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Abstract—In this paper, an efficient paradigm is presented to
correct for brain shift during tumor resection therapies. For this
study, high resolution preoperative (pre-op) and postoperative
(post-op) MR images were acquired for eight in vivo patients, and
surface/subsurface shift was identified by manual identification of
homologous points between the pre-op and immediate post-op to-
mograms. Cortical surface deformation data were then used to
drive an inverse problem framework. The manually identified sub-
surface deformations served as a comparison toward validation.
The proposed framework recaptured 85% of the mean subsurface
shift. This translated to a subsurface shift error of 0.4 ± 0.4 mm for
a measured shift of 3.1 ± 0.6 mm. The patient’s pre-op tomograms
were also deformed volumetrically using displacements predicted
by the model. Results presented allow a preliminary evaluation of
correction both quantitatively and visually. While intraoperative
(intra-op) MR imaging data would be optimal, the extent of shift
measured from pre- to post-op MR was comparable to clinical
conditions. This study demonstrates the accuracy of the proposed
framework in predicting full-volume displacements from sparse
shift measurements. It also shows that the proposed framework
can be extended and used to update pre-op images on a time scale
that is compatible with surgery.

Index Terms—Brain shift, finite elements, image deformation,
image-guided surgery, inverse model.

I. INTRODUCTION

IMAGE-GUIDED surgical systems rely on establishing a re-
lationship between the physical space in the operating room
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(OR) and the patient’s preoperative (pre-op) image tomograms.
Tissue deformation and shift occurring during tumor resection
therapies often can compromise this spatial relation, thereby
degrading the accuracy of neuronavigation-based procedures.
In the literature, it has been reported that the brain can de-
form a centimeter or more in a nonuniform fashion throughout
the brain [1] and brain shift occurs due to a variety of rea-
sons, including gravity, edema, hyperosmotic drugs, and pathol-
ogy [2]–[4]. In an effort to compensate for intraoperative (intra-
op) brain shift, the two main candidates are active intra-op imag-
ing [2], [5], [6], and computational model-based techniques to
correct guidance systems during surgery [which we call model-
updated image-guided surgery (MUIGS)] [7]. Intra-op imag-
ing systems have been predominantly limited to intra-op MR
(iMR) imaging and intra-op ultrasonography (iUS). While iMR
techniques offer a powerful solution to the problem, they have
been questioned for their cost-effectiveness, and as a routine
technique, are overly cumbersome. While iUS approaches are
realizable now, the images often lack the clarity of their iMR
counterparts. In their current state, intra-op imaging systems
do not present a complete solution for brain shift. As a cost-
effective and efficient method, computational models have been
used successfully in MUIGS to correct for intra-op brain shift.

The most common MUIGS approach is to develop a patient-
specific computer model of the patient’s brain that can predict
intra-op deformations based on prescribed forcing conditions.
Once the model is selected, a systems integration design is con-
structed, which links together tissue deformation measurements
taken intraoperatively to model-driving inputs. Once the model
is calculated, full-volumetric displacements are available for
correcting pre-op images to the intra-op state of the tissue. In-
variably, the computational model is a critical component of any
MUIGS system and a spectrum of computational models, rang-
ing from less physically plausible but very fast models through
to very accurate biomechanical models, requiring hours of com-
pute time to solve have been presented in the literature [8]–[13].
Ferrant et al. [14] were among the first to demonstrate that
computational models can be used in a time frame that is con-
sistent with the demands of neurosurgery. The results reported
in [14] and [15] are encouraging and suggest that more complex
models can be used in MUIGS. Others have performed simi-
lar work in retrospective analysis and have shown impressive
results [11], [16].

Another critical component of MUIGS is the integration of
sparse intra-op data that serves to control the computational
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Fig. 1. Schematic for MUIGNS.

model. Sparse, in this context, means data with limited infor-
mation and/or spatial extent. The integration of sparse intra-op
data should not only increase the accuracy of the system, but
it should also meet the real-time constraints of neurosurgery.
Toward this end, we reported a framework [15] that combined
a computational model with a linear-inverse model and was
used to predict intra-op brain shift. In this framework, a series
of model deformations based on complex loading conditions,
such as brain shift due to gravity, volume changes due to drug
reactions, tissue swelling due to edema was computed preop-
eratively, and these model solutions were used to construct an
“atlas” of deformations. Sparse intra-op surface measurements
were then used to constrain the model and volumetric brain shift
was predicted using a linear-inverse model. The computational
model and the inverse model have been discussed in brief in
the following section. This framework was investigated within
a series of phantom experiments, two in vivo cases and a sim-
ulation study. Dumpuri et al. [15] reported that the framework
recaptured on an average 93% of surface shift for all the ex-
periments and 85% of the subsurface shift for the phantom and
simulation experiments. Subsurface shift measurements were
not available for the two in vivo cases that were reported by
Dumpuri et al. [15].

In this paper, we use the aforementioned framework to vali-
date subsurface shift measurements in eight in vivo cases. More
specifically, surface and subsurface shift measurements were ob-
tained by registering postoperative (post-op) MR tomograms to
the patient’s pre-op MR tomograms. Patient-specific models and
deformation atlases were generated for each of the eight cases
and subsurface shifts predicted by the combined linear-inverse
and computational model were validated against the measured
shift. Shift error and angular error between the measured and
predicted positions of the subsurface points have been presented
in Section IV. Also, the patient’s pre-op MR image volumes were
deformed using volumetric shift prediction, as generated by the
combined computational and linear-inverse model. Qualitative
comparisons with the post-op MR image volumes have also
been presented in Section IV. It should be noted that the analy-
ses reported in this paper was performed retrospectively, and it
did not affect the outcome of the tumor resection therapy.

II. METHODS

A general schematic of model-updated image-guided neuro-
surgery (MUIGNS) is shown in Fig. 1. As seen in the figure, the
computational model and the integration of intra-op data with

the model are two important features of a MUIGNS system and
these have been discussed in brief shortly.

A. Computational Model

With respect to simulating brain deformation models, Hakim
et al. [17] showed that the transmission of intraventricular pres-
sure throughout the brain parenchyma created a stress distri-
bution that varied in magnitude and direction and made the
observation that the “brain acts like a sponge.” In light of this
fact, Paulsen et al. [19], [20] developed a 3-D computational
model based on Biot’s theory of soil consolidation. In short,
Biot’s consolidation theory [21] gives a general description of
the mechanical behavior of a poroelastic medium based on equa-
tions of linear elasticity for the solid matrix and Darcy’s law for
the flow of fluid through the porous matrix. According to this
model, the brain is biphasic in nature and the volumetric strain
rate depends on the changes in interstitial pressure and hydra-
tion. These equations have been described below and were used
to model the deformation behavior of brain tissue

∇ • G∇�u + ∇ G

1 − 2γ
(∇ • �u) − α∇p = (ρt − ρf )g (1)

α
∂

∂t
(∇ • �u) −∇ • k∇p = −kc(p − pc) (2)

where u is the displacement vector, p is the interstitial pressure,
G is the shear modulus, γ is the poisson’s ratio, α is the ratio
of fluid volume extracted to volume change of the tissue under
compression, ρt is the tissue density, ρf is the fluid density,
g is the gravitational unit vector, t is the time, kc is the cap-
illary permeability, pc is the intracapillary pressure, and k is
the hydraulic conductivity. Intra-op cerebrospinal fluid (CSF)
drainage reduces the buoyancy forces, which serve to counter-
act gravity forces thus causing gravitational forces to deform the
brain. This effect of gravitational forces on the brain is modeled
as a difference in density between tissue and surrounding fluid,
as given by the term on the right-hand side of (1). Hyperos-
motic drugs such as mannitol have the effect of reversing the
blood–brain osmotic barrier, drawing water from the extracellu-
lar brain space, thereby decreasing brain volume. This decreased
capillary pressure pulls interstitial fluid from the extracellular
brain space causing a decrease in tissue volume and is modeled
using the term on the right-hand side of (2). Extensive valida-
tion studies have been conducted in porcine systems using this
model [20], [22]–[24]. Miga et al. presented work concerned
with gravity-induced shift and strategies to simulate retraction
and resection [7], [20]. Roberts et al. assembled this work into a
general approach to model-based corrections for guidance sys-
tems. Since these early results, continued developments toward
the use of stereo pair measurements of brain shift [25] and ul-
trasound [16] have continued. In all, the results suggest that
the computational model can capture 70% to 80% of the sub-
surface deformation in animal and limited human experiments.
Based on this work and the work by Davatzikos et al. [26],
we have developed a three-stage approach that uses the pre-op
plan, an a priori understanding of brain shift, and preprocedural
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computing to generate a fast, efficient, and accurate method to
account for shift intraoperatively.

B. Pre-Op Surgical Planning

One important aspect to our approach is to maximize the uti-
lization of presurgical plans realized by the surgeon. While a full
simulation of the procedure is considerably cumbersome, deter-
mining some basic understanding of the surgeon’s plan for brain
presentation can be enormously useful in generating our shift-
compensation approach. In the framework being developed, four
key pieces of preprocedural information are determined, which
are as follows: 1) the anticipated orientation of the head in the
OR for surgical exposure; 2) the anticipated area of the cran-
iotomy and an approximation to its size; 3) the location of the
brain stem in the patient’s pre-op images; and 4) the location
of the tumor and edema in the patient’s pre-op images. With
our surgical planning software tools, this information can be
determined in a few minutes by the surgeon. This information is
then utilized in generating a series of condition sets that can be
used to represent different intraprocedural simulations of brain
deformation, i.e., an “atlas” of deformations.

In order to perform simulations based on the surgical plan, a
computer model must be constructed. To accomplish this, the
patient’s pre-op MR image volume is used to construct a geomet-
ric computer model. This process involves: 1) the utilization of
automatic segmentation techniques [27] to extract the brain and
interesting structures from the volumetric images; 2) generating
a surface that includes the outer brain and internal structures
of interest (e.g., tumor volume) and providing it as input to a
volumetric mesh generator that breaks this domain into approx-
imately a hundred thousand tetrahedral volume elements; and
lastly, 3) incorporating the white/gray matter boundary using an
image-to-grid thresholding technique. The mathematical model
used to simulate brain deformations has been reported previ-
ously [8], [19]. Once this geometric model is built, the physics
associated with soft-tissue deformation must be chosen and any
number of numerical methods to solve partial differential equa-
tions can be employed to simulate intra-op brain shift (in this
paper, the physics is based on Biot’s biphasic consolidation
theory and the numerical solution method is the finite-element
method). In previous work, the computational model has been
extensively reported and is capable of simulating deformations
due to surgical manipulation, retraction, resection, the influ-
ence of hyperosmotic drugs, edema, gravity-induced shift, and
swelling [15], [20], [24].

C. Preprocedural Computing

Once the pre-op plan and model are in place, a series of
condition sets can be generated that will simulate a variety of
intra-op deformations. Currently, we are employing three prin-
ciple modes of deformation, which are as follows: 1) gravity-
induced brain shift; 2) volumetric contraction due to hyperos-
motic drug interactions; and 3) swelling due to the presence
of edema around a tumor. An example of a condition set that
allows the model to predict gravity-induced brain shift in the
head-neutral supine condition is shown in Fig. 2. Surface 1 is

Fig. 2. Boundary condition (BC) template set for a supine patient with neutral
head orientation in the OR. Displacement BCs: surface 1: stress-free, i.e., free
to deform, surface 2 and 5: slide along the cranial wall, but are not permitted to
move along the normal direction, surfaces 3,4: fixed, i.e., cannot move. Pressure
BCs: surfaces 1, 2, and 3 reside at atmospheric pressure, surfaces 4 and 5 are
still submerged in CSF, and therefore, do not allow fluid drainage.

assumed to be stress-free. i.e., free to deform. Surfaces 3 and 4
(the brain stem region) are fixed for displacements, i.e., minimal
deformation in the brain stem region is assumed, and surfaces 2
and 5 are permitted to move along the cranial wall. Each condi-
tion set will have an estimated intra-op CSF drainage that also
determines what surfaces are open to atmosphere and which are
submerged. Parts of the brain surface above the CSF drainage
level are assumed to reside at atmospheric pressure and parts
below are nondraining surfaces.

Fig. 2 is a representative condition set. The reality of our
framework is that the condition sets are perturbed systematically
and automatically to reflect changes to the OR presentation of
the brain. For example, amount of intra-op CSF drainage and
patient’s head orientation in the OR are two factors that deter-
mine the amount of gravity-induced shift in our computational
model. Varying amounts of CSF drainage translates to the de-
lineation between surfaces 2 and 5 in Fig. 2 moving upward in
the case of less drainage, and downward in the case of more.
Similarly, different head orientations would translate to the de-
lineation between surfaces 2 and 5 being at increasingly oblique
angles to the horizontal, as shown in Fig. 2.

Accounting for these, varying amounts of gravity-induced
shift has been reported previously by Dumpuri et al. [15]. In
addition to these more mechanical-like events, physiological
variability has also been incorporated. For example, when sim-
ulating tumor-growth-induced edema, aberrant angiogenic ac-
tivity can be simulated by changing capillary permeability in
regions surrounding the tumor, such that more fluid moves into
the interstitial spaces. The framework developed in [15] allows
us to vary the strength of that infusion as separate condition
sets. And with each condition set, a new deformation is simu-
lated using the computer model. Taking all these solutions in
their entirety is what we have termed a total deformation atlas,
(the variable [E] in the equation sets in the Appendix). If we
take only parts of those solutions, such as the areas of the brain
surface where we obtain intra-op shift measurements, this subset
of solution values is what we have termed a partial deformation

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on May 31,2010 at 15:43:20 UTC from IEEE Xplore.  Restrictions apply. 



1288 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 6, JUNE 2010

atlas (the variable [M] in the equation sets in the Appendix).
Given that we only know deformations at the cortical surface, it
is the partial deformation atlas that becomes of critical import
for our compensation approach. However, it should be noted
that the incorporation of sparse subsurface measurements, such
as provided by iUS, could readily be incorporated into this
framework.

D. Intra-op Computing and Inverse Model

There is a degree of uncertainty associated with using the
computational model in a purely predictive sense in the OR.
For example, when predicting gravity-induced brain deforma-
tions, the patient head orientation and the amount of intra-op
CSF drainage must be ascertained. The surgeon’s pre-op plan
can be used to approximate the patient’s orientation in the OR,
but it is difficult to measure the amount of fluid drainage. Also,
in cases where mannitol is administered or other complex vas-
cular events occur, it is difficult to differentiate the shift due
to these and that from gravity. In addition, the surgeon can dy-
namically change the relationship of gravity to the patient by
lowering or raising the head of the bed. Equations (1) and (2)
are therefore solved for a range of possible sources of brain
shift, and the individual deformation solutions are assembled in
the total deformation atlas [E]. For example, the patient head
orientation and the amount of CSF drainage are two factors
that cause the gravity-induced brain shift in our computational
model. A rough estimate of the intra-op patient head orienta-
tion is obtained from the surgeon and this orientation is varied
to account for possible changes in head position during the tu-
mor resection therapy. Similarly for a given head orientation,
the amount of CSF drainage level is varied and (1) and (2) are
solved for every possible combination of head orientation and
CSF drainage level. All these displacement solutions are then
assembled in the total deformation atlas [E]. The advantage of
a deformation atlas is that this variability can be built-in to our
condition sets, i.e., varying orientation configurations as well
as other shift factors can be incorporated in our atlas of solu-
tions. Therefore, [E] is of size (n × 3) × m, where n is the
number of nodes in the finite-element mesh, 3 is the number of
Cartesian displacement components at each node, and m is the
number of times the model is run in a forward manner or the
number of model solutions. As earlier noted, we then construct
a partial deformation atlas [M] for the areas of the brain sur-
face, where we obtain shift measurements. Therefore, [M] is of
size (ns × 3) × m, where ns is the number of points for which
sparse measurements were obtained. The different deformation
solutions are combined using the following:

G(α) = ‖Mα − U‖2 + β2 ‖α‖2 + φ[W]T [Y]{α} (3)

where ‖.‖ is the Euclidean norm, [M] is the partial deforma-
tion atlas, U is the measured shift on the cortical surface (i.e.,
sparse intra-op data), W is the weighting vector, Y is the strain
energy matrix, α is the regression coefficients, and β is the
Tikhonov factor. The first term in the equation serves to mini-
mize the error between the predicted model solutions and mea-
sured shift, the second term is a regularization factor, and the

third term minimizes the elastic energy across the deforma-
tion atlas and produces a spatially smooth displacement field.
The vector of regression coefficients is determined from (3).
The measured sparse data act as control points and are used to
constrain the inverse approach. In this study, subsurface points
served as unbiased error estimates to validate the accuracy of
volumetric brain shift predicted by (3). In our proposed frame-
work, (3) is the only equation solved in the OR, and therefore,
can be solved on a time scale that is compatible with surgi-
cal proceedings. Also, one of the advantages of (3) is that it
is a linear system that should meet the real-time constraints
of neurosurgery. In addition, as alluded to earlier, (3) repre-
sents a relatively simple approach to incorporate measurement
data and could easily be modified to accommodate subsurface
data. A more detailed description of the inverse approach can
be found in [15]. Once the regression coefficients are deter-
mined by (3), a full-volumetric deformation field is calculated
using total deformation atlas [E] multiplied by the regression
coefficients {α}.

In the past, we have used very sparse datasets of points to
guide [15], e.g., 12–18 points distributed over the cortical sur-
face. It would be desirable to generate more dense constraints
to our approach, but the results using this very sparse set of
measurements has been considerable. This paper also utilizes a
very sparse set of points, but has the added benefit of subsurface
validation targets, which was not previously possible in [15].
In addition, previous work in [15] only reflected two cases,
whereas this paper involves the more considerable population
of eight patients. It should be noted though surface and subsur-
face shift measurements in this paper were obtained between
pre-op and post-op MR brain images, the proposed framework
can be easily translated to intra-op surface and subsurface shift
measurements.

E. Updating Pre-op Images Based on Model Deformations

The last and an equally important step in a MUIGNS frame-
work is the updating of pre-op images based on the full-volume
displacements predicted by the combined computational and
linear-inverse model. Since the finite-element mesh for each
patient is built using the patient’s pre-op images and the dis-
placements predicted by the constrained least-squares approach
are defined in a continuum manner over the finite-element mesh,
these displacements can be used to deform the pre-op images. An
image-updating algorithm was initially presented in [20]. Miga
et al. [20] used a backcasting technique to deform the patient’s
pre-op images using displacements predicted by the model. We
parallelized this image-deformation algorithm, in order to meet
the real-time constraints of neurosurgery. This algorithm elimi-
nates the problem of holes/tears in the updated image, produces
a contiguously deformed image that is based on the governing
equations for the forward model, and translates the volumetric
brain shift predicted by the model into images that can be used
for guidance by the neurosurgeon. The predictions can also be
used to simultaneously align any other pre-op data that may be
of use to the surgeon (e.g., functional MR, positron emission
tomography, diffusion tensor MR, etc.).
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Fig. 3. General shift-compensation approach from surgical planning to procedural execution.

F. Summary of Brain-Shift-Compensation Strategy

Fig. 3 is a flowchart that demonstrates how the three
stages (see Section II-B–D) interact with respect to our shift-
compensation strategy. The two components central to the sur-
gical planning stage are as follows: 1) the anticipated surgical
information regarding the patient’s presentation as estimated by
the surgeon and 2) the manipulation of the pre-op MR image
volumes to generate patient-specific models. Given that we have
developed a strategy to automatically generate a variety of sim-
ulation condition sets, the preprocedural computing amounts to
a computer cluster executing each simulation and storing the
solution in what we have termed a deformation atlas. Given
that we have sparse measurement data, the intra-op computing
stage will use a partial deformation atlas to construct a defor-
mation reconstruction approach that best fits the measurement
data. From there, new image volumes can be generated and the
guidance can be updated.

III. PATIENT POPULATION

Eight patients (mean age of 51.4 years, with two men) with
brain tumors (primary or metastatic) were included in this study,
as shown in Table I. All patients were enrolled after obtaining
written informed consent for participation in this study, which
was approved by the Institutional Review Board of the Vander-
bilt University School of Medicine. After anesthetic induction,

the patients were positioned on the OR table and were secured
to the table using a three-pin Mayfield skull clamp. This clamp
attaches to the operative table and holds the head absolutely still
during delicate brain surgery. All patients received diuretics
(mannitol, 0.5–1.0 g/kg) and steroids (dexamethasone) imme-
diately before incision. All patients underwent craniotomy for
tumor resection and no side effects related to participating in
this study were noted. Pre-op and post-op MR tomograms were
acquired as 1.5 T, T1-weighted, 3-D SPGR, 1 × 1 × 1.2 mm
voxel, gadolinium-enhanced and nonenhanced image volumes.
It should be noted that the pre-op image volumes were acquired
a day before or on the morning of the surgery and the post-
op images were acquired a day after surgery. The pre-op and
post-op MR volumes were registered using mutual information.
The brain region is then segmented from these registered vol-
umes using an atlas-based segmentation method [28]. Textured
brain surfaces are generated from these segmented MR tomo-
grams and corresponding cortical features (vessel bifurcations,
sulcal and gyri patterns), identified manually on these surfaces,
are used as measures of brain shift. Tumor and edema regions
were identified and segmented manually from the gadolinium-
enhanced pre-op image volumes. A patient-specific model was
generated for each patient in a manner similar to the one re-
ported in [15]. For each patient, brain shift was simulated with
the following four different deformation atlases that reflected
different assumptions about the surgical presentations of the
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TABLE I
PATIENT INFORMATION

patient. (I) Tumor was resected from the brain. Mannitol was
not administered and gravity was the solitary factor-causing
shift. (II) Tumor was resected from the brain. Mannitol was
administered and was the solitary factor-causing shift. (III) Tu-
mor was present and shift was induced by tissue swelling in the
tumor and edematous region and with mannitol being adminis-
tered to the patient. (IV) All three aforementioned atlases were
concatenated into one large deformation atlas. Atlas I employed
60 different patient orientations with four levels of intra-op CSF
drainage for each orientation, thus resulting in 240 displacement
solutions. Atlas II used three different capillary permeability
values for each of the 60 patient orientations, thus resulting
in a total of 180 different displacement solutions. In order to
simulate displacement solutions for Atlas III, three different
craniotomy sizes were assumed, and for each craniotomy size,
three different edematous tissue regions were assumed. For each
edematous region, three different capillary permeability values
and three different intracranial pressures were assumed. This re-
sulted in a total of 81 different scenarios. Atlas IV thus consisted
of 501 deformation datasets. With respect to the driving sparse
data, 15–20 corresponding points were identified manually for
each patient between the registered textured brain surfaces.

Differences in position between the post-op and pre-op cor-
responding points were used as measures of brain shift, and
these displacements were used to constrain the inverse model.
Nodes on the finite-element mesh corresponding to these points
are identified using a closest point algorithm, and these nodes
were used to compute the intra-op deformation atlas. Also, six
to eight corresponding subsurface points were identified on the
registered MR tomograms, and these points were used to vali-
date subsurface shifts predicted by the inverse model. Given the
uncertainties in measurements due to segmentation and regis-

tration errors, surface shifts lesser than 3 mm and subsurface
shifts less than 2 mm were not included in this study, and the
subsurface points were spatially distributed over the entire brain
volume. As stated earlier, it should be noted that the shift mea-
surements, model simulation, and analyses were performed in
a retrospective manner, in order to simulate a potential applica-
tion of the proposed framework within the OR, and it did not
affect the outcome of the reported tumor resection therapies.
Also, the patient’s pre-op MR image volumes were deformed
using the volumetric shift predicted using the inverse model and
qualitative comparisons with the post-op MR image volumes
have been presented in the following section.

IV. RESULTS

Anatomical fiducials (such as ear lobes, eye sockets, and
corresponding points in the brain stem region) were chosen
between the pre-op and post-op MR tomograms to assess the
accuracy of the mutual information algorithms that were used to
register these image volumes. The mean difference in position
between these points was found to be 1.0 ± 0.3 mm. It should be
noted that this does not represent a registration error and detailed
error analyses of the registration algorithms can be found in [29].

Table II summarizes the measured shift values for all the pa-
tients reported in this study. Surface landmarks were identified
between the textured MR pre-op and post-op brain surfaces,
and subsurface landmarks were identified manually between
the pre-op and post-op MR brain image volumes. The posi-
tional difference between the points have been reported in the
table as measured shift values, and displacement values have
been reported as absolute numbers in the table without depict-
ing a direction using positive or negative signs. Fig. 4 is a
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TABLE II
MEASURED SURFACE AND SUB-SURFACE SHIFT IN MILLIMETERS

FOR ALL EIGHT PATIENTS

Fig. 4. (Left) Surface and (right) subsurface points for patient 1 that were used
in the model. The arrow in the surface point distribution figure (left) points to
the location of the tumor. Subsurface points 1 and 2 are located superior (at a
higher elevation) to the tumor, points 3,4, and 5 were located in plane with the
tumor, and point 6 is located inferior to the tumor. Surface points were used to
constrain the linear-inverse model and subsurface points were used to validate
the accuracy of the model. Though, the same numbering scheme has been used
in both halves of the figure, it should be noted that the points in the left-hand
side do not correspond to the points in the right-hand side.

representative example that shows the surface and subsurface
points for patient 1 used in this study.

It should be noted that the surface points were used to con-
strain the inverse model and the subsurface points served as un-
biased error estimates. Also, the subsurface points shown in the
figure are not coplanar, but are distributed over the entire brain
volume. Error between measured and predicted shift values has
been reported in Table III. Shift error in the Table III refers to
the magnitude error between the measured and predicted shifted
positions of the subsurface points and angular error refers to the
directional accuracy between the measured and predicted shifted
positions of the subsurface points. Averaging over all eight pa-
tients, Atlas IV, the constrained linear-inverse model, produced
a mean shift error of 0.4 ± 0.4 mm and a mean angular error of
9.5◦ ± 1.1◦ with respect to a mean subsurface shift of 3.1 ± 0.6
mm. As stated earlier, Atlas IV the concatenated deformation
atlas contains deformation solutions simulating gravity-induced
shift, brain shift due to hyperosmotic drugs, such as mannitol,

and brain shift due to tissue swelling in the edematous region.
The percent shift recaptured with the constrained linear-inverse
model using Atlas IV has been reported in Table IV. Averag-
ing over all eight patients, the constrained linear-inverse model
recaptured 85% of the mean-measured subsurface shift.

A. Illustrative Results

Fig. 5 qualitatively illustrates the cortical surface shift for
patient 1 reported in this study. Fig. 5(a) and (b) represents a
sagittal and an axial slice from the patient’s pre-op images, re-
spectively. Fig. 5(c) and (d) shows the corresponding slices from
the patient’s post-op images. The cross hairs show that a point
picked on the cortical surface of the post-op MR surface (bottom
row) actually lies beneath the surface in the pre-op MR images
(top row). Fig. 5(e) shows the outer edge of an axial slice of the
post-op images (shown in green) overlaid on the corresponding
axial slice of the pre-op MR images. Fig. 6 demonstrates intra-
op updating of pre-op images based on model predictions. For
sake of continuity, post-op slices shown in Fig 5(c) and 5(d)
have been used to qualitatively illustrate the shift correction.
Fig. 6(a) and (b) represents a sagittal and an axial slice from the
patient’s post-op images, respectively. Fig. 6(c) and 6(d) shows
the corresponding slices from the image volume obtained using
model predictions. It can be seen that the shift depicted by the
cross hairs in Fig. 5 has been accounted for in Fig. 6. Fig. 6(e)
shows the outer edge of an axial slice of the post-op images
(shown in green) overlaid on the model-predicted images and
demonstrates the matching accuracy of the proposed frame-
work. It should be noted that though the tumor was removed
from the brain tissue when building the deformation atlases,
tumor was not removed from the brain volume when the pre-
op images were deformed using the predicted displacements.
In cases where the atlas contained a resected tumor solution
within the basis, the displacements in the tumor region were
interpolated from surrounding values. Fig. 7 shows sample im-
age updating results for a subsurface point for patients 1, 7, and
8. The first column shows a subsurface point (represented as a
black hollow circle) in the patient’s pre-op image. The hollow
black circle in the second column shows the position of the
same point before brain shift and the solid black circle shows
the true shifted position of the point. The white hollow circle in
the second column shows the predicted shifted position of the
point. For the subsurface point shown in the figure, the model
correction approach accounted for 81%, 80%, and 83% of the
measured shift for each of the respective patients 1, 7, and 8.

V. DISCUSSION

The results presented in this study demonstrate that the com-
bined computational and linear-inverse model is capable of
predicting full-volume displacements and can be used in a
MUIGNS system. The framework reported here relies on pre-
dicting brain shift using a patient-specific atlas of model solu-
tions that are consistent with the forces causing brain shift. This
series of model solutions are then combined in a linear fashion
using the sparse measured data. Since the pre-op image volumes
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TABLE III
SHIFT ERROR (IN MILLIMETERS) AND ANGULAR ERROR (IN DEGREES) FOR ALL EIGHT PATIENTS

TABLE IV
% SHIFT RECAPTURED FOR ALL EIGHT PATIENTS USING ATLAS IV

are acquired a day prior to surgery, the atlas of deformations can
be computed a day prior to surgery using the parallelized compu-
tational model and the automatic boundary-condition algorithm
reported in [15]. This allows the shift-correction strategy relayed
by (1) to be executed almost instantly within the intra-op envi-
ronment. As a result from this approach, the issue of intra-op
compute time is diminished, and questions regarding integration
become more prominent. Figs. 6 and 7 qualitatively demonstrate
the shift correction using displacements predicted by the com-
bined computational and linear-inverse model. In all eight cases

presented, subsurface points were chosen near the lateral ven-
tricles and the tumor resection cavity to validate the subsurface
shift predicted by the model. Averaging over all the eight patient
cases, the model recaptured 85% of the mean-measured shift.
Also, a shift of 4–6 mm of the tumor boundary and a shift of
3–6 mm at the lateral ventricles were observed in the registration
studies and the model predictions. This is in agreement with the
shift measurements reported in the literature [20], [30], [31].
As stated earlier, the proposed framework addresses the uncer-
tainties associated with running the computational model in a
purely predictive sense in the OR by trying to account for all
possible sources of intra-op brain shift. As a result, the com-
putational model is run in a forward manner multiple times to
account for deformations due to gravitational forces, hyperso-
motic drugs, and tissue swelling. These deformation solutions
are then combined in a least-squares sense using the combined
computational and linear-inverse model. Fig. 8 shows the dis-
tribution of regression coefficients that optimally combine the
different deformation solutions for patients 1, 7, and 8. Regres-
sion coefficients computed using the concatenated deformation
atlas (Atlas IV reported in Section III) were used to gener-
ate the charts shown shortly. Atlas IV consisted of a total of
501 model solutions (240 of the displacement solutions were
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Fig. 5. Qualitative representation of shift between pre-op and post-op MR images. (a) Sagittal slice of the patient’s pre-op image. (b) Axial slice of the patient’s
pre-op image. (c) Corresponding sagittal slice of the patient’s post-op image. (d) Corresponding axial slice of the patient’s post-op image. Cross hairs in the bottom
row represent a point picked on the cortical surface of the patient’s post-op image that actually lie beneath the parenchyma in the patient’s pre-op image due to the
presence of brain shift. (e) Outer edge contour of an axial slice (shown in green) of the patient’s post-op image overlaid on the patient’s pre-op image.

Fig. 6. Demonstration of intra-op updating for the post-op slice show in Fig. 5. (a) Sagittal slice of the patient’s post-op image. (b) Corresponding axial slice of
the patient’s post-op image. (c) and (d) Image updates using displacements predicted by the proposed framework. (e) Outer edge contour of an axial slice (shown
in green) of the patient’s post-op image overlaid on the image obtained using model predictions.

modeled to simulate gravity-induced shift, 180 to model shift
due to mannitol, and 81 due to tissue swelling and mannitol com-
bined). Averaging over all eight patients, 45% of the nonzero
regression coefficients belonged to gravity-induced shift, 46%
to mannitol-induced shift, and 9% to displacements modeled

to simulate tissue swelling. These findings suggest that grav-
ity and mannitol-induced shift may have an equal contribution
in predicting the observed brain shift. We realize that these
findings need to be validated in a bigger patient population
before ascertaining the correlation between simulated boundary
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Fig. 7. Image-updating results for a subsurface point chosen in patients 1,7,
and 8. Column 1: subsurface point (shown as a hollow black circle) in the
patient’s pre-op image. Column 2: hollow black circle shows the same point in
the patient’s post-op image before brain shift. Solid black circle shows the “true”
shifted position of the point, and the white hollow circle shows the predicted
shifted position of the point. True shift here refers to the shift measured using
the registered pre-op and post-op points. Measured/true shift for patient 1: 5.5
mm and predicted shift: 4.5 mm. Measured shift and predicted shift for patient
7: 4 and 3.2 mm, respectively. Measured shift and predicted shift for patient 8:
5.1 and 4.2 mm, respectively.

conditions and the observed brain shift. Nevertheless, these find-
ings are intriguing and to our knowledge represent the first report
to suggest a more prominent role for hyperosmotic drugs effects
within brain-shift-compensation strategies. In addition, these re-
sults do suggest that the atlas-based framework can be used to
account for the complex loading conditions that occur during
tumor resection therapies.

A few limitations of this study must be noted. First, we used
the brain shift between pre-op and post-op image volumes in
this study. Since the post-op MR image volumes were acquired
a day after surgery, we understand that the shift used in this
study is not representative of the intra-op brain shift. Differ-
ences between intra-op patient positioning (head orientation in
the OR) and positioning of the head during post-op image ac-
quisition, viscoelastic nature of the brain and the regeneration

Fig. 8. Distribution of regression coefficients for patients 1, 7, and 8. Atlas
IV (concatenated deformation atlas) was used to generate these charts. Though
only three patients have been shown here, a similar distribution was observed
for all eight patients reported in this study.

of CSF within the brain are factors that might have caused the
brain to recover some of its intra-op brain shift. We acknowledge
that the limitations of using post-op MR images as measures of
brain shift, but unfortunately, subsurface intra-op measurements
were not available. To address this shortcoming, in each of the
cases reported herein, intra-op cortical deformation measure-
ments before and after resection were taken using a laser range
scanner and the magnitude of surface shift was compared to that
measured by the pre-post MR analysis conducted here. While
direct correspondence could not be established between shifting
structures, regionally it appears that approximately 25% of the
brain shift occurring intraoperatively is recovered at the time of
a post-op MR. From this, it is evident that considerable brain
shift is still present at the time of a post-op MR. While the exact
shift directions may differ due to the orientation of the patient
in OR versus the scanner, the atlases generated in this paper
can be easily extended to capture these configurations. A sec-
ond limitation is that the model did not account for more direct
interactions, such as retractions and the brain tissue collapsing
into the tumor resection cavity. It should be noted that retrac-
tors were not used in the cases reported in this paper. However,
we hypothesize that surface loadings resulting from tissue re-
traction can be modeled in a forward manner, as demonstrated
in our previous work [24], [32]. Our vision of shift compen-
sation would involve an atlas-based method to compensate for
the more volumetric deformation events with a more straight
predictive calculation for the more direct interactions, such as
that performed by retraction. We observed normal brain tissue
collapsing into the tumor resection cavity during surgery for
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patient 2 reported in this study. Though this phenomenon was
not observed in the other patient cases, we do realize its impor-
tance especially in terms of intra-op brain shift and predicting
tumor margins in the presence of intra-op brain shift. We are
working on enhancing the existing computational model to ac-
count for this surface collapse. Also, corresponding points could
not be identified near the tumor resection margins and in the re-
gions where the brain tissue collapsed, and we do realize that
shift predictions for this patient are incomplete. Despite these
model limitations, the computational time associated with run-
ning the inverse model and updating the pre-op images and the
shift error analyses are encouraging and indicate that the linear-
inverse model reported herein combined with this parallel image
updating technique is capable of predicting intra-op brain shift
in a real-time fashion.

VI. CONCLUSION

A framework to predict subsurface shifts using a combined
computational and linear-inverse model has been utilized in a
preliminary validation of our approach to brain-shift correction.
The framework reported relies on relatively inexpensive small-
scale computer clusters and can compute image updates on a
time scale that is compatible with the surgical removal of tumor.
The subsurface error measurements and the qualitative image
comparisons presented in this paper are encouraging. Shift mea-
surements used in this study were based on post-op images and
we do have preliminary data that suggests this does not repre-
sent the extent of intra-op shift. However, all indications based
on these results as well as past performance would indicate
that model-based approaches, to compensate for shift, would be
able to correct for 70%–80% of shift. While the intra-op error
would likely be larger than that reported here (0.4 ± 0.4 mm),
we would suggest that the percent of capture would remain the
same, i.e., 70%–80%. In addition, we are working on enhancing
the computational model to account for brain shift due to the
tissue collapsing into the tumor resection cavity. Lastly, while
preliminary in nature, these results are the first to suggest the
import of modeling hyperosmotic drugs, whereby regression co-
efficients representing vascular effects were virtually weighted
equally with the gravity-induced shift-regression coefficients.
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