apps. facebook. conf|ivi ngsoci al .

[2] Movie recommendataiot t p: / / apps. f acebook.

com apps/ appl i cati on. php?i d=2558160538.

[3] AcoHIDO, B. Phishing attack spreads through facebook.

http://bl ogs. usat oday. com

t echnol ogyl i ve/ 2009/ 05/

phi shi ng- att ack- spreads- t hr ough- f acebook.
htm .

[4] AGGARWAL, G., FEDER, T., KENTHAPADI, K., KHULLER,
S., RNIGRAHY, R., THOMAS, D., AND ZHU, A.
Achieving anonymity via clustering. IRroc. of PODS
(20086).

[5] AGGARWAL, G., FEDER, T., KENTHAPADI, K.,

MOTWANI, R., PANIGRAHY, R., THOMAS, D., AND ZHU,
A. Approximation algorithms for k-anonymitylournal of
Privacy Technology (2005).

[6] AHN, Y., HAN, S., KWAK, H., MOON, S.,AND JEONG, H.
Analysis of topological characteristics of huge onlineiabc
networking services. IMMWV (2007).

BACKSTROM, L., DWORK, C.,AND KLEINBERG, J.
Wherefore art thou r3579x?: anonymized social networks,
hidden patterns, and structural steganograph{\AmWvV
(2007).

BARBARO, M., AND ZELLER, T. A face is exposed for AOL
searcher no. 4417749, August 2006. NY Times.

[9] HAY, M., MIKLAU, G., ENSEN, D., TOWSELY, D., AND
WEIS, P. Resisting structural re-identification in anonymized
social networks. IfProc. of VLDB (2008).

HoLz, T., ENGELBERTH, M., AND FREILING, F. Learning
More About the Underground Economy: A Case-Study of
Keyloggers and Dropzones, 2008. Reihe Informatik.
TR-2008-006.

HUANG, Q., WANG, H. J.,AND BORISOV, N.
Privacy-Preserving Friends Troubleshooting Network. In
Proc. of NDSS (2005).

JoNES, K. C. Facebook expands security tools while
combating phishing attack. InformationWeek, May 2009.

[7]

(8]

[10]

[11]

[12]

[13] KANICH, C., KREIBICH, C., LEVCHENKO, K., ENRIGHT,
B., VOELKER, G., AXSON, V., AND SAVAGE, S.
Spamalytics: an empirical analysis of spam marketing
conversion. IrProc. of CCS(2008).

KINCAID, J. Facebook verified apps now live. Washington

Post, May 2009.

LEE, S., Kim, P.,AND JEONG, H. Statistical properties of

sampled network®hysical Review E (2006).

LEFEVRE, K., DEWITT, D. J.,AND RAMAKRISHNAN, R.

Incognito: efficient full-domain k-anonymity. IRroc. of

S GMOD (New York, NY, USA, 2005), ACM.

[17] Liu, K., AND TERZI, E. Towards identity anonymization on
graphs. InProc. of SGMOD (2008).

[18] MEYERSON A., AND WILLIAMS, R. On the complexity of

optimal k-anonymity. IrProc. of PODS (New York, NY,

USA, 2004), ACM.

MISLOVE, A., GUMMADI, K. P.,AND DRUSCHEL, P.

Exploiting social networks for internet search.Rroc. of

HotNets (2006).

MISLOVE, A., MARCON, M., GUMMADI, K. P.,

DRUSCHEL, P.,AND BHATTACHARJEE, B. Measurement

and analysis of online social networks.Rmoc. of IMC (Oct

2007).

NARAYANAN , A., AND SHMATIKOV, V. Robust

de-anonymization of large sparse dataset®rbt. of IEEE

X P (Oakland, CA, 2008).

[22] NAzIR, A., RAZA, S.,AND CHUAH, C.-N. Unveiling
facebook: A measurement study of social network based
applications. IrProc. of IMC (2008).

[23] PARK, H., AND SHIM, K. Approximate algorithms for

k-anonymity. InProc. of SGMOD (New York, NY, USA,

2007), ACM.

POUWELSE, J., GARBACKI, P., WANG, J., BAKKER, A.,

YANG, J., IoSUR A., EPEMA, D., REINDERS, M., VAN

STEEN, M., AND SIPS, H. TRIBLER: a social-based

peer-to-peer systentoncurrency And Computation (2008).

SELTZER, L. Koobface smacks facebook users. PC

Magazine blog, December 2008.

STONE, B. Facebook finally gives apps some love. NY

Times Bits Blog, May 20, 2009.

STONE-GROSS B., Cova, M., CAVALLARO, L., GILBERT,

B., SzypLowskKl, M., KEMMERER, R., KRUEGEL, C.,

AND VIGNA, G. Your botnet is my botnet: Analysis of a

botnet takeover. IProc. of CCS (2009).

SUDDATH, C. The downside of friends: Facebook’s hacking

problem. Time, May 2009.

SWEENEY, L. k-Anonymity: A Model for Protecting

Privacy.Intl. Journal of Uncertainty, Fuzziness and

Knowledge-based Systems (2002).

WILSON, C., BOE, B., SALA, A., PUTTASWAMY, K. P. N.,

AND ZHAO, B. Y. User interactions in social networks and

their implications. InProc. of EuroSys (April 2009).

[31] ZHou, B., AND PEI, J. Preserving privacy in social
networks against neighborhood attacksPtoc. of ICDE
(2008).

[14]
[15]

[16]

[19]

[20]

[21]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

