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Abstract— Adaptive power topology control (APTC) is a local
algorithm for constructing a one-parameter family of θ-graphs,
where each node increases power until it has a neighbor in
every θ sector around it. We show it is possible to use such
a local geometric θ-constraint to determine whether full net-
work connectivity is achievable, and consider tradeoffs between
assumptions of the wireless footprint and constraints on the
boundary nodes. In particular, we show that if the boundary
nodes can communicate with neighboring boundary nodes and
all interior nodes satisfy a θI < π constraint, we can guarantee
connectivity for any arbitrary wireless footprint. If we relax the
boundary assumption and instead impose aθB < 3π/2 constraint
on the boundary nodes, together with theθI < π constraint on
interior nodes, we can guarantee full network connectivity using
only a “weak-monotonicity” footprint assumption. The weak-
monotonicity model, introduced herein, is much less restrictive
than the disk model of coverage and captures aspects of the
spatial correlations inherent in signal propagation and noise.
Finally, assuming the idealized disk model of coverage, we show
that when θ < π, APTC constructs graphs that are sparse, and
when θ < 2π/3, the graphs support greedy geometric routing.

Key words: ad hoc networks, topology control, adaptive power,
connectivity, graph theory.

I. I NTRODUCTION

We consider global properties of communications networks
that can be guaranteed solely from local rules, particularly
in the context of ad hoc networks which are typically both
dynamic and temporary. A fundamental challenge is determin-
ing how to ensure global network connectivity using minimal
overhead even when locations of nodes, and their linkages,
can change over time. For ad hoc networks made of mobile
nodes, the connectivity must evolve as the nodes move. Even
for networks made of stationary nodes (such as some sensor
networks), local connectivity can change over time due to
the dynamic and noisy nature of wireless channels. We study
a distributed and local construction (called Adaptive Power
Topology Control, APTC) for building up communication
edges between initially isolated nodes located on a two-
dimensional plane, similar to the cone based topology control
algorithm introduced by Wattenhofer et al. [1], and analyzed
by Li et al. [2]. The only underlying information necessary
for the construction is the local value of the angles formed
between adjacent edges (i.e., links)Ev incident to each vertex
(node)v ∈ V . These angles must all be less than a specified
value θ, for all v. We call the graph describing the node

positions and resulting edges at any time aθ-graph, denoted
Gθ. Consider the graphGR that is formed if we include all
achievable linkages when each node broadcasts at maximal
power. Assuming the broadcast region around each node is
a uniform disk, Li et al. [2] provide an elegant geometric
proof showing that ifθ < 5π/6, then the constructed graph
Gθ preserves the connectivity ofGR, but is more sparse
and therefore more power efficient. Though very useful if
GR is fully connected, meaning there exists at least one
path connecting each pair of nodes, this does not give any
method for testing the connectivity ofGR. Furthermore, it
relies intrinsically on the uniform disk coverage model which,
while a useful idealization for analysis, is not a realistic model
for wireless footprints (see Sec. II, and Fig. 1(a)).

A. Our results

We show it is possible to use local geometric constraints to
determine whether full network connectivity is achievable for
any arbitrary wireless footprint, provided certain conditions
are met. We define several tradeoffs between requirements
of the boundary nodes and assumptions about the wireless
footprint. Most previous algorithms impose constraints only on
interior nodes and make strong assumptions about the wireless
footprint. We show that with modest boundary requirements,
the constraints on interior nodes and footprints can be greatly
relaxed. This is an important consideration because when
the network covers a large area, the boundary nodes will
typically comprise onlyO(

√
n) of the n nodes. We might,

for instance, carefully deploy a boundary region of sensors,
then scatter sensors haphazardly in the interior. Further, in
cases where deployment is inexpensive (consider a sensor
network deployed by a robotic arm), internal nodes can be
moved from dense regions to regions where theθ-constraint
is not yet satisfied. If sensors are not moveable, existing sensor
network protocols such as sleep cycling schemes could be
easily employed by unnecessary nodes.

More precisely, we show that a modification of theAPTC
algorithm provably achieves global connectivity in a variety of
scenarios. The more restrictive the boundary constraints, the
weaker the assumptions required for the wireless footprint. (1)
If the boundary nodes are known to be able to communicate
with each other, then we can guarantee the entire network is
connected provided all interior nodes satisfy a localθI < π re-



quirement, for any arbitrary wireless footprint. (2) If we relax
the communication requirement on the boundary nodes, but
instead impose a localθB < 3π/2-constraint on the boundary,
and require all internal nodes to satisfy aθI < π constraint,
then we can guarantee the entire network is connected for
footprints that obey at least a “weak-monotonicity” constraint.
Weak-monotonicity (introduced in Sec. III) is much less re-
strictive than the standard monotone footprint assumption and
takes into account angular correlations between connections.
Weak-monotonicity is also sufficient to ensure connectivity
when all nodes satisfy theθ < π constraint on the sphere and
the infinite plane, where there are no boundary nodes. (3) If the
individual footprints are not uniform disks but the average over
all footprints is approximately so, we show connectedness with
high probability ifθI < π. Boundary nodes would need only to
be connected to the interior, with noθ-constraint. These proofs
all hold regardless of how a network is constructed, requiring
only that local geometric constraints onθ are satisfied together
with the appropriate boundary conditions.

This provides a general test for network connectivity that
could easily be executed on a deployed system where nodes
have access to local geometric information. Of course any
individual node on its own would not be able to know if the
network is fully connected, however the local information can
be aggregated. If it is known that there areN nodes deployed,
and allN send and receive messages that they satisfy theirθ-
constraint, we can locally learn of the global connectivity. If
N is unknown, we can guarantee that our algorithm constructs
the largest possible component that exists inGR.

Finally, we prove additional properties of theAPTC net-
work. If the wireless footprints conform to the idealized disk
coverage model, forθ < π, the resulting graphs are sparse, and
for θ < 2π/3, the graphs provably support greedy geometric
routing. If the footprints are not circular, but contain some
smaller region which is circular, we show it may still be
possible to support greedy geometric routing.

B. Related work

We study theAPTC algorithm introduced by D’Souza et
al. [3] which is similar to the construction by Wattenhofer
et al. [1]. Although we deal with connectivity issues and
not explicitly network performance, we note that in [3] the
algorithm was shown to have extremely favorable performance
characteristics, especially with regard to reducing power con-
sumption and the timescale associated with discovery of the
full network topology. Such optimizations could be partic-
ularly useful when coupled with routing algorithms relying
on on-demand topology discovery, as studied by Perkins and
Royer [4]. We show that whenθ < 2π/3 that greedy routing
always works, assuming the disk model of coverage.

Most of the related previous work (e.g., [1] and [2]) relies
on a priori knowledge of global network properties, such as
the connectivity of the maximum power graphGR. Poduri et
al. [5] recently proved connectivity using only local geometric
properties. However, this construction relies fundamentally on
the uniform disk coverage model to achieve a supergraph of

the Random Neighbor Graph. Wattenhofer and Zollinger [6]
provide one of the first papers addressing local conditions for
connectivity without assuming a unit disk model of coverage.
In fact, their algorithm applies to three-dimensional systems,
as well as nodes on a two-dimensional plane. The flexibility
comes from requiring only an ordering on the quality of links,
with no reference to geometry. Yet geometric constructions
have some advantages. They can be simple to test and deploy,
and enable geometric routing. Furthermore, many studies have
already analyzed the performance characteristics of geometric
ad hoc networks, showing them favorable.

II. BACKGROUND AND TERMINOLOGY

A. Basic network operation assumptions

Ad hoc or sensor networks are composed of nodes equipped
with wireless radios, allowing them to broadcast to, and re-
ceive messages from, other nodes over a shared wireless chan-
nel. Messages are exchanged directly between nodes within
each other’s broadcast range. However, exchanges with more
distant devices can require relaying messages along a path of
intermediary nodes. Thus data exchange relies fundamentally
on devices cooperating in relaying one another’s data.

The broadcast nature of a wireless network means a trans-
mission interferes with all other simultaneous transmissions,
with the greatest impact on transmissions sent by devices
within close spatial range. We prefer devices to broadcast at
low power to reduce interference, and moreover to conserve
battery life (which can be the more important of the two
criteria in the sensor network setting). The broadcast power,
however, cannot be too low. It must be high enough to ensure
neighboring devices can communicate and, at a larger scale,
form a fully connected network (i.e., a network where all
devices have some, potentially multihop, path to all other
devices). Understanding at what level to set each node’s broad-
cast range has been the subject of numerous investigations.

B. Geometric graphs

The networks we consider can be modeled by geometric
graphs. A geometric graphG = (V,E) has verticesV (i.e.,
the wireless devices which are the nodes of the communication
network) and a metric defining a distance between vertices.
The edges of the graphE connect specific pairs of vertices.
If a communication link exists between two nodes in the
communication network, an edge between those two nodes
exists inG. We consider the special case where the vertices
inhabit a two-dimensional Euclidean plane, where a given
vertex i has coordinates(xi, yi) ∈ R2, and we refer to
the distance between nodesi and j as d(i, j). Geometric
graphs are convenient to describe the structure of many ad
hoc networks, including some sensor networks, where nodes
are constrained to lie in two-dimensions. In constrast, many
other classes of networks exist in a space with no geometry,
for instance the World Wide Web. For a recent comprehensive
treatment of random geometric graphs see, e.g., [7].
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Fig. 1. (a) Example of an actual wireless footprint, reprinted from [8]. A central node broadcasts packets. The contours of probability for receiving the
transmission are outlined. (b) Connectivity for nodei assumed by the disk coverage model. (c) Connectivity for nodei assumed by weak-monotonicity.

C. Wireless footprints

In principle, signals that are broadcast from a wireless
device decay in an isotropic manner polynomially with dis-
tance from the source as1/dα, where α > 2. Thus most
models of connectivity conceptualize the broadcast region (or
“footprint”) as thedisk model of coveragewith a circular disk
of radiusr centered on each devicei. For all points interior to
the disk, all transmissions are considered successful, and the
points connected toi. For all points withd > r, the signal
is considered too small to distinguish from background noise
so no transmission is ever received, and these points are con-
sidered not connected toi. The second part of Fig. 1 depicts
this monotonicityassumption, where a successful connection
between verticesi and j at the current level of transmission
implies that i is also connected to all other closer vertices.
Empirical studies of wireless sensor networks, however, show
footprints are much less regular and can have large random
deviations from a uniform disk. See, e.g., [8], and in particular
Fig. 5 therein (reprinted here in Fig. 1). When a central node
broadcasts, there is a complicated landscape of contours of
probability of packet reception surrounding it with hills, voids
and islands. As in [8], one can define a “good link” as one
where the probability of packet reception is greater thatΓ,
where they takeΓ = 0.65. The assumption is that with
error correction techniques, etc., one can boost such a raw
packet signal to adequate reception levels. Regardless, large
deviations from a unit disk remain.

D. Distributed topology control algorithm for buildingGθ

Consider V vertices distributed inR2. Details of the
distribution are not pertinent for now. We begin from the
isolated nodes and consider an algorithm for establishing the
edges,E, and building up a graph~Gθ very similar to the one
described in [3]. A fundamental requirement for the algorithm
is access to directional information obtainable, for instance,
from directional antennae, GPS, triangulation, or various other
methods (see for instance [10]).

Each initially isolated node begins by transmitting at low
power, incrementally ramping up until satisfying a geometric
constraint on connectivity, as described below and illustrated
in Fig. 2. As the node ramps up power incrementally, it broad-
casts connection requests and processes acknowledgements of
such request, thus establishing communication links with other

nearby nodes. The node will first establish a link with the
closest accessible node within its communication footprint,
then with the next closest, etc. (Notice that we need not make
any assumptions about isotropy or monotonic decay of the
footprint; there could be nodes located at a closer spacial
distance which do not get linked to since they are not in
the accessible footprint). With each new connection made, the
geometric information is assessed. In general, at each step,
we consider the vectors drawn originating from a node and
ending at its saym neighbors. These vectors divide the area
around the central node intom disjoint sectors. If the angle
of each sector is less thanθ, the constraint is satisfied and the
node sets its operating power at the current value. If any angle
is greater than or equal toθ, the construction continues. If
the node reaches its maximum allowed broadcast power level
before satisfying the constraint, the node halts execution and
lowers its broadcast power back down to the level where the
last new connection to a neighbor was first made (or to zero
if it has no neighbors in its broadcast range). The construction
for θ = π was introduced by D’Souza et al. [3] and we refer
to this algorithm as adaptive power topology control (APTC).

Each nodei sets its operating rangeri independently of all
other nodes, hence the resulting links may be unidirectional
(i.e., the edges of~Gθ are directed). For both theoretical and
implementation reasons we want all links to be bidirectional
(resulting in an undirected graphGθ). This can be achieved in
many ways. We choose to do so at graph construction time.

Fig. 2. (a) The vectors from a node to itsm connected neighbors divide
a unit circle around that node intom disjoint sectors. If the angle of each
sector is less than or equal toθ, the geometric constraint is satisfied. (b) An
example wireless footprint for nodei. It does not connect to nodesj or k,
even though they are closer in distance than other connected neighbors, yeti
still satisfies its geometric constraint.



When nodei broadcasts an acknowledgement to an in-link
request from nodek it must create a link tok, even if the
length of that linkdik > ri. Nodei would transmit with range
ri at all times, except when it needs to send a transmission
directly to nodek.1 We refer to the underlying undirected
graph asGθ.

The algorithm used to generateGθ can be integrated with
standard wireless protocols such as the IEEE 802.11 wireless
network MAC[11], and more specialized sensor network pro-
tocols such as sleep cycling schemes (see for instance [12]).
In addition since the construction is local and distributed, it
could be reiterated whenever a node notices its neighbors have
changed.

III. PROOFS OF CONNECTIVITY

We now show that we can ensure network connectivity using
only local geometric constraints. The results hold for finite
size systems, not just the asymptotic limit, however special
consideration must be paid to nodes on the boundary. We
assumeboundary nodeson the convex hull of the pointset
are identified in advance. We call these nodesB, and we
say two nodes areadjacent in B if they are neighbors in
the description of the convex hull, regardless of the distance
between them. All other nodes are calledinterior nodes. We
consider a family of boundary constraints onB. In general, the
more restrictive the boundary constraints the less restrictions
that need be imposed on the wireless footprint to guarantee
connectivity.

A. Connected boundaries and arbitrary footprints

If the boundary nodes are identified as such and we know
ahead of time that they are all connected, then theθ-constraint
on all the internal nodes is sufficient to ensure global connec-
tivity. This straightforward observation is formalized in the
following theorem that will be used again in the following
sections where we make less restrictive assumptions about the
boundary nodes.

Theorem 1:If G(V,E) satisfies theθ-constraint at every
internal node withθ < π and all of the boundary nodes are
known to be connected, thenG(V, E) is fully connected.

Proof: We need only show every internal nodev has a
path inG(V, E) to some node on the boundary. Consider any
line ` through the vertexv. Sincev satisfies theθI -constraint,
it must have some neighbor in each half-plane defined by`.
Consider one of these neighborsv1, and for simplicity sayv1

lies to the “right” of`. If v1 is a boundary vertex we are done.
Otherwise, let̀ v1 be the line parallel tò throughv1. Vertex
v1 must have a neighborv2 to the right of `v1 . Continuing
in this fashion, we must eventually find a vertexvk on the
boundary in the same connected component ofv.

1For instance each node could keep an internal table of connected neighbors
(already required by various routing protocols such as [9]), and in addition
corresponding broadcast ranges.

B. Weak-monotonicity

We now relax the requirement that boundary nodes be
connected to one another. In what follows we consider a
variant on theAPTC algorithm to produce(θI , θB) graphs
where internal nodes satisfy theθI -constraint and boundary
nodes satisfy theθB-constraint. We call the output of the
algorithm aGθI ,θB

graph. Notice that theθB-constraint al-
lows the boundary nodes to stop increasing power once the
constraint is satisfied. Previously under APTC boundary nodes
were required to connect to all links reachable when using the
maximum power. The geometrical interpretation ofθB < 3π/2
is that the links incident to any boundary node cannot be
confined to a single quadrant around the node. Similarly, the
θI < π constraint can be interperented as saying that links
incident to an interior node cannot be confined to a single
half-plane defined by a line through the node. To analyze this
algorithm, we introduceweak-monotonicity, a less restrictive
footprint model than the uniform disk model that captures
spatial correlations inherent in signal propagation and noise.
Under weak-monotonicity we will first show connectivity for
GθI ,θB

graphs, then generalize the result to sensors on a
sphere, and then to the infinite plane.

Definition 1: Weak-monotonicity(see Fig. 3) implies that
if ~ij is an edge andk is a node where∠jik = α andd(i, k) ≤
sin(α) · d(i, j), then ~ik is also an edge.

Weak-monotonicity is equivalent to saying that if~ij is an
edge, theni has a link to all other vertices in the circle of
diameterd(i, j) centered at the midpoint of the edge~ij. Note
in contrast, the uniform disk model assumesi has a link to all
other vertices in the circle ofradius d(i, j) centered ati. The
first two parts of Fig. 3 depict the links that are inferred from
an edge(i, j) under the monotone (disk model of coverage)
and weak-monotone footprint assumtions. Notice that weak-
monotonicity no longer assumes that signal propagation is
monotone and isotropic, just that there are strong spatial
correlations along directions of good and bad signal reception.
Though this does not capture an arbitrary wireless footprint,
it allows us to broaden the class of acceptable footprints far
beyond the uniform disk model.

Connectivity for any GθI ,θB graph: Let GθI ,θB be the
graph formed byAPTCwith the weak-monotonicity footprint
model. We now show that ifθI < π, θB < 3π/2, and
these localθ constraints are satisfied at every internal and
boundary node, thenGθI ,θB

, is connected. SinceGθI ,θB
is a

subgraph ofGR (the graph formed when all pairs of nodes
within distanceR are connected),GR is thus connected.
We start by presenting a crucial lemma that says that two
distinct components cannot have crossing edges, one from
each component. This lemma uses the weak-monotonicity
condition but does not require any knowledge of how the graph
is connected.

Lemma 2:Let ~G = (V, ~E) be any directed graph satisfy-
ing the weak-monotonicity condition (i.e., for alli, j, k ∈ V
with ∠ikj = α, if ~ij ∈ E and d(i, k) ≤ sin(α) · d(i, j)
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Fig. 3. Monotonicity and weak-monotonicity implications of the edge~ij

then ~ik ∈ E). Let G = (V, E) be the undirected version of
~G formed by making all edges bidirectional. Then any two
crossing edges inG must belong to the same component.

Proof: SupposeG has two componentsC1 andC2 such
that ~ij ∈ C1 and ~kl ∈ C2 cross. The quadrilateral(i, k, j, l) is
depicted in Fig. 4. At least one angle of the quadrilateral must
be greater than or equal toπ/2, and we assume without loss
of generality that it is∠ikj. Thendik ≤ sin(α) · dij . Since~ij

is an edge in~G, by the assumption of weak-monotonicity,~ik
is also an edge in~G. This edge~ik connectsC1 andC2 in G,
so they lie in the same component.

We now show that Lemma 2 is enough to ensure connectiv-
ity of GθI ,θB under the weak-monotonicity footprint model.

Theorem 3:Let θI < π andθB = 3π/2. If GθI ,θB
satisfies

the θI -constraint at every internal node and theθB-constraint
at every boundary node, thenGθI ,θB

is connected.
Proof: First, we observe that the proof of Theorem 1

shows that there is a path from each internal node to some
vertex on the boundary. It remains only to show that all
boundary vertices lie in the same connected component.

Suppose this is not true, and letx and y be the closest
consecutive boundary vertices that lie in different components.
Let `′ be the line throughx and y, let `x be the line
perpendicular tò ′ throughx and`y be the line perpendicular
to `′ throughy. (See Fig. 5.) Since the external angle around
any point on the convex hull is at leastπ, θB > 3π/2 implies
that bothx and y must have neighbors in the interior of the
infinite rectangle delineated on three sides by`x, `′ and`y. We
call the neighbor ofx in this rectanglex1 and, for the sake of
terminology, we say that it lies to “the right” of̀x. We call
the neighbor ofy in this rectangley1 and say it lies to “the
left” of `y. As before, we continue building a pathpx from x
that heads to the right at each step and a pathpy from y that

i k

j

l

Fig. 4. The quadrilateral formed by crossing edges~ij and ~kl.

heads to the left. These paths must end at boundary vertices
x′ and y′. If the paths intersect or cross, then by Lemma 2
they must lie in the same component and we have reached a
contradiction. If they do not intersect or cross, thenx′ is a
boundary vertex to the left ofy′ on the opposite side of the
convex hull. If they are not nearest neighbors on the convex
hull, find any two nearest neighbors on the hull lying between
them that lie in different components inGθI ,θB and call these
x′ andy′ instead. Notice that since we assumed thatx andy
were the closest boundary nodes lying in different components,
we haved(x′, y′) > d(x, y); therefore the edge(x′, y′) cannot
be parallel to the edge(x, y) sincex′ andy′ lie betweeǹ x and
`y. Suppose without loss of generality that the lines through
(x, y) and(x′, y′) intersect to the right of̀y. As before, let̀ x′

be the line perpendicular to the edge(x′, y′) throughx′, and
similarly `y′ . There must be paths fromx′ and y′ that cross
or stay within the infinite rectangle delineated by(x′, y′), `x′

and`y′ . Since the pathpy′ originating aty′ must reach a point
on the convex hull to the left ofy, it must intersect the path
px. From Lemma 2 this proves thatx and y lie in the same
component inGθI ,θB

.

Connectivity on a sphere: These proofs can be gener-
alized to a finite set of sensors on a sphere, where it is
now possible to avoid the boundary constraints altogether.
We assume that if two vertices are connected, then they take

u ux y
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Fig. 5. Proof of Theorem 3



the shortest path around the sphere. In other words, even
operating at full power, we can assume that there is no link
that has length greater than half the circumference of a great
circle. We show that if the spherical angles at each node
satisfy theθ < π constraint, thenGθ is fully connected. The
proof is similar in spirit to the finite planar setting. We first
generalize Lemma 2 to the sphere, and then show that any
two components must have crossing edges. Together this is
sufficient to demonstrate that any spherical network satisfying
the θ-constraint everywhere must be connected.

Lemma 4:Let ~G = (V, ~E) be a graph embedded on the
unit sphere that satisfies the weak-monotonicity condition (i.e.,
for all i, j, k ∈ V with ∠ikj = α, if ~ij ∈ E and d(i, k) ≤
sin(α) · d(i, j), then ~ik ∈ E) and let G be the undirected
version of ~G. Then any two crossing edges must belong to
the same component.

Proof: Let ~ij and ~kl be two crossing edges. The vertices
{i, k, j, l} form a quadrilateral. This quadrilateral divides the
sphere into two pieces, and we refer to the piece containing the
edges~ij and ~kl as theinterior of the quadrilateral. Since the
length of~ij and ~kl are less than half the circumference of any
great circle, there must be an interior angle of the quadrilateral
that exceedsπ/2. We can use the proof of Lemma 2 to show
that one of the edges of the quadrilateral must also be a link,
assuming the weak-monotone model of coverage.

One additional lemma will be useful before stating and
proving the main theorem for points on a sphere.

Lemma 5:Let P be a polygon on the sphere, where all
the edges ofP have length at most half the circumference of
any great circle. If all the angles exceedπ traveling around
the polygon in one direction (viewed from one side of the
polygon), thenP lies in one half-sphere.

Proof: Let e1 = (p1, p2), e2 = (p2, p3), e3 = (p3, p4) be
three consecutive edges on the polygonP , and letc be the
great circle containinge2. If all the angles exceedπ traveling
in one direction aroundP , then bothe1 and e3 lie on the
same half-sphere defined byc. The circles containinge1 and
e3 intersect at antipodal points; letq be the one that lies in
the same half-sphere (defined byc) ase1 ande3. We showP
must lie inside the triangle defined byp2, p3 andq (where the
interior of the triangle is the side bounded by angles that are
less thanπ). It then follows thatP lies on a half-sphere. IfP
is not contained in triangle(p2, p3, q), then there are at least
two edges that starts outside this triangle and end at a vertex
in or on the triangle. Following the polygonP around starting
with e2 in the direction ofe3, let ei be the first edge that
ends outside the triangle. Ifei crosses the circle containing
e3, then there must be an angle that exceededπ among the
first i edges. If instead it crosses the circle containinge1, all
edges crosssing the boundary of triangle(p2, p3, q) must cross
the circle containinge1. Repeating the argument starting at
e2 and proceeding around the polygon in the other direction
(first throughe2), we can similarly conclude that all edges
crossing the boundary of triangle(p2, p3, q) must cross the
circle containinge3. This is a contradiction, so all ofP must
lie within the triangle and hence a half-sphere.

Theorem 6:If Gθ lies on the sphere and satisfies theθ-
constraint everywhere, withθ < π, then it is connected.

Proof: Suppose that there is more than one connected
component inGθ, and call two of these componentsC1 and
C2. Notice that if every vertexi ∈ V satisfies theθ-constraint,
then every vertex has degree at least 3 and each component can
be decomposed into a collection of minimal cells containing
no other points from that component. If there are no crossing
edges, then all ofC1 must lie within a single cell ofC2 (and,
because all the points are lying on a sphere, this is equivalent
to saying that all ofC2 lies in within a single cell ofC1).
If we consider the vertices comprising these two cells,c1 in
C1 andc2 in C2, it is not difficult to see that they cannot all
be satisfying theθ-constraint ifθ < π. In particular, if theθ-
constraint is satisfied by the vertices inc1, then from lemma 5
c1, and hence all ofC2, lies in one half-sphere. But then the
constraint cannot be satisfied by its boundary cellc2.

Connectivity in the infinite setting: For completeness we
include the proof that in the infinite setting we can establish
network connectivity overR2 using just theθ-constraint on
the interior nodes, whereθ = θI < π, under the weak-
monotonicity assumption. This mathematical result inspired
our definition of(θI , θB) graphs, but the proofs are somewhat
technical. This section can be skipped for readers solely
interested in finite realizations.

For x 6= y ∈ R2 we write [x, y] for the (straight) line
segment joiningx andy. For V ⊂ R2 consider a graphG =
(V, E) on vertex setV . We refer to the set∪{x,y}∈V [x, y] as
the realizationof G in R2 and say thatG is a θ-graph if for
eachx ∈ V every sector atx determined by the realization of
G has angle less thanθ.) Throughout this section we make the
usual abuse of notation, identifying a subset of the vertices of
a graph with the subgraph it induces.

Our conditions will be thatθ < π, that there is a uniform
upper bound on the lengths of edges inE, that every finite
disk in R2 contains only finitely many points ofV , and that
the neighborhood of each vertex obeys weak-monotonicity.

We show the following theorem.
Theorem 7:Let V ⊂ R2 satisfy the condition that its

intersection with every disk of finite radius is finite. Let
G = (V, E) be aθ-graph onV with θ < π. ThenG = (V,E)
is connected and spansR2.

The proofs follow the general outline of the proofs from
the finite setting, although they are much more sensitive. We
defer these proofs for an Appendix in the final version.

C. Connectivity for footprints that are monotonic on average

Up until now we began with considering constraints on
the boundary nodes, and from there determined requirements
for the wireless footprints. Instead here we begin with con-
straints on the footprints. Though any individual footprint may
have random deviations from a uniform disk (as shown in
Fig. 1), here we assume that the average over all footprints
is monotonic and isotropic. Given this, we can relax all
constraints on boundary nodes and still show connectivity, with



high probability, providedθI < π. In such cases boundary
nodes would just follow the APTC protocol and set their
operating power accordingly. Recall the discussion in Sec. II
of empirical wireless footprints and the definition of a “good
link” (the probability of packet reception is greater thanΓ).
This leads us to the following definition.

Definition 2: For an arbitrary footprint, letP (d) be the
probability of packet reception at distanced from the source.
We say the footprint isisotropic and monotonic on average
if P (d) has no dependence on angle (isotropic), and decays
monotonically withd.
Note, for the disk graph assumption of strict monotonicity for
a disk of radiusr, P (d) = 1 if d ≤ r, andP (d) = 0 if d > r.
In addition, considering the definition of a “good link”, ifi
and j are vertices inG(V,E) and ~ij is an edge inG(V,E),
thenP (dij) > Γ.

Theorem 8:If broadcast footprints decay monotonically on
average,Gθ has one component with high probability.

Consider crossing edges of componentsC1 and C2 satis-
fying the θ-constraint. We letM be the number of crossing
edges. Each pair of crossing edges (see Fig. 4) forms a quadri-
lateral where somed(i, k) ≤ d(i, j) while edge~ij ∈ G(V,E).
We know thatP [d(i, k)] ≥ P [d(i, j)] > Γ, and this holds
for each set of crossing edges independently. The probably
the components are not merged by a particular crossing edge
is less than(1 − Γ). The probability they are not merged by
M independent crossing edges is less than(1− Γ)M . Setting
Γ = 0.65 as in [8], if M = 5 the probability that a crossing
edge will have mergedC1 andC2 exceeds99.5%.

IV. B EHAVIOR ON RANDOM DISTRIBUTIONS

There are many advantages to assuming the idealized uni-
form disk coverage model. From an implementation perspec-
tive, it simplifies protocols and ensures reciprocity of signal
reception. From an analytic perspective, it simplifies analysis,
and allows us to prove additional features of the algorithm.
We prove that under the disc model of coverage, the graph
is sparse, the radii of the disks are tightly distributed, and
moreover, whenθ ≤ 2π/3, greedy routing works.

A. Sparseness ofGθ

Consider a Poisson distribution of points on a two-
dimensional plane. Starting with an isolated node we consider
the process of that node building up connectivity via the
APTC algorithm. But, we no longer impose an upper cutoff
to the maximum allowed broadcast power (hence we consider
a supergraph ofGR considered up until now). We show the
supergraph is sparse (hence so isGθ).

Theorem 9:If the vertices are distributed uniformly at
random,Gθ is sparse (i.e.,E = O(V )).

Proof: Consider an individual node ramping up power
according to theAPTC algorithm. The node accumulates
connected neighbors which divide the area around it into conic
sectors. The node stabilizes its operating power when the angle
of the largest conic section is less thanθ, whereθ = 2πA
for some fixedA ∈ (0, 1). For instance, ifA = 1/2 then

θ = π, this is equivalent to stopping once the point is inside
the convex hull.

If Q(t) is the probability that this is true aftert points, then
the out-degree distributionP (t) of the adaptive power model
is the probability that itfirst happens aftert points, i.e.

P (t) = Q(t)−Q(t− 1) .

Now, recall that, fort ≥ 2, choosing numbersa1, a2, . . . , at

uniformly conditioned on
∑t

i=1 ai = 1 is equivalent to
choosing a uniform point~a inside a (t − 1)-dimensional
equilateral simplexS of height 1, where theai are the lengths
of the perpendiculars from~a to thet, (t−2)-dimensional faces.
Then the event that the largest angular gap is less thanθ is
equivalent to the event that~a is within a distanceA of every
face (giving us an excluded area).

If A = 1/2 (i.e. θ = π) the excluded areas aret simplices
of height1/2. Each of these contains a fraction1/2t−1 of the
volume ofS, so we have

Q(t) = 1− t

2t−1

for t ≥ 1, and

P (t) =
t− 2
2t−1

for t ≥ 2. Amusingly, the average out-degree is then an
integer:

t =
∞∑

t=2

P (t) t = 1 +
∞∑

t=0

t(t− 2)
2t−1

= 5

and the variance,σ2, is 4.
Considering the stronger constraintθ = 2π/3, the expected

out degree is higher, yet the graph still sparse. In this caseA =
2/3. Now each pair of excluded simplices has an intersection
consisting of a simplex of height1/3 lying on the center of
one edge. By inclusion-exclusion, we have

Q(t) = 1− t

(
2
3

)t−1

+
(

t

2

)(
1
3

)t−1

for t ≥ 1, and so

P (t) = (t− 3)
2t−2 − t + 1

3t−1

for t ≥ 2. The average out-degree is then71/8 = 8.875 and
the variance is783/64 = 12.2344.

It is easy to show that the radius and link length distributions
are tightly concentrated in the following sense: there is a
constantC such that, in a network ofn nodes uniformly
distributed in the unit square, with high probability no radius
is more thanC

√
(log n)/n.

B. Greedy routing works

One intuitive approach to routing on a wireless network is
to pass the packet from its current locations to whichever
neighbor is closest to the destinationt. This greedy approach
seems to have been first considered by Finn [13], who noted
that it can get stuck at a local optimum where every neighbor
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Fig. 6. Left, a footprint with eccentricitya; right, the proof of Theorem 10.

of s is farther fromt thans is. Karp and Kung [9] called the
space betweens andt a “void”, and proposed a protocol called
Greedy Perimeter Stateless Routing (GPSR) that moves coun-
terclockwise around the face of the graph containing the void
until we reach the destination or greedy routing can resume. In
order to ensure that this approach works, they first “planarize”
the graph by reducing it to the Relative Neighborhood Graph
(RNG)[14] or the Gabriel Graph (GG)[15].

In Ref. [16] the authors remark on the fact that greedy
routing always works, assuming the uniform disk footprint
model, and that the angular gap between neighbors is at most
2π/3. Here we prove a more general result about when greedy
routing works even if the footprint is not a uniform disk.
Instead we require that the footprint contain some smaller
region which is a uniform disk, as shown in Fig. 6(a). More
precisely we require that each vertex contains a disk whose
radius is some constant fraction of the distance to their farthest
neighbor. Let us say that a network haseccentricitya ≥ 1
wherea is the smallest constant with the following property:
for everyu andv, if u andv are connected, thenu is connected
to everyw such thatd(u,w) ≤ d(u, v)/a.

The next theorem states that as long asa < 2, there is some
θ = θ(a) such that if the angular gap between neighbors is at
mostθ, then greedy routing succeeds. For simplicity we ignore
edge effects and assume that the network is spread throughout
the plane.

Theorem 10:Suppose a network has eccentricitya where
a < 2. Let θ = 2 cos−1(a/2) and letε > 0, and suppose that
every vertexu has at least one neighbor in every sector of
angleθ− ε. Then for every pair of verticesu andv, u has at
least neighborw such thatd(w, v) < d(u, v).

Proof: Consider the right-hand part of Figure 6. By
hypothesis,u has a neighborw somewhere in the sector
betweenx andy. If this neighbor is inside the circle centered
on v, then d(w, v) < d(u, v) and we are done; but if it is
outside the dashed circle centered onu, then u and v are
neighbors by the definition of eccentricity. By inspection we
havecos(θ/2) = a/2.

Whena = 1, we have the uniform disk model of coverage,
and find thatθ = 2π/3, in agreement with the remark in [16].
Unfortunately, ifa > 2 then there are arrangements of vertices
in the plane such that greedy routing fails: for example, if the
destinationv is surrounded by a ring of vertices which are
connected to each other but not tov.

V. D ISCUSSION

We have shown it is possible to guarantee global connectiv-
ity using only local geometric constraints. We explore tradeoffs
between constraints on interior and boundary nodes and show
that with modest boundary requirements, the constraints on
interior nodes and footprints can be relaxed while connectivity
still guaranteed. Many such tradeoffs exist in cooperative
networked environments.

We introduce a “weak-monotonicity” model of wireless
footprints which is much less restrictive than the uniform disk
model, the latter being the most common model currently
used for analysis. Typically strength of signal reception from
a wireless source is not isotropic but is correlated with spatial
directions. Weak-monotonicity captures this spatial correlation
without needing to assume isotropy.

Our proofs are constrained to nodes onR2 or a sphere.
Determining a corresponding geometric constraint for general
three-dimensional systems would be extremely interesting.
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