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ABSTRACT 
 
In this paper a framework for Image Quality Assessment 
(IQA) is introduced based on the properties of Receptive 
Fields (RFs) which are the primary mechanism for detection 
of visual patterns in the Human Visual System (HVS). The 
proposed framework offers a probabilistic approach to the 
perceptual IQA, based on the probability of detecting 
discrepancies (distortion) between the corresponding 
features of a test and a reference image. The proposed 
Probabilistic Perceptual Image Quality (PPIQ) framework 
facilitates defining specific perceptual metrics for specific 
applications. To give an example on how the PPIQ 
framework can be utilized to define an Image Quality Metric 
(IQM), a sample IQM is introduced based on the properties 
of simple RFs of the early vision in the HVS. The sample 
IQM, based on the PPIQ framework, exhibits comparable 
accuracy to that of the legacy methods in terms of predicting 
the outcome of subjective image quality experiments.  
 

Index Terms— Full reference image quality metric, 
perceptual image distortion metric, feature discrepancy 
detection 
 

1. INTRODUCTION 
 
In this paper a framework for IQM is proposed. This 
framework is based on the probability of detecting 
discrepancies between two images in displaying the same 
visual feature at a given spatial coordinate. A visual feature 
can exist in one picture to reflect an impression from the 
natural world (therefore the lack of such a feature would be 
considered a distortion). Alternatively a feature may exist in 
one picture due to a modification (distortion) process (e.g. 
quantization), which is not expected in a natural scene (i.e., 
the detection of this feature is considered a distortion). In 
general, a feature can be any visual artifact which is relevant 
for measuring the quality of an image for a certain 
application.  

As we elaborate in section 2, the proposed PPIQ 
framework captures the fundamental characteristic of the 
Human Visual System (HVS) which treats the detection of a 
feature in a visual stimulus as a random event. Although the 
concept of probabilistic detection of features has been 
considered in many literatures for the sub-threshold, or the 

JND conditions [1]-[3], in Section 3, we argue that certain 
aspects of conventional error pooling scheme (such as 
weighted Minkowski summation of errors) need to be 
revisited for supra-threshold conditions. The treatment of 
distortion pooling within the PPIQ framework, specifically, 
distortion pooling across the feature space and the spatial 
domain, facilitates the inclusion of foveae-weighted 
distortion [4] and feature importance due to specific 
requirements of a given application.  

It is important to emphasize that the proposed PPIQ 
framework in this paper is not an IQM, but rather a model 
for measuring the distance between two images in terms of 
showing the same set of features. Once a set of relevant 
features (according to the application of interest) is defined 
then this framework can be used to define an IQM. To 
demonstrate the efficiency of the PPIQ framework in 
practice, Section 4 introduces an IQM based on the 
detection of a Non-Directional Contrast (NDC) feature. The 
proposed metric would be called PPIQ-NDC and it 
inherently factors in the viewing conditions such as the 
angular resolution of the image and the well established 
psychophysical properties of the HVS through the concept 
of RFs. 
 

2. THE PROBABILISTIC METRIC MODEL 
 
Many features and properties of the HVS for perceptual 
evaluation of an image can be accurately explained by the 
properties of RFs. In this section we introduce a framework 
based on the theory of RF which enables us to define a 
distortion (or similarity) metric for images, relative to a 
reference image. In general, an RF is a neural connection 
configuration, where a number of neurons send electrical 
impulses to the same node (ganglion cell). In our discussion, 
the RF model consists of a hierarchy of nodes. Each node 
performs a linear or non-linear transform on the input nodes 
(filtering) and then a non-linear operator sets the output 
(neural pulse rate activity) of that node based on the filter 
output. Our simple RF model is described by a feature 
extraction transform )(⋅fT  (not necessarily a linear 

transform). )(aTf
 maps the intensities from the image 

around location a , to a feature response value ( )afr , , 

which reflects the impulse rate (neural activity) at the RF 
which corresponds to a desired feature f . 
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In the PPIQ framework, when a specific feature (RF 
response) is assessed for the presence of a feature, a hard-
limit threshold at ),( afΔ  is used to set the detection 

decision to either 0 (not detected) or 1 (detected). The 
detection of the feature f , at location a  in an image is 

denoted by ( )afDet , . To formalize the notation, we assume 

that for a person with a threshold decision of ),( afΔ  the 

detection function can be defined as:  

 ( )
( ) ( )
( ) ( )Δ≤

Δ>
=

afafr

afafr
afDet

,,0

,,1
,  (1) 

In (1) ( )afr ,  is the activity of the RF (corresponding to 

the desired feature f  at location a ). Realizing that the 

value of ),( afΔ  is different from person to person, a 

probabilistic measure is chosen to predict the statistical 
nature for the detection of a given feature amongst all the 
test subjects (human observers). This probabilistic approach 
to feature detection is due to the different detection 
threshold and neural noise levels amongst human test-
subjects. We assign a cumulative probability to the detection 
threshold value ( ),( afΔ ) amongst a large number of test 

subjects as 
( )( ) ( )( )Δ≤Δ=ΔΔ afProbP af , ,

. Therefore the feature 

detection in a probabilistic manner can be interpreted as 
follows: 

( ) ( ) ( )( )

( ) ( )( )=

=
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afDet

af
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,

-1       0
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In the PPIQ framework, the only assumption about 

( )( )ΔΔ afP ,
 is that it is a cumulative probability function, (non-

decreasing function which goes from zero to one). This 
probability indicates what percentage of people would detect 
the feature f , at the location a . In Section 4 where the 

PPIQ-NDC metric is proposed, a specific parametric 
probability function will be presented to model 

( )( )ΔΔ afP ,
.  

In the PPIQ framework, a discrepancy between two 
images (usually a reference image and a test image) happens 
when the same feature, f , at the same location a  is 

detectable in one image and not detectable in the other 
image. A probability can be assigned to this discrepancy-
detection in terms of the percentage of people who detect 
feature f , at the location a  in one image, but do not detect 

the same feature at the same location in the other image. Fig. 
1 depicts the probability of the three possible outcomes in 
detection of feature f  at location a . Without loss of 

generality, in Fig. 1, it is assumed that the feature response 
at the reference image is smaller than the corresponding 
value at the test image. The S-shape curve in Fig. 1 
represents the cumulative probability of the detection 
threshold amongst test subjects. It is easy to observe that the 

probability of detecting a discrepancy, according to (2) 
corresponds to the region II of Fig. 1 as follows: 

( )

( )( ) ( )( )afrPafrP

aftstrefP

tstafrefaf

dis

tstref
,,

,,,

),(),( ΔΔ −

=
 (3) 

In (3), ( )aftstrefPdis ,,,  is the probability of detecting a 

dissimilarity between the reference and the test images at 
location a  for the feature f . Note that ( )afrref ,  and 

( )afrtst ,  are the feature extraction transform responses in the 

reference and the test image, respectively.  Also ( )⋅Δ ),( afref
P  

and ( )⋅Δ ),( aftst
P  are the corresponding cumulative 

probabilities for detection threshold in the two images.  
It is essential to recognize that the error visibility 

methods such as [5], subtract feature response values in one 
image from the corresponding values in the second image to 
measure the distance. This operation suggests that the HVS 
employs a perfect photographic memory which is capable of 
subtracting the exact values of feature responses from the 
test and the reference image, acquired at two different time 
instances. However the definition of distance in the PPIQ 
framework only assumes a comparative memory which 
relies on a more realistic notion that the only thing a test 
subject memorizes, is the detection of a given feature at a 
given location (not the exact value of the feature response in 
each of the two images).  
 

3. DISTANCE (DISTORTION) POOLING 
 
So far, the PPIQ framework offers a basic distance metric 
which is the probability of observing a discrepancy in the 
detection of a given feature at a given location between two 
images by equation (3). In this section we define a strategy 
by which, one can assign a single quality value to the entire 
image. This requires addressing the issues of distance (error) 
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Fig. 1:  Region I corresponds to the probability that the feature 
f would be detected in both images. Region III corresponds to the 

probability that the feature f would not be detected in either of 

images. Region II corresponds to the probability that the feature 
f would be detected in one image but not in the other image. 
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pooling across feature and spatial spaces. The concept of 
distance pooling has been extensively studied in the linear 
transform spaces such as DCT and Wavelet. In most of these 
studies a Minkowski summation (norm- p ) or weighted 

Miknowski summation (weighting performed based on the 
masking effects or the contrast sensitivity [2] and [5]) is 
used to assign an overall distance value to a vector of errors 
across feature space and foveal-spatial space.  

The justification for norm- p  pooling comes from the 

concept of probability summation along with extra 
assumptions that 1- The probability density function for 
feature detection is exponential and 2- The detection at JND 
condition depends on the probability of detecting “any” 
error in the image (or within a foveal region [4]). Although 
this assumption is reasonable (and matches well with the 
results of psychophysical studies) for detection of “Just 
Noticeable Distortion (error)”, it falls short of representing 
the subjective image quality at suprathreshold cases where 
the distortion is beyond the “just-visibility” and the 
probability of seeing “any” error is always close to one). 

At suprathreshold conditions, where distortion is visible 
at many locations across the spatial span and feature space, 
it is a common practice to measure distortion in terms of the 
average time it takes to detect the first discrepancy between 
the test and reference images. Fortunately the probabilistic 
nature of PPIQ framework is facilitating to adopt this 
scheme of distance (error) pooling. Note that the distance 
metric in (3) indicates the probability that a given feature at 
certain location reveals a discrepancy between the two 
images. In this context, one can describe the act of eye 
fixation on one image in pursuit of finding a discrepancy or 
similarity, in terms of showing feature 

if  (from a pool of M  

features) at location a , by a given probability [1], 
represented by ),( afPfix

. It is intuitive to assume that the 

second fixation on the other image happens with probability 
1 (as the test subject tries to find the feature of interest in the 
same location). Assuming that each fixation takes a constant 
time duration, it can be shown that the average time to detect 
the first discrepancy is proportional to the expected value of 
the probability of discrepancy detection in one fixation (note 
that expectation is according to the random fixation event). 
As result, (4) gives the overall distance ( )tstrefD , , in the 

PPIQ framework . Note that (4) also affirms the intuitive 
notion of weighted (according to the probability of fixation) 
norm-1 distortion pooling which has already been practiced 
in some of the suprathreshold IQM such as SSIM [6].  

( ) ( )
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∈ =

⋅
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We conclude the description of PPIQ framework by 
giving a four step instruction on how an application can 
define an IQM based on the PPIQ framework: 1- Choose a 

set of desired feature extraction filters to produce the feature 
response ( )afr , . 2- Select a suitable cumulative probability 

function to produce the distortion detection probability 
( )aftstrefPdis ,,,  from (3). 3- Adopting a fixation probability 

function ),( afPfix
 to be used for distortion pooling across 

spatial and feature spaces as in (4). 4- If the preceding 
functions are not exactly known, a parameterized version of 
those functions can be used along with a labeled subjective 
image quality training set to learn what the unknown 
parameters should be.  

Although the primary concern of this paper is to 
introduce the PPIQ framework and leave the task of 
instantiating specific IQMs to the adopters of the proposed 
PPIQ framework, in the next section we introduce an IQM 
just to exemplify how the PPIQ framework can be used to 
derive IQMs, comparable to the contemporary objective 
metrics, known to be performing superbly in predicting 
subjective test results.  
 

4. PPIQ-NDC: A PERCEPTUAL IMAGE 
DISTORTION METRIC 

 
In this section a sample PPIQ metric based on a specific 
feature extraction and detection threshold probability models 
is proposed to evaluate the principles based on which the 
PPIQ framework was proposed. To that end we utilize a 
feature that corresponds to an omnidirectional contrast filter 
(step 1 in Section 3) and an exponential detection threshold 
cumulative probability function [3] (step 2 in Section 3). As 
for step 3 in Section 3, we note that modeling of ),( afPfix

 

requires specific knowledge about several factors which can 
draw viewers’ attention. With less knowledge about these 
elements, the probability distribution for the fixation 
becomes flatter (i.e. all locations are equally likely). For the 
sake of simplicity of the proposed example IQM (PPIQ-
NDC) we resort to a flat fixation probability function. 

The omnidirectional feature extraction filter for PPIQ-
NDC is a parameterized, 2-D symmetric Laplacian of 
Gaussian (LoG) filter as in (5). Note that the LoG shape 
resembles simple RFs in the early vision [7] and as such it 
models the combined effect of point spread function of 
optical aperture and the bandpass property of the HVS.  

( ) +
−−

+

⋅
=

2

22

2

22

4 2
exp1

2

1
,

σσσπ

yxyx
yxToc

 (5) 

The parameter σ  defines the band-pass characteristics 
of the RF filter in the spatial frequency domain. It should be 
noted that σ  also defines the spatial span of the RF on the 
display. Since this number should reflect the actual size of 
the corresponding RFs on the retina, one can use the value 
of optimal σ  for a given viewing distance and pixel pitch 
and calculate the optimal σ  for a different viewing distance 
or pixel pitch. The adaptability to viewing conditions is one 
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of the advantages of PPIQ-NDC as a distortion metric. Also 
the bandpass nature of the filter in (5) matches the results of 
psychophysical experiments and the concept of contrast 
sensitivity function (CSF).  

Inspired by the probability function which is used for 
probability summation techniques in [1], a parameterized, 
exponential cumulative probability function is used for 
defining PPIQ-NDC as in (6). normΔ  is the value of ( )afr ,  

at which 63% of test-subjects can detect the existence of 
feature f  at location a  and β  influences the slope factor. 

Both normΔ  and β  parameters, in general, are functions of 

the feature f  and the image content, especially around the 

location a  to reflect the masking effects [5]. However in 
this paper to be able to have a simple parameterization of the 
detection probability function, we choose β  and normΔ  to 

be constants parameters.  

( ) ( )( )
( )

Δ
−−=

β

norm
af

f,ar
f,arP exp1,

 (6) 

The parameterization of the proposed PPIQ-NDC 
metric offers an opportunity to examine the properties of the 
HVS’s functionality which correspond to those parameters. 
To that end we used the subjective test results from the 
LIVE database [8] to optimize the PPIQ-NDC parameters. 
The LIVE database includes subjective test results for five 
categories of distorted images which include JPEG and 
JPEG 2000 compression distortion, additive white noise and 
Gaussian blur distortion and finally error concealed JPEG 
2000 image distortion due to Fast Fading Rayleigh Channel 
Error (FFRCE) model. The details of the subjective test 
experiments can be found in [9]. The parameter optimization 
for PPIQ-NDC metric was done by minimizing the Root 
Mean Squared Error (RMSE) of the best logistic regressor to 
fit the metric value to the subjective test results per 
recommendations in [10]. Table I shows the RMSE value of 
PPIQ-NDC, VIF [9], SSIM [6] and MSE for prediction of 
the realigned DMOS values in the LIVE database [8]. This 
result shows the robustness of the PPIQ-NDC metric in 
predicting the subjective quality of images. The optimized 
parameters based on a training set of images in the LIVE 
database are as follows: 66.1=σ , 4.0=β , 0.11=Δnorm . 

Note that the optimized β  value in our suprathreshold 

model is different than typical values of 2 to 4, quoted for 
JND experiments. (These optimized values have been used 
to generate the results for PPIQ-NDC in Table I.) 

 
5. CONCLUSION  

 
The proposed framework for perceptual assessment of image 
quality in this paper offers the following benefits: 1- A more 
realistic approach by suggesting the comparative memory 

model for perceptual quality assessment as opposed to the 
perfect photographic memory model used in conventional 
IQA methods. 2- Capturing the random nature of quality 
assessment amongst different observers and subjective test 
sessions. 3- Allowing applications to define quality metrics, 
by assessing specific feature(s) which matches their specific 
needs. 4- Meaningful interpretation of distance pooling, 
based on the expected probability of finding feature 
discrepancies at suprathreshold conditions.  
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TABLE I 
RMSE FOR ALIGNED-DMOS REGRESSION  
BASED ON DIFFERENT OBJECTIVE METRICS 

Distortion 
Category 

# of 
Images  

PPIQ VIF SSIM MSE 

JPEG 2000 227 6.10 6.86 8.76 11.19 

JPEG 233 7.10 6.57 10.38 14.58 

White Noise 174 9.11 5.76 6.65 8.79 

Gaussian Blur 174 5.16 4.55 9.34 11.67 

JPEG 2000 
with FFRCE 

174 7.66 8.05 9.79 13.54 

All categories 982 8.72 9.50 12.02 14.02 
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