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ABSTRACT 
The DWS (Data Warehouse Striping) technique allows the 
distribution of large data warehouses through a cluster of 
computers. The data partitioning approach partition the facts 
tables through all nodes and replicates the dimension tables. The 
replication of the dimension tables creates a limitation to the 
applicability of the DWS technique to data warehouses with big 
dimensions. This paper proposes a strategy to handle large 
dimensions in a distributed DWS system and evaluates the 
proposed strategy experimentally. With the proposed strategy the 
performance speed up and scale up obtained in the DWS 
technique are not affected by the presence of big dimensions. 
Furthermore, it extends the scope of the technique to queries that 
browse big dimensions that can also benefit of the performance 
increase of the DWS technique. 

Categories and Subject Descriptors 
H.2.7 [Database Management]: Database Administration – Data 
Warehousing and Repository. 

General Terms: Performance. 

Keywords: Data warehousing, distributed query execution. 

1. INTRODUCTION 
Data warehousing applications typically involve massive amounts 
of data that push database management technology to the limit. A 
scalable architecture is crucial, not only to handle very large 
amount of data but also to assure interactive response time to the 
OLAP (On-Line Analytical Processing) users. In fact, the decision 
making process using OLAP is often based on a sequence of 
interactive queries. That is, the answer of one query immediately 
sets the need for a second query, and the answering of this second 
query raises another query, and so on and so forth in an ad hoc 
manner.  

In order to assure acceptable response time to allow the 
interactive OLAP querying style, even when the data warehouse 
becomes extremely large in size, data warehouses implementation 
normally use very expensive platforms, typically based on high-

end servers or high-performance clusters. The use of classical 
parallel processing techniques [10, 11] proposed to relational 
database systems is also common in big data warehouses [7]. Two 
types of parallelism can be explored at the query level: inter-query 
parallelism [9], wherein multiple transactions are executed in 
parallel in a multiprocessor environment, and intra-query 
parallelism [13], where several processors cooperate to 
concurrently execute a single SQL statement. The latter is 
particular interesting to the complex queries executed in a data 
warehousing as the parallelism is used to improve performance 
through parallel implementation of the various operations of the 
query execution plan. However, the use of parallelism in the 
complex data warehouse queries is clearly more difficult and less 
effective than the parallel execution of multiple small transactions 
that characterize typical database applications in an on-line 
transaction processing (OLTP) environments.  

Another possibility for high volumes of data is to distribute the 
data across multiple data warehouses in such a way that each 
individual data warehouse cooperates to provide the user with a 
single and global view of the data. In spite of the potential 
advantages of the distributed data warehouses, especially when 
the organization has a clear distributed nature, these systems are 
always very complex and difficult to manage [2]. Furthermore, the 
performance of many distributed queries is normally poor, mainly 
due to load balance problems and the volume of data exchanged 
between servers. 

The data warehouse striping (DWS) approach [3, 6] is aimed to 
provide a cost effective alternative for the very expensive servers 
typically used in large data warehouses by implementing a data 
warehouse over an arbitrary number of inexpensive computers 
(typically cheap workstations, server blades, or standard PCs) and, 
at the same time, integrating this approach in the data 
warehousing technology available in the market. That is, DWS 
can be used with the database management systems (DBMS) 
available today (without changes), including small and cheap ones 
such as open source DBMS.  

The DWS approach is based on the clever combination of two 
simple ideas: 1) uniform data striping to partition the data 
warehouse facts over an arbitrary number of computers, in such a 
way that queries can be executed in a true parallel fashion (a 
query is actually split into many partial queries), and 2) an 
approximate query answering strategy (AQA) to deal with the 
momentary unavailability of one or more computers in the cluster. 
The experimental evaluation of the DWS technique has shown 
that this approach assures nearly optimal speed up and scale up 
[4] and that a momentarily unavailability of one of the computers 
(which is plausible, as a DWS system may consist of a large 
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number of small computers) does not force the system to stop, as 
the answers can be approximated with a small error [5] using the 
data in the remaining computers of the DWS system.  

Recently, the company Critical Software, SA 
(www.criticalsofware.com) developed a middle-layer 
implementation of the DWS technique targeted for several 
commercial DBMS systems and OLAP tools, allowing the 
transparent use of the DWS technique with the data warehousing 
technology available in the market (i.e., no changes are required 
for both the DBMS and OLAP tools) [8]. 

However, the DWS technique has an important limitation: it is 
specifically thought to typical data warehouses organized in an 
ideal star schema consisting of a large fact table surrounded by a 
set of small dimension tables, as proposed by Kimball [12]. In a 
DWS system the fact rows are uniformly distributed by all the 
available machines while the dimensions (supposedly small in 
size) are replicated in all the computers in the DWS system. This 
means that DWS is not effective (or cannot be used at all) in data 
warehouses with big dimensions, which is an important limitation 
as there are a significant number of businesses that have big 
dimensions as part of their business model.  

This paper proposes a new approach called selective loading to 
deal with data warehouses with big dimensions in DWS systems 
and evaluates the proposal using the TPC-H performance 
benchmark [14], whose data schema is quite far from a typical star 
schema and includes big dimensions. 

The paper is organized as follows. Next section summarizes the 
key aspects of the DWS technique. Section 3 presents the 
selective loading proposal for handling big dimensions. Section 4 
presents the experimental evaluation using the TPC-H schema and 
finally section 5 concludes the paper. 

2. THE DWS TECHNIQUE 
The DWS technique relies on specific features of the star schema 
and the typical data warehouse queries to optimize the way data is 
partitioned among the computers in the DWS system and the way 
queries are distributed and executed. 
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Figure 1 - Data partitioning in the DWS technique 

The infrastructure required to implement a DWS is just a set of 
inexpensive computers (called system nodes, typically PCs or 
server blades) connected by fast Ethernet (share nothing 
configuration) and having a DBMS installed in each node. All the 
nodes have the same star schema, which is the star schema of the 
equivalent data warehouse in a centralized version. The dimension 
tables are replicated in each node (i.e., each dimension has exactly 
the same rows in all the nodes) and the fact data is distributed 

over all the fact tables of each node using a strict row-by-row 
round-robin partitioning approach (see Figure 1), which assures 
an uniform partitioning. The uniform partitioning is necessary to 
assure optimal load balance and to facilitate the computation of 
confidence intervals in the cases (rare, in principle) when one or 
more nodes in the system are not available [1]. 

As is easy to see, the data partitioning is tightly related to the star 
schema and the speed up and scale up is very dependent on how 
close the data warehouse model is to the ideal star schema [12]. 
The replication of dimension tables does not represent a serious 
overhead in many cases because usually the dimensions only 
represent a small percentage of the space occupied by the data 
warehouse. The row-by-row partitioning of the fact table assures 
that the fact table in each node has an equivalent number of rows.  

The queries are generated by an OLAP tool that assumes the data 
warehouse is centralized (i.e., all the details of the DWS are 
hidden by a middle layer [8]) and are executed in a distributed 
way by all the nodes that constitute the DWS system.  A given 
query is first analyzed to check if it is necessary to transform it 
and after then it is split into N sub-queries, being N the number of 
nodes in the DWS system [4, 8]. As the data schema is exactly the 
same in all nodes (and equal to the equivalent centralized version 
of the data warehouse), in most of the cases the sub-queries are 
similar to the same as the original query generated by the OLAP 
tool. 

The nearly optimal speed and scale up achieved by DWS is due to 
the fact that typical queries lead to sub-queries that are executed 
in a completely independent way in each node and each query 
return a partial result that is easy to merge to compute the final 
result. That is, each node processes approximately the same 
amount of data as all the others, and mainly within its local data, 
reducing the exchange of data between nodes to a minimum and 
almost ignorable. Of course, some queries need more than one 
step (when some intermediate result is needed to complete the 
query execution) and in those cases the speed up is not optimal, 
but these queries represent a small minority of all possible queries 
[12]. The experimental evaluation using APB-1 benchmark 
confirmed a practically linear speed up and scale up [4]. In a more 
detailed way, the key aspects that contribute to the nearly optimal 
speedup and scale up are: 

− Speed up (when adding more nodes the response time 
decrease proportionally): 

1. Optimal load balance among the nodes: all the sub-
queries take about the same time (assuming all the nodes 
are well tuned) because the fact rows are distributed by 
the nodes using a uniform row-by-row round-robin 
partitioning. The number of fact rows stored in each node 
about the same (1/N ±1 fact rows in each node, with N the 
number of nodes), and the low level round-robin 
partitioning assures the data in each node is not biased in 
any sense (as would be in the case of using attribute range 
partitioning) and for each query each node processes the 
same amount of data as the all others. Furthermore, each 
query is executed by all nodes, taking advantage of the 
entire power computation available in the cluster, using a 
new degree of parallelism not available in other systems. 
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2. Independence of sub-queries: most of the queries over a 
star schema can be transformed into N independent partial 
sub-queries (i.e., no need of communication among nodes 
during the query execution, only the exchange of the 
partial results) because of the mixture of disjoint 
partitioning in the fact table with the replication of the 
dimensions in all nodes. As mentioned before, some 
queries need to access data stored in the other computers 
in the DWS system and in these cases the query is 
executed in more than one step. However, these queries 
are rare and, if needed, it is possible to estimate the partial 
result that need the access to data stored in other 
computers by an estimation calculated from the local data, 
avoiding the need of truly distributed query [6] (note that 
accurate approximate result are useful for decision 
support in many cases).  

3. Negligible overhead to merge partial results: typical 
OLAP queries return a small result calculated from the 
aggregation of a normally large number of fact rows. This 
is the ideal situation, as in this case the computation of the 
final result from the partial results is very fast and has a 
negligible impact in the overall query execution time.   

− Scale up (when adding more data it is possible to maintain the 
response time by adding more nodes): 

A very large number of nodes can be used which means DWS 
represents an effective way to handle very large data 
warehouses. The only limiting factor for the number of nodes 
that can be used in a DWS system is the overhead due to the 
computation of the final query result from the partial results. 
However, for typical OLAP queries this overhead is small, 
which means it does not represent a problem even when a 
large number of nodes is used.  

It is worth saying that the DWS technique can be easily adapted to 
the typical data warehouse life-cycle [12]. The only requirement is 
to change the final bulk load from the staging area to the data 
warehouse (either for the initial load or for the subsequent 
incremental loads) in order to handle replicated dimensions and 
partition the facts in the required way. A set of administrative 
tools to facilitate the administration of DWS systems has already 
been built [8].  

The administration of a DWS system is more time consuming then 
the administration of a centralized server, as the administration of 
a high number of small machines could be more time consuming 
than the administration of a big server. However, this is also 
means that each node can use all the panoply of traditional 
techniques to reduce query response time, such as B-tree and bit-
map indexing, materialized views, table partitioning in each none 
(note that each node may have more than one disk), in addition to 
the physical optimization of the storage parameters of the tables in 
each node and specific tuning techniques available in most 
DBMS. Furthermore, all nodes have the same star schema model, 
and will execute the same queries, so in fact, the optimization 
techniques applied to one node can, and should, be applied to all. 

As mention before, the big problem of DWS technique is that it is 
specifically meant for typical star scheme and the performance 
gains are greatly affected by big dimensions. In classical business 
with big dimensions [12], as the client dimension in business such 

as air transportation, telecommunications, or big e-commerce 
sites, the DWS technique would be completely inappropriate 
because of the replication as the big dimensions. Similar situation 
happens with data warehouses that do not follow a pure star 
approach, which leads to large tables that play the role of 
dimensions (the TPC-H schema is an example of this).  

In this paper we propose the selective loading of the big 
dimensions to extend the use of the DWS technique to cases 
where the business model include big dimensions or non-typical 
star scheme and evaluate experimentally the viability of this 
approach. 

3. THE SELECTIVE LOADING 
TECHNIQUE 
As explained before, the basic idea behind the DWS approach is 
to use low cost computers to handle large and very large data 
warehouses with a reduced infrastructure cost. Each node in a 
DWS system must process a small portion of the data warehouse. 
However, if the business model includes big dimensions (i.e., 
dimensions that may grow to several hundreds or even thousands 
of MB), the replication of these tables in all DWS nodes will 
cause a very high storage overhead, but more important than that, 
will require each node to process a huge amount of data, which 
turn the DWS technique impracticable or, at the best, significantly 
reduces the speed up gain obtained by having a large number of 
computers in the DWS cluster. 

A typical data warehouse query aggregates rows of the fact table 
selected according to some restriction over one or more dimension 
attributes. In fact, what these queries do is join the fact table with 
one or more dimension tables in order to filter the fact table rows 
that should be included in the aggregation. All rows of the 
Dimension table that have no correspondent row in the fact table 
will be discarded in the join, and so, each query only needs the 
dimension rows that can be joined with the fact table rows. In the 
original DWS approach, the dimensions are fully replicated in all 
nodes independently of their size, and for each query that uses the 
big dimension it is necessary to process all its rows in order to 
select the dimension rows that should be joined with the fact 
rows. 

The selective load technique proposed in this paper explores the 
fact that the subset of the fact table rows stored in each node are 
only related to a small part of the rows of the big dimension and 
not related to all of them. This is a consequence of the partitioning 
of the facts by a large number of DWS nodes and also a 
consequence of the nature of the big dimensions (as discussed 
next). Thus, the idea is to store in each node only the dimension 
rows that are related to fact rows stored in that node, an not to 
replicate the entire dimension. That is, the number of rows of the 
big dimension stored in each node does not depend uniquely on 
the large dimension itself, but also depends of the rows in the 
facts tables related to the dimension.  

Figure 2 presents a dimension table Customers and a fact table 
Miles. The dimension table contains information about airline 
customers and the fact table contains information about the miles 
traveled. Let’s assume that the data in the fact tables is the data of 
one DWS node. The customers A and C have at least one fact in 
the fact table. Without the Selective Load technique the 
Dimension table would be completely loaded to the DWS Node 
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including the customers that have no rows in the fact table for the 
current node. With the Selective Load technique only customer A 
and C will be loaded to the current DWS node. 

ID Customer CustomerID DayID Miles
... ... ... ... ...

1000 A 1000 400 3000
1001 B 1000 401 3500
1002 C 1002 600 2100

... ... ... ... ...

Customers Miles

 
Figure 2 - The selective load technique 

At the first sight it may appear that the selective loading technique 
proposed for the big dimensions does not reduce much the 
numbers of rows of the big dimension stored in each DWS node. 
However, a more careful analysis shows that is exactly the 
opposite, and this proposal leads in general to a big reduction of 
the volume of rows stored in each node. In fact, a dimension is 
considered big not only because it has a very high number of rows 
(absolute size) but also because the number of rows in the 
dimension represents a significant percentage of the number of 
rows in the fact table. This means that each row in the big 
dimension is related to a very small number of facts, which means 
that a star schema with a big dimension is always very sparse (if it 
was dense it would be impossible to cope with such data 
warehouse, no mater the technology used, as it would grow up to 
pentabytes or more). 

Some examples may show the sparsity effect in a more clear way. 
For example, most of the rows in the client dimension of an air 
company (i.e., each passenger) are only related to a few number of 
fact rows (the flights of each passenger). In order to realize how 
sparse a star like this can be we have to consider the other 
dimensions of the model (such as time, flights, promotions, etc). 
In fact, most of the people don’t fly very often, but, above all, do 
not fly everyday, in all the flights of the company, with all the 
promotions programs, etc, etc. The result is that each row in a big 
dimension is related with just very few rows in the fact tables (that 
potentially has zillions of rows). The same happen with other 
business models that normally have big dimensions such as large 
e-commerce business with millions of clients, telecommunication 
companies, big hospitals, etc. 

With the selective loading approach we solve the problem of 
replicating the big dimensions in DWS systems but, unfortunately, 
we create a new problem: How to answer queries to big dimension 
table only, the so called dimension browsing queries? With the 
selective load, there is no complete vision of the big dimension 
table as each node has only the rows necessary to perform joins 
with the fact tables, and nothing guarantees that the union of all 
the dimension rows in all nodes provides a complete vision of the 
big dimension (not to mention that a union like that would be time 
consuming). For instance, dimension rows with no facts will not 
be loaded at all. The solution to this second problem can be found 
on another foundation of the DWS technique: the data 
partitioning algorithm.  

The selective load technique creates a partitioned version of the 
big dimension table, using the same row-by-row algorithm used 
for the distribution of the fact tables. That is, in addition to the 
partial copy of the big dimension stored in each node, the big 
dimension is also partitioned among all the nodes for browsing. 

With this extra redundancy it will be possible to query the big 
dimension, (i.e., dimension browsing), but even more interesting, 
it will be possible to do it with the speed up and scale up achieved 
in the DWS technique for typical data warehouse queries. The 
distribution of the big dimension does not represent a significant 
storage overhead to each node because each node will receive a 
small portion of the data. 

The processing required to load the selective version and the 
partitioned versions of the big dimensions is not negligible, 
although, these partitioning algorithm is already implemented and 
optimized in the DWS technique (for the facts), and the 
preparation of the selective version of the big dimensions for the 
incremental loads (see [12] for details on the data warehouse life 
cycle) is performed in the data staging area while the data 
warehouse is up and running. 

4. EXPERIMENTAL RESULTS 
In order to evaluate experimentally the gains in storage and 
performance obtained with the proposed selective load we have 
decided to implement the TPC-H workload in a DWS system 
enhanced with the selective load approach and using several DWS 
configurations concerning number of nodes.  

The Figure 3 presents the TPC-H data model.  

 
Figure 3 – TPC-H data model [14] 

The TPC-H is a good workload for this study as this benchmark is 
the standard performance benchmark for decision support systems 
and the TPC-H schema includes big dimensions (although it is not 
a pure star schema). The TPC-H queries chosen for the 
experiments are the most demanding ones (because they address 
particularly the big dimension) and can be found in Annex A. The 
workload has been generating with 10 GB (i.e., a small size) in 
order to allow experiments with a wide range of configuration, 
especially configurations with a single node to be used as a 
reference (representing a centralized data warehouse).  

The tests were performed with the following configurations: 
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a) Single Node –  no DWS technique at all to be used as a 
reference 

b) DWS_5 –  DWS with 5 nodes and full replication of 
dimension tables 

c) DWS_SL_5 – DWS with 5 nodes and Selective Load 

d) DWS_10 – DWS with 10 nodes and full replication of 
dimension tables 

e) DWS_SL_10 – DWS with 10 nodes and Selective Load 

f) DWS_20 – DWS with 20 nodes and full replication of 
dimension tables 

g) DWS_SL_20 – DWS with 20 nodes and Selective Load 

Figure 4 shows the storage values of each configuration for the 
more relevant tables: LinetItem (the fact table), Orders (the big 
dimension) and Orders_dist (the partitioned version of the big 
dimension).  

In the Figure 2 it is possible to observe that the selective load 
configuration is always better, in terms of space occupied 
(considering the point of view of a DWS node), compared with 
other solutions. It should be noted that the Selective Load 
configuration includes the LineItem data, the selective loaded 
version and the distributed version of the Orders Large Dimension 
table. 

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

Size 
(MB)

Sing
le N

od
e

DWS_5

DWS_S
L_

5

DWS_1
0

DWS_S
L_

10

DWS_2
0

DWS_S
L_

20

Configurations

Storage

Orders_dist

Orders

LineItem

 
Figure 4 – Storage space per node 

Table 1 presents the detailed storage values of the different 
storage configurations. 

  LineItem Orders Orders_dist Total 
Single Node 3576,25 1573,56   5149,82 

DWS_5 715,25 1573,56   2288,81 

DWS_SL_5 715,25 557,97 314,71 1587,93 

DWS_10 357,63 1573,56   1931,19 

DWS_SL_10 357,63 312,10 157,36 827,09 

DWS_20 178,81 1573,56   1752,38 

DWS_SL_20 178,81 157,01 78,68 414,51 

Table 1 - Storage space in each node (detailed values) 

Table 2 presents the experimental results of the execution of the 
selected TPC-H benchmark queries, in the different 
configurations. As it can be seen, the selective load technique 
provides an enormous increase of the query execution 
performance compared to the corresponding DWS configurations 
that do not use the selective load. Combined with the DWS 
technology the execution times can lower from 43 minutes (all the 
queries) in the single node execution to less than 3 minutes in the 
20 node configuration using both DWS and selective load 
technique. This represent a speed up of 16 times: that is, going 
from 1 computer to 20 computers the execution time of all the 
queries tested is reduced 16 times. This is a little less than the 
optimal speed up obtained for a pure star scheme (the APB-1 
benchmark: see in [4]) but quite close anyway. Furthermore, 
Figure 3 and table 2 shows quite clearly that the DWS technique 
alone is completely useless (1 computer takes 43:12 while 20 
computers take 36:08) in a schema such as the TPC-H, while the 
DWS together with the selective load introduces a dramatic 
reduction in the queries execution time. It is worth noting also 
that due to the synthetic nature of the data used by the TPC-H the 
sparse factor is not as high as it would be in a real example of big 
dimensions. Thus the results obtained with the TPC-H are 
conservative measure of the performance gains obtained with the 
selective load in a more realistic scenario with big dimensions. 

Figure 5 presents the sum up of the execution results. 
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Figure 5 - Queries execution time 

 
Query Single Node DWS_5 DWS_SL_5 DWS_10 DWS_SL_10 DWS_20 DWS_SL_20

3 0:08:04 0:03:50 0:02:22 0:03:09 0:01:13 0:02:34 0:00:37
4 0:05:16 0:01:52 0:01:03 0:01:13 0:00:23 0:01:01 0:00:07
5 0:07:22 0:03:01 0:02:02 0:14:27 0:00:58 0:13:03 0:00:36
8 0:03:49 0:07:18 0:04:59 0:04:29 0:02:08 0:03:02 0:00:35
12 0:04:02 0:05:47 0:03:34 0:02:58 0:00:59 0:01:26 0:00:05
13 0:14:39 0:15:58 0:04:58 0:16:21 0:01:37 0:15:02 0:00:42

Total 0:43:12 0:37:46 0:18:58 0:42:37 0:07:18 0:36:08 0:02:42  
Table 2 – Queries execution time (detail)  

5. CONCLUSIONS 
This paper presented a new technique called selective load 
developed to overcome the limitation of the DWS technique in 
handling big dimensions. The proposed technique enables the 
DWS technique to handle data warehouses with large dimensions 
maintaining nearly linear speed up in query execution time. The 
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experiments performed with the TPC-H schema and queries have 
revealed that the selective load can improve dramatically the 
performance of a DWS system when processing queries in data 
warehouse scheme with big dimensions. 
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ANNEX A – TPC-H queries used 
Query 3: 
select l_orderkey, 
       sum(l_extendedprice * (1 - l_discount)) as revenue, 
       o_orderdate, 
       o_shippriority 
  from customer, orders, lineitem 
 where c_mktsegment = 'BUILDING' and c_custkey = o_custkey 
and 
       l_orderkey = o_orderkey and 
       o_orderdate < to_date('1995-03-15', 'YYYY-MM-DD') and 
       l_shipdate > to_date('1995-03-15', 'YYYY-MM-DD') 
 group by l_orderkey, o_orderdate, o_shippriority 
 order by revenue desc, o_orderdate; 
 
Query 4: 
select o_orderpriority, count(*) as order_count 
  from orders 
 where o_orderdate >= to_date('1993-07-01', 'YYYY-MM-DD')  
       and o_orderdate < add_months(to_date('1993-07-01', 
'YYYY-MM-DD'), 3)  
       and exists 
        (select * 
           from lineitem 
          where l_orderkey = o_orderkey and l_commitdate < 
l_receiptdate) 
 group by o_orderpriority 
 order by o_orderpriority 
 
Query 5: 
select n_name, sum(l_extendedprice * (1 - l_discount)) as 
revenue 
  from customer, orders, lineitem, supplier, nation, region 
 where c_custkey = o_custkey and l_orderkey = o_orderkey and 
       l_suppkey = s_suppkey and c_nationkey = s_nationkey and 
       s_nationkey = n_nationkey and n_regionkey = r_regionkey 
and 
       r_name = 'ASIA' and 
       o_orderdate >= to_date('1994-01-01', 'YYYY-MM-DD') and 
       o_orderdate < add_months(to_date('1994-01-01', 'YYYY-
MM-DD'), 12) 
 group by n_name 
 order by revenue desc 
 
Query 8: 
select o_year, 
       sum(case 
             when nation = 'BRAZIL' then 
              volume 
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             else 
              0 
           end) / sum(volume) as mkt_share 
  from (select to_number(to_char(o_orderdate, 'yyyy')) as o_year, 
               l_extendedprice * (1 - l_discount) as volume, 
               n2.n_name as nation 
          from part, 
               supplier, 
               lineitem, 
               orders, 
               customer, 
               nation n1, 
               nation n2, 
               region 
         where p_partkey = l_partkey and s_suppkey = l_suppkey 
and 
               l_orderkey = o_orderkey and o_custkey = c_custkey 
and 
               c_nationkey = n1.n_nationkey and n1.n_regionkey = 
r_regionkey and 
               r_name = 'AMERICA' and s_nationkey = 
n2.n_nationkey and 
               o_orderdate between to_date('1995-01-01', 'YYYY-
MM-DD') and 
               to_date('1996-12-31', 'YYYY-MM-DD') and 
               p_type = 'ECONOMY ANODIZED STEEL') all_nations 
 group by o_year 
 order by o_year 
 
Query 12: 
select l_shipmode, 
       sum(case 
             when o_orderpriority = '1-URGENT' or o_orderpriority = 

'2-HIGH' then 
              1 
             else 
              0 
           end) as high_line_count, 
       sum(case 
             when o_orderpriority <> '1-URGENT' and 
                  o_orderpriority <> '2-HIGH' then 
              1 
             else 
              0 
           end) as low_line_count 
  from orders, lineitem 
 where o_orderkey = l_orderkey and l_shipmode in ('MAIL', 
'SHIP') and 
       l_commitdate < l_receiptdate and l_shipdate < l_commitdate 
and 
       l_receiptdate >= to_date('1994-01-01', 'YYYY-MM-DD') 
and 
       l_receiptdate < add_months(to_date('1994-01-01', 'YYYY-
MM-DD'), 12) 
 group by l_shipmode 
 order by l_shipmode 
 
Query 13: 
select c_count, count(*) as custdist 
  from (select c_custkey, count(o_orderkey) as c_count 
          from customer, orders 
         where c_custkey = o_custkey(+) and 
               o_comment(+) not like '%special%requests%' 
         group by c_custkey) c_orders 
 group by c_count 
 order by custdist desc, c_count
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