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Abstract—Adaptive power topology control (APTC)is a local positions and resulting edges at any timé-graph, denoted
algorithm for constructing a one-parameter family of 6-graphs, G,. Consider the grapli’ that is formed if we include all
where each node increases power until it has a neighbor in 5chievable linkages when each node broadcasts at maximal

every 6 sector around it. We show it is possible to use such A ing the broadcast . d h node i
a local geometric f-constraint to determine whether full net- power. Assuming the broadcast region around each node 1s

work connectivity is achievable, and consider tradeoffs between @ uniform disk, Li et al. [2] provide an elegant geometric
assumptions of the wireless footprint and constraints on the proof showing that if < 57/6, then the constructed graph
boundary nodes. In_particu_lar, we ShOW that if the boundary Gy preserves the connectivity of'z, but is more sparse

nodes can communicate with neighboring boundary nodes and and therefore more power efficient. Though very useful if

all interior nodes satisfy a §; < w constraint, we can guarantee Gr is full ted . th ists at least
connectivity for any arbitrary wireless footprint. If we relax the r IS Tully connected, meaning there exists at least one

boundary assumption and instead impose &5 < 37/2 constraint Path connecting each pair of nodes, this does not give any
on the boundary nodes, together with thef; < = constraint on method for testing the connectivity affz. Furthermore, it

interior nodes, we can guarantee full network connectivity using relies intrinsically on the uniform disk coverage model which,

only a “weak-monotonicity” footprint assumption. The weak- \hija 5 yseful idealization for analysis, is not a realistic model
monotonicity model, introduced herein, is much less restrictive f irel footorint S I d Fig. 1
than the disk model of coverage and captures aspects of the 1O Wireless footprints (see Sec. Il, and Fig. 1(a)).

spatial correlations inherent in signal propagation and noise. A O It
Finally, assuming the idealized disk model of coverage, we show ™ ur results

that when § < 7, APTC constructs graphs that are sparse, and  \We show it is possible to use local geometric constraints to
when 6 < 27/3, the graphs support greedy geometric routing.  getermine whether full network connectivity is achievable for
Key words: ad hoc networks, topology control, adaptive poweRny arbitrary wirgless footprint, provided certain con.ditions
connectivity, graph theory. are met. We define several tradeoffs between requirements
of the boundary nodes and assumptions about the wireless
|. INTRODUCTION footprint. Most previous algorithms impose constraints only on
We consider global properties of communications networksterior nodes and make strong assumptions about the wireless
that can be guaranteed solely from local rules, particulardgotprint. We show that with modest boundary requirements,
in the context of ad hoc networks which are typically botkthe constraints on interior nodes and footprints can be greatly
dynamic and temporary. A fundamental challenge is determirelaxed. This is an important consideration because when
ing how to ensure global network connectivity using minimahe network covers a large area, the boundary nodes will
overhead even when locations of nodes, and their linkagégically comprise onlyO(y/n) of the n nodes. We might,
can change over time. For ad hoc networks made of mobfler instance, carefully deploy a boundary region of sensors,
nodes, the connectivity must evolve as the nodes move. Evhan scatter sensors haphazardly in the interior. Further, in
for networks made of stationary nodes (such as some sensases where deployment is inexpensive (consider a sensor
networks), local connectivity can change over time due twetwork deployed by a robotic arm), internal nodes can be
the dynamic and noisy nature of wireless channels. We stuaipved from dense regions to regions where éhgonstraint
a distributed and local construction (called Adaptive Powés not yet satisfied. If sensors are not moveable, existing sensor
Topology Control, APTQ for building up communication network protocols such as sleep cycling schemes could be
edges between initially isolated nodes located on a tweasily employed by unnecessary nodes.
dimensional plane, similar to the cone based topology controlMore precisely, we show that a modification of tATC
algorithm introduced by Wattenhofer et al. [1], and analyzealgorithm provably achieves global connectivity in a variety of
by Li et al. [2]. The only underlying information necessangcenarios. The more restrictive the boundary constraints, the
for the construction is the local value of the angles formeasleaker the assumptions required for the wireless footprint. (1)
between adjacent edges (i.e., lins) incident to each vertex If the boundary nodes are known to be able to communicate
(node)v € V. These angles must all be less than a specifiadth each other, then we can guarantee the entire network is
value 6, for all v. We call the graph describing the nodeconnected provided all interior nodes satisfy a lagak = re-



qguirement, for any arbitrary wireless footprint. (2) If we relathe Random Neighbor Graph. Wattenhofer and Zollinger [6]
the communication requirement on the boundary nodes, lmbvide one of the first papers addressing local conditions for
instead impose a locdlz < 37/2-constraint on the boundary, connectivity without assuming a unit disk model of coverage.
and require all internal nodes to satisfyfda < 7 constraint, In fact, their algorithm applies to three-dimensional systems,
then we can guarantee the entire network is connected &w well as nodes on a two-dimensional plane. The flexibility
footprints that obey at least a “weak-monotonicity” constraintomes from requiring only an ordering on the quality of links,
Weak-monotonicity (introduced in Sec. Ill) is much less rewith no reference to geometry. Yet geometric constructions
strictive than the standard monotone footprint assumption anave some advantages. They can be simple to test and deploy,
takes into account angular correlations between connectioasd enable geometric routing. Furthermore, many studies have
Weak-monotonicity is also sufficient to ensure connectivitglready analyzed the performance characteristics of geometric
when all nodes satisfy the < 7 constraint on the sphere andad hoc networks, showing them favorable.

the infinite plane, where there are no boundary nodes. (3) If the

individual footprints are not uniform disks but the average over 1. BACKGROUND AND TERMINOLOGY

all footprints is approximately so, we show connectedness with

high probability if¢; < 7. Boundary nodes would need only toA- Basic network operation assumptions

be connected to the interior, with feconstraint. These proofs a4 noc or sensor networks are composed of nodes equipped
all hold regardless of how a network is constructed, requiringit, \ireless radios, allowing them to broadcast to, and re-
only that local geometric constraints rare satisfied together cejve messages from, other nodes over a shared wireless chan-
with the appropriate boundary conditions. . nel. Messages are exchanged directly between nodes within
This provides a general test for network connectivity thalach other's broadcast range. However, exchanges with more
could easily be executed on a deployed system where nogggant devices can require relaying messages along a path of
have access to local geometric information. Of course apermediary nodes. Thus data exchange relies fundamentally
individual node on its own would not be able to know if the,, jevices cooperating in relaying one another’s data.
network is fully connected, however the local information can +a proadcast nature of a wireless network means a trans-
be aggregated. If it is known that there avenodes deployed, yission interferes with all other simultaneous transmissions,
and all v send and receive messages that they satisfy theiry i, the greatest impact on transmissions sent by devices
constraint, we can locally learn of the global connectivity. ithin close spatial range. We prefer devices to broadcast at
N'is unknown, we can guarantee that our algorithm construgfs, nower to reduce interference, and moreover to conserve
the .Iargest possible com.plonent that e>_<|st$}*ug. battery life (which can be the more important of the two
Finally, we prove addmo_nal properties of tWDTC net-. criteria in the sensor network setting). The broadcast power,
work. If the wireless footprints conform to the idealized d'showever, cannot be too low. It must be high enough to ensure
coverage model, foff < , the resulting graphs are sparse, angeighnoring devices can communicate and, at a larger scale,
for 6 < 27 /3, the graphs provably support greedy geometrign, 5 fully connected networki.€., a network where all
routing. If the footprints are not circular, but contain SOMBg,ices have some, potentially multihop, path to all other
smal!er region which is circular, we ShO,W it may still b%|evices). Understanding at what level to set each node’s broad-
possible to support greedy geometric routing. cast range has been the subject of numerous investigations.

B. Related work

We study theAPTC algorithm introduced by D’'Souza et
al. [3] which is similar to the construction by Wattenhofer The networks we consider can be modeled by geometric
et al. [1]. Although we deal with connectivity issues angraphs. A geometric grap& = (V, E) has vertices (i.e.,
not explicitly network performance, we note that in [3] thehe wireless devices which are the nodes of the communication
algorithm was shown to have extremely favorable performannetwork) and a metric defining a distance between vertices.
characteristics, especially with regard to reducing power cofire edges of the grapB connect specific pairs of vertices.
sumption and the timescale associated with discovery of tHea communication link exists between two nodes in the
full network topology. Such optimizations could be particcommunication network, an edge between those two nodes
ularly useful when coupled with routing algorithms relyingexists inG. We consider the special case where the vertices
on on-demand topology discovery, as studied by Perkins ainthabit a two-dimensional Euclidean plane, where a given
Royer [4]. We show that whef < 27/3 that greedy routing vertex i has coordinategz;,y;) € R? and we refer to
always works, assuming the disk model of coverage. the distance between nodésand j as d(i,j). Geometric

Most of the related previous work (e.g., [1] and [2]) reliegraphs are convenient to describe the structure of many ad
on a priori knowledge of global network properties, such dsc networks, including some sensor networks, where nodes
the connectivity of the maximum power graghz. Poduri et are constrained to lie in two-dimensions. In constrast, many
al. [5] recently proved connectivity using only local geometriother classes of networks exist in a space with no geometry,
properties. However, this construction relies fundamentally dor instance the World Wide Web. For a recent comprehensive
the uniform disk coverage model to achieve a supergraphtofatment of random geometric graphs see, e.g., [7].

B. Geometric graphs



Actual footprint Monotonicity Weak-monotonicity

Fig. 1. (a) Example of an actual wireless footprint, reprinted from [8]. A central node broadcasts packets. The contours of probability for receiving the
transmission are outlined. (b) Connectivity for nadassumed by the disk coverage model. (c) Connectivity for noaesumed by weak-monotonicity.

C. Wireless footprints nearby nodes. The node will first establish a link with the

In principle, signals that are broadcast from a wirelesdosest accessible node within its communication footprint,
device decay in an isotropic manner polynomially with dighen with the next closest, etc. (Notice that we need not make

tance from the source as/d®, wherea > 2. Thus most any assumptions about isotropy or monotonic decay of the

models of connectivity conceptualize the broadcast region (@PtPrint; there could be nodes located at a closer spacial
“footprint”) as thedisk model of coverageith a circular disk distance which do not get linked to since they are not in
of radiusr centered on each devigeFor all points interior to "€ accessible footprint). With each new connection made, the

the disk, all transmissions are considered successful, and 9§@metric information is assessed. In general, at each step,
points connected té. For all points withd > r, the signal W€ consider the vectors drawn originating from a node and
is considered too small to distinguish from background noi§81ding at its sayn neighbors. These vectors divide the area
S0 no transmission is ever received, and these points are c@dund the central node inte disjoint sectors. If the angle
sidered not connected to The second part of Fig. 1 depictsOf each se_ctor is Ie;s th@h the constraint is satisfied and the
this monotonicityassumption, where a successful connectidifde Sets its operating power at the current value. If any angle
between vertices and j at the current level of transmissionS 9réater than or equal , the construction continues. If
implies thati is also connected to all other closer verticedn® node reaches its maximum allowed broadcast power level
Empirical studies of wireless sensor networks, however, sh&igfore satisfying the constraint, the node halts execution and
footprints are much less regular and can have large randéWers its broadcast power back down to the level where the
deviations from a uniform disk. See, e.g., [8], and in particuld@St néw connection to a neighbor was first made (or to zero
Fig. 5 therein (reprinted here in Fig. 1). When a central nodieit has no nelghbors in its broadcast range). The construction
broadcasts, there is a complicated landscape of contours®f? = 7 was introduced by D’Souza et al. [3] and we refer
probability of packet reception surrounding it with hills, void4C this algorithm as adaptive power topology cont@PT Q.

and islands. As in [8], one can define a “good link” as one Each node sets its operating range independently of all
where the probability of packet reception is greater that other nodes, hence the resulting links may be unidirectional
where they takel’ = 0.65. The assumption is that with (i.€., the edges of+y are directed). For both theoretical and
error correction techniques, etc., one can boost such a rigplementation reasons we want all links to be bidirectional

packet signal to adequate reception levels. Regardless, ldigsulting in an undirected gragghy). This can be achieved in
deviations from a unit disk remain. many ways. We choose to do so at graph construction time.

D. Distributed topology control algorithm for building

Consider V' vertices distributed inR?2. Details of the
distribution are not pertinent for now. We begin from the
isolated nodes and consider an algorithm for establishing the
edges,F, and building up a grapﬁ_fg very similar to the one
described in [3]. A fundamental requirement for the algorithm
is access to directional information obtainable, for instance,
from directional antennae, GPS, triangulation, or various other
methods (see for instance [10]).

Each initially isolated node begins by transmitting at low
power, incrementally ramping up until satisfying a geometrigig. 2. (a) The vectors from a node to its connected neighbors divide
constraint on connectivity, as described below and illustrat@d-nit circle around that node inte disjoint sectors. If the angle of each
in Fig. 2. AS the node ramps up power incrementally, it broadECi = 652 1 or eauel iothe georetnc consrant s satsfe. (o an
casts connection requests and processes acknowledgementseafthough they are closer in distance than other connected neighbats, yet
such request, thus establishing communication links with oth&j! satisfies its geometric constraint.




When nodei broadcasts an acknowledgement to an in-link. Weak-monotonicity

request from nodé it must create a link tdk, even if the .
. ) o We now relax the requirement that boundary nodes be
length of that linkd;; > r;. Nodei would transmit with range .
connected to one another. In what follows we consider a

Ti at all times, excl:ept when it needs to sen'd a '[rar?smlsskclngriant on theAPTC algorithm to produce(6;,05;) graphs
directly to nodek.” We refer to the underlying undirected . . )
graph asGy. where internal nodes satisfy tltg-constraint and boundary

The algorithm used to generaf®, can be integrated with nodes satisfy th&g-constraint. We call the output of the
. . algorithm aG raph. Notice that thég-constraint al-
standard wireless protocols such as the IEEE 802.11 wirel 0,05 Orab s

A s the boundary nodes to stop increasing power once the
network MACI11], and more specialized sensor _network Pr0nstraint is satisfied. Previously under APTC boundary nodes
tocols such as sleep cycling schemes (see for instance [1

o i S o re required to connect to all links reachable when using the
In addition since the construction is local and distributed, aximum power. The geometrical interpretatiomgf < 37 /2
could be reiterated whenever a node notices its neighbors h%vqhat the links incident to any boundary node cannot be
changed. confined to a single quadrant around the node. Similarly, the
f; < w constraint can be interperented as saying that links
I1l. PROOFS OF CONNECTIVITY incident to an interior node cannot be confined to a single
o _half-plane defined by a line through the node. To analyze this
We now show that we can ensure network connectivity usiggorithm, we introduceveak-monotonicitya less restrictive
only local geometric constraints. The results hold for finitgyotprint model than the uniform disk model that captures
size systems, not just the asymptotic limit, however speciglatial correlations inherent in signal propagation and noise.
consideration must be paid to nodes on the boundary. \Mader weak-monotonicity we will first show connectivity for
assumeboundary nodeson the convex hull of the pointsetGGI 0, graphs, then generalize the result to sensors on a
are identified in advance. We call these nodgsand we sphére, and then to the infinite plane.
say two nodes ar@djacent in B if they are neighbors in  pefinition 1: Weak-monotonicitysee Fig. 3) implies that
the description of the convex hull, regardless of the d|stanﬁzei3- is an edge and is a node where/jik = a andd(i, k) <
between them. All other nodes are callieterior nodes We sin(a) - d(i, ), thenik is also an edge. -
consider a family of boundary constraints Bnin general, the Weak-m’onotonicity is equivalent to saying thatijf is an
more restrictive the boundary constraints the less restrictio

. . . g&ge, theni has a link to all other vertices in the circle of
that need be imposed on the wireless footprint to guaram('ﬁ%meterd(z‘ j) centered at the midpoint of the ed'g_fe Note
connectivity. :

in contrast, the uniform disk model assunidsas a link to all
other vertices in the circle afadius d(i, j) centered at. The
A. Connected boundaries and arbitrary footprints first two parts of Fig. 3 depict the links that are inferred from

If the boundary nodes are identified as such and we kndW edge(i, j) under the monotone (disk model of coverage)

: . and weak-monotone footprint assumtions. Notice that weak-

ahead of time that they are all connected, therfteenstraint . P ) o
: ) o monotonicity no longer assumes that signal propagation is
on all the internal nodes is sufficient to ensure global connec- : L .
- X . L . ; monotone and isotropic, just that there are strong spatial
tivity. This straightforward observation is formalized in the . L . !
correlations along directions of good and bad signal reception.

following theorem that will be used again in the followin ; : ; .
. _ . hough this does not capture an arbitrary wireless footprint,
sections where we make less restrictive assumptions abouti h

Sllows us to broaden the class of acceptable footprints far
boundary nodes. . .
- . beyond the uniform disk model.

Theorem 1:If G(V, E) satisfies the)-constraint at every
internal node withd < 7 and all of the boundary nodes are . _
known to be connected, the®(V, E) is fully connected. Connectivity for any Gg, o, graph: Let Gy, ¢, be the

Proof: We need only show every internal nodehas a graghl fo\;\r/ned bBAPrT CW'tr? thgpweak-moen otonicity footpr:jnt
path inG(V, E) to some node on the boundary. Consider armo el. We now show that ib; < =, §p < 37/2, an

line ¢ through the vertex. Sinceu satisfies thef;-constraint, ese localf constraints are satisfied at every internal and

it must have some neighbor in each half-plane deﬁneal?.bybound"’lry node, theds, ¢,,, IS connected. SinCGQIﬁB is a
Consider one of these neighbars and for simplicity say; subgraph ofGr (the graph formed when all pairs of nodes

lies to the “right” of 4. If v, is a boundary vertex we are doneWIthln distance & are connected)(z is thus connected.

. : We start by presenting a crucial lemma that says that two
Otherwise, et’,, be the line parallel td throughu,. Vertex distinct co%p%nents cgannot have crossing edgeﬁ one from
v1 must have a neighbor, to the right of/,,. Continuin ) ’ -
inl this fashion. we ?nust 2eventuallygfind av\llertek( on th(ge each component. This lemma uses the weak-monotonicity
boundary in the same connected component.of [ ] icsogglr?r?enc*t)euc; does not require any knowledge of how the graph

Lemma 2:Let G = E ny dir raph isfy-
1For instance each node could keep an internal table of connected neighbors © a et & = (V, ) be any directed graph satisfy

(already required by various routing protocols such as [9]), and in additiéﬂ_g the Weak-mo_notgnicity condition (i.e., for allj,k € V
corresponding broadcast ranges. with Zikj = «a, if iy € E andd(i,k) < sin(w) - d(i, )




. iz 0

k
Monotonicity Weak-monotonicity ik € E if d(i, k) < sin(a) - d(i, j)

Fig. 3. Monotonicity and weak-monotonicity implications of the edge

thenik € E). Let G = (V, E) be the undirected version ofheads 1o the left. These paths must end at boundary vertices
G formed by making all edges bidirectional. Then any twe’ and /. If the paths intersect or cross, then by Lemma 2
crossing edges i/ must belong to the same component.  they must lie in the same component and we have reached a
Proof: Suppose~ has two component§; andCs such  contradiction. If they do not intersect or cross, thehis a
thatij € Cy andkl € C; cross. The quadrilaterdi, k, j,1) i poundary vertex to the left of’ on the opposite side of the
depicted in Fig. 4. At least one angle of the quadrilateral mugdnvex hull. If they are not nearest neighbors on the convex
be greater than or equal to/2, and we assume without losshyl, find any two nearest neighbors on the hull lying between
of generality that it isZikj. Thend;, < sin(«)-d;;. Sinceij  them that lie in different components @y, ¢, and call these
is an edge in, by the assumption of weak-monotonicit§, 2’ andy’ instead. Notice that since we assumed thaindy
is also an edge iid;. This edgeik connectsC; andC; in G,  were the closest boundary nodes lying in different components,
so they lie in the same component. B we haved(2’,y’) > d(z,y); therefore the edgér’,y’) cannot
We now show that Lemma 2 is enough to ensure connectie parallel to the edger, y) sincex’ andy’ lie betweer?,, and
ity of G, ¢, under the weak-monotonicity footprint model. ¢,. Suppose without loss of generality that the lines through
Theorem 3:Letf; < m andfp = 37 /2. If Gy, o, satisfies (z,y) and(a’,y’) intersect to the right of,. As before, let,
the 6;-constraint at every internal node and the-constraint be the line perpendicular to the ed@e,y’) throughz’, and
at every boundary node, thery, ¢, is connected. similarly ¢,,. There must be paths fromf andy’ that cross
Proof: First, we observe that the proof of Theorem r stay within the infinite rectangle delineated &¥,v’), ¢,/
shows that there is a path from each internal node to soarel/, . Since the patlp,, originating aty’ must reach a point
vertex on the boundary. It remains only to show that adin the convex hull to the left of, it must intersect the path
boundary vertices lie in the same connected component. p,. From Lemma 2 this proves thatandy lie in the same
Suppose this is not true, and letand y be the closest component inGy, g,,. ]
consecutive boundary vertices that lie in different components.

Let ¢/ b_e the Ii/ne throughz and , Iet_éa, be the _Iine Connectivity on a sphere: These proofs can be gener-
perpendicular td” througha and?, be the line perpendicular gjizeq 1o a finite set of sensors on a sphere, where it is
to ¢" throughy. (See Fig. 5.) Since the external angle arounghy possible to avoid the boundary constraints altogether.

any point on the convex hull is at leasf 05 > 3m/2 implies e assume that if two vertices are connected, then they take
that bothx andy must have neighbors in the interior of the

infinite rectangle delineated on three sidegby’’ and¢,.. We
call the neighbor of: in this rectangler; and, for the sake of x Y

terminology, we say that it lies to “the right” of,. We call &—
the neighbor ofy in this rectangley; and say it lies to “the . i ]
left” of ¢,. As before, we continue building a path from = o Ly | 1y
that heads to the right at each step and a patfrom y that . . Py Py

Fig. 4. The quadrilateral formed by crossing edggsnd kL. Fig. 5. Proof of Theorem 3



the shortest path around the sphere. In other words, evenTheorem 6:If Gy lies on the sphere and satisfies the

operating at full power, we can assume that there is no liglonstraint everywhere, with < =, then it is connected.

that has length greater than half the circumference of a great Proof: Suppose that there is more than one connected

circle. We show that if the spherical angles at each nodemponent inGy, and call two of these component§ and

satisfy thed < = constraint, therGy is fully connected. The Cs. Notice that if every vertex € V satisfies thé&-constraint,

proof is similar in spirit to the finite planar setting. We firsthen every vertex has degree at least 3 and each component can

generalize Lemma 2 to the sphere, and then show that d®/ decomposed into a collection of minimal cells containing

two components must have crossing edges. Together thisiisother points from that component. If there are no crossing

sufficient to demonstrate that any spherical network satisfyirglges, then all of’; must lie within a single cell ot’; (and,

the #-constraint everywhere must be connected. because all the points are lying on a sphere, this is equivalent
Lemma 4:Let G = (V, E) be a graph embedded on thdo saying that all ofC; lies in within a single cell ofC).

unit sphere that satisfies the weak-monotonicity condition (i.éf,we consider the vertices comprising these two cellsjn

for all 4,j,k € V with Zikj = «, if ij € E and d(i,k) < Cy andey in Co, it is not difficult to see that they cannot all

sin(a) - d(4,4), then ik € E) and letG be the undirected be satisfying thed-constraint if¢ < . In particular, if thef-

version of G. Then any two crossing edges must belong toonstraint is satisfied by the verticesdn then from lemma 5

the same component. c1, and hence all of’s, lies in one half-sphere. But then the

Proof: Letij andk! be two crossing edges. The verticesonstraint cannot be satisfied by its boundary egll [ ]
{i,k, 4,1} form a quadrilateral. This quadrilateral divides the

sphere into two pieces, and we refer to the piece containing gnnectivity in the infinite setting: For completeness we
edgesij andkl as theinterior of the quadrilateral. Since thejnclude the proof that in the infinite setting we can establish
length ofij andk! are less than half the circumference of anjetwork connectivity ovelR? using just thed-constraint on
great circle, there must be an interior angle of the quadrilatefgk interior nodes, wherd = 6; < =, under the weak-
that exceedsr /2. We can use the proof of Lemma 2 to shownonotonicity assumption. This mathematical result inspired
that one of the edges of the quadrilateral must also be a |||'dﬁr definition of(gl’ 93) graphsy but the proofs are somewhat

assuming the weak-monotone model of coverage. B technical. This section can be skipped for readers solely
One additional lemma will be useful before Stating anmterested in finite realizations.
proving the main theorem for points on a sphere. For z # y € R? we write [z,y] for the (straight) line

Lemma 5:Let P be a polygon on the sphere, where albegment joiningz andy. For V c R? consider a graplty =
the edges of> have length at most half the circumference ofy, ) on vertex set/. We refer to the setiy, ey [z, y] as
any great circle. If all the angles exceedtraveling around the realizationof G in R? and say thats is a 6-graph if for
the polygon in one direction (viewed from one side of theachs: e V every sector ai: determined by the realization of
polygon), then? lies in one half-sphere. G has angle less thah) Throughout this section we make the

Proof: Let ey = (p1,p2),e2 = (p2,p3),es = (p3,p4) P& ysual abuse of notation, identifying a subset of the vertices of

three consecutive edges on the polygBnand letc be the 3 graph with the subgraph it induces.
great circle containing,. If all the angles exceed traveling  Qur conditions will be that < 7, that there is a uniform
in one direction around, then bothe; and ez lie on the upper bound on the |engths of edgesEn that every finite
same half-sphere defined by The circles containing, and disk in R2 contains only finitely many points df, and that
es intersect at antipodal points; lgtbe the one that lies in the neighborhood of each vertex obeys weak-monotonicity.
the same half-sphere (defined byase; andes;. We showP We show the following theorem.
must lie inside the triangle defined by, ps andq (where the  Theorem 7:Let V < R2 satisfy the condition that its
interior of the triangle is the side bounded by angles that gfgersection with every disk of finite radius is finite. Let
less than). It then follows thatP lies on a half-sphere. IP G — (v, E) be a#-graph onV with § < 7. ThenG = (V, E)
is not contained in trianglépz, ps, q), then there are at leastis connected and spai®?2.
two edges that starts outside this triangle and end at a vertexhe proofs follow the general outline of the proofs from
in or on the triangle. Following the polygaf around starting the finite setting, although they are much more sensitive. We
with e, in the direction ofes, let e; be the first edge that defer these proofs for an Appendix in the final version.
ends outside the triangle. H; crosses the circle containing o ) )
es, then there must be an angle that exceedegimong the C- Connectivity for footprints that are monotonic on average
first i edges. If instead it crosses the circle containingall Up until now we began with considering constraints on
edges crosssing the boundary of triangle, ps, ¢) must cross the boundary nodes, and from there determined requirements
the circle containinge;. Repeating the argument starting afor the wireless footprints. Instead here we begin with con-
eo and proceeding around the polygon in the other directi@braints on the footprints. Though any individual footprint may
(first throughes), we can similarly conclude that all edgeshave random deviations from a uniform disk (as shown in
crossing the boundary of triangl@-, ps,q) must cross the Fig. 1), here we assume that the average over all footprints
circle containinges. This is a contradiction, so all d® must is monotonic and isotropic. Given this, we can relax all
lie within the triangle and hence a half-sphere. B constraints on boundary nodes and still show connectivity, with



high probability, providedd; < =. In such cases boundaryf = 7, this is equivalent to stopping once the point is inside
nodes would just follow the APTC protocol and set theithe convex hull.
operating power accordingly. Recall the discussion in Sec. IlIf Q(t) is the probability that this is true aftémpoints, then
of empirical wireless footprints and the definition of a “goodhe out-degree distributio®(¢) of the adaptive power model
link” (the probability of packet reception is greater thBh is the probability that ifirst happens aftet points, i.e.
This leads us to the following definition.

Definition 2: For an arbitrary footprint, letP(d) be the Pt)=Q(t) - Q(t-1) .
probability of packet reception at distanéérom the source.  Now, recall that, fort > 2, choosing numbers , as, . . ., a;
We say the footprint igsotropic and monotonic on averageyniformly conditioned 0”22:1 a; = 1 is equivalent to
if P(d) has no dependence on angle (isotropic), and decayfoosing a uniform point inside a (¢ — 1)-dimensional
monotonically withd. equilateral simplexs of height 1, where the; are the lengths
Note, for the disk graph assumption of strict monotonicity fasf the perpendiculars frorito thet, (t—2)-dimensional faces.
a disk of radius:, P(d) = 1if d <r, andP(d) =0if d > 7. Then the event that the largest angular gap is less thian
In addition, considering the definition of a “good Iink”, if equivalent to the event thatis within a distance4 of every
and j are vertices inG(V, E) andij is an edge inG(V, E), face (giving us an excluded area).

then P(d;;) > T. If A=1/2 (i.e. § = m) the excluded areas atesimplices
Theorem 8:If broadcast footprints decay monotonically orof height1/2. Each of these contains a fractiofi2:~! of the

average(Gy has one component with high probability. volume of S, so we have
Consider crossing edges of compone@ts and Cs satis- ;

fying the #-constraint. We letM be the number of crossing Qt)y=1- 31

edges. Each pair of crossing edges (see Fig. 4) forms a quadri-

lateral where somé(i, k) < d(i, j) while edgeij € G(v, E). fort =1, and -

We know thatP[d(i, k)] > P[d(i,j)] > T, and this holds P(t) = 51

for each set of crossing edges independently. The probably ) )
the components are not merged by a particular crossing edge ! = 2. Amusingly, the average out-degree is then an
is less than(1 — I'). The probability they are not merged by N€ger:

M independent crossing edges is less thana I')M . Setting > >4t —2)
I' = 0.65 as in [8], if M = 5 the probability that a crossing t=> Pt)t=1+> g1 =0
edge will have merged’; andC, exceed¥99.5%. t=2 t=0

and the variancey?, is 4.
Considering the stronger constratht= 27 /3, the expected
There are many advantages to assuming the idealized Wit degree is higher, yet the graph still sparse. In this gase
form disk coverage model. From an implementation perspegt3. Now each pair of excluded simplices has an intersection
tive, it SImp'IerS protocols and ensures reCiprOCity of Sign nsisting of a simplex of he|g|~]t/3 lying on the center of
reception. From an analytic perspective, it simplifies analySigne edge. By inclusion-exclusion, we have
and allows us to prove additional features of the algorithm.

IV. BEHAVIOR ON RANDOM DISTRIBUTIONS

We prove that under the disc model of coverage, the graph Q) =11t (2)t ! n <t) <1>t !
is sparse, the radii of the disks are tightly distributed, and 3 2)\3
moreover, whery < 27 /3, greedy routing works. for ¢ > 1, and so
t—2

A. Sparseness G@gl - . Plt) = (t—3) 2 —_t +1

Consider a Poisson distribution of points on a two- 3t-1
dimensional plane. Starting with an isolated node we consider ¢+ > 2. The average out-degree is theh/8 = 8.875 and
the process of that node building up connectivity via thghe variance i¥83/64 = 12.2344. [ ]

APTC algorithm. But, we no longer impose an upper cutoff Itis easy to show that the radius and link length distributions
to the maximum allowed broadcast power (hence we considge tightly concentrated in the following sense: there is a
a supergraph ofir considered up until now). We show theconstantC' such that, in a network of. nodes uniformly
supergraph is sparse (hence sd@ig. distributed in the unit square, with high probability no radius

Theorem 9:1f the vertices are distributed uniformly atis more thanC'/(logn)/n.
random,Gy is sparse (i.e.f = O(V)). )

Proof: Consider an individual node ramping up poweP: Greedy routing works

according to theAPTC algorithm. The node accumulates One intuitive approach to routing on a wireless network is
connected neighbors which divide the area around it into con@ pass the packet from its current locatierto whichever
sectors. The node stabilizes its operating power when the angggghbor is closest to the destinatitnThis greedy approach
of the largest conic section is less thdnwhered = 2rA  seems to have been first considered by Finn [13], who noted
for some fixedA € (0,1). For instance, ifA = 1/2 then that it can get stuck at a local optimum where every neighbor



V. DISCUSSION

We have shown it is possible to guarantee global connectiv-
ity using only local geometric constraints. We explore tradeoffs
between constraints on interior and boundary nodes and show
that with modest boundary requirements, the constraints on
interior nodes and footprints can be relaxed while connectivity
still guaranteed. Many such tradeoffs exist in cooperative
networked environments.

We introduce a “weak-monotonicity” model of wireless
footprints which is much less restrictive than the uniform disk
model, the latter being the most common model currently
used for analysis. Typically strength of signal reception from
a wireless source is not isotropic but is correlated with spatial

space betweenandt a “void”, and proposed a protocol called”. ™"~ . . : :
Greedy Perimeter Stateless Routing (GPSR) that moves COHH?CUOHS- Weak-monotonicity captures this spatial correlation
jthout needing to assume isotropy.

terclockwise around the face of the graph containing the vofd )
until we reach the destination or greedy routing can resume. nOur prpofs are constra!ned to ”Od.es Rt or a sphere.
order to ensure that this approach works, they first “planariz eterm_mlng a corresponding geometric constral_nt for g_eneral
the graph by reducing it to the Relative Neighborhood Graﬁ ree-dimensional systems would be extremely interesting.
(RNG)[14] or the Gabriel Graph (GG)[15].
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