
StarClique: Guaranteeing User Privacy in Social Networks
Against Intersection Attacks

Krishna P. N. Puttaswamy, Alessandra Sala, and Ben Y. Zhao
Computer Science Department, University of California at Santa Barbara

{krishnap, alessandra, ravenben}@cs.ucsb.edu

ABSTRACT
Building on the popularity of online social networks (OSNs)such
as Facebook, social content-sharing applications allow users to form
communities around shared interests. Millions of users worldwide
use them to share recommendations on everything from music and
books to resources on the web. However, their increasing popu-
larity is beginning to attract the attention of malicious attackers.
As social network credentials become valued targets of phishing
attacks and social worms, attackers look to leverage compromised
accounts for further financial gain.

In this paper, we analyze the state of privacy protection in so-
cial content-sharing applications, describe effective privacy attacks
against today’s social networks, and propose anonymization tech-
niques to protect users. We show that simple protection mecha-
nisms such as anonymizing shared data can still leave users open
to social intersection attacks, where a small number of compro-
mised users can identify the originators of shared content.Model-
ing this as a graph anonymization problem, we propose to provide
users withk-anonymity privacy guarantees by augmenting the so-
cial graph with “latent edges.” We identifyStarClique, a locally
minimal graph structure required for users to attaink-anonymity,
where at worst, a user is identified as one ofk possible contrib-
utors of a data object. We prove the correctness of our approach
using analysis. Finally, using experiments driven by traces from
the del.icio.us social bookmark site, we demonstrate the practical-
ity and effectiveness of our approach on real-world systems.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Online Information Services—Data
sharing, Web-based services; K.6.5 [Computing Milieux]: Secu-
rity and Protection—Invasive software, Unauthorized access

General Terms
Security, Design, Measurement

Keywords
Online Social Networks, Privacy, Intersection Attack,k-anonymity,
Graph Anonymization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

1. INTRODUCTION
Building on the popularity of online social networks (OSNs)like

Facebook, social content-sharing applications allow users to form
communities around shared interests. Millions of users worldwide
use them to share recommendations on several resources on the
web. Facebook application platform alone hosts nearly 52,000 ap-
plications [26], many of them provide recommendations between
friends for everything from music and books to restaurants,web-
sites, and travel recommendations [1, 2]. Given the successof the
social application model, we envision a future where socialinput
can dramatically improve the effectiveness of Internet applications.
For example, users can share browsing histories to help avoid mali-
cious web sites, or share web search results to improve the quality
of searches [19].

While the benefits of these applications are unquestionable, they
can potentially expose their users to significant compromises in pri-
vacy by revealing private information about their users. This is
particularly a cause for concern given recent reports of attackers
trying to compromise social network accounts using both Phishing
attacks [3, 28] and social worms [12, 25]. In addition, recent stud-
ies have shown that social network user credentials are a primary
target of botnets, and thousands of social network user accounts
have been stolen by active Internet botnets [10, 27]. In fact, analy-
sis of the Torpig botnet [27] shows that five of the top ten domains
targeted for user credentials were social networks. Malware au-
thors can use a compromised account to stealthily monitor a user’s
friends’ activity over a long period of time to gather sensitive infor-
mation. This data can later be used to customize spam to specific
users to increase the effectiveness of spam attacks [13].

Defending against these client-side attacks is a challenging prob-
lem. Our analysis shows that traditional anonymization techniques
are insufficient, and a mathematically rigorous solution isneces-
sary. For example, simply removing the identities of users from
the data they contribute cannot protect user privacy – usingjust
two compromised accounts in a user’s neighborhood, an attacker
can perform asocial intersection attack and identify the source of
shared data with very high accuracy. More compromised accounts
leads to improved accuracy. This attack is highly effectivein social
content sharing applications, and uses only data availableinside the
applications, making it nearly impossible to detect.

The goal of this paper is to improve user privacy against such
client-side attacks and make it impossible for attackers todefini-
tively identify the source of a piece of shared data. Intuitively, our
approach “augments” the structure of the social network with selec-
tive friendship edges we call “latent edges,” so that each user attains
guaranteed privacy in the form ofk-anonymity. This means any at-
tacker(s) can at best identify the source of a data object as amem-
ber of a group ofk users [29]. We model this problem as a social

����� ����� �	�
������������� �	�
������������	� ��
����
Figure 1: A typical social network architecture: third party apps. ar e
hosted on remote servers, and are accessed via the social network.

graph anonymization problem, where users are protected by “la-
tent” edges between her and her socially-close (two or three-hop)
neighbors. Our objectives are to provideprovable k-anonymity for
application users, and to do so using aminimal number ofsocially-
close latent edges. The resulting system is tunable, so OSN oper-
ators can use parameters to navigate the tradeoff between different
levels of guaranteed privacy and the associated costs of newlatent
edges.

This paper makes four key contributions: First, we analyze the
privacy problem in today’s social content sharing applications, and
identify the social intersection attack in Section 2. Using real
datasets, we show that this attack can be highly effective onto-
day’s social networks using only a small number of compromised
accounts. We also show that this attack cannot be addressed by
prior graph anonymization techniques in Section 3. Second,we
reduce this privacy problem to a graph anonymization problem in
Section 4, and describe a graph evolution approach to modifythe
social graph to protect user privacy. We identify a graph structure
calledStarClique that guaranteesk-anonymity. Deleting any edge
from this structure invalidates thek-anonymity property provided
by this structure. We also present several optimizations toreduce
the number of latent edges added to the social graph. Third, we an-
alyze our solution in Section 5 to prove its privacy and minimality
properties, and bound the number of latent edges added. Finally
in Section 6, we evaluate our design using real social graphsfrom
several online social networks, and use a detailed case study of the
del.icio.us social bookmark service to demonstrate the feasibility
of our approach.

2. THREATS AND POTENTIAL DEFENSES
We begin by examining the issue of privacy in social content-

sharing applications. To start, we present the standard online social
network (OSN) architecture and describe a sample content-sharing
application. We then show how compromised users (also referred
to as attackers) can launch asocial intersection attack to identify
the owner of shared content, and evaluate its effectivenesson to-
day’s social networks. Finally, we discuss several potential solu-
tions, their tradeoffs, and the intuition behind our chosenapproach.

2.1 OSNs and Application Background
Figure 1 depicts the architecture of a typical OSN like Facebook,

which supports third-party applications run on remote servers. The
social graph and user data are stored at the OSN site in a cluster
or a “cloud.” Third party applications run on their own servers us-
ing the API provided by the OSN, store and process application
content locally, but interact with users through the OSN. Facebook
Application Platform and OpenSocial are two popular examples of
platforms with this architecture. The threats to privacy weidentify
in this paper are common to these centralized architectures, as well
as distributed architectures used by Tribler [24], FTN [11], and So-
cialSearch [19]. However, given that centralized architectures are

A B

C

Figure 2: The social interaction attack: UserC has 6 friends in the
social network. Compromised friendsA and B perform the attack by
intersecting their respective social circles, yieldingC.

Social Network Crawl Date % of the Graph Source
del.icio.us Dec. 2008 6.4 our crawlers

Facebook NY Network March 2008 45.0 [30]
Flickr Jan 2007 26.9 [20]

LiveJournal Dec 2006 95.4 [20]
MySpace Oct 2006 0.08 [6]

Orkut Oct 2006 11.3 [20]
Youtube Jan 2007 unknown [20]

Table 1: Statistics of the Social Network Datasets.

highly prevalent today, with millions of users, we focus only on the
centralized architecture in this paper. We leave extendingthis work
to the distributed architectures for future work.

While users in this application model are vulnerable to bothcom-
promised users as well as malicious third-party applications, we
will focus on user-level attacks in this paper. Verifying the trust-
worthiness of third party applications is a challenging problem that
requires both technical and non-technical solutions. One effort to
address this is the Facebook verified application program, which
attempts to authenticate and “verify” applications for proper data
access by hand [14]. In contrast, just two malicious or compro-
mised users can launch a client-side attack passively with minimal
start-up costs, and is much more difficult to detect.
Example application. To illustrate the threats to user pri-
vacy in current social applications, we consider the example of a
social web-reputation application where users share ratings of the
safety/trustworthiness of web sites they visit and warn their friends
against potential phishing or malware sites. Users installa plug-in
in their browser that stores the URLs they visit in this social ap-
plication. Each user’s browsing history is stored on a thirdparty
server. Using this data, application users can cooperatively judge
the credibility of a site based on how many of their friends use the
site often, and discover similar websites. For example, when a user
visits a new sitewww.airtickets.com, the local browser plugin
queries the application server for this URL, and returns thenumber
of friends that regularly use this website, and any posted warnings
about the website.

Recent events have shown that a user’s web browsing habits can
reveal extremely personal information about them [8]. Therefore,
users wary of revealing too much private information might hesitate
to adopt applications like this. To encourage user participation,
current applications adopt the standard approach of just removing
the contributing user’s identity from any shared data. But as we
will show next, this simple approach can be easily circumvented
by more intelligent privacy attacks such as the social intersection
attack.

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 N

od
es

 (
C

D
F

)

Worst Case Intersection Set Size for 2 Colluders

Orkut
LiveJournal

Delicious
Facebook

Figure 3: Worst case impact of intersection attack whentwo compro-
mised users intersect their local graph.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

C
D

F
 (

P
er

ce
nt

ag
e

of
 N

od
es

)

Size of the Intersection Set (2 Colluders)

Facebook NY Worst
Facebook NY Median

Facebook NY Best

Figure 4: Distribution of the intersection attack results whentwo com-
promised users attack Facebook.

2.2 The Social Intersection Attack
A social intersection attack can identify the original owner of

anonymized shared data objects. It can be used by compromised
users, for example, to find out about the web browsing habits of
a common friend. In this attack, two or more compromised users
in nearby social circles can periodically perform an intersection of
their friend lists, as well as of the shared content they obtain from
the social application. The common content observed by all at-
tackers is likely to have come from a common friend. There might
be false positives for popular content,e.g. different friends might
have all visited [www.google.com], but for uncommon content, this
technique will identify the owner with high accuracy.

Figure 2 shows an example of this attack. Compromised friends
A andB are attacking userC. In the URL reputation sharing ap-
plication,A andB both input the same URL to the application, and
perform an intersection of their results and the local graphtopology.
SinceC is the only friend they share, common content (URLs) can
be attributed toC.

2.2.1 Impact of the Intersection Attack
There are three key properties of this attack: First, it isapplica-

tion independent in that it only relies on the social network struc-
ture. Second, users can perform this attackpassively by sending
regular application queries to the target without fear of detection.
Third, this attack requires only two attackers and becomes more
powerful with additional attackers. Supernodes with high degree in
the social graph,i.e. very popular users with many friends, are ex-
tremely vulnerable. Their privacy can be compromised if anysmall
fraction of their friends turn into compromised users (or attackers).

A natural question to ask next is:how vulnerable are users to
this intersection attack in social networks today? We answer this
question by analyzing real social graph topologies from seven pop-
ular OSNs: del.icio.us, MySpace, Facebook, Flickr, LiveJournal,
Orkut, and YouTube. We use traces from prior measurement stud-
ies [6, 20, 22], our prior work [30], and newly crawled data from
del.icio.us (Table 1).

We run an experiment to evaluate each node’s vulnerability to
this attack if some of her friends are compromised. For each node
x with degree≥ 2, we list its one-hop friends. We then take every
possible pair of her friendsfa and fb, and compute the number
of common friendsfa andfb share. Iffa andfb perform a social
intersection attack, this number indicates the size of the intersection
set containingx. For each of our social network graphs, we choose
10,000 random nodes and perform this test on each node. For each
user, we take the minimum intersection set size from all potential

attacks. We plot the distribution of this value for all 10K users in
Figure 3. We see that across all social networks, nearly 70% of the
users have a worst case size of 1. This means that, for these users,
there exists a subset of only two friends that can uniquely identify
this user via intersection attack.

In Figure 4, we plot the minimum intersection set size (worst
case), the best case, and median values for the Facebook graph.
Roughly half of all Facebook users are likely to be uniquely iden-
tified (value of 1) if two of their random friends are compromised.
These results are consistent across all seven networks, butwe plot
only Facebook for brevity.

2.3 Potential Defenses and Shortcomings
We now consider several potential approaches to defend userpri-

vacy against social intersection attacks. First, since this attack does
not rely on knowledge about the user identity, removing identities
from shared content is ineffective. A second option is for the ap-
plications to return data only from a random selection of one-hop
friends for each query, instead of data from all one-hop friends. The
compromised users do not know which random friends are selected
by the application, and hence cannot exactly match data to users.
However, this approach hurts application functionality: To protect
user privacy, a significant amount of data cannot be shared between
friends.

A third option is for the applications todilute the data returned
to users by returning data from a random set of two or three-hop
friends, in addition to the data from one-hop friends, in response
to each query. This technique is also ineffective, since attackers
can submit the same query multiple times and associate the com-
mon data across queries with the one-hop friends that are always
common – thus eliminating the cover traffic from two or three-hop
friends. Instead, a user’s friends-of-friends must be usedwith the
same frequency as her one-hop friends. This, in fact, leads to our
chosen approach: Alter the social graph to provide provablepri-
vacy guarantees for each user by selectively adding “latentedges”
that connect her to her friends-of-friends.

Note that there is a fundamental tension between privacy protec-
tion and additional content sharing overhead across latentedges. At
one extreme, applications may return shared content from all users
to each user, effectively creating social links between allusers.
This provides maximum privacy by hiding each user among the en-
tire population, but completely removes any social “relevance” of
shared data, and imposes significant load on the applicationservers.
The other extreme is to only share content from a user’s direct
friends, which provides no privacy. To manage this tradeoff, we

adapt a solution based onk-anonymity – a tunable approach to pri-
vacy first introduced in the database community [4, 5, 29]. Inthis
context, we definek-anonymity to mean the property that the owner
of a data object can at worst be identified as one out of a group of
k users, each of which is equally likely to be its owner. This pro-
vides provably strong privacy, reduces the overheads from adding
too many links to the social graph, and allows the system to trade
off privacy and overheads using the parameterk.

3. RELATED WORK
k-Anonymity in Databases. k-Anonymity was first introduced
in order to generalize entries in a table with sensitive datasuch
that each tuple in the modified table has at leastk − 1 other tuples
that are identical [29]. Several papers have used this concept of k-
anonymity since then [5,16,18,23] to provide protection toprivacy-
sensitive user records while publicly releasing the dataset. The pro-
cess ofk-anonymization of a database is a NP-Hard problem [29],
and hence approximatek-anonymity algorithms have been pro-
posed before [5]. However, the primary issue in applying these
techniques to the problem in this paper is that the attacker we con-
sider is “online,” within the system, and can gain some inside infor-
mation about the system. But the work onk-anonymity assumes an
attacker that attempts to de-anonymize the data after it is publicly
released.
Social Network Anonymization. Recently, several social graph
anonymization algorithms are proposed to enable public release of
social graphs without compromising user privacy [7,9,17,31]. The
main goal here is to prevent attackers from identifying a user or a
link between users based on the graph structure. There are, how-
ever, some key differences that set apart our work. First, inthe
graph anonymization problem also, similar to the work on databases,
the attacker is outside the system. In this paper, we consider a
stronger attacker that is a participant of the network (or online),
and can relate content received locally from the neighbors in the
network. Second, the definition of privacy breach is different in the
two cases. In graph anonymization, a user privacy is breached if
either a user is identified in the anonymized graph, or a link be-
tween two users is established. Our goal, however, is to prevent
attackers from linking the data transmitted by applications with the
users. Given the abundance of the application data as well asthe
social graph, it is more challenging to provide anonymity guaran-
tees. Finally, the solutions proposed by prior graph anonymization
work [9,31] provide global privacy properties (as in, createk iden-
tical neighborhoods, ork identical-degree nodes in the graph, etc.).
These global properties do not ensure that each node in the network
has sufficient degree to defend against the intersection attack. For
example, the graph in the Figure 5 is the result of applying the solu-
tion from the work on neighborhood anonymization [31] to a social
graph – there are at least two identical neighborhoods in thegraph.
While this graph is2-anonymous against neighborhood1 attacks,
it does not protect against intersection attacks: Any two colluding
neighbors of any node in the graph can successfully perform an
intersection attack. This example can be extended such thatit pro-
videsk-anonymity against neighborhood attacks for arbitraryk but
still any node remains vulnerable to intersection attack byany two
of its neighbors.
Social Network Measurement Studies. Recent measurement
studies [6, 20, 22] crawled various social networks and analyzed
the social graph properties. Facebook study [30] analyzed the dif-
ference between the social graph, and the user interaction graph.
1A vertexv’s neighborhood is the induced subgraph ofv’s one-hop
neighbors.

A

B

C
D

E

G

F

Figure 5: An example anonymized graph to defend against neighbor-
hood attacks [31], which is still vulnerable to intersection attacks.

Facebook application study [22] analyzed the graph structure of
social applications. We thank the authors of these studies for pro-
viding the traces.

4. GRAPH EVOLUTION FOR PRIVACY
Naturally formed social graphs tend to exhibit power-law degree

distributions and high skew in node connectivity. Local clustering
is limited, and the lack of common friends makes users vulnera-
ble to the social intersection attack. Our solution to this problem
is to “evolve” the graph by adding “privacy buddies” to userssuch
that all users havek-anonymity, for some value ofk chosen by
the OSN operator. Adding these buddies createslatent edges be-
tween buddies and users. The real and latent edges together pro-
vide k-anonymity. The evolved graph with privacy guarantees is
used by the applications to transfer data between users, butthis
evolved graph is never revealed to the users directly. As a result,
attackers do not know the list of friends sending data to themand
cannot identify the exact source of the data they receive. The only
change existing social networks need to do, to use our solution, is
to evolve the graph, and send the evolved graph to the application
servers instead of the real social graph.

4.1 Assumptions, Goals and Attacker Model
We next list our assumptions, goals, and the attacker model for

this paper. And later we describe detailed design of our solution
followed by our algorithms and optimizations.

4.1.1 Assumptions
We make two simple assumptions in our design. First, we as-

sume that the OSN operators and third-party application servers
are secured by the owners and do not compromise their users’ pri-
vacy. These sites have significant financial incentives to keep their
service secure: To attract and retain their users. The end users, on
the other hand, may be lax in applying security patches and hence
be compromised due to various malware attacks. Second, our pri-
vacy mechanisms are irrelevant if user identities can be deduced
directly from shared data. So we assume that all data is scrubbed
to remove identifiable user information. This scrubbing canhap-
pen before the data leaves a trusted endpoint. Similarly, weassume
that the attackers cannot cross correlate application datawith out-
of-band information to identify its owner, as was done in recent
NetFlix privacy attack [21].

4.1.2 Goals
Our goal is to provide three key properties toall users in the

network irrespective of their social connectivity.
Provablek-Anonymity. We aim to providek-anonymity to so-
cial application users.k-anonymity provides source anonymity and
the data receiver cannot tell the source even with social intersection
attack. Formally,k-anonymity is:

DEFINITION 1. The system provides k-anonymity to the source
(x) of an event ξ, if the probability that the attackers assign for x
to be the source of ξ is less or equal to 1/k. In other words, the
attackers suspect at least k different nodes to be the likely sources
of ξ, with equal probability.

Low Overhead. It is necessary to addminimal number of latent
edges to reduce the additional overhead on the social infrastructure
due to processing and data transfer of cover traffic along thelatent
edges.
Preserve Relevance of Cover Traffic. The latent edges added
should connect nodes that areclose in social distance, so that the
cover traffic is still relevant to users. Nodes that are farther apart
have fewer “similarities” in interests and connecting themmight
send highly irrelevant data to users.

4.1.3 Attacker Model
In the social application setting we consider, we assume thefol-

lowing attacker model:

1. A fraction (p) of the one-hop friends of a given userx are
compromised. They can work both independently, and in
collusion to compromise honest user’s privacy.

2. The attackers have the entire social graph. They know their
local graph, and can crawl the rest of the graph.

3. We assume that only the attackers within one hop from a user
x collude together to breakx’s privacy via passive intersec-
tion attacks.

This is a stronger attack model compared to prior work on graph
anonymization [9,17,31] as the attackers here use both the applica-
tion data and the social graph to attack. In addition, passive attacks
are harder to detect compared to active attacks. For example, an
active attacker can delete all but one of her friends, and assign the
new data received to that friend. However, such attacks willbe
easily detected. Finally, note that the actual number of malicious
nodes around a nodex depends on its degree (dx) and the fraction
p. We usef to represent the number of malicious neighbors of a
node throughout the paper, butf is node specific, andf = ⌈dxp⌉.

4.2 Graph Evolution
Here we present the details of our social graph evolution mecha-

nisms. First we introduce the StarClique graph structure, and then
present a simple algorithm to evolve the graph.

4.2.1 Overview of the Evolution Algorithm
We propose a heuristic that builds a structure around each node

by adding latent edges. This structure is called StarClique, and is
shown in Figure 6. StarClique is mainly responsible for achieving
thek-anonymity property. We build this structure around each node
by going through all the nodes in the network one at a time. Since
this structure is built locally around each node, it provides several
opportunities to optimize the evolution algorithm to reduce the total
number of latent edges added to the entire network. We explore
several such optimizations to reduce the overall number of latent
edges added to the graph.

4.2.2 StarClique Structure
Figure 6 depicts the StarClique structure and its formation. There

are two main parts in the structure: The portion to the right (in the
central sub-figure) is the clique, and the portion to the leftis called
the Star. Let the node that is evolved bex, and letf be the num-
ber of attackers aroundx. A StarClique is built aroundx using its

���������������� !"#$% &'#(")* %+,% !$')* %+,%-%** $!..%$(%+ .!+%/ 0)#/%*1 $!..%$(%+ .!+%/
Figure 6: The graph evolution process for a node. The node first se-
lects a subset of its neighbors. Then it builds a clique with the members
of this subset. Finally, it connects the clique members withall the non-
clique members in the neighborhood. Latent or virtual edgesare added
in the process.

neighborhood nodes. The clique forx consists ofx along with its
(k + f − 1) neighbors, that together form a(k + f)-clique. The
Star consists of the one-hop friends ofx that do not belong to the
clique. Each member of the Star is connected with all(k + f − 1)
members of the clique.

StarClique provides two key properties: (a) StarClique provides
provablek-anonymity to nodex againstf one-hop colluders, (b)
StarClique is a locally minimal structure in the sense that no edges
can be removed while still providingk-anonymity againstf one-
hop colluders. We formally prove the above properties in §5,but
we describe the intuition behind these two properties next.
k-Anonymity Intuition. There aref malicious nodes around
x. After building StarClique, thesef nodes are either all in the
clique, or all of them are in the Star, or are distributed between Star
and clique. If all of them are in the clique, since the clique size is
(k+f), the attackers all seek common friends. If allf attackers are
in the Star, then they all see at leastk common friends. If they are
distributed, between Star and clique, we still have the intersection
of all the attackers one-hop neighborhood size to bek. Hence,k-
anonymity is preserved in all the three cases (proof in §5).
Edge Minimality Intuition. Deleting any one edge in a Star-
Clique eliminates thek-anonymity property above. For example,
if one of the edges in the clique is removed, then we can always
find a combination off nodes in the clique whose one-hop neigh-
borhood intersection gives(k − 1) common nodes instead ofk in
the clique. Since we do not know the attacker a priori, we needto
protect against every possible combination off nodes to achieve
k-anonymity. Along similar lines, we can show that removing an
edge between Star and clique doesn’t preservek-anonymity of Star-
Clique (proof in §5).
Function of Latent Edges. The latent edges added during
evolution are treated just like real edges between friends by the
social applications. These latent edges, however, are not visible
to the users. As a result, the users do not know exactly which of
the new friends help them achieve privacy. Even if the new friends
are revealed to the users,k-anonymity is still preserved. However,
not revealing the latent edges further enhances privacy as attackers
have to first guess the right latent friends protecting a given node,
and then attack a node. Hence we hide these latent friends from the
users.

4.2.3 Evolution Algorithm
With this background in mind, now we describe the evolution

algorithm. The evolution algorithm works on one node (sayx) at
a time, and it works in three steps. The first step in evolving a
nodex is to identify the closest neighborhood ofx that has at least

Algorithm 1 Evolution Algorithm: evolves the input graphg to
produce an evolved graphg′.
Graphg′ = Evolve_Graph (Graphg)
1: g′ = g
2: /* Copy the original graph g into the evolved graph g’ */
3: for all x ∈ V do
4: N(x) = ∅; i = 1
5: while |N(x)| < (k + f − 1) do
6: N(x) = N(x) ∪ g.neighbors(x, i)
7: /* Neighborhood is selected in the original graph */
8: i = i + 1
9: end while

10: C = select(k + f − 1) random nodes fromN(x)
11: C = C ∪ {x}
12: Build_Clique(g′, C)
13: /* Edges added in g’ to build the clique structure around x */
14: Build_Star(g′, N(x), C)
15: /* Edges added in g’ to build the Star structure around x */
16: end for
17: Returng′

(k + f − 1) nodes in it. Evolution starts with one-hop neighbor-
hood, and moves to two-hop, and beyond until it gets a big enough
neighborhood. Selecting nearest neighbors first ensures that the
privacy buddies are closer in social distance. The second step of
evolution is to select a subset of(k + f − 1) nodes from the neigh-
borhood obtained from the first step, and build a(k+ f)-clique out
of them by adding latent edges. These clique members are selected
at random in this simple algorithm. The final step of evolution is
to connect all the members ofx’s neighborhood that do not belong
to the clique with all the members of the clique by adding latent
edges. This process forms a structure as shown in Figure 6. This
structure aroundx providesk-anonymity to the nodex. We an-
alyze the security properties of this structure in more detail later.
TheEvolve_Graph algorithm, described here, is presented in Al-
gorithm 1, and the notations used are listed in the Table 2.

4.3 Optimizing the Evolution Algorithm
As we mentioned before, our approach uses a local graph aug-

menting approach to protect users from malicious nodes thattry to
link data to a particular user. This local approach may add a large
number of latent edges to the graph. Therefore, we propose several
optimizations to reduce the number of latent links added to the en-
tire graph. These optimizations significantly reduce the number of
new latent edges added to the graph during evolution. We apply our
optimizations toEvolve_Graph, and present an optimized algo-
rithm calledOptimized_Evolve_Graph (shown in Algorithm 2)
that is annotated to show where each optimization is applied.
Optimization 1: Select Clique. Choosing the nodes that share
the maximum number of friends with x as the clique members dur-
ing the construction of StarClique around x decreases the number
of new latent edges added. While selecting the clique members
from the neighborhood, choosing the most well-connected(k +
f − 1) nodes, instead of random nodes, reduces the latent edges
added significantly.Select_Clique function in the Algorithm 2
implements this optimization, where the well-connected nodes are
chosen based on the number of friends shared between the nodes
in the neighborhood andx. This selection leads to clique reuse in
the neighborhood ofx, reducing the new edges added. Similarly,
applying this optimization iteratively to every node in thenetwork
(∀ node x ∈ V) leads to significant reduction in the overall number
of new latent edges added in the network.

Formally, the most well-connected(k + f − 1) nodes used in
the optimization are the(k + f − 1) nodesxi, in N1(x), with

Algorithm 2 Optimized Evolution Algorithm: evolution algorithm
annotated with the optimizations.
Graphg′ = Evolve_Graph_Optimized (Graphg)
1: g′ = g
2: S(x) = {V ′ nodes sorted in the decreasing order of degree}

3: Applying Optimization 3: Ordered Evolution above

4: for all x ∈ S in decreasing order of degreedo
5: N(x) = g.neighbors(x,1); i = 1

6: g (instead of g′) is used above to handle the side-effects of Edge Reuse

7: while |N(x)| < (k + f − 1) do
8: N(x) = N(x) ∪ g′.neighbors(x, i)

9: Applying Optimization 2: Edge Reuse above

10: if |N(x)| > (k + f − 1) then

11: Apply Optimization 4: Limit to k Friends here

12: end if
13: i = i + 1
14: end while
15: C = Select_Clique(N(x))

16: Applying Optimization 1: Select Clique above

17: C = C ∪ {x}
18: Build_Clique(g′)
19: Build_Star(g′, N(x), C)
20: end for
21: Returng′

the highest number of common nodes betweenN1(x) andN1(xi),
whereN1() includes only the nodes in the one-hop neighborhood
of a node.
Optimization 2: Edge Reuse. Sharing latent edges among the
neighboring nodes reduces the total number of latent edges intro-
duced. Before evolving a nodex, this optimization considersx’s
most recent and evolved state that includes the latent edgesof x,
instead ofx’s connectivity in the original graph. This reduces the
new edges added: As evolution progresses, more and more latent
edges are added, and the connectivity of nodes aroundx increases.
This means thatx’s neighborhood is more connected than in the
original graph and hence the number of new edges necessary to
evolvex is reduced significantly. Extending this optimization to
the whole network iteratively further reduces the total number of
new edges added to the network during evolution. This optimiza-
tion implies that Algorithm 1 should use the evolved graphg′ in the
loop instead of the original graphg.

Side-effects of Edge Reuse. This optimization should be carefully
applied. Whenx is about to be evolved, if its new degree is>
k + f − 1 but its original degree was< k + f − 1, then only the
original neighbors andl = (k + f − |g.neighbors(x, 1)|) (that are
necessary to get a set ofk+f −1 nodes) new neighbors need to be
considered. Similarly, if the new degree (after evolving some of the
neighbors) is> k+f −1 and the old degree was also≥ k+f −1,
then only the original degree needs to be considered.
Optimization 3: Ordered Evolution. Constructing the Star-
Clique structure from high degree nodes to low degree nodes re-
duces the overall number of latent edges added in the evolved graph.
The intuition behind this optimization is that when a supernode is
evolved, many of its neighbors can reuse the latent edges added
to evolve the supernode. Since supernodes have a large number
of neighbors, many neighbors can benefit from the edges addedto
evolve the supernodes.
Optimization 4: Limit to k Friends. Limiting the size of
the extended neighborhood of a node during evolution reduces the
number of latent edges added. If a nodex has< k + f − 1 nodes,

G = (V, E) Graph definition
x, y, z Nodes∈ G

N(x) Set of nodes in the neighborhood of the nodex

g.neighbors(x, i) Set of all neighbors ofx at mosti hop away ing
dx Degree of the nodex
p Fraction of malicious one-hop neighbors
f Number of malicious neighbors ofx (f = ⌈dxp⌉)
C Subset of nodes inN(x)

Table 2: Notations used in this paper.

the unoptimized algorithm considers the larger neighborhood in-
crementally one hop at a time. It is quite likely that when the
neighborhood increases by one hop, the neighborhood size goes
significantly beyondk + f − 1. However, all the nodes in this
y-hop are not necessary to providek-anonymity: We need only
l = (k + f − |g.neighbors(x, 1)|) additional nodes. Thus, we se-
lect only thel most well-connected nodes from outside the one-hop
neighborhood in this optimization.
Optimized Evolve Graph. The evolution process is depicted in
Figure 6, and the pseudo-code forOptimized_Evolve_Graph is
shown in Algorithm 2. In this algorithm, first, the nodes are sorted
by their degree, and evolved in the order of their degree, starting
from the highest. Second, evolution is applied on the evolved graph
repeatedly – this applies the edge reuse optimization. Indeed, we
use the original graphg to get the original degrees, and the evolved
graphg′ to maximize the number of reused edges during the neigh-
bor selection. This is necessary to handle the side-effectsof edge
reuse optimization, as described before. When the node has less
thank + f − 1 friends, its neighborhood in the evolved graph is
selected. We apply the Limit tok Friends optimization at this step.
Finally, Select Clique optimization is applied in this optimized al-
gorithm while choosing the clique members out of the neighbors.
StarClique is built for each evolved node as inEvolve_Graph.

5. ANONYMITY ANALYSIS
This section has three main parts. First, we introduce formal

notations and identify the conditions under whichk-anonymity is
preserved (see Theorem 1). Second, we present the properties of
StarClique that are necessary to providek-anonymity. Finally, we
quantify the total number of new edges added while building Star-
Clique around a node.

5.1 Formal Notations andk-Anonymity
We represent the social network as a graph,G = (V, E), where

each user is mapped to a unique vertex∈ V and the friend rela-
tionship between two usersx andy ∈ V is represented as an edge
(x, y). V is the set of all vertices, andE is the set of all edges. Each
edge is undirected, as it represents the friendship betweentwo user.
And an undirected edge(x, y) ∈ E is equivalent to two directed

edges
−−−→
(x, y) and

−−−→
(y, x), where

−−−→
(x, y) represents thatx is a friend

of y and
−−−→
(y, x) represents thaty is a friend ofx.

In our model, each edge also represents the flow of information
– the flow of events between users in the social network. Therefore,
we can formally define:

• (x, y) is an undirected edge wherex andy are both senders
and receivers of events;

•
−−−→
(x, y) is a directed edge wherex is the sender andy is the
receiver of events.

An event is usually a message generated by the application, such
as a bookmark event in del.icio.us, that needs to be delivered to

2345 6 2345 7 2345 8
9::3;<5=4 >? :@5 AB4 ?5>C@DE=@EEFGEH=;5 A AB4 ?5>C@DE=4

Figure 7: The attackers may be located in any position in StarClique,
we identify the three cases that cover the possible positions.

the source’s one-hop neighborhood. We aim to disseminate events
while providing provable privacy that the user’s identity is pro-
tected no matter whichf one-hop neighbors collude (the com-
promised friend accounts). In order to prove the guaranteesof
our solution, we introduce the following definitions: (a) let x be
a node∈ V and dx its degree; (b) letf (>= 2) be the num-
ber of one-hop neighbors ofx that are colluding againstx; (c) let
vx =< x1, x2, ..., xf > be a vector of randomly selected nodes
from x’s one-hop neighborhood, and finally (d) let
B = {vxi

|vxi
=< xi

1, x
i
2, ..., x

i
f > and xi

j ∈ N(x)} be the
set of all possible combinations off neighbors ofx, which has
size |B| =

`

dx

f

´

. According to our Definition 1 and the attacker
model, a node’sk-anonymity is preserved as long as there are at
leastk common friends in all possible intersections of thef col-
luding one-hop neighbor subsets.

THEOREM 1. Given a user x in the social graph, if ∩f
j=1

N(xi
j) ≥ k ∀vxi

∈ B then x’s k-anonymity is preserved.

PROOF. Let x be the source of a particular message sent to all
nodes inx’s neighborhood. Assuming that a random set off nodes
{x1, x2, ..., xf} ∈ N(x) that are receiving the message are mali-
cious, the probability thatx is recognized as the real sender has to
be less or equal to1

k
. In order to guarantee this bounded prob-

ability, at leastk nodes around thef attackers have to look as
possible sources. This means that thef attackers have to share
k common neighbors. Formally, lety1, y2, .., yn ben nodes which
∈ N(x1) ∩ N(x2)∩, ...,∩N(xf). So, if |{y1, y2, .., yn}| ≥ k
(note that∀i and j, yi 6= xj), then there are at leastk nodes which
could have sent the message andx’s identity is covered among
those nodes∈ {y1, y2, .., yn}.

On the other hand, if|{y1, y2, .., yn}| < k, then the real source
is identified with a probability> 1

k
, which violates thek-anonymity

requirement. Since we do not know the colluding neighbors ofx
a priori, any combination ofx’s neighbors of sizef should have
an intersection neighbor size greater than or equal tok to preserve
k-anonymity. This can be formalized as∀vxi

= {xi
1, x

i
2, ..., x

i
f},

with i = 1, 2, ...,
`

dx

f

´

, ∩f
j=1N(xi

j) ≥ k.

5.2 Privacy via the StarClique Structure
The evolution algorithm protects privacy by building StarClique

around nodes. The first step to prove thek-anonymity property of
evolution is to identify the necessary conditions that the StarClique
structure has to satisfy in order to providek-anonymity for a par-
ticular source (x). StarClique (Figure 6) is constructed aroundx in
two steps as follows: (1)Clique: Build a cliqueC of k + f − 1
nodes∈ N(x) aroundx. Note that the edges inC are bidirec-
tional. (2) Star: The remaining nodes∈ N(x)\C are connected

to a total ofk+f −1 nodes in the clique2. Each edge in this step is
directedfrom the clique nodesto the Star nodes. Directed edges are
necessary only to prove the structure minimality. We next prove, in
Theorem2, that StarClique guaranteesk-anonymity, and no edge
can be removed from it to satisfy this property.

THEOREM 2. The StarClique is a locally minimal structure pro-
viding k-anonymity against f one-hop colluding neighbors: It al-
ways guarantees this property and, if any one edge is removed from
it, it cannot guarantee the property in general.

PROOF. There are three possible locations thatf attackers can
occupy in StarClique, as shown in Figure 7. For each of these,we
provek-anonymity and the minimality property.

Case 1: f colluding nodes{y1, y2, ..., yf} are all in the clique.
Since the clique size is exactlyk + f , each attacker is connected
to the remainingk + f − 1 nodes in the clique and when they
collude, there arek remaining non-malicious nodes in the clique.
This implies thatk nodes appear to be the sender with probability
1
k

, which means that thek-anonymity property is preserved. Let us
assume that one of thef colluding nodes hask + f − 2 edges in
the clique instead ofk + f − 1 (i.e. it is connected tok − 1 non-
malicious nodes instead ofk). In this case∩f

j=1N(yj) = k − 1
which does not satisfy thek-anonymity property.

Case 2: f attackers{y1, y2, ..., yf} are in the Star. Each node in
the star hask+f−1 edges coming from the clique by construction
even though there arek + f nodes in the clique. Havingf attack-
ers in the star means that, in the extreme case, each attackercan
exclude one different nodes in the clique, and so at mostf nodes
in total. As a result, the final intersection set size of the attackers
is: ∩f

i=1N(yi) = k, which preservesk-anonymity. Now, let’s as-
sume that one of thef colluding nodes hadk+f −2 edges coming
from the clique instead ofk + f − 1. In this setting, the extreme
case intersection set size of the attackers is:∩f

i=1N(yi) = k − 1.
This does not satisfyk-anonymity, which means no edge can be
cut, proving the minimality.

Case 3: Some of thef attackers are in the clique and some are
in the Star. Formally, letǫ be∈]0, 1[, and let⌈ǫf⌉ be the number
of attackers in the clique and⌊(1− ǫ)f⌋ the number of attackers in
the Star. Because⌈ǫf⌉ attackers are part of the clique, the possible
number of sources isk + f − ⌈ǫf⌉. There are⌊(1 − ǫ)f⌋ other
attackers in the Star that are connected tok + f − 1 nodes in the
clique instead ofk + f , as before. The attackers in the Star can
at most eliminate one node each out of the possiblek + f − ⌈ǫf⌉
sources. Putting together the results from the two sets of attackers,
the remaining possible sources arek+f −⌈ǫf⌉−⌊(1− ǫ)f⌋ = k.
As a result,k-anonymity is preserved. To prove minimality, note
that, if we cut an edge either from a node in the clique or a nodein
the Star, we break thek-anonymity property. Thef attackers can
be anywhere in the clique or in the Star. So if the removed edgeis
incident on one of the attackers, then∩f

i=1N(yi) = k + f − 1 −
⌈ǫf⌉ − ⌊(1 − ǫ)f⌋ = k − 1 < k, which breaksk-anonymity, thus
proving minimality.

5.3 Edges Introduced by StarClique
Here we bound the number of new edges added to the evolved

graph using the worst connectivity among a source’s neighborhood.
In this analysis we treat an undirected latent edge to be equivalent
to two directed latent edges.

THEOREM 3. In the worst case, the number of directed latent
edges introduced for a node x with degree dx is less than
max{(k + f)2, dx(k + f)}.
2Note that the star members need to be connected with a total of
only k + f − 1 nodes in the clique, and notk + f , for minimality.

 97

 98

 99

 100

 2 3 4

%
 o

f L
. E

dg
es

 o
f P

at
h

Le
n.

 x

Latent Edge Length in the Original Graph

Monterey Bay k=4
Monterey Bay k=6
Monterey Bay k=8

Monterey Bay k=10

Figure 10: Distribution of latent edge lengths in evolved Facebook
Monterey Bay graph ask changes.

PROOF. The proof is divided in two parts as follows:
Case 1: If dx < k + f , we still need each node to be hidden

among at leastk other possible senders, and hence our algorithm
will pick the nodes in its nearest neighborhood which contains at
leastk nodes before building a clique. Therefore, because a clique
of k nodes has(k+f)(k+f−1)

2
edges, the maximum number of edges

are introduced when the nodes lie on a line topology. Hence, the
maximum number is:

(k + f)(k + f − 1)

2
− (k + f − 1) =

(k + f − 1)(
k + f

2
− 1) < (k + f)2

Case 2: If dx ≥ k + f , the topological structure that adds the
maximal number of latent edges is thestar structure with the node
we are evolving at its center. In the star structure, each neighbor
of the central node has no edges to any other nodes. As a result,
in order to construct the StarClique structure around a nodex with
degreedx, our algorithm adds:(k+f)(k+f−1)

2
− (k + f − 1) =

(k + f − 1)(k+f

2
− 1) edges to build the clique aroundx. As each

of them is an undirected edge, the total number is(k + f − 1)(k +
f − 2). The remainingdx − (k + f − 1) of x’s neighbors need
to be connected to(k + f − 2) nodes3, which produces additional
[dx − (k + f − 1)](k + f − 2) edges. Therefore, the total number
of new edges is:

(k + f − 1)(k + f − 2) + [dx − (k + f − 1)](k + f − 2) =

(k + f − 2)(dx) < dx(k + f).

6. EVALUATION
We present experimental evaluation of evolution here. First, we

describe the experimental setup. Then, we evaluate the impact of
the various optimizations in terms of the total number of newedges
added to the evolved graph. Finally, we evaluate the impact of
evolution on the social graphs.

6.1 Setup
We evaluate evolution using different OSN traces from priormea-

surement studies [6,20,22,30]. Since the graphs from thesestudies
are very large in size, running evolution on the full graph isvery

3It is 2 less than(k + f) because each node in the star needs to be
connected with(k + f − 1) nodes by construction, and each node
is already connected to the sourcex.

 1

 10

 100

 1000

 5 10 15 20 25

E
vo

lu
tio

n
R

at
io

 (
Lo

g
S

ca
le

)

k

Unoptimized
With Edge Reuse

With Select Clique
With Order

With k Limitation

Figure 8: Impact of optimizations on evolution of Facebook NY graph.
One additional optimization added to plots from top to bottom. The
plots are ordered in the order of the legends.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

E
vo

lu
tio

n
R

at
io

k

del.icio.us
Livejournal

Facebook (NY)
MySpace

Figure 9: Ratio of the total number of edges in the evolved graph to
the total number of edges in the original graph ask changes.

resource intensive. As a result, we use a combination of small and
large graphs in our evaluation. We use smaller subgraphs to eval-
uate evolution in detail, to understand the impact of various opti-
mizations and measure evolution’s performance on different net-
works. Then, we use larger graphs from Facebook and del.icio.us
to validate evolution’s performance on larger datasets.

We used Snowball sampling (or BFS), to sample smaller sub-
graphs from the social network traces. Snowball sampling isthe
methodology used in the crawls of many measurement studies [6,
20,22,30]. In addition, snowball sample of a certain minimum size
is expected to preserve many of the topological properties of the
social network [6,15]. The smaller subgraphs we used were ofsize
20K nodes. For each experiment on a smaller subgraph, we gener-
ated 5 different subgraphs using Snowball sampling starting from
different random points in the full network graph, ran evolution on
each subgraph 5 times, and present the averaged results.

To complement the results from smaller subgraphs, we use a
crawl of the Facebook Monterey Bay network crawl of 260K users,
and a del.icio.us crawl with 320K users for a second set of exper-
iments. Given that Facebook had 60 Million users and del.icio.us
had 5 Million users during our crawl, the sample sizes of 0.43%
and 6.4% (respectively) exceed the minimum portion of the topol-
ogy that preserves the topological structure of the graph [6,15]. We
use these larger samples to validate our results from the smaller
samples.

Finally, we implemented our algorithm using the Python Net-
workX module. We used two machines each with 32GB of RAM
and Quad-core processors to run our experiments.

6.2 Evolution Algorithm Evaluation
We first present the impact of various optimizations, and then

use the optimized algorithm for the rest of evaluation.
Metric: Evolution Ratio. We use the ratio of the total number
of edges in the evolved graph to the number of edges in the origi-
nal graph to evaluate evolution. The lower the ratio, the better the
algorithm.
Impact of Optimizations. We use subgraphs from the Face-
book New York network to evaluate the impact of our optimiza-
tions. Figure 8 plots evolution ratio for different values of k, and
f = 1, for all four optimizations. The top line is for the unop-
timized algorithm, and one optimization is added to the previous
as we go down the plots. Figure 8 shows two orders of magni-
tude improvement in the performance of evolution due to various
optimizations. The ratio for a value ofk = 5 goes down from

around 1350 in the unoptimized version to around 5 after apply-
ing all optimizations. Similarly, the values fork = 25 goes down
from 2064 to 22. The main improvement comes from the Edge
Reuse optimization, with a relative reduction in the ratio of nearly
10 times. The next major reduction comes from Select Clique with
a reduction of nearly 4 times. Optimizations are applied here in
one particular order, but we expect the gain from each optimiza-
tion to remain the same irrespective of the order. We use the fully
optimized algorithm for the rest of the evaluation.
Evolution Ratio in Different Graphs. Figure 9 plots the evo-
lution ratio for different networks using the optimized algorithm.
For k = 5 most networks produce a ratio around 5. However, the
ratio for different networks diverges for higherk. The observed ra-
tio mainly depends on the connectivity of the nodes in the graph as
measured using clustering coefficient. Myspace, for example, has a
large clustering coefficient (nodes are densely connected amongst
each other), hence leading to fewer new edges. We confirmed that
networks with higher average clustering coefficient appearbelow
networks with lower coefficient in Figure 9.

The evolution ratio approaches the value ofk because, to achieve
k-anonymity, each node must have a degree of at leastk. Since the
majority of nodes in our subgraphs have a degree< k, to protect
these nodes, close tok edges must be added, leading to a increase
by k. We ran this test on 20K subgraphs of seven different networks
(del.icio.us, Facebook, Flickr, LiveJournal, Myspace, Orkut, and
YouTube). As the results were very similar across networks,we
present the results for the networks with the lowest ratio (MySpace)
and high ratios (del.icio.us, Facebook, LiveJournal).
Impact of Increasingf . In the experiments so far, we explored
the impact of the parameterk while keepingf fixed at 1. Next, we
explored the impact of larger values off while keeping the value
of k fixed. In these experiments, we found that increasing the value
of f increases the evolution ratio linearly, thus leading to an overall
evolution ratio proportional tok + f . As the result of varyingk or
f is similar, we do not discuss this further.
Validation Using Larger Graphs. To validate the impact of
evolution on larger graphs, we used del.icio.us and Facebook Mon-
terey Bay graphs. Because of the large size of these graphs, and
the associated time and memory necessary for evolution, we were
restricted to values ofk < 10. Table 3 summarizes the results
from our runs. As expected, we see that the evolution ratio islinear
on the value ofk in larger graphs as well. Given that these larger
graphs are sufficiently large to preserve the topological properties
of the social networks (as described before), we believe that the

k 4 6 8 10
del.icio.us 4.15 5.73 7.32 8.9
Monterey Bay 4.14 5.68 7.22 8.76

Table 3: The variation of evolution ratio with k for large graphs.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
er

ce
nt

ag
e

of
 U

se
r

P
ai

rs
 a

t a

 G
iv

en
 S

oc
ia

l D
is

ta
nc

e
(C

D
F

)

of Common Bookmarks

Random Friends
3-Hop Friends
2-Hop Friends
1-Hop Friends

Figure 11: CDF showing the relationship between the number of com-
mon bookmarks between users vs. their social distance.

evolution ratio resulting from running evolution on the full social
graphs to be linear onk.
Social Distance of Privacy Buddies. Next, we validate if evo-
lution chooses privacy buddies from nearby neighbors. We plot the
distribution of social distances in the original graph versus latent
edges for Monterey Bay in Figure 10. More than 99% of the edges
are only two hops away fork ≤ 6. This number goes down slightly
(to 98%) for larger values ofk (10). However, most of the chosen
privacy buddies are close to the evolved node in social distance. We
saw similar results in other networks as well.

6.3 Case Study: del.icio.us
Now we use our del.icio.us crawl to understand the relationship

between the relevance of data exchanged between the users and the
social distance of the users. Then, we evaluate the application-level
impact of evolution using the del.icio.us bookmark data.

6.3.1 del.icio.us Measurement
del.icio.us is a social bookmarking site where users can store

bookmarks online, organize them by tags, and share them with
friends. The social networking feature lets users find otherusers
with interesting bookmarks, friend them, and obtain updates when
new bookmarks are created by their friends. The social network is
the primary channel for discovering new content in del.icio.us. As
a result, this data is ideal for understanding the relevanceof close-
distance privacy buddies.
Data Collection Methodology. We implemented a distributed
crawler in Python, and crawled del.icio.us from 32 machinesat a
very slow pace (1 request per second) from 17th of December to
26th of December 2008. We crawled both the social network graph,
and all the bookmarks stored by the users over their entire lifetime
on del.icio.us. Users have the option to make bookmarks private,
and hence we crawled all the publicly viewable bookmarks of the
users.
High-Level Statistics. In our crawls, we collected 480K user
profiles, 127 million bookmarks in total, with an average around
267 bookmarks per user. This crawl accounts for 6.5% of the total
user population, as of December 2008, and 80% of the total book-
marks.

Hop Length 1-Hop 2-Hop 3-Hop Random
Common Bookmarks 8.45197 1.83435 1.05939 0.316237

Table 4: Average number of common bookmarks between friends x-
hop away. Random represents the test where pairs of users were ran-
domly chosen. Each value is averaged across 1M links (pairs of users).

k Orig Graph 3 4 5 6
Bookmarks/Node 5K 21.2K 27.5K 34.2K 39.5K
Bookmark Ratio 1 4.2 5.5 6.8 7.9

Table 5: The number of bookmarks del.icio.us users receive from their
one-hop friends before and after evolution, for differentk values.

6.3.2 Common Content vs. Social Distance
Now we examine the number of bookmarks that friends share

(have in common), and its relationship to social distance. Com-
mon bookmarks count is a measure of similarity in interests,and
will help us to understand the utility of socially-close privacy bud-
dies. Figure 11 shows the distribution of the number of bookmarks
shared between one-hop, two-hop, and three-hop friends, and ran-
domly selected pairs of users in the network. Randomly selected
pairs are most likely far away in social distance. Figure 11 shows
that content sharing between one-hop friends is the highest. As
expected, this sharing decreases with increase in the social dis-
tance: two-hop friends share much less than one-hop, but better
than three-hop. Finally, even three-hop sharing is much better than
content sharing between random pairs of users. Table 4 showsthe
average number of bookmarks users share with their friends for dif-
ferent social distance, which also shows the same trend.

6.3.3 Application-Level Impact
Evolution increases the total number of edges in the network.

This increase in edges makes each user in the network send andre-
ceive more data along these new edges. We quantify this increased
data transfer using the del.icio.us bookmarks as example. Table 5
shows the impact of increase in edges on del.icio.us users interms
of the ratio of total number of bookmarks users receive before and
after evolution. Since del.icio.us users get all the one-hop friends’
bookmarks, we calculated the number of total bookmarks of the
one-hop users to obtain the numbers in the Table. Clearly, the in-
crease in the total number of bookmarks (and hence the serverload)
is also proportional to the value ofk.

In summary, these results (a) clearly support our decision to give
preference to nearby nodes as privacy buddies during evolution
rather than random nodes, and (b) show that the OSN operators
can tune the overhead incurred on the application servers bytuning
the value ofk.

7. CONCLUSIONS
In this paper, we studied privacy risks involved in sharing data

in today’s social content-sharing applications due to compromised
user accounts. We identify thesocial intersection attack, a low-cost
privacy attack that can be used by two or more compromised users
to identify the source of shared data objects in all content-sharing
applications. It effectively links data objects with theirowners rely-
ing only the social graph topology and the data shared by the appli-
cations. This attack invalidates naive solutions to mitigate privacy
risks.

Social networks can provide their users with privacy guaran-
tees in the form ofk-anonymity by adding new edges to the so-
cial graph. We identify a graph structure we call StarClique, and
prove that it is a locally minimal structure providing each user with

k-anonymity. A privacy-conscious OSN provider can build Star-
Cliques around each user, and utilize several optimizations to dra-
matically reduce the cost of new edges. This type of “graph evolu-
tion” is practical for today’s social content-sharing networks, and
provides sufficient flexibility for OSN operators to make local de-
cisions about the privacy and overhead tradeoff.

Acknowledgments
We thank Christo Wilson, the anonymous reviewers, and our shep-
herd Augustin Chaintreau for many suggestions to improve the
paper. This work is supported by the National Science Founda-
tion under grants IIS-847925, CNS-0916307 and CAREER CNS-
0546216. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors anddo not
necessarily reflect the views of the National Science Foundation.

8. REFERENCES
[1] Living social.

http://apps.facebook.com/livingsocial.
[2] Movie recommendataion.http://apps.facebook.

com/apps/application.php?id=2558160538.
[3] ACOHIDO, B. Phishing attack spreads through facebook.

http://blogs.usatoday.com/
technologylive/2009/05/
phishing-attack-spreads-through-facebook.
html.

[4] AGGARWAL, G., FEDER, T., KENTHAPADI, K., KHULLER,
S., PANIGRAHY, R., THOMAS, D., AND ZHU, A.
Achieving anonymity via clustering. InProc. of PODS
(2006).

[5] AGGARWAL, G., FEDER, T., KENTHAPADI, K.,
MOTWANI , R., PANIGRAHY, R., THOMAS, D., AND ZHU,
A. Approximation algorithms for k-anonymity.Journal of
Privacy Technology (2005).

[6] A HN, Y., HAN , S., KWAK , H., MOON, S.,AND JEONG, H.
Analysis of topological characteristics of huge online social
networking services. InWWW (2007).

[7] BACKSTROM, L., DWORK, C., AND KLEINBERG, J.
Wherefore art thou r3579x?: anonymized social networks,
hidden patterns, and structural steganography. InWWW
(2007).

[8] BARBARO, M., AND ZELLER, T. A face is exposed for AOL
searcher no. 4417749, August 2006. NY Times.

[9] HAY, M., M IKLAU , G., JENSEN, D., TOWSELY, D., AND

WEIS, P. Resisting structural re-identification in anonymized
social networks. InProc. of VLDB (2008).

[10] HOLZ, T., ENGELBERTH, M., AND FREILING, F. Learning
More About the Underground Economy: A Case-Study of
Keyloggers and Dropzones, 2008. Reihe Informatik.
TR-2008-006.

[11] HUANG, Q., WANG, H. J.,AND BORISOV, N.
Privacy-Preserving Friends Troubleshooting Network. In
Proc. of NDSS (2005).

[12] JONES, K. C. Facebook expands security tools while
combating phishing attack. InformationWeek, May 2009.

[13] KANICH , C., KREIBICH, C., LEVCHENKO, K., ENRIGHT,
B., VOELKER, G., PAXSON, V., AND SAVAGE , S.
Spamalytics: an empirical analysis of spam marketing
conversion. InProc. of CCS (2008).

[14] K INCAID , J. Facebook verified apps now live. Washington
Post, May 2009.

[15] LEE, S., KIM , P.,AND JEONG, H. Statistical properties of
sampled networks.Physical Review E (2006).

[16] LEFEVRE, K., DEWITT, D. J.,AND RAMAKRISHNAN , R.
Incognito: efficient full-domain k-anonymity. InProc. of
SIGMOD (New York, NY, USA, 2005), ACM.

[17] L IU , K., AND TERZI, E. Towards identity anonymization on
graphs. InProc. of SIGMOD (2008).

[18] MEYERSON, A., AND WILLIAMS , R. On the complexity of
optimal k-anonymity. InProc. of PODS (New York, NY,
USA, 2004), ACM.

[19] M ISLOVE, A., GUMMADI , K. P.,AND DRUSCHEL, P.
Exploiting social networks for internet search. InProc. of
HotNets (2006).

[20] M ISLOVE, A., MARCON, M., GUMMADI , K. P.,
DRUSCHEL, P.,AND BHATTACHARJEE, B. Measurement
and analysis of online social networks. InProc. of IMC (Oct
2007).

[21] NARAYANAN , A., AND SHMATIKOV , V. Robust
de-anonymization of large sparse datasets. InProc. of IEEE
S&P (Oakland, CA, 2008).

[22] NAZIR , A., RAZA , S.,AND CHUAH , C.-N. Unveiling
facebook: A measurement study of social network based
applications. InProc. of IMC (2008).

[23] PARK , H., AND SHIM , K. Approximate algorithms for
k-anonymity. InProc. of SIGMOD (New York, NY, USA,
2007), ACM.

[24] POUWELSE, J., GARBACKI , P., WANG, J., BAKKER , A.,
YANG, J., IOSUP, A., EPEMA, D., REINDERS, M., VAN

STEEN, M., AND SIPS, H. TRIBLER: a social-based
peer-to-peer system.Concurrency And Computation (2008).

[25] SELTZER, L. Koobface smacks facebook users. PC
Magazine blog, December 2008.

[26] STONE, B. Facebook finally gives apps some love. NY
Times Bits Blog, May 20, 2009.

[27] STONE-GROSS, B., COVA , M., CAVALLARO , L., GILBERT,
B., SZYDLOWSKI , M., KEMMERER, R., KRUEGEL, C.,
AND V IGNA , G. Your botnet is my botnet: Analysis of a
botnet takeover. InProc. of CCS (2009).

[28] SUDDATH , C. The downside of friends: Facebook’s hacking
problem. Time, May 2009.

[29] SWEENEY, L. k-Anonymity: A Model for Protecting
Privacy.Intl. Journal of Uncertainty, Fuzziness and
Knowledge-based Systems (2002).

[30] WILSON, C., BOE, B., SALA , A., PUTTASWAMY, K. P. N.,
AND ZHAO, B. Y. User interactions in social networks and
their implications. InProc. of EuroSys (April 2009).

[31] ZHOU, B., AND PEI, J. Preserving privacy in social
networks against neighborhood attacks. InProc. of ICDE
(2008).

