
Handling Big Dimensions in Distributed Data Warehouses
using the DWS Technique

Marco Costa
Critical Software S.A.

Coimbra, Portugal

mcosta@criticalsoftware.com

Henrique Madeira
DEI-CISUC

University of Coimbra, Portugal

henrique@dei.uc.pt

ABSTRACT
The DWS (Data Warehouse Striping) technique allows the
distribution of large data warehouses through a cluster of
computers. The data partitioning approach partition the facts
tables through all nodes and replicates the dimension tables. The
replication of the dimension tables creates a limitation to the
applicability of the DWS technique to data warehouses with big
dimensions. This paper proposes a strategy to handle large
dimensions in a distributed DWS system and evaluates the
proposed strategy experimentally. With the proposed strategy the
performance speed up and scale up obtained in the DWS
technique are not affected by the presence of big dimensions.
Furthermore, it extends the scope of the technique to queries that
browse big dimensions that can also benefit of the performance
increase of the DWS technique.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration – Data
Warehousing and Repository.

General Terms: Performance.

Keywords: Data warehousing, distributed query execution.

1. INTRODUCTION
Data warehousing applications typically involve massive amounts
of data that push database management technology to the limit. A
scalable architecture is crucial, not only to handle very large
amount of data but also to assure interactive response time to the
OLAP (On-Line Analytical Processing) users. In fact, the decision
making process using OLAP is often based on a sequence of
interactive queries. That is, the answer of one query immediately
sets the need for a second query, and the answering of this second
query raises another query, and so on and so forth in an ad hoc
manner.

In order to assure acceptable response time to allow the
interactive OLAP querying style, even when the data warehouse
becomes extremely large in size, data warehouses implementation
normally use very expensive platforms, typically based on high-

end servers or high-performance clusters. The use of classical
parallel processing techniques [10, 11] proposed to relational
database systems is also common in big data warehouses [7]. Two
types of parallelism can be explored at the query level: inter-query
parallelism [9], wherein multiple transactions are executed in
parallel in a multiprocessor environment, and intra-query
parallelism [13], where several processors cooperate to
concurrently execute a single SQL statement. The latter is
particular interesting to the complex queries executed in a data
warehousing as the parallelism is used to improve performance
through parallel implementation of the various operations of the
query execution plan. However, the use of parallelism in the
complex data warehouse queries is clearly more difficult and less
effective than the parallel execution of multiple small transactions
that characterize typical database applications in an on-line
transaction processing (OLTP) environments.

Another possibility for high volumes of data is to distribute the
data across multiple data warehouses in such a way that each
individual data warehouse cooperates to provide the user with a
single and global view of the data. In spite of the potential
advantages of the distributed data warehouses, especially when
the organization has a clear distributed nature, these systems are
always very complex and difficult to manage [2]. Furthermore, the
performance of many distributed queries is normally poor, mainly
due to load balance problems and the volume of data exchanged
between servers.

The data warehouse striping (DWS) approach [3, 6] is aimed to
provide a cost effective alternative for the very expensive servers
typically used in large data warehouses by implementing a data
warehouse over an arbitrary number of inexpensive computers
(typically cheap workstations, server blades, or standard PCs) and,
at the same time, integrating this approach in the data
warehousing technology available in the market. That is, DWS
can be used with the database management systems (DBMS)
available today (without changes), including small and cheap ones
such as open source DBMS.

The DWS approach is based on the clever combination of two
simple ideas: 1) uniform data striping to partition the data
warehouse facts over an arbitrary number of computers, in such a
way that queries can be executed in a true parallel fashion (a
query is actually split into many partial queries), and 2) an
approximate query answering strategy (AQA) to deal with the
momentary unavailability of one or more computers in the cluster.
The experimental evaluation of the DWS technique has shown
that this approach assures nearly optimal speed up and scale up
[4] and that a momentarily unavailability of one of the computers
(which is plausible, as a DWS system may consist of a large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DOLAP’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-977-2/04/0011...$5.00.

31

number of small computers) does not force the system to stop, as
the answers can be approximated with a small error [5] using the
data in the remaining computers of the DWS system.

Recently, the company Critical Software, SA
(www.criticalsofware.com) developed a middle-layer
implementation of the DWS technique targeted for several
commercial DBMS systems and OLAP tools, allowing the
transparent use of the DWS technique with the data warehousing
technology available in the market (i.e., no changes are required
for both the DBMS and OLAP tools) [8].

However, the DWS technique has an important limitation: it is
specifically thought to typical data warehouses organized in an
ideal star schema consisting of a large fact table surrounded by a
set of small dimension tables, as proposed by Kimball [12]. In a
DWS system the fact rows are uniformly distributed by all the
available machines while the dimensions (supposedly small in
size) are replicated in all the computers in the DWS system. This
means that DWS is not effective (or cannot be used at all) in data
warehouses with big dimensions, which is an important limitation
as there are a significant number of businesses that have big
dimensions as part of their business model.

This paper proposes a new approach called selective loading to
deal with data warehouses with big dimensions in DWS systems
and evaluates the proposal using the TPC-H performance
benchmark [14], whose data schema is quite far from a typical star
schema and includes big dimensions.

The paper is organized as follows. Next section summarizes the
key aspects of the DWS technique. Section 3 presents the
selective loading proposal for handling big dimensions. Section 4
presents the experimental evaluation using the TPC-H schema and
finally section 5 concludes the paper.

2. THE DWS TECHNIQUE
The DWS technique relies on specific features of the star schema
and the typical data warehouse queries to optimize the way data is
partitioned among the computers in the DWS system and the way
queries are distributed and executed.

Fact Table
row_1
row_2
row_3
row_4
row_5
row_6
row_7
row_8
row_9

...

row_n

Dim_1

Dim_2 Dim_n

Dim_3

Fact Table
row_1
row_2
row_3
row_4
row_5
row_6
row_7
row_8
row_9

...

row_n

Fact Table
row_1
row_2
row_3
row_4
row_5
row_6
row_7
row_8
row_9

...

row_n

Dim_1Dim_1

Dim_2Dim_2 Dim_nDim_n

Dim_3Dim_3

Dim_1

Dim_2 Dim_n

Dim_3Fact Table
row_1
row_4
row_7

...

row_n-2

Node 1

. . .

Dim_1Dim_1

Dim_2Dim_2 Dim_nDim_n

Dim_3Dim_3Fact Table
row_1
row_4
row_7

...

row_n-2

Fact Table
row_1
row_4
row_7

...

row_n-2

Node 1

. . .

Dim_1

Dim_2 Dim_n

Dim_3Fact Table
row_2
row_5
row_8

...

row_n-1

Node 2

. . .

Dim_1Dim_1

Dim_2Dim_2 Dim_nDim_n

Dim_3Dim_3Fact Table
row_2
row_5
row_8

...

row_n-1

Fact Table
row_2
row_5
row_8

...

row_n-1

Node 2

. . .

Dim_1

Dim_2 Dim_n

Dim_3Fact Table
row_3
row_6
row_9

...

row_n

Node 3

. . .

Dim_1Dim_1

Dim_2Dim_2 Dim_nDim_n

Dim_3Dim_3Fact Table
row_3
row_6
row_9

...

row_n

Fact Table
row_3
row_6
row_9

...

row_n

Node 3

. . .

Tradicional Data Warehouse Data Warehouse Striping approach

Figure 1 - Data partitioning in the DWS technique

The infrastructure required to implement a DWS is just a set of
inexpensive computers (called system nodes, typically PCs or
server blades) connected by fast Ethernet (share nothing
configuration) and having a DBMS installed in each node. All the
nodes have the same star schema, which is the star schema of the
equivalent data warehouse in a centralized version. The dimension
tables are replicated in each node (i.e., each dimension has exactly
the same rows in all the nodes) and the fact data is distributed

over all the fact tables of each node using a strict row-by-row
round-robin partitioning approach (see Figure 1), which assures
an uniform partitioning. The uniform partitioning is necessary to
assure optimal load balance and to facilitate the computation of
confidence intervals in the cases (rare, in principle) when one or
more nodes in the system are not available [1].

As is easy to see, the data partitioning is tightly related to the star
schema and the speed up and scale up is very dependent on how
close the data warehouse model is to the ideal star schema [12].
The replication of dimension tables does not represent a serious
overhead in many cases because usually the dimensions only
represent a small percentage of the space occupied by the data
warehouse. The row-by-row partitioning of the fact table assures
that the fact table in each node has an equivalent number of rows.

The queries are generated by an OLAP tool that assumes the data
warehouse is centralized (i.e., all the details of the DWS are
hidden by a middle layer [8]) and are executed in a distributed
way by all the nodes that constitute the DWS system. A given
query is first analyzed to check if it is necessary to transform it
and after then it is split into N sub-queries, being N the number of
nodes in the DWS system [4, 8]. As the data schema is exactly the
same in all nodes (and equal to the equivalent centralized version
of the data warehouse), in most of the cases the sub-queries are
similar to the same as the original query generated by the OLAP
tool.

The nearly optimal speed and scale up achieved by DWS is due to
the fact that typical queries lead to sub-queries that are executed
in a completely independent way in each node and each query
return a partial result that is easy to merge to compute the final
result. That is, each node processes approximately the same
amount of data as all the others, and mainly within its local data,
reducing the exchange of data between nodes to a minimum and
almost ignorable. Of course, some queries need more than one
step (when some intermediate result is needed to complete the
query execution) and in those cases the speed up is not optimal,
but these queries represent a small minority of all possible queries
[12]. The experimental evaluation using APB-1 benchmark
confirmed a practically linear speed up and scale up [4]. In a more
detailed way, the key aspects that contribute to the nearly optimal
speedup and scale up are:

− Speed up (when adding more nodes the response time
decrease proportionally):

1. Optimal load balance among the nodes: all the sub-
queries take about the same time (assuming all the nodes
are well tuned) because the fact rows are distributed by
the nodes using a uniform row-by-row round-robin
partitioning. The number of fact rows stored in each node
about the same (1/N ±1 fact rows in each node, with N the
number of nodes), and the low level round-robin
partitioning assures the data in each node is not biased in
any sense (as would be in the case of using attribute range
partitioning) and for each query each node processes the
same amount of data as the all others. Furthermore, each
query is executed by all nodes, taking advantage of the
entire power computation available in the cluster, using a
new degree of parallelism not available in other systems.

32

2. Independence of sub-queries: most of the queries over a
star schema can be transformed into N independent partial
sub-queries (i.e., no need of communication among nodes
during the query execution, only the exchange of the
partial results) because of the mixture of disjoint
partitioning in the fact table with the replication of the
dimensions in all nodes. As mentioned before, some
queries need to access data stored in the other computers
in the DWS system and in these cases the query is
executed in more than one step. However, these queries
are rare and, if needed, it is possible to estimate the partial
result that need the access to data stored in other
computers by an estimation calculated from the local data,
avoiding the need of truly distributed query [6] (note that
accurate approximate result are useful for decision
support in many cases).

3. Negligible overhead to merge partial results: typical
OLAP queries return a small result calculated from the
aggregation of a normally large number of fact rows. This
is the ideal situation, as in this case the computation of the
final result from the partial results is very fast and has a
negligible impact in the overall query execution time.

− Scale up (when adding more data it is possible to maintain the
response time by adding more nodes):

A very large number of nodes can be used which means DWS
represents an effective way to handle very large data
warehouses. The only limiting factor for the number of nodes
that can be used in a DWS system is the overhead due to the
computation of the final query result from the partial results.
However, for typical OLAP queries this overhead is small,
which means it does not represent a problem even when a
large number of nodes is used.

It is worth saying that the DWS technique can be easily adapted to
the typical data warehouse life-cycle [12]. The only requirement is
to change the final bulk load from the staging area to the data
warehouse (either for the initial load or for the subsequent
incremental loads) in order to handle replicated dimensions and
partition the facts in the required way. A set of administrative
tools to facilitate the administration of DWS systems has already
been built [8].

The administration of a DWS system is more time consuming then
the administration of a centralized server, as the administration of
a high number of small machines could be more time consuming
than the administration of a big server. However, this is also
means that each node can use all the panoply of traditional
techniques to reduce query response time, such as B-tree and bit-
map indexing, materialized views, table partitioning in each none
(note that each node may have more than one disk), in addition to
the physical optimization of the storage parameters of the tables in
each node and specific tuning techniques available in most
DBMS. Furthermore, all nodes have the same star schema model,
and will execute the same queries, so in fact, the optimization
techniques applied to one node can, and should, be applied to all.

As mention before, the big problem of DWS technique is that it is
specifically meant for typical star scheme and the performance
gains are greatly affected by big dimensions. In classical business
with big dimensions [12], as the client dimension in business such

as air transportation, telecommunications, or big e-commerce
sites, the DWS technique would be completely inappropriate
because of the replication as the big dimensions. Similar situation
happens with data warehouses that do not follow a pure star
approach, which leads to large tables that play the role of
dimensions (the TPC-H schema is an example of this).

In this paper we propose the selective loading of the big
dimensions to extend the use of the DWS technique to cases
where the business model include big dimensions or non-typical
star scheme and evaluate experimentally the viability of this
approach.

3. THE SELECTIVE LOADING
TECHNIQUE
As explained before, the basic idea behind the DWS approach is
to use low cost computers to handle large and very large data
warehouses with a reduced infrastructure cost. Each node in a
DWS system must process a small portion of the data warehouse.
However, if the business model includes big dimensions (i.e.,
dimensions that may grow to several hundreds or even thousands
of MB), the replication of these tables in all DWS nodes will
cause a very high storage overhead, but more important than that,
will require each node to process a huge amount of data, which
turn the DWS technique impracticable or, at the best, significantly
reduces the speed up gain obtained by having a large number of
computers in the DWS cluster.

A typical data warehouse query aggregates rows of the fact table
selected according to some restriction over one or more dimension
attributes. In fact, what these queries do is join the fact table with
one or more dimension tables in order to filter the fact table rows
that should be included in the aggregation. All rows of the
Dimension table that have no correspondent row in the fact table
will be discarded in the join, and so, each query only needs the
dimension rows that can be joined with the fact table rows. In the
original DWS approach, the dimensions are fully replicated in all
nodes independently of their size, and for each query that uses the
big dimension it is necessary to process all its rows in order to
select the dimension rows that should be joined with the fact
rows.

The selective load technique proposed in this paper explores the
fact that the subset of the fact table rows stored in each node are
only related to a small part of the rows of the big dimension and
not related to all of them. This is a consequence of the partitioning
of the facts by a large number of DWS nodes and also a
consequence of the nature of the big dimensions (as discussed
next). Thus, the idea is to store in each node only the dimension
rows that are related to fact rows stored in that node, an not to
replicate the entire dimension. That is, the number of rows of the
big dimension stored in each node does not depend uniquely on
the large dimension itself, but also depends of the rows in the
facts tables related to the dimension.

Figure 2 presents a dimension table Customers and a fact table
Miles. The dimension table contains information about airline
customers and the fact table contains information about the miles
traveled. Let’s assume that the data in the fact tables is the data of
one DWS node. The customers A and C have at least one fact in
the fact table. Without the Selective Load technique the
Dimension table would be completely loaded to the DWS Node

33

including the customers that have no rows in the fact table for the
current node. With the Selective Load technique only customer A
and C will be loaded to the current DWS node.

ID Customer CustomerID DayID Miles
...

1000 A 1000 400 3000
1001 B 1000 401 3500
1002 C 1002 600 2100

...

Customers Miles

Figure 2 - The selective load technique

At the first sight it may appear that the selective loading technique
proposed for the big dimensions does not reduce much the
numbers of rows of the big dimension stored in each DWS node.
However, a more careful analysis shows that is exactly the
opposite, and this proposal leads in general to a big reduction of
the volume of rows stored in each node. In fact, a dimension is
considered big not only because it has a very high number of rows
(absolute size) but also because the number of rows in the
dimension represents a significant percentage of the number of
rows in the fact table. This means that each row in the big
dimension is related to a very small number of facts, which means
that a star schema with a big dimension is always very sparse (if it
was dense it would be impossible to cope with such data
warehouse, no mater the technology used, as it would grow up to
pentabytes or more).

Some examples may show the sparsity effect in a more clear way.
For example, most of the rows in the client dimension of an air
company (i.e., each passenger) are only related to a few number of
fact rows (the flights of each passenger). In order to realize how
sparse a star like this can be we have to consider the other
dimensions of the model (such as time, flights, promotions, etc).
In fact, most of the people don’t fly very often, but, above all, do
not fly everyday, in all the flights of the company, with all the
promotions programs, etc, etc. The result is that each row in a big
dimension is related with just very few rows in the fact tables (that
potentially has zillions of rows). The same happen with other
business models that normally have big dimensions such as large
e-commerce business with millions of clients, telecommunication
companies, big hospitals, etc.

With the selective loading approach we solve the problem of
replicating the big dimensions in DWS systems but, unfortunately,
we create a new problem: How to answer queries to big dimension
table only, the so called dimension browsing queries? With the
selective load, there is no complete vision of the big dimension
table as each node has only the rows necessary to perform joins
with the fact tables, and nothing guarantees that the union of all
the dimension rows in all nodes provides a complete vision of the
big dimension (not to mention that a union like that would be time
consuming). For instance, dimension rows with no facts will not
be loaded at all. The solution to this second problem can be found
on another foundation of the DWS technique: the data
partitioning algorithm.

The selective load technique creates a partitioned version of the
big dimension table, using the same row-by-row algorithm used
for the distribution of the fact tables. That is, in addition to the
partial copy of the big dimension stored in each node, the big
dimension is also partitioned among all the nodes for browsing.

With this extra redundancy it will be possible to query the big
dimension, (i.e., dimension browsing), but even more interesting,
it will be possible to do it with the speed up and scale up achieved
in the DWS technique for typical data warehouse queries. The
distribution of the big dimension does not represent a significant
storage overhead to each node because each node will receive a
small portion of the data.

The processing required to load the selective version and the
partitioned versions of the big dimensions is not negligible,
although, these partitioning algorithm is already implemented and
optimized in the DWS technique (for the facts), and the
preparation of the selective version of the big dimensions for the
incremental loads (see [12] for details on the data warehouse life
cycle) is performed in the data staging area while the data
warehouse is up and running.

4. EXPERIMENTAL RESULTS
In order to evaluate experimentally the gains in storage and
performance obtained with the proposed selective load we have
decided to implement the TPC-H workload in a DWS system
enhanced with the selective load approach and using several DWS
configurations concerning number of nodes.

The Figure 3 presents the TPC-H data model.

Figure 3 – TPC-H data model [14]

The TPC-H is a good workload for this study as this benchmark is
the standard performance benchmark for decision support systems
and the TPC-H schema includes big dimensions (although it is not
a pure star schema). The TPC-H queries chosen for the
experiments are the most demanding ones (because they address
particularly the big dimension) and can be found in Annex A. The
workload has been generating with 10 GB (i.e., a small size) in
order to allow experiments with a wide range of configuration,
especially configurations with a single node to be used as a
reference (representing a centralized data warehouse).

The tests were performed with the following configurations:

34

a) Single Node – no DWS technique at all to be used as a
reference

b) DWS_5 – DWS with 5 nodes and full replication of
dimension tables

c) DWS_SL_5 – DWS with 5 nodes and Selective Load

d) DWS_10 – DWS with 10 nodes and full replication of
dimension tables

e) DWS_SL_10 – DWS with 10 nodes and Selective Load

f) DWS_20 – DWS with 20 nodes and full replication of
dimension tables

g) DWS_SL_20 – DWS with 20 nodes and Selective Load

Figure 4 shows the storage values of each configuration for the
more relevant tables: LinetItem (the fact table), Orders (the big
dimension) and Orders_dist (the partitioned version of the big
dimension).

In the Figure 2 it is possible to observe that the selective load
configuration is always better, in terms of space occupied
(considering the point of view of a DWS node), compared with
other solutions. It should be noted that the Selective Load
configuration includes the LineItem data, the selective loaded
version and the distributed version of the Orders Large Dimension
table.

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

Size
(MB)

Sing
le N

od
e

DWS_5

DWS_S
L_

5

DWS_1
0

DWS_S
L_

10

DWS_2
0

DWS_S
L_

20

Configurations

Storage

Orders_dist

Orders

LineItem

Figure 4 – Storage space per node

Table 1 presents the detailed storage values of the different
storage configurations.

 LineItem Orders Orders_dist Total
Single Node 3576,25 1573,56 5149,82

DWS_5 715,25 1573,56 2288,81

DWS_SL_5 715,25 557,97 314,71 1587,93

DWS_10 357,63 1573,56 1931,19

DWS_SL_10 357,63 312,10 157,36 827,09

DWS_20 178,81 1573,56 1752,38

DWS_SL_20 178,81 157,01 78,68 414,51

Table 1 - Storage space in each node (detailed values)

Table 2 presents the experimental results of the execution of the
selected TPC-H benchmark queries, in the different
configurations. As it can be seen, the selective load technique
provides an enormous increase of the query execution
performance compared to the corresponding DWS configurations
that do not use the selective load. Combined with the DWS
technology the execution times can lower from 43 minutes (all the
queries) in the single node execution to less than 3 minutes in the
20 node configuration using both DWS and selective load
technique. This represent a speed up of 16 times: that is, going
from 1 computer to 20 computers the execution time of all the
queries tested is reduced 16 times. This is a little less than the
optimal speed up obtained for a pure star scheme (the APB-1
benchmark: see in [4]) but quite close anyway. Furthermore,
Figure 3 and table 2 shows quite clearly that the DWS technique
alone is completely useless (1 computer takes 43:12 while 20
computers take 36:08) in a schema such as the TPC-H, while the
DWS together with the selective load introduces a dramatic
reduction in the queries execution time. It is worth noting also
that due to the synthetic nature of the data used by the TPC-H the
sparse factor is not as high as it would be in a real example of big
dimensions. Thus the results obtained with the TPC-H are
conservative measure of the performance gains obtained with the
selective load in a more realistic scenario with big dimensions.

Figure 5 presents the sum up of the execution results.

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

Time

Sing
le

Nod
e

DWS_5

DWS_S
L_

5

DWS_10

DWS_S
L_

10

DWS_2
0

DWS_SL_
20

Configurations

13
12
8
5
4
3

Figure 5 - Queries execution time

Query Single Node DWS_5 DWS_SL_5 DWS_10 DWS_SL_10 DWS_20 DWS_SL_20

3 0:08:04 0:03:50 0:02:22 0:03:09 0:01:13 0:02:34 0:00:37
4 0:05:16 0:01:52 0:01:03 0:01:13 0:00:23 0:01:01 0:00:07
5 0:07:22 0:03:01 0:02:02 0:14:27 0:00:58 0:13:03 0:00:36
8 0:03:49 0:07:18 0:04:59 0:04:29 0:02:08 0:03:02 0:00:35
12 0:04:02 0:05:47 0:03:34 0:02:58 0:00:59 0:01:26 0:00:05
13 0:14:39 0:15:58 0:04:58 0:16:21 0:01:37 0:15:02 0:00:42

Total 0:43:12 0:37:46 0:18:58 0:42:37 0:07:18 0:36:08 0:02:42
Table 2 – Queries execution time (detail)

5. CONCLUSIONS
This paper presented a new technique called selective load
developed to overcome the limitation of the DWS technique in
handling big dimensions. The proposed technique enables the
DWS technique to handle data warehouses with large dimensions
maintaining nearly linear speed up in query execution time. The

35

experiments performed with the TPC-H schema and queries have
revealed that the selective load can improve dramatically the
performance of a DWS system when processing queries in data
warehouse scheme with big dimensions.

6. REFERENCES
[1] S. Acharya, P.B. Gibbons, V. Poosala, and S. Ramaswamy.

“Join synopses for approximate query answering”, ACM
SIGMOD Int. Conference on Management of Data, pp.275-
286, June 1999.

[2] Albrecht, J., Gunzel, H., Lehner, W.: An Architecture for
Distributed OLAP. Int. Conference on Parallel and
Distributed Processing Techniques and Applications PDPTA
(1998).

[3] J. Bernardino and H.e Madeira, "A New Technique to
Speedup Queries in Data Warehousing”, ABDIS-DASFA,
Symposium on Advances in Databases and Information
Systems - Enlarged Fourth East-European Conference on
Advances in Databases and Information Systems, Prague,
Check Republic, September 5-8, 2000.

[4] J. Bernardino and H. Madeira, “Experimental Evaluation of a
New Distributed Partitioning Technique for Data
Warehouses”, IDEAS’01, Int. Symposium on Database
Engineering and Applications, Grenoble, France, June 16-20,
2001.

[5] J. Bernardino, P. Furtado, and H. Madeira, “Approximate
Query Answering Using Data Warehouse Striping”,
Dawak'01, 3rd International Conference on Data
Warehousing and Knowledge Discovery, Dawak'01, Munich,
Germany, September 5-7, 2001.

[6] J. Bernardino, P. Furtado and H. Madeira, “Approximate
Query Answering Using Data Warehouse Striping”, "Journal
of Intelligent Information Systems- Integrating Artificial
Intelligence and Database Technologies", Volume 19, Issue
2, Elsevier Science Publication, September 2002.

[7] S. Chauduri and U. Dayal, “An overview of data
warehousing and OLAP technology”, SIGMOD Record,
26(1):65-74, March 1997.

[8] M. Costa, J.. Vieira, J. Bernardino, P. Furtado, and H.
Madeira, "A middle layer for distributed data warehouses
using the DWS-AQA technique", 8th Conference on
Software Engineering and Databases, Alicante, Spain,
November 12-14, 2003.

[9] DeWitt ,D. J. et al.: The Gamma Database Machine Project.
IEEE Trans. Knowledge and Data Engineering, Vol. 2, Nº1
(1990) 44-62.

[10] D. J. DeWitt and Jim Gray, “Parallel Database Systems: The
future of high performance database systems”,
Communications of the ACM, 35(6), June 1992, pp.85-98.

[11] Hongjun Lu, Beng Chin. Ooi, and Kian Lee Tan. Query
Processing in Parallel Relational Database Systems. IEEE
Computer Society, May 1994.

[12] R. Kimball, L. Reeves, M. Ross, W. Thornthwalte, "The
Data Warehouse Lifecycle Toolkit", , Ed. J. Wiley & Sons,
Inc, 1998.

[13] Stonebraker, M., Katz, R., Patterson, D., Oustershout, J.: The
Design of XPRS. Proceedings of VLDB’98, Los Angeles,
USA (1988)

[14] Transaction Processing Performance Consortium, “TPC
Benchmark H, Standard Specification”, 2003 version,
available at: http://www.tpc.org/

ANNEX A – TPC-H queries used
Query 3:
select l_orderkey,
 sum(l_extendedprice * (1 - l_discount)) as revenue,
 o_orderdate,
 o_shippriority
 from customer, orders, lineitem
 where c_mktsegment = 'BUILDING' and c_custkey = o_custkey
and
 l_orderkey = o_orderkey and
 o_orderdate < to_date('1995-03-15', 'YYYY-MM-DD') and
 l_shipdate > to_date('1995-03-15', 'YYYY-MM-DD')
 group by l_orderkey, o_orderdate, o_shippriority
 order by revenue desc, o_orderdate;

Query 4:
select o_orderpriority, count(*) as order_count
 from orders
 where o_orderdate >= to_date('1993-07-01', 'YYYY-MM-DD')
 and o_orderdate < add_months(to_date('1993-07-01',
'YYYY-MM-DD'), 3)
 and exists
 (select *
 from lineitem
 where l_orderkey = o_orderkey and l_commitdate <
l_receiptdate)
 group by o_orderpriority
 order by o_orderpriority

Query 5:
select n_name, sum(l_extendedprice * (1 - l_discount)) as
revenue
 from customer, orders, lineitem, supplier, nation, region
 where c_custkey = o_custkey and l_orderkey = o_orderkey and
 l_suppkey = s_suppkey and c_nationkey = s_nationkey and
 s_nationkey = n_nationkey and n_regionkey = r_regionkey
and
 r_name = 'ASIA' and
 o_orderdate >= to_date('1994-01-01', 'YYYY-MM-DD') and
 o_orderdate < add_months(to_date('1994-01-01', 'YYYY-
MM-DD'), 12)
 group by n_name
 order by revenue desc

Query 8:
select o_year,
 sum(case
 when nation = 'BRAZIL' then
 volume

36

 else
 0
 end) / sum(volume) as mkt_share
 from (select to_number(to_char(o_orderdate, 'yyyy')) as o_year,
 l_extendedprice * (1 - l_discount) as volume,
 n2.n_name as nation
 from part,
 supplier,
 lineitem,
 orders,
 customer,
 nation n1,
 nation n2,
 region
 where p_partkey = l_partkey and s_suppkey = l_suppkey
and
 l_orderkey = o_orderkey and o_custkey = c_custkey
and
 c_nationkey = n1.n_nationkey and n1.n_regionkey =
r_regionkey and
 r_name = 'AMERICA' and s_nationkey =
n2.n_nationkey and
 o_orderdate between to_date('1995-01-01', 'YYYY-
MM-DD') and
 to_date('1996-12-31', 'YYYY-MM-DD') and
 p_type = 'ECONOMY ANODIZED STEEL') all_nations
 group by o_year
 order by o_year

Query 12:
select l_shipmode,
 sum(case
 when o_orderpriority = '1-URGENT' or o_orderpriority =

'2-HIGH' then
 1
 else
 0
 end) as high_line_count,
 sum(case
 when o_orderpriority <> '1-URGENT' and
 o_orderpriority <> '2-HIGH' then
 1
 else
 0
 end) as low_line_count
 from orders, lineitem
 where o_orderkey = l_orderkey and l_shipmode in ('MAIL',
'SHIP') and
 l_commitdate < l_receiptdate and l_shipdate < l_commitdate
and
 l_receiptdate >= to_date('1994-01-01', 'YYYY-MM-DD')
and
 l_receiptdate < add_months(to_date('1994-01-01', 'YYYY-
MM-DD'), 12)
 group by l_shipmode
 order by l_shipmode

Query 13:
select c_count, count(*) as custdist
 from (select c_custkey, count(o_orderkey) as c_count
 from customer, orders
 where c_custkey = o_custkey(+) and
 o_comment(+) not like '%special%requests%'
 group by c_custkey) c_orders
 group by c_count
 order by custdist desc, c_count

37

