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Abstract: A general survey of multidimensional approaches to the measurement

and comparisons of welfare situations is provided. The survey covers some aspects of
welfare representation, data availability and experience, axiomatic characterization
of inequality measures, existing multidimensional indices, the stochastic dominance
alternative for comparing welfare situations, and mobility. Applications to national
and international data are described. The paper emphasizes implementability issues
and statistical methods in the context of a comparative analysis of the philosophical
and theoretical desirability of alternative approaches.

1. Introduction

Multidimensioned consideration of welfare and inequality is arguably one of the
most pressing issues facing the credible practice of welfare analysis. The very mean-
ing of “income” inequality is ambiguous when households and individuals are known
to have different characteristics and needs. Life-cycle differences in incomes is an-
other impediment to a meaningful conceptualization of “income inequality”. And
non-monetizable or non-tradable benefits that affect well being are non-income di-
mensions worthy of inclusion and/or independent study. These issues raise serious
questions of legitimacy of an applied income-based univariate approach to welfare
comparisons. Policy makers and others interested in optimal decision making of-
ten compare welfare situations and uncertain outcomes that involve many inherent
characteristics. Suitable criteria as well as proper characterization and measure-
ment of each “welfare situation” are required. These requirements are inter-related
and difficult to meet.
Welfare criteria have been typically single dimensioned in the sense of being in-

dividualistic and utilitarian with only homogenous individual (or household) utility
functions as their arguments. These utilities are replaced by incomes represent-
ing indirect utilities of optimizing units. The important question of heterogeneity
among individuals is often inadequately dealt with. Realistic welfare characteriza-
tion requires agreement on which attributes are necessary for inclusion, as well as
their weights, if any, and their interactions. This multiattribute or heterogeneous
context makes interpersonal comparisons of welfare, and its attendant problems, in-
evitable. It is for this reason that until quite recently income, perhaps adjusted by
“equivalence scales”, and its distribution had dominated in a “univariate approach”
to applied and theoretical welfare analysis. A similar situation predominates in the
finance literature.

1A revised version of this paper appeared in J. Silber (ed):Handbook of Income Inequality
Measurement, Kluwer publishers, 1999, (With Comments by F. Bourguignon), 437-484, 1999. I
am grateful to J. Silber, F. Bourguignon for his comments, and other reviewers for their valuable
input.
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It is true that, in many societies, the income “proxy” is useful beyond its rep-
resentation of consumption bundles, and it may proxy for other opportunities and
rights. But income is inadequate to various degrees in different societies and at
different times since it may not fully reflect all the benefits that people receive,
nor their “needs” and their “abilities”. Many of the benefits of education, public
services and amenities, and quality of life attributes cannot even be priced for lack
of market transaction. But data are increasingly available on non-income attributes
that are meaningful both directly, in terms of their contribution to well-being, and
by their characterization of characteristics that represent heterogeneity in such wel-
fare units as individuals, households, and countries.
These limitations have been pointed out by several authors including Arrow

(1971), Sen (1970, 1973), Kolm (1977), Atkinson and Bourguignon (1982), and
Maasoumi (1979, 1986). Kolm (1977) appealed to “fundamentalism” and “impar-
tiality” which imply that the greater the number of welfare attributes considered
the more reasonable are the common assumptions of anonymity and homogene-
ity. Sen (1970, 73, 1977) pointed to the differences in needs and argued against the
purely individualistic and utilitarian characterization of welfare. Some otherwise
socially desirable “entitlements” and “abilities” are examples of attributes that are
generally not evaluated within individual utility functions, or by an individualis-
tic/utilitarian social welfare function; also see Arrow (1971).
Atkinson and Bourguignon (1982, 1987, 1989), Maasoumi (1986a, 1989a), Maa-

soumi and Jeong (1985), for example, deal with the theoretical and practical im-
plementation issues, such as identification of desirable multidimensional indices,
aggregation issues, conditions for ordering multivariate welfare functions. Maa-
soumi and Zandvakili (1986, 1989, 1990) discover a different source of variation
across time and individuals. Variation in earnings is partly reflective of individuals’
states in their life-cycles. An adjustment for this may be made by looking at the
distribution of “permanent” income. A proper treatment of this will have to take
into account the intertemporal aspects of decision making and treat incomes at
different points as distinct attributes. This was done by Maasoumi and Zandvakili
(1986) and applied in several empirical applications to US data.
“Double counting” and clustering solutions, and other data related questions

have been addressed in an expanding array of studies, such as Hirschberg, Maa-
soumi, and Slottje (1991), Maasoumi and Nickelsburg (1988), and Atkinson, Bour-
guignon, and Morrison (1992). In the theoretical domain, Tsui (1992a, 1992b),
U. Ebert (1995a, 1995b), Dardanoni (1992), and Shorrocks (1995) have further
advanced the multidimensional welfare theory.
Even if agreement is reached on substantive questions regarding the practical

meaning and measurement of suitable attributes to be included in the character-
izations, the question of consensus functionals and criteria for evaluating welfare
situations endures. Substantial and substantive disagreements about this question,
albeit sometimes ill-expressed or implicit, are at the heart of the problem of con-
sensus rankings and policy analysis. But the inevitability of the multidimensional
welfare comparisons derives from the nature of the activity. It is this inevitabil-
ity which renders this area of welfare analysis the centerpiece of future theoretical
and empirical developments even if we have to live with what I will refer to as
“majority” rankings.
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The most common practical approach to measurement and comparing welfare
situations is based on indices. For example, before and after-tax income distri-
butions, or incomes of different regions, or the same region but across time, are
explicitly and implicitly ranked by scalar measures such as inequality or poverty
indices. There is something rather inevitable about this activity which arises out
of the practical need for “measurement” as compared with “ordering”. The theo-
retical methods for identifying “ideal” indices of inequality or poverty in the single
attribute case are now well developed. These are summarized in this paper; also
see Maasoumi (1996a). This “index-based” approach is limited in several respects,
the most serious being a lack of consensus on the acceptable index even when there
is broad, or majority, agreement about certain normative principles. This difficulty
is a consequence of the lack of consensus with regards to the appropriate cardi-
nalization of the class of admissible welfare functions. To provide for some degree
of continuity and sufficiency, I will give a brief account of some salient theoretical
findings in this approach.
As might be expected, the issue of consensus characterization and indexing looms

even larger in the multidimensional analysis. Here, a welfare matrix of several at-
tributes characterizing, or enjoyed by, welfare units (households) constitutes the
argument of a “welfare function”. The axioms under which a suitable index (car-
dinalization) may be identified are even less likely to command general agreement,
and are less likely to produce reasonably small families of suitable scalar measures.
There are two basic methods in existence that generate “ideal” multivariate

indices. The “two-step” method proposed in Maasoumi (1986a) obtains ideal ag-
gregation functions over the desired attributes in its first step. The second step
invokes the same fundamental welfare axioms that have been acceptable in the
univariate/utilitarian setting which identify well known index families (such as
the Generalized Entropy). This approach has a long history since it is implicitly
adopted whenever we analyze equivalent incomes or costs of living for heterogenous
households in place of their ordinary incomes.
The second method seeks to identify a set of properties (axioms) directly suited

to the multivariate setting, and obtains the index (es) which may satisfy these
axioms. Predictably, the identification of a commonly acceptable set of axioms has
proven to be more ellusive than in the univariate case. I will provide an account of
the related theoretical and empirical findings in this multivariate setting.
When “ordering” different states is our only goal, stochastic dominance and other

orderings offer a philosophically attractive alternative to the seemingly daunting
task of developing “ideal” indices. This is already so in the univariate approach
since even a set of commonly adopted “fundamental welfare axioms” is only able
to produce a large family of candidate welfare functions, capable of supporting an
even larger set of inequality and other indices. Thus the possibility of avoiding
cardinalization is even more alluring in the multidimensional case. As with the
index approach, however, there are as yet unresolved philosophical and practical
problems. These issues are discussed in this paper with an eye for statistical decision
making and empirical implementation.
In what follows I will briefly review some elements of the univariate analysis

which help to set the multidimensional issues in context (section 2). Then I will
give an account of the multidimensional characterization and index development
in section 3. This section will contrast the “two step” approach of this author
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with the “one step”, or direct approach to identifying multivariate indices. In sec-
tion 4 an account is given of the stochastic dominance approach and the statistical
advances that have been made in very recent times. Section 5 includes some empir-
ical examples of both approaches. An extensive, but by no means comprehensive,
bibliography ends the paper.

2. Univariate Indices

2.1. Inequality Measures and SWFs. It is of general interest to compare dis-
tributions across countries, or over time for the same region, perhaps in order to
assess any impact of economic policy or events. This requires that we estimate
such things as Lorenz and Generalized Lorenz (GL) curves in order to evaluate any
dominance relations statistically.
It is also an independently interesting and common practice to compare distri-

butions on the basis of specific inequality indices. Indeed, it is very common to
explicitly or implicitly rank income distributions on the basis of these estimated in-
equality measures without proceeding to a comparison of Lorenz-type curves. This
is necessary when complete ranking is desired.

2.1.1. Measures of Inequality. Kolm (1969) and Atkinson (1970) have provided
clear and influential formalizations of the relationship between SWFs and inequality
measures2 . Since then there has been much progress in both expanding on this
important relationship and in utilizing it for more informed analyses of inequality
measures. Kolm and Atkinson considered a utilitarian and individualistic welfare
function which was increasing in incomes and equality preferring.
LetX be the income variable, µx its mean, andXe the “equal equivalent income”;

i.e., the level of income which if received by everyone would leave social welfare at
the same level as for a given income vector. Thus Xe < µx so long as there is
any inequality, and a measure of divergence between these two would indicate the
degree of welfare loss due to inequality. Atkinson (1970) and Kolm (1969) argued
that, see also Blackorby and Donaldson (1978),

I(X) = 1−Xe/µx (2.1)

may be a good measure of “relative” inequality. Indeed, one could just as well take:

I(X) = 1− SWF (X)/µx (2.2)

where SWF (X) is the “average” or mean Social Welfare Function (SWF). This
should make clear that the SWF approach does not by itself identify a unique
inequality index even when a particular SWF is agreed upon.
An important example of the measures generically defined above is the Atkinson

family of inequality measures :

Av = 1− [
Z ∞
0

x1−vdF ]
1

1−v /µx, v > 0, v 6= 1 (2.3)

2See Cowell and Kuga (1981) and also C. Dagum(1993) for even earlier contributions. The
idea for a modern SWF discipline is attributed to Dalton of the London School of Economics
in the 1920s. Interestingly, however, its revival is anticipated in econometric work which is
contemporaneous with Kolm’s theoretical writings in the middle 60s; see Aigner and Heins (1967)!
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= 1− exp[

Z
log(x/µx)dF ], v = 1 (2.4)

where F is the c.d.f of income. Similarly, the Generalized Entropy (GE) family
of indices is given by:

Iγ(X) =
1

γ(1 + γ)

Z ∞
0

(x/µx)[(x/µx)
γ − 1]dF, γ real (2.5)

I1 is ordinally equivalent to the coefficient of variation and the Herfindahl index,
and the family includes the variance of logarithms and Theil’s first and second
measures, I0 and I−1 , respectively. Also, up to a monotonic transformation, there
is a unique member of GE corresponding to each member of the Atkinson family.
v = −γ is the degree of aversion to relative inequality; the higher its absolute value
the greater is the sensitivity of the measure to inequality (transfers) in the tail areas
of the distribution.
The axiomatic derivation technique that identifies GE is constructive and is to

be appreciated as an important breakthrough in organizing learning and knowledge
in this area. It will help to set the multivariate issues in context. This axiomatic
approach owes much to functional analysis first developed in “information theory”,
see Maasoumi (1993). In this approach one puts down an explicit set of require-
ments (axioms) which the ideal indices must satisfy, and which may or may not
be universally acceptable. Using these axioms as explicit constraints on the func-
tion space one then obtains the appropriate inequality index. To exemplify, let
us follow Bourguignon (1979) or Shorrocks (1980, 1984) in their discussion of the
“fundamental welfare axioms” of symmetry, continuity, Principle of Transfers, and
additive decomposability which identify GE as the desirable scale invariant family
of relative inequality measures.
Axiom 1. The inequality index (function) is symmetric in incomes.
This is equivalent to anonymity which requires that only income matters not the

identity of its recipient.
Axiom 2. Principle of transfers holds.
This requires that inequality decrease if we redistribute from a single richer indi-

vidual to a poorer one, leaving their respective ranking and all the other individuals’
incomes unchanged.
Axiom 3. Continuity.
This is relatively innocuous, helping in the mathematical derivations and in

comparing different populations. None of the well known inequality indices violates
this requirement. Note that it does allow for the practically non-sensical zero
inequality.
Axiom 4. Invariance to scalar multiplication.
This is a serious limitation as it restricts attention to “relative" inequality. This

is so since this requirement implies mean invariance; doubling everyone’s income
would leave inequality unchanged. Questions of “efficiency" can only be taken
up by absolute inequality measures. None of the popular measures violates this
requirement!
The class of functionals satisfying Axioms 1-4 is still too large. Also, any further

axioms are less likely to command consensus. In fact, any further requirements
must be justified by plausible considerations of such things as policy, empirical
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necessity, and practical interest. The most commonly invoked of such requirements
is:
Axiom 5. Additive decomposability (aggregation consistency).
This requirement, later strengthened as an “aggregation consistency” axiom by

Shorrocks (1984), says that total inequality must be the sum of a “between group”
component, obtained over group means, and an additive component which is a
weighted sum of “within group” inequalities. This kind of decomposability is very
useful for controlling and dealing with heterogeneity of populations, and as a means
of unambiguously identifying the sources of inequality and those that are affected
by it.
In their various incarnations, Axioms 1-5 together identify the GE family as the

“ideal” family of indices. But other axiom sets have been given which “justify”
other inequality indices, see Blackorby and Donaldson (1978), and Dagum (1990).
Indeed, one of the most popular and enduring inequality indices that is not in the
GE family is the Gini index given by:

G = (
2

µx
)

Z ∞
0

x(F − 1/2)dF

= 2

Z ∞
0

(F − L)dF (2.6)

where L is the Lorenz curve to be defined below. If the useful additive decompos-
ability requirement of axiom 5 is imposed, such measures as Gini and variance of
logarithms will be excluded. The latter two measures provide ambiguous decom-
positions of overall inequality by population subgroups; see Shorrocks (1984).
For the GE family a discretized (estimation) formula that helps to demonstrate

its decomposability is as follows:

Iγ(X) =
RX
r=1

[X.r/
nX
i

Xi]
γ+1(nr/n)

−γIr + Ibγ (2.7)

where X.r/
P

iXi is the share of total income to group r, r = 1, 2, ...., R, and
nr is the number of units in that group. Ir is the “within” group GE inequality
which is defined over the income shares within the r − th group, and Ib is the
“between” group GE inequality defined over the R group means. Shorrocks (1984)
has convincingly argued that Theil’s second measure (γ = −1) provides the most
unambiguous answer to such fundamental questions as : How much of the overall
inequality is due to the inequality in the r − th group? Having a good idea about
the incidence of inequality, or poverty, is an essential pre-requisite for devising well-
directed and appropriate remedial action. It is also essential in establishing lower
bounds for inequality that reflect acceptable differences due to heterogeneity in
experience, education and skills, or other social norms. Such additive decompos-
ability and “aggregation consistency” criterion, requiring that inequality increases
if one or more Ir increase (Ib constant), are violated by Gini! We shall see further
supporting arguments in favor of requiring additive decomposability in the multi-
variate case and in empirically relevant applications. In particular, a property of
GE measures provides a partial but important degree of robustness with respect to
the thorny problem of obtaining equivalence scales when we admit both the realism
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of heterogeneity, on the one hand, and the difficulty of correcting for it, on the
other.

3. Multivariable Welfare and Inequality

Once the reality of heterogeneity amongst the members of a household and be-
tween households (on the basis of “needs”, say) is admitted, the notion of “income
inequality” itself becomes ambiguous. In a real sense the assumption of “symmetry”
or “anonymity” is seen to be unacceptable. We need to adjust for heterogeneity
sources before we can measure or compare “pure” income inequality.
When attributes other than money incomes are taken into account and allowed

to explicitly enter the SWFs, a powerful aspect of the axioms of “fundamentality”
and “anonymity” may be invoked which partially justifies common representations
in preferences, in functional forms and for “representative agent” formalisms. Sim-
ply put, if we enter into the preference functions all the attributes that we think
would matter in distinguishing individuals or households, then the need for ex post
and often arbitrary distinctions in functional representations and other adjustments
would be reduced. There are philosophical and empirical/data availability prob-
lems, but some remedies are in hand.
There are at present two inter-related lines of inquiry, or “solutions”, that aim

to deal with the problems of heterogeneity, equivalence scales, and what one might
call a purely dimensional limitation of the univariate approach as pointed out by,
for example, Kolm, Sen, Atkinson, Bourguignon, and Maasoumi..
The first “solution” is to search for measures that are in some sense “ideal”

and preferably less sensitive to possibly incorrect methods of scaling incomes. De-
composable measures, whether of inequality or poverty, provide some protection.
Additive decomposability offers an opportunity to “control” for heterogeneity
sources that are classifiable when data are collected. Gender, age, ed-
ucation, income category, marital status, family size, race, ethnicity, geographic
location, employment status, and many other attributes, are examples of very use-
ful and observable characteristics which explain some sources of heterogeneity. As
Coulter et al (1992) rightly argue, see also Maasoumi and Nickelsburg (1988), and
Maasoumi and Zandvakili (1986, 1989, 1990), the between group component of
the GE family of inequality measures is, inevitably and perhaps appropriately, the
only component that is not free of how heterogeneity is defined and/or adjusted
for. The within group components and, in certain cases, their weights are free of
such “contaminations”. But decomposability has its limits, both practical and be-
cause it requires comparisons of possibly many conditional inferences. Relatedly,
this first approach requires cardinalization of welfare functions which involves nor-
mative comparability between individuals and households. Agreement about those
normative rules that obtain unambiguous comparisons is difficult, and less stringent
principles leave some ambiguity.
A second approach seemingly emphasizes partial orderings and eschews wel-

fare comparisons on the basis of indices such as inequality measures. This requires
stochastic dominance and other rankings of the type to be discussed below. In par-
ticular one may focus on deriving conditions for the stochastic dominance of one
distribution over another on the basis of welfare functions which are, in a sense,
decomposed or separable for different population groups. This separation
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both requires and opens the way for allowing different welfare evaluations for differ-
ent groups which are identified by all their given characteristics other than income.
Welfare comparisons of this type do not require equivalence scales, but they do
require similar agreement on normative comparability of households with different
characteristics and needs. This affords partial orderings but agreement on increas-
ing levels of comparability, though difficult to reach, take us closer to cardinality
and complete rankings. See our discussion of Atkinson and Bourguignon (1987,
1989) below.
It is not possible to fully avoid the difficulties mentioned above by working in

terms of the univariate distribution of “equivalent income”, “standard of living”,
or “cost of living” concepts. Some of the same normative comparability questions
arise in the construction of “equivalence scales” and similar constructs. This has
been brought out by Pollak and Wales (1979), Blundell and Lewbel (1991), and
Shorrocks (1995). We will briefly allude to these difficulties below.

3.1. Majority Indices. In the multidimensional or multiattribute analysis, let
Xij denote a measure of attribute j = 1, 2, ...,m, associated with individual (unit,
household, country) i = 1, 2, ...., n. Define the welfare matrix X = (Xij), Xi its
i-th row, Xj its j-th column, and consider any scalar function of the matrix X.
Examples of such scalar functions are inequality measures or SWFs. It has proven
difficult to develop “consensus” axioms which may characterize an ideal measure
of multivariable inequality; more so than the univariate case discussed above. One
of the main difficulties here is that, whatever the axiom sets, there is an inevitable
aggregation of them attributes that will result in any scalar measure. In view of this
truism, Maasoumi (1986a) proposed a two step procedure whereby this aggregation
issue is dealt with directly and explicitly. Once an “ideal” aggregation function is
determined, the choice of an ideal measure of inequality may be guided by the
analysis of that issue in the univariate literature. The latter analysis was sketched
earlier in this paper where it identified the GE family of inequality measures.

3.1.1. Maasoumi’s two-step measures of multivariate inequality. The aggregation
of attributes in the first step has been addressed by several authors. Two broad ap-
proaches may be identified. The first is based on measures of closeness and affinity
which may identify either attributes that are similar in some sense, and/or deter-
mine a “mean-value”, or aggregate, which most closely represents the constituent
attributes. The second approach which is axiomatic lays down properties that we
may agree an aggregate function should possess. This second approach, recently
developed by Tsui (1992b), inherits the difficulties of arriving at consensus prop-
erties which parallel the difficulty of adopting a criterion of “closeness” in the first
approach. But the latter difficulty has had some resolution in “information theory”
which seems to suggest members of the Generalized Entropy family as ideal criteria
of “closeness” or “divergence”. This topic is, however, beyond the scope of the
present paper. The interested reader may see Maasoumi (1993).
Let Si denote the aggregate or summary “well-being” function for the i−th unit.

I have argued elsewhere that it makes little difference to our approach whether Si
is interpreted as an individual’s utility evaluations or the “observer’s” or policy
maker’s welfare assessments for individual i. Let us define the following generalized
multivariate GE measure of closeness or diversity between the m densities of m
attributes:
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Dβ(S,X;α) =
mX
j=1

αj{
nX
i=1

Si[(Si/Xij)
β − 1]/β(β + 1)} (3.1)

where αjs are the weights attached to each attribute. Minimizing Dβ with
respect to Si such that

P
Si = 1, produces the following “optimal” aggregation

functions:

Si ∝ (
mX
j

αjX
−β
ij )

−1/β , β 6= 0,−1 (3.2)

Si ∝ ΠjXαj
ij , β = 0 (3.3)

Si ∝
X
j

αjXij , β = −1 (3.4)

These are, respectively, the hyperbolic, the generalized geometric, and the weighted
means of the attributes, see Maasoumi (1986a). Noting that the “constant elas-
ticity of substitution”-σ = 1/(1+β), these functional solutions include many of
the well known utility functions in economics, as well as some arbitrarily proposed
aggregates in empirical applications. For instance, the weighted arithmetic mean
subsumes a popular “composite welfare indicator” based on the principal compo-
nents of X, when αjs are the elements of the first eigen vector of the X 0X matrix;
see Ram (1982) and Maasoumi (1989a).
The “divergence measure” Dγ(.) forces a choice of an aggregate vector S = (S1,

S2,........,Sn) with a distribution that is closest to the distributions of its constituent
variables. This is desirable when the goal of our analysis is the assessment of
distributional properties such as equality. Information theory establishes that any
other S would be extra distortive of the objective information in the data matrix
X. Elsewhere the author has argued that such a distributional criterion is desirable
for justifying choices of utility, production, and cost functionals since such choices
should not distort the actual market allocation signals that are in the observed
data. The distribution of the data reflect the outcome of all optimal allocative
decisions of all agents in the economy; see Maasoumi (1986b).
The above divergence criteria are αj-weighted sums/averages of pairwise GE di-

vergences between the “distributions” S and Xj , the j-th attribute/column in X.
In unpublished work, the author has considered hyperbolic means of these same
pairwise divergences. This generalization is capable of producing more flexible
functional forms for Si. In a different but related regression function setting origi-
nally suggested in Maasoumi (1986b advances), Ryu (1993), and Maasoumi (1993)
discuss how very general flexible forms may be supported and interpreted by the
Maximum Entropy (ME) method that underlies the optimization of Dβ(.) above.
Finally, it is worth appreciating that the GE divergence is itself justified by a set of
desirable axioms in information theory. These axioms are not very different from
those in Axioms 1-5 discussed earlier; see Maasoumi (1993). This is hardly surpris-
ing since in both cases one is interested in measuring the divergence between two
distributions: Indices of inequality measure the divergence between a distribution
of interest and a uniform (rectangular) distribution representing perfect equality.
In both cases it is found that the difference between the “entropies” of the two
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distributions is an ideal measure. Information theory thus provided the inspira-
tion for both the entropy measures of Theil as well as the “axiomatic” approach of
Bourguignon, Cowell and Kuga, Shorrocks, and others alluded to earlier.
The second step of the proposed method in Maasoumi (1986a) is the selection of a

measure of multidimensional inequality which is the GE index of the Si distribution
just obtained. It is instructive to analyze this measure in the discrete case:

Mγ(S) =
nX
i=1

pi[(S
∗
i /pi)

1+γ − 1]/γ(1 + γ), γ 6= 0,−1 (3.5)

M0(S) =
X

S∗i log(S
∗
i /pi), Theil

0s first index (3.6)

M−1(S) =
X

pi log(pi/S
∗
i ), Theil’s second index (3.7)

where pi is the i-th unit’s population share (typically = 1/n), S∗i is Si divided
by the total K =

Pn
j=1 Sj .

These inequality indices are normalized iso-elastic transformations of the utility
functions Si. As such they are “symmetric”, “homogeneous”, and consistent with
the Lorenz criterion. They will be homogeneous with respect to every Xj , the j-th
column/attribute in X, if in all the above one works with the matrix of shares, x =
(xij). While this will not change the functional solutions given above, it requires a
rather unusual assertion that individual well-being depends on shares of attributes;
see our discussion of Tsui (1992a) below.
Useful decomposability properties are possessed by these measures both in pop-

ulation groups and in attribute directions.

Proposition 3.1. (Decomposability of GE)
Let xij = Xij/Tj , Tj =

P
iXij , Wj = Tj/K, Iγ(X

j) = the GE inequality in the
j-th attribute, and δj = αj/

Pm
f=1 αf . Then:

(i). If 1 + γ = −β, we have:

Mγ(S) =
mX
j=1

δjW
1+γ
j Iγ(X

j) + (
X
j

δjW
1+γ
j − 1)/γ(1 + γ) (3.8)

(ii). If the marginal distributions are identical-i.e., xj = xk, ∀j and k, we have,

Mγ(S) = Iγ(X
j), any j ∈ [1,m] (3.9)

(iii). For Theils first and second measures (γ = 0,−1), we have:

M0(S) =
mX
j=1

CjI0(X
j)−D−1(x, S∗;C) (3.10)

where Cj = δjTj/
P

k δkTk, and,

M−1(S) =
mX
j=1

δjI−1(Xj)−D0(x, S
∗; δ) (3.11)

where by application of L’Hospital’s rule to Dβ(.) defined earlier, we have:
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D0(S
∗, x; δ) =

X
j

δj [
X
i

S∗i log(S
∗
i /xij)] ≥ 0

and Si defined at β = 0 (3.12)

and,

D−1(S∗, x;C) =
X
j

Cj [
X
i

xij log(xij/S
∗
i )] ≥ 0

and Si defined at β = −1. (3.13)

Proof: See Maasoumi (1986a, Propositions 1-2).
In view of the non-negativity of the D(.) terms in part (iii) of this proposition,

it is clear that multidimensional inequality is no more than the weighted average of
inequalities in the single attributes. This is due to the “substitution” effect between
the attributes, an issue that is related to the problem of “double counting”. To
clarify, Maasoumi (1989b) considered the incremental contribution to inequality of
a single attribute. In the special case where the attributes are jointly log-normal,
the Cobb-Douglas form of the S function is also log-normal. In such cases, both of
Theil’s measures are given by:

I0 =
1

2
C

0X
C = I−1 ≥ 0 (3.14)

=
mX
j=1

C2j (
1

2
σjj) +

mX
j=1

Cj

mX
j<k

Ckσjk (3.15)

where
P
is the covariance matrix of the distribution, and C = (C1, C2, ....., Cm)

0

is the set of weights defined earlier, and σjk is the covariance between the (logs of)
the attributes j and k. Multivariate inequality is composed of two parts. The
first is a weighted sum of the attribute inequalities. The second term is an ad-
justment due to covariation (trade offs) between the attributes. Theil’s measures
are homogeneous and correspond to SWFs belonging to the class u−− of Atkinson
and Bourguignon (1982). From the latter we learn that one multivariate distribu-
tion second order dominates another if it has lower variances and covariances. For
equal marginal variances, for instance, lower (negative) covariances indicate higher
multivariate inequality.
The incremental contribution, If say, of the f-th attribute to multivariate in-

equality is:

If =
1

2
C2fσff + Cf

mX
k 6=f

Ckσfk (3.16)

≥ 0 , iff |
mX
k 6=f

(Ck/Cf )(σkk/σff )
1
2 ρfk| ≤ 1

2
(3.17)

where ρ denotes simple correlation coefficient. A sufficient condition for a positive
contribution is

Pm
k 6=f Cfσfk ≥ 0. The general condition is more likely violated when

attribute f is strongly negatively correlated with relatively more highly weighted
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attributes (Ck/Cf > 1), and or relatively less equally distributed (σkk/σff > 1).
Hence, negative correlation with other attributes may more than cancel the own
inequality term in If and reduce overall inequality, see Maasoumi (1989b).

3.1.2. Redistribution effects. As functions of the S aggregates, SWFs corresponding
to Mγ(.) indices are equality preferring since they are non-decreasing, symmetric,
quasi-concave, and thus also Schur-concave. But Si are not subject of redistributive
policy, Xi, s are. The following Proposition establishes a Principle of Transfers
property of the multidimensional welfare functions that is useful for redistributions
of the matrix X:
Let B be a bistochastic matrix such that bij ≥ 0,

P
i bij = 1 =

P
j bij ∀iandj.

Such matrices perform mean preserving spreads or “equalizing” transformations.
Also, let H denote the set of all positive, real valued concave (concave increasing
or concave non-decreasing) functions h(.).

Proposition 3.2. Let X̃ = BX, where B is a bistochastic matrix. Then W (S̃) ≥
W (S) for all Schur-concave W (.), and h ∈ H such that S̃i = h(X̃i) and Si = h(Xi).

Proof: See Kolm (1977, Th.6). In fact the converse also holds.
Maasoumi (1986a, Proposition 3) was an attempt at deriving a similarly strong

result for rankings by Schur-covex inequality measures Mγ(S). This can be done
for only a limited range of S functions, however, since Mγ does not contain all
Schur-concave SWFunctions and is not everywhere increasing.
Dadanoni (1992) has considered a particular type of redistribution, a so-called

“unfair redistribution” by which X̃ is a matrix where all the attributes are ordered
in descending magnitude (The i-th individual is the i-th best off in every attribute).
Designation of this multivariate redistribution as “unfair” implicitly assumes that
all attributes are valued equally by individuals and that they are perfect substitutes!
Not surprisingly, when an aversion to this type of “unfair” redistribution is made
a requirement of multidimensional indices, it is found that Si functions must be
additively separable for Proposition 3 to hold in terms of inequality indices; see
Dardanoni (1992). It may be noted that the “unfair” distribution of Dardanoni
corresponds to rank dominance (majorization) in every attribute! While an aversion
to this type of “unfair distribution” is desirable, it is a distribution that is as
fanciful in the multidimensional context as is that of the perfectly equal reference
distribution that plagues the axiomatic analysis of univariate inequality (through
the assumption of continuity).
Our investigations show that additive separability is not required over a wide

range of negative values for γ and common values of β. 3

Finally, we note that under the conditions of Proposition 3, rankings by Mγ

measures are consistent with those given by the “welfare concentration curve”, a
generalization of the Lorenz criterion proposed in Kolm (1977). Recently Ebert
(1995b) and Shorrocks (1995) tackle a related problem of heterogenous households.
Both are primarily concerned with “equivalent incomes” which can be computed if
an appropriate “scale” or unit can be developed that accounts for attributes that
distinguish different “needs” by members of a household. The “standard of living”,

3A difficulty with Dardanoni’s numerical examples is a failure to compute inequality indices
for the size distribution of attributes (i.e., in terms of ”shares”), rather than levels as is done
for welfare functions. Our normalizations are such that the Mγ indices are measures of relative
inequality (i.e., homogeneous).
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or cost of living, so computed for households can replace ordinary income in an
otherwise univariate inequality analysis. This is clearly the two step approach de-
scribed above where the Si are interpreted as the standard of living. Ebert (1995b)
assumes suitable equivalence scales or standards exist! He then proposes some use-
ful techniques for analyzing redistributions in incomes by evaluating the redistrib-
uted incomes in terms of equivalent incomes. Compared to Proposition 3 above, it
is m-stochastic matrices, rather than bi-stochastic matrices, which can adequately
characterize redistributions where there is substitution and complementarity be-
tween attributes. Unfortunately, Shorrocks (1995) demonstrates an “impossibility”
result akin to Dardanoni’s (1992) qualification of this author’s Proposition 3 in Maa-
soumi (1986a). Shorrocks shows that, under apparently reasonable requirements
(Equal Compensation and/or Equity Preference), unambiguous complete rankings
such as those attempted in Proposition 3 above is possible only if preferences are
homothetic. This is disappointing but not surprising. Earlier work by Pollak and
Wales (1979), Pollak(1991), Lewbel (1990), and Blundell and Lewbel (1991) had
uncovered this unpleasant aspect of “equivalence scales”. Identification of equiv-
alence scales requires interpersonal welfare comparisons which are independent of
a “reference” welfare level. Such independence obtains only when preferences are
homothetic. As Blundell and Lewbel (1991) rightly point out, this is unfortunate
since although it is common to adopt the assumption in theoretical analyses, there
is no credible empirical support for homothetic preferences. The latest dose of
evidence against homotheticity is offered by these authors using UK panel data.
Similar difficulties persist when the multivariate stochastic dominance approach

is considered.

3.1.3. The one-step measures of multivariate inequality. Tsui (1992a, 1992b) and
Ebert (1995a) have studied the possibility of a direct axiomatic derivation of mul-
tidimensional inequality measures. This approach follows the methods described
earlier in relation to Axioms 1-5 of section 2. Tsui (1992a) considers SWFs that
are ordinally equivalent to the additively separable individualistic SWF. Starting
with the welfare matrix X = (xij) of n individuals (households) and m attributes,
Tsui considers the following familiar axioms and derives indices of relative and
“absolute” inequality which are “consistent” with these axioms:
(a) I(.) is continuous.
(b) I(X) = 0 if X has identical rows (normalization to perfect equality).
(c) I(X) = I(ΠX), where Π is the permutation matrix.
This is the “anonymity” or “symmetry” assumption which is questionable in the

multidimensional or heterogeneous setting.
(d) I(BX) <I(X) , where B is the bistochastic matrix defined earlier.
This is a generalization of the Lorenz dominance relations. For “relative” indices

Tsui (1992a) further requires:
(e) I(XC) = I (X) , where C = diag(c1,c2,.....,cm) has positive elements. This

makes the measures scale invariant if and only if this property holds.
For “absolute” indices, (a)-(d) are required as well as:
(f) I(X + P ) = I(X) , where P is an n×m matrix with identical rows.
Thus an index is absolute iff (f) holds.
The underlying SWFs are denoted W(.) : D → R, where D⊆M , a set of n×m

matrices. They share the following properties:
(1) W(X) is continuous.



14

(2) W(X) is increasing in elements of X.
(3) W(ΠX) = W(X) where Π is the n× n permutation matrix,
(4)W(X) is strictly quasi-concave, that is W[αX+(1−α)Y ] > min [W (X),W (Y )]

for matrices X 6= Y, and 0 < α < 1.
Properties (3)-(4) ensure that the SWF is Lorenz consistent as in Kolm (1977)

and Maasoumi (1986a, Proposition 3). That is W(BX) >W(X) for any anonymous
and strictly quasi-concave W(.); see Dasgupta et al (1973).
(5) W (X) = W (Y ) ⇒ W (XC) = W (Y C), for all C matrices defined earlier

(relative/scale invariant), and,
(6) W (X) = W (ϕ(Xs),Xc), where ϕ(.) is a continuous function of Xs, a sub-

matrix of X , and Xc is the complement of Xs in the partition of n individuals
into s and n− s groups.
Theorem 1 of Tsui (1992a) shows that properties (1)-(6) are necessary and suf-

ficient to render W (.) ordinally equivalent to
P

i U(X
i), where Xi is the i-th row

of X, and U i(.) is the i-th individual’s strictly increasing and concave valuation
function taking the following forms:

a+ bΠmj=1x
rj
j (3.18)

or,

a+
mX
j=1

rj log xj (3.19)

where a is an arbitrary constant, and b and rj are restricted so that U(.) is
increasing and strictly concave.
The corresponding relative inequality index is :

Mr = 1− [ 1
n

nX
i=1

Πmj=1(
xij
µj
)rj ]

1P
rj (3.20)

and,

Mr = 1−Πni=1[Πmj=1(
xij
µj
)

rjP
k rk ]

1
n (3.21)

where µj is the mean of the j-th attribute. These are clearly the multivariate
generalizations of Kolm’s (1977) univariate indices of inequality. They resemble
some members of the class Mγ(x) proposed by the present author.
Tsui (1992a) further considers absolute inequality measures. Replacing Property

(5) with
(7) W (X) = W (Y ) ⇒ W (X + P ) = W (Y + P ), where P has identical rows,

Tsui demonstrates the following result:
(i) W (X) satisfies Properties (1)-(4) and (6)-(7) if and only if U(.) is strictly

increasing and concave, taking the following forms:

U(X) = bΠmj=1 exp(rjxj) + a (3.22)

where a is arbitrary and b and rj should respect the properties of U(.).
(ii) The corresponding functional form for the absolute inequality measures is:
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MA = log

 1n
nX
i=1

exp

 mX
j=1

rj(µj − xij)

 (3.23)

Tsui (1992a) further explicates the constraints on the free parameters which
restrict their signs and impose restrictions on their values to insure the properties
of U(.) are maintained.
Ebert (1995a) has also studied the modification of Axioms 1-5 in the two-

dimensional case of incomes and “household types”. Following Atkinson and Bour-
guignon (1987), he considers the situation in which household types are ordinal and
discrete. Then grouping households by type, the following axioms are postulated:
A1. “partial symmetry”, means that different household types can be treated

asymmetrically but the previous anonymity axiom is adopted for members in a
category.
A2. “Aggregation” . Suppose there are two populations. The first is indifferent

between two income situations X(1) and Y(1) , and the second population is indiffer-
ent between X(2) and Y(2). Then this axiom requires that the combined populations
should be indifferent between (X(1),X(2)) and (Y(1),Y(2)). This axiom reduces to
the aggregation consistency axiom in the univariate case.
A3. Generalized Pigou-Dalton Principle (equality preference).
This requires a known ordering of household types by “needs”, say. Then “pro-

gressive” income transfers that don’t change the income ranks of individuals after
adjustment for their different needs, are preferred by the SWF.
A4. Generalized scale invariance. As in Tsui (1992a) described earlier.
Imposing these properties on SWFs, and like Tsui (1992a), using the Kolm-

Atkinson measure of inequality based on “equivalent income” described earlier,
produces a class of measures which, as Ebert shows, are ordinally equivalent to the
present author’s Mγ measures above.
Comparison of welfare matrices forces interpersonal comparisons of well-being

which, in turn, require further cardinal statements regarding the trade offs between
different attributes by different households. This means that “consensus” measures
are impossible to obtain. Majority indices are possible, however, since the indices
such as those proposed by this author are shown to be consistent with many plausi-
ble axioms which command wide-spread agreement. This situation is the same even
for partial orderings to be discussed under stochastic dominance. One must persist
in this direction, however, as the need for measurement endures, and since it seems
difficult to define significant social values that have no individualistic impact and
are therefore not capable of evaluation at the level of individuals (welfare units)4.
Resolution surely lies with abandoning a mode of thinking about attributes as sep-
arate, qualitatively “equal”, and either perfectly substitutable or not at all. The
most plausible situations are those where having a little of some attribute is com-
pensated by having more of another. At this level, if heterogeneity in tastes cannot
be ordered, the hope for consensus, individualistic, multidimensional measurement
would be dimmed.

4The evaluation does not need to be conducted by the welfare unit itself. As I discussed in
Maasoumi (1986a), these evaluations may be conducted by an observer. Shorrocks (1996) also
suggests that analyses proceed by thinking in terms of these living standards/aggregates. All the
existing results and norms clearly apply to ranking of the resulting ”univariate” distributions.
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A related issue of “double counting” latent attributes was anticipated by Hirschberg,
Maasoumi, and Slottje (1991). These authors explored the properties of “cluster
analysis” as a means of reducing dimensionality in the current context. The idea
is to identify clusters of statistically “similar” attributes which may then be repre-
sented by a single indicator. Further description is given in a later section.

3.2. Stochatic Dominance. The second approach alluded to earlier is based on
the desire to avoid full cardinalization that is required for index choice. We first
describe the elements of ordering and statistically testing for stochastic dominance
in the univariate case. The definitions and modified forms of the tests carry over
to the multidimensional case which will be discussed in a subsequent section.

3.2.1. Definitions and Tests in the Univariate Case. Let X and Y be two income
variables at either two different points in time, before and after taxes, or for different
regions or countries. Let X1,X2, ......,Xnbe n not necessarily i.i.d observations on
X, and Y1, Y2, ......, Ym be similar observations on Y. Let U1 denote the class of all
utility functions u such that u’ ≥ 0, (increasing). Also, let U2 denote the class of
all utility functions in U1 for which u00 ≤ 0 (strict concavity), and U3 denote the
subset of U2 for which u000 ≥ 0. Let X(i) and Y(i) denote the i-th order statistics,
and assume F(x) and G(x) are continuous and monotonic cumulative distribution
functions (cdf,s) of X and Y, respectively.
Quantiles qx(p)and qy(p) are implicitly defined by, for example, F[X ≤ qx(p)] =

p.

Definition 3.1. X First Order Stochastic Dominates Y, denoted X FSD Y, if and
only if any one of the following equivalent conditions holds:
(1) E[ u(X)] ≥ E[u(Y)] for all u ∈ U1, with strict inequality for some u.
(2) F(x) ≤ G(x) for all x in the support of X, with strict inequality for some

x.
(3) qx(p) ≥ qy(p) for all 0 ≤ p ≤ 1.

Definition 3.2. X Second Order Stochastic Dominates Y, denoted X SSD Y, if
and only if any of the following equivalent conditions holds:
(1) E[u(X)] ≥ E[u(Y)] for all u ∈ U2, with strict inequality for some u.
(2)

R x
−∞ F (t)dt ≤ R x−∞G(t)dt for all x in the support of X and Y, with strict

inequality for some x.
(3)

R p
0
qx(t)dt ≥

R p
0
qy(t)dt , for all 0 ≤ p ≤ 1 , with strict inequality for some

value(s) p.

The tests of FSD and SSD are based on empirical evaluations of conditions (2)
or (3) in the above definitions. Mounting tests on conditions (3) typically relies
on the fact that quantiles are consistently estimated by the corresponding order
statistics at a finite number of sample points. Mounting tests on conditions (2)
requires empirical cdfs and comparisons at a finite number of observed ordinates.
Also, from Shorrocks (1983) or Xu (1995) it is clear that condition (3) of SSD is
equivalent to the requirement of Generalized Lorenz (GL) dominance. FSD implies
SSD.
Noting the usual definition of the Lorenz curve of, for instance, X as Lx(x) =

1
µx

R x
−∞X × dF (t), and its GL (x) = µxLx (x) , some authors have developed tests

for Lorenz and GL dominance on the basis of the sample estimates of conditional
interval means and cumulative moments of income distributions; e.g. see Bishop et
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al (1989), Bishop et al (1991), Beach et al (1995), and Maasoumi (1996a) for a gen-
eral survey of the same. The asymptotic distributions given by Beach et al (1995)
are particularly relevant for testing for Third Order Stochastic Dominance (TSD).
The latter is a useful criterion when Lorenz or GL curves cross at several points and
the investigator is willing to adopt “transfer sensitivity” of Shorrocks and Foster
(1987), that is a relative preference for progressive transfers to poorer individuals.
When either Lorenz or Generalized Lorenz Curves of two distributions cross un-
ambiguous ranking by FSD and SSD is not possible. Whitmore (1970) introduced
the concept of third order stochastic dominance (TSD) in finance. Shorrocks and
Foster (1987) showed that the addition of the “transfer sensitivity” requirement
leads to TSD ranking of income distributions. This requirement is stronger than
the Pigou-Dalton principle of transfers and is based on the class of welfare functions
U3. TSD is defined as follows:

Definition 3.3. X Third Order Stochatic Dominates Y, denoted X TSD Y, if and
only if any of the following equivalent conditions holds:

(1) E[u(X)] ≥ E[u(Y)] for all u ∈ U3, with strict inequality for some u.
(2)

R x
−∞

R v
−∞[F (t)−G(t)]dt dv ≤ 0 , for all x in the support, with strict inequality

for some x,
with the end-point condition:R +∞
−∞ [F (t)−G(t)]dt ≤ 0.
(3) When E[X] = E[Y], X TSD Y iff λ2x(qi) ≤ λ2y(qi) , for all Lorenz curve crossing

points i = 1, 2, ......., (n + 1); where λ2x(qi) denotes the “cumulative variance” for
incomes upto the ith crossing point. See Davies and Hoy (1996).
When n = 1, Shorrocks and Foster (1987) showed that X TSD Y if (a) the Lorenz

curve of X cuts that of Y from above, and (b) Var(X) ≤ Var(Y). This situation
revives the coefficient of variation and covariances as useful statistical indices for
ranking distributions.
Recently, Kaur et al (1994) proposed a test for condition (2) of SSD when i.i.d

observations are assumed for independent prospects X and Y. Their null hypothesis
is condition (2) of SSD for each x against the alternative of strict violation of
the same condition for all x. The test of SSD then requires an appeal to union
intersection technique which results in a test procedure with maximum asymptotic
size of α if the test statistic at each x is compared with the critical value Zα of the
standard Normal distribution.
In the area of income distributions and tax analysis, initial developments focus-

ing on statistical tests for Lorenz curve comparisons are exemplified by Beach and
Davidson (1983), Bishop, Formby, and Thistle (1989), and Bishop et al (1991) . In
practice, a finite number of ordinates of the desired curves or functions are com-
pared. These ordinates are typically represented by quantiles and/or conditional
interval means. Thus, the distribution theory of the proposed tests are typically
derived from the existing asymptotic theory for ordered statistics and quantiles.
RecentlyBeach, Davidson, and Slotve (1995) have outlined the asymptotic distrib-
ution theory for cumulative/conditional means and variances which are the essential
ingredients of Lorenz and GL curves. To control for the size of a sequence of tests at
several points the Union Intersection (UI) test and Studentized Maximum Modulus
technique for multiple comparisons is generally favored in this area.
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More recently several non-parametric tests have been proposed for FSD and SSD
which recognize that distribution functions are unknown and have to be empirically
estimated. The McFadden and Kaur et al tests are in this spirit. Some alternatives
to these multiple comparison techniques have been suggested which are typically
based on Wald type joint tests of equality of the same ordinates, see Bishop et
al (1994) and Anderson (1994). These alternatives can be somewhat problematic
when their implicit null and alternative hypotheses fail to clearly deal with the
inequality (order) relations that need to be tested. Xu et al (1995), and Xu
(1995) take proper account of the inequality nature of such hypotheses and adapt
econometric tests for inequality restrictions to testing for FSD and SSD, and to GL
dominance, respectively. Their tests follow the work in econometrics of Gourieroux
et al (1982) Kodde and Palm (1986), and Wolak (1988, 1989), which complements
the work in statistics exemplified by Kudô (1963), Perlman (1969), Robertson and
Wright (1981), and Shapiro (1985). Good general accounts are given in Robertson
et al (1981) and Shapiro (1988). The asymptotic distributions of these χ − bar
squared tests are mixtures of chi-squared variates with probability weights which
are generally difficult to compute. This leads to the suggestion of bounds tests
involving inconclusive regions and conservative inferences. In addition, the compu-
tation of the χ bar squared statistic requires Monte Carlo or Bootstrap estimates of
covariance matrices, as well as inequality restricted estimation which requires op-
timization with quadratic linear programming. In contrast, Maasoumi et al (1996)
propose a direct bootstrap approach that bypasses many of these complexities while
making less restrictive assumptions about the underlying processes.
McFadden (1989) and Klecan, McFadden, and McFadden (1991) have proposed

tests of first and second order “maximality” for stochastic dominance which are
extensions of the Kolmogorov-Smirnov (KS) statistic. McFadden (1989) assumes
i.i.d. observations and independent variates, allowing him to derive the asymptotic
distribution of his test, in general, and its exact distribution in some cases (see
Durbin (1973, 1985). He provides a Fortran and a GAUSS program for computing
these tests. Klecan et al generalize this earlier test by allowing for weak dependence
in the processes both across variables and observations. They demonstrate with an
application for ranking investment portfolios. The asymptotic distribution of these
tests cannot be fully characterized, however, prompting Klecan et al to propose
Monte Carlo methods for evaluating critical levels. Maasoumi et al (1996) develop
a testing procedure based on bootstrap estimated confidence intervals for the KS
statistic . In the following subsections some definitions and results are summarized
which help to describe our tests. The McFadden-type tests require a definition of
“maximal” sets, as follows:

Definition 3.4. Let = {X1,X2, ....,XK} denote a set of K distinct random vari-
ables. Let Fk denote the cdf of the kth variable. The set Æ is first (second) order
maximal if no variable in Æ is first (second) order weakly dominated by another.

Let X.n = (x1n, x2n, ....., xKn) , n = 1, 2,....,N , be the observed data. We
assume X.n is strictly stationary and α − mixing. As in Klecan et al., we also
assume Fi(Xi), i = 1,2,...,K are exchangeable random variables, so that our resam-
pling estimates of the test statistics converge appropriately. This is less demanding
than the assumption of independence which is not realistic in many applications
(as in before and after tax scenarios). We also assume Fk is unknown and esti-
mated by the empirical distribution function FkN (Xk). Finally, we adopt Klecan
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et al’s mathematical regularity conditions pertaining to von Neumann-Morgenstern
(VNM) utility functions that generally underlie the expected utility maximization
paradigm. The following theorem defines our tests and the hypotheses being tested:

Theorem 3.3. Given the mathematical regularity conditions;
(a) The variables in Æ are first-order stochastically maximal; i.e.,

(1) d = min
i6=j

max
x

[Fi(x) - Fj(x)] >0, (1)

if and only if for each i and j, there exists a continuous increasing function u
such that E u(Xi) >E u(Xj).
(b) The variables in Æ are second order stochastically maximal; i.e.,

(1) S = mini6=j maxx
R x
−∞[Fi(µ)− Fj(µ)]dµ >0, (2)

if and only if for each i and j, there exists a continuous increasing and strictly
concave function u such that Eu(Xi) >Eu(Xj).
(c) Assuming the stochastic process X.n , n = 1, 2,.... , to be strictly stationary

and α−mixing with α(j) = O(j−δ), for some δ >1, we have:
d2N → d , and S2N → S, where d2N and S2N are the empirical test statistics

defined as :

(1) d2N = min
i6=j

max
x

[FiN(x) - FjN(x)] (3)

and,
S2N = min

i6=j
max
x

R x
0
[FiN(µ) - FjN(µ)]dµ (4)

Proof. . See Theorems 1. and 5 of Klecan et al (1991).

The null hypotheses tested by these two statistics is that, respectively, Æ is not
first (second) order maximal– i.e., Xi FSD(SSD) Xj for some i and j. We reject
the null when the statistics are positive and large. Since the null hypothesis in each
case is composite, power is conventionally determined in the least favorable case of
identical marginals Fi = Fj . Thus, as is shown in Kaur et al (1994) and Klecan et
al (1991), tests based on d2N and S2N are consistent. Furthermore, the asymptotic
distribution of these statistics are non-degenerate in the least favorable case, being
Gaussian (see Klecan et al (1991), Theorems 6-7).
As is pointed out by Klecan et al (1991), the statistic S2N has, in general,

neither a tractable distribution, nor an asymptotic distribution for which there are
convenient computational approximations. The situation for d2N is similar except
for some special cases–-see Durbin (1973, 1985), and McFadden (1989) who assume
i.i.d. observations (not crucial), and independent variables in Æ (consequential).
Unequal sample sizes may be handled as in Kaur et al (1994).
Klecan et al (1991) suggest Monte Carlo procedures for computing the signif-

icance levels of these tests. This forces a dependence on an assumed parametric
distribution for generating MC iterations, but is otherwise quite appealing for very
large iterations. The bootstrap method proposed by Maasoumi et al (1996) is
distribution-free and quite accurate. Pilot studies show that our computations
obtain similar results to the algorithm proposed in Klecan et al for Normal distri-
butions.5

5Our program is written in GAUSS and is available upon request.
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In their algorithm Maasoumi et al (1996) compute d2N and S2N for a finite
number K of the income ordinates. This requires a computation of sample fre-
quencies, cdfs and sums of cdfs, as well as the differences of the last two quantities
at all the K points. Next, bootstrap samples (typically 1000) are generated from
which empirical distributions of the differences and of the d2N and S2N statistics
are determined. Confidence intervals are obtained which allow statistical rejection
(non-rejection) of dominance. An example based on the CPS data, and another
based on the PSID are given in the last section of this paper.

3.2.2. Multivariate Stochastic Dominance. Atkinson and Bourguignon (1982, 1987,
1989) have developed the conditions for ranking multidimensioned distributions of
welfare attributes. SWFs are taken to be individualistic and (for convenience)
separable. But anonymity may be dropped in recognition of the fact that house-
holds (individuals) must be distinguished according to their distinct needs or other
characteristics. It is desired to rank the distributions of incomes in two states con-
ditional on a given distribution of discrete characteristics such as needs or family
composition.
Let there be G groups which are characterized in terms of their “needs” and

incomes. All members of a group g ∈ G have the same valuations and marginal
valuations of income. If there were no income transfers between groups the nec-
essary and sufficient conditions for FSD and SSD given above must hold for all
groups for FSD and SSD to hold. If there is any transfer between groups, however,
one must deal with each group’s evaluation as well as between group valuations
of the trade-offs between income and “needs”. Thus interpersonal comparisons of
well-being are inevitable whenever heterogenous populations are involved. It is here
that Shorrocks’ (1996) results are the latest demonstration of an “impossibility” of
unambiguous or consensus rankings. But, “majority” rankings are possible with
plausible restrictions. To see this it is worthwhile to formally describe the conditions
of Atkinson and Bourguignon (1987) here as they combine the desirable elements of
“decomposability” alluded to at the beginning of this section, and partial ordering
which, although it avoids full cardinalization, shows the directions in which an ana-
lyst may wish to make increasingly normative assumptions to approach cardinality ;
see Basu (1980).
Let u(X,h) denote private valuations of income X and “handicaps” or needs h,

w(u(X,h)) or just w(X,h) represent the social welfare (or decision) function, and
pg, g=1,2,....,G, the marginal frequency in class g. The cumulative function is Pg =Pg

j=1 pj , PG =1. The social valuation of income received by household g is U
g(X)

which is assumed continuously differentiable as needed. The U1 and U2 classes are
as defined earlier with the partial derivatives Ug

X ≥ 0 , as well as Ug
XX ≤ 0 for U2.

If no assumptions are made about how Ug varies with g the conditions of FSD
and SSD must hold for all groups g for FSD and SSD to hold. These are strong
conditions. Among other things, they require that the mean income of all groups
must be no lower in the dominant distribution. This would rule out equalizing
redistributions between groups with different needs. To resolve this situation one
must specify some aspects of the trade-off between incomes and needs.
The traditional univariate/homogenous analysis is implicitly based on the ex-

treme assumption that Ug
X(X) = UX(X) , ∀g . The level of welfare can vary with

needs, but no more. This assumption is sufficient to allow a consideration only of
the marginal distribution of income. But suppose one follows Sen in weakening the
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“Equity Axiom” by assuming that groups can be ranked by theirmarginal valuation
of income. For instance, if the neediest group has the highest marginal valuation
of income, the next neediest group has the second highest marginal valuation, and
so on, then the necessary and sufficient condition for FSD of F1 over F2 is:

jX
g=1

pg[F
g
1 − F g

2 ] ≤ 0, forallXandallj = 1, ......, G (3.24)

where superscript indicates the income distribution for g-th group. Note that
the final condition here is the FSD of the entire marginal distribution of incomes.
As has shown by Sen (1973b), see also Arrow (1971), it is possible for a utilitarian
SWF to violate this type of “weak equity axiom”. But as Atkinson and Bourguignon
(1987) point out, marginal valuation by society can take into account the level of
individual welfare. Therefore it is possible that the assumed negativity of uXh may
be offset by sufficiently degree of concavity (-w

00
/ w

0
) of the additive social valuation

function w(.). Thus the ranking of groups assumed by Atkinson and Bourguignon
(1987) coincides with the ranking of levels of welfare where higher needs increase
marginal valuations of income, or the social welfare function has a sufficiently large
degree of concavity.
The above FSD condition may be weakened further for SSD if we are willing

to assume that “the differences in the social marginal valuation of income between
groups become smaller as we move to higher income levels”; se Atkinson and Bour-
guignon (1987). That is -UXX decreases for less needy groups reflecting less social
concern with differences in needs for higher income groups. If this assumption is
adopted a necessary and sufficient condition for SSD is:

jX
g=1

pg[

Z x

0

(F g
1 − F g

2 )dX] ≤ 0 for all x, and j = 1, ......, G (3.25)

this includes the usual SSD condition for the marginal distribution of incomes.
Atkinson and Bourguignon (1987) consider weaker SSD conditions by exploring

further assumptions toward cardinality. One such assumption allows further com-
parability between the differences of UX and UXX . Thus, if the rate of decline of
social marginal valuation of income across groups is positive and declines with g,
and the same property holds for the degree of concavity (−UXX), the necessary
and sufficient condition for SSD is given as follows:

kX
j=1

jX
g=1

pg[

Z x

(F g
1 − F g

2 )dX] ≤ 0 for all x and k=1,....,G-1

and

GX
g=1

pg[

Z x

(F g
1 − F g

2 )dX] ≤ 0 for all x (3.26)

It is worth noting that all the above conditions are testable using the tests
outlined above.
Consistent with a philosophy of “partial comparability” developed by Sen (1970b),

Atkinson and Bourguignon (1987) have therefore shown that nihilism is avoidable
if certain plausible assumptions are made about the trade offs between incomes and
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needs, and at different levels of needs, should we agree that groups can be ranked
by such “other” characteristics as “needs”. These additional assumptions lead to
the development of empirically implementable tests for stochastic dominance which
are somewhat more general but less demanding than those described earlier.

4. Further Statistical Tools for Inference

A more detailed account of the available statistical tools for inference about
indices is given in Maasoumi (1996a). Here a brief account is given that exemplifies
the range of available techniques.
We first consider the direct MM estimation of inequality measures and their stan-

dard errors which permit construction of asymptotic confidence intervals. Of course,
the most general treatment will have to be in terms of equivalence scale-adjusted
incomes for individuals. Thus, following Cowell (1989), if the total household in-
come is y(i), its characteristics vector is ci, and the “adult equivalent” function
is ζi = ζ(y(i), ci), then the adjusted “income” variable is xi = y(i)/ζi with corre-
sponding weights ζi. We deal with the simplest example of ζ, i.e., household size
hi. Then we may write the GE family of inequality indices as follows :

Iγ = [µ1γµ
−(γ+1)
11 µγ10 − 1]/γ(γ + 1), γ 6= −1, 0 (4.1)

µij are the raw moments of the joint distribution of household size H and “in-
come” X; for instance

µiα =

Z Z
hixαdF (h, x), i = 1, 2,−∞ < α <∞ (4.2)

The specialization to Theil’s two measures are:

I0 = logµ11 − logµ10 − τ10/µ10

I−1 = τ11/µ11 − log µ11 + log µ10 (4.3)

where,

τij =

Z Z
hixj log x dF (h, x) , i, j = 0, 1, 2 (4.4)

MM estimators of Iγ are obtained by replacing the population moments with
their sample counterparts. For example, µiα is estimated by:

miα =
nX
l

hilx
α
l /n, fornhouseholds, (4.5)

Since inequality measures are functions of population moments, the usual tech-
niques such as the delta method may be used to approximate variances and as-
ymptotic distributions. For example, if the vectors of the population and sample
moments are denoted by, respectively µ and m, we let Iγ = g(µ) and its MM es-
timator, Îγ = g(m). Under regularity conditions (certainly with random sampling
or certain forms of stratified sampling),

√
n(m− µ) is asymptotically normal with

zero mean and covariance matrix
P
. And if g(.) is differentiable, we may base

inferences on the following asymptotic distribution:
Theorem 1:
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√
n(Îγ − Iγ) ∼ N(0, V ) (4.6)

where the asymptotic variance matrix is computed from:

V = G0
X

G /n (4.7)

and the elements of G = ∂g/∂µ are obtained as follows:

∂g/∂µ1γ = ϕγ/µ1γ , γ 6= 0,−1 (4.8)

δg/δµ11 = −(γ + 1)ϕγ/µ11,γ 6= 0 (4.9)

= −ϕ1/µ11, γ = 0 (4.10)

∂g/∂µ10 = γϕγ/µ10, γ 6= −1 (4.11)

= ϕ0/µ10, γ = −1 (4.12)

where,

ϕγ = µ1γµ
−(γ+1)
11 µγ10/γ(γ + 1), γ 6= 0,−1, and, ϕi = τ1i/µ1i + (2i− 1), i = 0, 1.

(4.13)
Cowell (1989) derived the expressions for an estimator of V . These were cor-

rected by Mills and Zandvakili (1996) who propose bootstrap estimation for the
same. Maasoumi (1996a) contains a survey of statistical distribution theory in this
area that covers other indices, including the Gini coefficient, and quantile-based sta-
tistics which are often needed for measuring Lorenz-type curves and other ranking
relations.

5. Empirical experience

The number of multiattribute applications has grown steadily. US and UK data,
international data on GDP, Basic Needs, and Physical Quality of Life Indicators
(PQLI) data, and some other “country studies” have used both the Maasoumi
indices and the FSD and SSD tests. We will briefly reference some of these appli-
cations here.
It is worthwhile to first note a possible difficulty with potential “double counting”

of the same latent welfare components by inclusion of measurements on apparently
distinct attributes. Put differently, two apparently distinct attributes may offer
almost identical amounts of “information” to the information set inevitably uti-
lized by any statistical measure. This issue is studied by Hirschberg, Maasoumi,
and Slottje (1991) for international data. The basic idea is to detect “clusters”
of attributes which are statistically similar. Once this is accomplished, a “rep-
resentative” aggregator attribute is chosen for each cluster. These representative
or composite attributes are then included in the desired but lower dimensional
multivariate welfare analysis. The approach of Hirschberg et al (1991) is based
on statistical clustering techniques as well as a new entropy based criterion. In
Hirschberg et al. (1991) 24 attributes of well being were analyzed for 120 countries.
These included such attributes as GNP and related concepts, literacy and mortality
rates, labor force participation rates, basic amenities (e.g., radios and roads), mil-
itarization indices, health status, infrastructure indicators, political freedom and
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civil liberty measurements. Interesting and quite plausible “clusters” were identi-
fied based on several criteria of similarity. The authors then proceeded to compute
aggregate measures of well being on the basis of the “representative” attributes for
the five clusters, and computed Maasoumi’s measures of multidimensional inequal-
ity. This type of study also allows an investigation of the robustness of inferences,
for example, with respect to levels of aggregation (clustering), weighting factors,
and aversion to inequality (parameter γ of GE).
Maasoumi and Jeong (1985) consider composite measures of well-being for 120

countries based on PQLI, Basic Needs indicators, and GDP per capita. Their ag-
gregates include composite measures earlier suggested by Ram (1982) for the same
data. Maasoumi and Jeong (1985) report both decompositions of multivariate
inequality by attribute and by country characteristics such as degree of industri-
alization, market orientation, and geographical location. They find, for instance,
that a good deal of income inequality existed amongst the “centralized” economies
which was greatly reduced in the multidimensional measures by their very equal
distributions in quality of life indicators. This finding was fairly robust with respect
to the relative weights given to the different attributes. It is possible, however, to
consider extreme degrees of inequality aversion (very high values of γ) which would
respond greatly to a very low level in some attribute. It is debatable whether such
a phenomenon is undesirable when all the included attributes are presumably con-
sidered worthy of inclusion, and a degree of inequality aversion is agreed upon on
ethical grounds.
Maasoumi and Nickelsburg (1988) study randomized samples of the PSID house-

holds in a multidimensioned analysis of inequality based on such diverse attributes
as education (years of schooling), total real incomes, and “wealth” proxied by net
equity in housing.
The type of study just mentioned highlights several main difficulties. Firstly,

data availability and reliability, especially for international comparisons . Secondly,
a classic problem of index numbers exacerbated by the unavailability of observable
behavioral (structural) relations. Not all or even most attributes are traded or trad-
able. Thus, the usual econometric approaches to ordinary commodities, whatever
their success elsewhere, are generally not available in this context. Finaly, a some-
what subtler problem is that, while indexing techniques and inequality measures
are based on sometimes elaborate distance metrics, a simple “eye-balling”, linear
metric is used to compare index values for different welfare units (countries, say) or
at different points. The similarity or “divergence” between units, and intertemporal
and spacial considerations are thus analyzed primitively.
In a series of papers Maasoumi and Zandvakili (1986,1989, 1990) treat income

at different points in time as distinct attributes. This is an interesting applica-
tion of multidimensional analysis to the analysis of “inequality reducing” mobility
measures which allows for more realistic and sounder aggregation of income over
increasingly longer periods of time. First “permanent” income over increasing inter-
vals over the life-cycle are constructed using the entropy based aggregator functions
described above. These trivially include the simple sum of incomes over time which
is restrictive with respect to intertemporal substitution. Then the Mγ measures
are applied to analyze two issues. One is the question of “long run” or perma-
nent income inequality thus made relatively free of transitory effects. The second
issue is a consideration of inequality reducing mobility measures first introduced
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by Shorrocks (1978). The generalized income measures lead to a generalization of
Shorrocks’ mobility indices.
Maasoumi and Zandvakili study the data from the Panel Study of Income Dy-

namics (PSID) allowing decompositions by age, gender, education, and race. The
authors confirm the moderating influence on inequality of looking at “long run in-
come” measured over the life cycle. They also find a robust pattern in the mobility
profiles which suggests improvements of early 70s were lost by the 80s. The topic
of mobility is the subject of a survey in Maasoumi (1996b).
Panel data studies, such as Shorrocks (1978), Maasoumi and Nickelsburg (1988),

and Maasoumi and Zandvakili (1986, 89, 90), demonstrate the great advantage of
such data which, by virtue of recording detailed characteristics of households over
time, afford the analyst the opportunity to control and adjust for characteristics
that represent heterogeneity amongst groups. As we have seen, this may prove an
essential element in the multidimensional context which could permit homogeneous
treatment of within group units, and a possible homogenization of the “distances”
between groups that render more plausible the type of “comparability” assumptions
made by Atkinson and Bourguignon (1987) and Shorrocks (1995). This is not an
area of analysis that could be furthered by the usual grouped data reporting group
sizes and mean incomes. It would be missing the point to think that the annual
reports about which groups earned which percentage of incomes have the meaning
that they seemingly impart. The common apathy and cynicism that is observed
relative to distributive issues, both in the population at large and amongst large
numbers of academic economists, is very much a result of an instinctive belief that
income disparity between patently distinct households has unclear ethical ramifica-
tions. Also, there are people of great wealth and comfort (non-income rich) whose
well being cannot possibly be measured with their reported income. There are clear
lessons about the type of data that needs to be collected. The UK and other panel
studies (such as for the European Common Market in Luxemburg) are expensive
but welcome developments in this direction. International comparisons have also
been enhanced by the type of data compiled by the World Bank which Maasoumi
and Jeong (1985), Ram (1982), and others have analyzed.
A point concerning measurement error, particularly with international data, is

worth emphasizing. Accurate data are as important to science as the method
of science. But there is little to support the notion that the missing parts of
the supposedly accurate national income accounts, due to the operation of the
“under-ground economy”, say, are relatively smaller than the potential classification
errors made in categorical data regarding “needs”, degree of “civil liberty”, or Basic
Needs indicators such as calorie intake and access to medical amenities. Indeed,
categorization of data is a potentially profitable means of reducing relative errors
in data collection and variable definitions.
Concerning the theoretical obstacles cited earlier in the way of “consensus” rank-

ings of multidimensioned welfare situations, it is worth noting that scientific deci-
sions do not need to be unanimous. They need to be plausible and replicable.
The interpretation of empirical results under the “majority” axioms described here
is unambiguous. In this respect, there is an empirical method of robustification
that plays an important role. It consists of empirically identifying qualitative in-
ferences which do not change significantly as we vary the weights given to different
attributes, and patterns of distributive change that are robust to variation over
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reasonable degrees of aversion to inequality and/or poverty. This is important for
reliability, but also because all inferences are statistical when the true population
is not known.
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