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Performability Modeling Based on Real Data: A Case Study 

M. C. HSUEH, R. K. IYER, AND K. S.  TRIVEDI 

Abstract-This paper describes a measurement-based performability 
model based on error and resource usage data collected on a multiproces- 
sor system. A method for identifying the model structure is introduced 
and the resulting model is validated against real data. Model development 
from the collection of raw data to the estimation of the expected reward is 
described. Both normal and error behavior of the system are character- 
ized. The measured data show that the holding times in key operational 
and error states are not simple exponentials and that a semi-Markov 
process is necessary to model the system behavior. A reward function, 
based on the service rate and the error rate in each state, is then defined in 
order to estimate the performability of the system and to depict the cost 
of different types of errors. 

Index Terms-Error, measurements, performability, semi-Markov, 
workload. 

I .  INTRODUCTION 
Analytical models for hardware failure have been extensively 

investigated in the literature along with performability issues [I]. 
Although the time for different components to fail is usually assumed 
to be exponentially distributed, time-dependent failure rates and 
graceful degradation have been considered [2]. Automatic availability 
evaluation, assuming a Markov model, is discussed in [3]. A job/task 
flow-based model is described in [4], where failure occurrence is 
assumed to be a linear function of the service requests from a job/task 
flow. As shown in [5], this linear assumption may result in 
underestimating the effect of the workload, especially when the load 
is high. A summary of research in software reliability growth models 
is discussed in [6]; run-time software reliability modeling is discussed 
in [7]. 

Although many authors have addressed the modeling issue and 
have significantly advanced the state of the art, none have addressed 
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the issue of how to identify the model structure. Furthermore, very 
few of either the hardware or the software models have been 
validated with real data. Exceptions are the joint hardwarehoftware 
model discussed in [8] and a measurement-based model of workload 
dependent failures discussed in [5]. Both, however, describe only the 
external behavior of the system and thus do not provide insight into 
component-level behavior. 

In this paper, we build a semi-Markov model to describe the 
resource-usage/error/recovery process in a large mainframe system. 
The model is based on one year of low-level error and performance 
data collected on a production IBM 3081 system running under the 
MVS operating system. The 3081 system consisted of dual proces- 
sors with two multiplexed channel sets. Both the normal and 
erroneous behavior of the system are modeled. A reward function, 
based on the service rate and the error rate in each state, is defined in 
order to estimate the performability of the system, and to depict the 
cost of different error types and recovery procedures. Two key 
contributions of this paper are the following. 

1) A method for identifying a model-structure for the resource- 
usage/error/recovery process is introduced and the resulting model is 
validated against real data. 

2) It is shown that a semi-Markov model may better represent 
system behavior as opposed to a Markov model. 

11. RESOURCE USAGE CHARACTERIZATION 
In this section, we identify a state-transition model to describe the 

variation in system activity. System activity was characterized by 
measuring a number of resource usage parameters. A statistical 
clustering technique was then employed to identify a small number of 
representative states. 

The resource usage data were collected by sampling, at predeter- 
mined intervals, a number of resource usage meters, using the IBM 
MVS/370 system resource measurement facility (RMF). A sample- 
time of 500 ms was used in this study. Four different resource usage 
measures were used. 

CPU - fraction of the measured interval for which the CPU is 
executing instructions, 

CHB - fraction of the measured interval for which the channel 
was busy and the CPU was in the wait state (this 
parameter is commonly used to measure the degree of 
contention in a system) 

S I 0  - number of successful Start I/O and Resume I/O instruc- 
tions issued to the channel 

DASD - number of requests serviced on the direct access storage 
devices. 

At any interval of time, the measured workload is represented by a 
point in a four-dimensional space, (CPU, CHB, SIO, DASD). 
Statistical cluster analysis is used to divide the workload into similar 
classes according to a predefined criterion. This allows us to 
concisely describe the dynamics of system behavior and extract a 
structure that already exists in the workload data. I 

Each cluster (defined by its centroid) is then used to depict a system 
state and, a state-transition diagram (consisting of intercluster 
transition probabilities and cluster sojourn times) is developed. A k- 
means clustering algorithm [lo] is used for cluster analysis. The 
algorithm partitions an N-dimensional population into k sets on the 
basis of a sample. The k nonempty clusters sought, CI, Cz, . . . , Ck, 
are such that the sum of the squares of the Euclidean distances of the 
cluster members from their centroids, E:=, Cx ,E~ ,  Ilx, - % , \ I 2 ,  is 
minimized, where 2, is the centroid of cluster C,. 

Two types of workload clusters were formed. In the first case, 
CPU and CHB were selected to be the workload variables. This 
combination was found to best describe the CPU-bound load (nearly 

’ Similar clustering techniques are also used for workload characterization 
in [9]. 

0018-9340/88/0400-0478$01 .OO 0 1988 IEEE 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 31 ,  NO. 4,  APRIL 1988 479 

TABLE I 
CHARACTERISTICS OF CPU-BOUND WORKLOAD CLUSTERS 

I Cluster 11 %of I Mean I Mean 11 Stddev 1 Stddev I 
id I( obs I of CPU I O f C H B  II of CPU I of CHB 
W .  7.44 I 0.0981 I 0.1072 1 1  0.0462 1 0.0436 

R2 of CHB = 0.8095 
overall RZ = 0.9604 

R2 : the square of correlation eoe5cient 

to W O  to W O  from W O  

I \ 0.20 

from W O  o?sl 0.037 0.162 

to WO from WO to WO from WO 
Fig. 1. State-transition diagram of CPU-bound load. 

60 percent of the observations have a CPU usage greater than 0.72). 
In the second case, the clusters were formed considering SI0 and 
DASD as the workload variables. This combination was found to best 
describe the I/O workload. In this paper, only the results for CPU- 
bound load clusters are presented. Details of U0 activity can be found 
in [ I l l .  Table I shows the results of the clustering operation. The 
table shows that about 36 percent of the time the CPU was heavily 
loaded (0.96) and almost 76 percent of the time the CPU load was 
above 0.5. Since the measured system consisted of two processors, 
we may say that 76 percent of the time at least one of the processors is 
busy. A state-transition diagram of CPU-bounded load activity is 
shown in Fig. 1. Note that a null state WO has been incorporated to 
represent the state of the system during the nonmeasured period. The 
time spent in the null state was assumed to be zero. The transition 
probability from state i to state j ,  p i j ,  was estimated from the 
measured data using 

observed number of transitions from state i to state j 
observed number of transitions from state i 

In the next section, the characterization of the errors and the 
recovery process is discussed. The appropriate error and recovery 
states are identified for subsequent use in developing an overall 
model. 

p .  .= ' 

111. ERROR AND RECOVERY CHARACTERIZATION 
The IBM system has built-in error detection facilities and there are 

many provisions for hardware and software initiated recovery 
through retry and redundancy. The error and recovery data are 
automatically logged by the operating system as the errors occur. On 

the occurrence of an error, the operating system creates a time- 
stamped record describing the error, the state of the machine at the 
time of the error, and the result of the hardware and/or software 
attempts to recover from the error. Details of this logging mechanism 
are described in [12]. Due to the manner in which errors are detected 
and reported in a computer system, it is possible that a single fault 
may manifest itself as more than one error, depending on the activity 
at the time of the error. The different manifestations may not all be 
identical [13]. The system recovery usually treats these errors as 
isolated incidents. Thus, the raw data can be biased by error records 
relating to the same problem. In order to address this problem, two 
levels of data reduction were performed. First, a coalescing 
algorithm described in [5] was used to analyze the data and merge 
observations which occur in rapid succession and relate to the same 
problem. Next, a reduction technique described in [13] to automati- 
cally group records most likely to have a common cause was used. By 
using these two methods, the errors were classified into five different 
classes. These classes are called error events since they may contain 
more than one error and are explained below. 

CPU : Errors which affect the normal operation of the CPU; 
may originate in the CPU, in the main memory, or in a 
channel 

CHAN : Channel errors (the great majority are recovered) 
DASD : Disk errors, recoverable (by data correction, hardware 

instruction retry or software instruction retry), and 
nonrecoverable disk 

SWE : Software incidents due to invalid supervisor calls, 
program checks, and other software exception condi- 
tions 
Multiple errors affecting more than one type of compo- 
nent (i.e., involving more than one of the above). 

Table I1 lists the frequencies of different types of errors. Notice 
that about 17 percent of errors are classified as multiple errors 
(MULT). A MULT error is mostly due to a single cause but the fault 
has nonidentical manifestations, provoked by different types of 
system activity. Since the manifestations are nonidentical, recovery 
may be complex and, hence, can (as will be seen latter) impose 
considerable overhead on the system. 

The recovery procedures were divided into four categories based 
on recovery cost, which was measured in terms of the system 
overhead required to handle an error. The lowest level (hardware 
recovery) involves the use of an error correction code (ECC) or 
hardware instruction retry and has minimal overhead. If hardware 
recovery is not possible (or unsuccessful), software-controlled 
recovery is invoked. This could be simple, e.g., terminating the 
current program or task in control, or complex, e.g., invoking 
specially designed recovery routine(s) to handle the problem. The 
third level, alternative (ALT), involves transferring the tasks to 
functioning processor(s) when one of the processors experiences an 
unrecoverable error. If no on-line recovery is possible, the system is 
brought down for off-line (OFFL) repair. Fig. 2 shows a flow chart 
of the recovery process. The time spent in each recovery state was 
taken to be constant, since each recovery type except OFFL requires 
almost constant overhead. 

IV. RESOURCE-USAGE/ERROR/RECOVERY MODEL 
In this section, we combine the separate workload, error, and 

recovery models developed into a single model shown in Fig. 3. The 

MULT : 

Hardware recovery involves hardware instruction retry or ECC correc- 
tion. The maximum number of retries is predetermined. Each CPU has a 26- 
ns machine cycle time and the disk seek time is about 25 ms. We estimate a 
worst case hardware recovery cost of 0.5 s, i.e., incorporating 20 IiO retries: 
ten through the original U0 path and another ten through an alternative 110 
path if the alternative is available. This, of course, overestimates the cost of 
hardware retry used for the CPU errors. Similarly, the worst case software 
recovery time was estimated to be 1 s. The ALT state was not evaluated since 
it did not occur in the data. For OFFL, the time was calculated to be 1 h based 
on our experience and through discussion with maintenance engineers. 
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TABLE I1 
FREQUENCY OF ERRORS 

~ s p e  of error 11 ~ r e q  uency I Percent 
CPU 2 1  0.04 

DASD 44.33 
total 1)  5332 1 100.00 

/ failed 

sw 

Fig. 2. Flow chart of recovery processes. 

null state WO is not shown in this diagram. The model has three 
different classes of states: normal operation states ( S N ) ,  error states 
(SE) ,  and recovery states ( S R ) .  Under normal conditions, the system 
makes transitions from one workload state to another. The occur- 
rence of an error results in a transition to one of the error states. The 
system then goes into one or more recovery modes after which, with 
a high probability, it returns to one of the “good” workload states3 
The state transition diagram shows that nearly 98.3 percent of 
hardware recovery requests and 99.7 percent of software recovery 
requests are successful. Thus, the error detection, fault isolation, and 
on-line recovery mechanisms allow the measured system to handle an 
error efficiently and effectively. In less than 1 percent of the cases is 
the system not able to recover. 

One state which needs further elaboration is the MULT state. 
Recall that a MULT state denotes a multiple error event affecting 
more than one component type. Fig. 4 shows the state-transition 
diagram of a MULT error event, i.e., the transition diagram given a 
MULT error. The model quantifies the interactions between the 
different components in a multiple error occurrence. From the 
diagram, it is seen that in about 65 percent of the cases, a multiple 
error starts as a software error (SWE) and in 32 percent of the cases it 
starts as a disk error (DASD). Given that a disk error has occurred, 
there is nearly a 30 percent chance that a software error will follow. It 
is also interesting to note that there is a 64 percent chance that one 
software error will be followed by another different software error. 

A .  Distributions for  Workload and Error States 

Table I11 shows the characteristics of both the workload and error 
states in terms of their waiting times. An examination of the mean and 
standard deviation of the waiting times indicates that not all waiting 
times are simple exponentials. This is particularly pronounced for the 
error states. Fig. 5(a) and (b) shows the densities of waiting time for 
W, state and also the specific holding time to the SWE error state. 
The waiting time for state i is the time that the process spends in state 
i before making a transition to any other state. The holding time for a 

transition from state i to state j is the time that the process spends in 
state i before making a transition to state j [14]. This is the same as 
the distribution of a one-step transition from state i to j .  The 
distributions in Fig. 5 are fitted to phase-type exponential density 
functions [15] and tested by using the Kolmogorov-Smirnov test at a 
0.01 significance level. 

B. Error Duration Distributions 

Recall that an error event can involve more than one error since 
errors frequently occur in bursts. During an error burst, the system 
goes into an error+recovery cycle until the error condition disap- 
p e a r ~ . ~  In such cases, we measure the duration of an error event 
as the time difference between the first detected error and the last 
detected error caused by the same event. The duration of an error 
event can be used to measure the severity of the error. Since each 
recovery type takes approximately a constant amount of time, the loss 
of work can be approximated by the error rate in this period. In 
Section VI, we use this information to build a reward model for the 
system. Fig. 6 shows examples of error duration densities for two 
different types of errors, SWE and MULT. 

In summary, we have developed a state-transition model which 
describes the normal and error behavior of the system. A key 
characteristic of the model is that the waiting time in some of the 
workload states and in most error states cannot be modeled as simple 
exponentials. Furthermore, the folding times from a given workload 
state to different error states are dependent on the destinations. Thus, 
the overall system is modeled as a complex irreducible semi-Markov 
process. 

V. MODEL BEHAVIOR ANALYSIS 

Now that we have an overall model, we show the usage of this 
model to predict key system characteristics. The mean time between 
different types of errors is evaluated along with model characteristics, 
such as the occupancy probabilities of key normal and error states. 

A. General Characteristics 
By solving the semi-Markov model, we find that the modeled 

system made a transition every 9 min and 8 s, on average. In 
comparing this to the mean time between errors (MTBE) listed in 
Table IV, it is clear that most often the transitions are from one 
normal state to another. The table also shows that a DASD error was 
detected almost every 52 min (0.87 h) while a software error was 
detected every 1 h and 45 min. Most of the DASD errors (95 percent) 
were recovered through hardware recovery (i.e., hardware instruc- 
tion retry or ECC), thus resulting in negligible overhead. Table IV 
also lists the mean recurrence time for recovery states. Thus, the on- 
line hardware recovery routine is invoked once every 0.62 h, while 
the software recovery occurs every 2.57 h. By using an estimated 
time for each hardware recovery and comparing the results to the 
recovery overhead, we estimate that the cost of hardware recovery is 
only 0.02 percent of total computation time. The mean recurrence 
time of the alternative recovery routine was not estimated, due to lack 
of data, i.e., this event seldom occurred. 

B. Summary Model Probabilities 
Since the process is modeled as an irreducible semi-Markov 

process, we can evaluate the following steady state parameters [14]: 
1) occupancy probability (+,)-the probability that the process 

occupies state j ,  
2) conditional entrance probability (.lr,)-given that the process is 

now making a transition, the probability that the transition is to state 

3) entrance rate (e,)-the rate at which the process enters state; at 
any time instance (e, = r,/?, where 7‘ is the mean time between 
transitions), and 

j ,  

Note that the transition probabilities from W, to W, are different from 
those in Fig. 1 where error states were not considered in computing the 
transition probabilities. 

This is typical of many systems (e.g., see [8]). The final recovery usually 
occurs because the conditions which triggered the error disappear due to 
change in system activity. 
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Fig. 4. State-transition diagram of a given multiple error (MULT) 

TABLE 111 

ERROR STATES 
CHARACTERISTICS OF WAITING TIME (SECONDS) IN WORKLOAD AND 

* statistically insigni5cant 

(b) 
Fig. 5 .  Waiting and holding time densities. (a) Waiting time density for W,. 

(b) Holding time density from W, to S W E  state. 

f ( t )  = 0.041181 e4'0445181 
Prob.0.5 - - - - -___________________________________- - - -  + 0.0002704 e-0'00360751 I 

(b) 

Waiting time density for MULT.  
Fig. 6. Error duration densities. (a) Waiting time density for SWE.  (b) 
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Error states 

CPU I CHAN I SWE I DASD I MULT 
- I 26.88 I 1.75 I 0.87 I 4.62 
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Recovery states 

HWR I SWR I ALT I OFFL 
0.62 I 2.57 I - I 651.37 

Error states 
CPU I CHAN I SWE I DASD I MULT 

- I 26.88 I 1.75 I 0.87 I 4.62 

Recovery states 
HWR I SWR I ALT I OFFL 
0.6’ ’ ’ C 7  I - I 6 5 ’  77 

Measure 

a 0  

T 
e 
0” 

Normal state 

WO W, w, w, w, w, w6 w, w8 
0.0625 0.0008 0.0136 0.1258 0.0054 0.1639 0.2255 0.3398 

0.0257 0.0264 0.0014 0.0104 0.0559 0.0047 0.0635 0.1125 0.1127 
O.oooo5 o.oooo5 - o.ooo02 0.0001 o.oooo1 0.00012 0.00021 0.00021 
5.78 5.62 102.56 14.32 2.65 31.38 2.33 1.32 1.32 

Error state 

4) mean recurrence time @,)-mean time between successive 
entries into state j .  

The model characteristics are summarized in Table V. A dashed 
line in this table indicates a negligible value (statistically insignifi- 
cant). Table V(a) shows the normal system behavior. For example, 
given that a transition occurs, the system is most likely to go to states 
W, or W,. This is also reflected in the respective entrance rates and 

Recovery state 

occupancy probabilities for the mentioned states. From the occu- 
pancy probabilities (+) we see that almost 34 percent of the time the 
CPU load is as high as 0.96 ( W,); 39 percent of the time, the CPU is 
moderately loaded (W,  + W,). Table V(b) shows the error behavior 
of the system. The table shows that about 30 percent of the transitions 
are to an error state (obtained by summing all the a’s for all the error 
states). The DASD errors have the highest entrance probability. For 
the data shown in the table, it can be estimated that an error is 
detected, on the average, every 30 min. Of course, over 98 percent of 
these errors incur negligible overhead. 

An interesting characteristic of the multiple errors is also seen in 
Table V(b). Although the entrance probability of a MULT error is 
lower than that for SWE, its occupancy probability is higher. This is 
due to the fact that a MULT error event has a longer mean waiting 
time as compared to SWE error events (293 s versus 41 s). 

C. Model Validation 
Even though our model is developed from real data, it needs to be 

validated since the model identification process, e.g., the workload 
clustering, allows us to only approximate the real system behavior. In 
order to evaluate the validity of the model, three measures evaluated 
via the model were compared to direct calculations from the actual 
data. Table VI shows the comparison of the occupancy probabilities 
for key normal states (occupancy probability greater than 0.1) and for 
one key error state (DASD). The table also shows the comparison 
for the mean recurrence time (0) of the SWE error event and for its 
standard deviation (Std). It can be seen that all the predicted values 

Measure 

77 

e 
0 
_n 

The “actual” values are calculated from observed data. For example, 

total time that the system was observed to be in state i. 
length of the observation period 

a, = 

CPU CHAN SWE DASD MULT HWR SWR ALT OFFL 

- O.oooO5 0.0066 0.0383 0.0179 0.00022 0.00011 - 

- 0.0055 0.0850 0.1692 0.0322 0.2379 0.0572 - 0.00023 
- O.oooO1 0.00016 0.00032 0.00006 0.00045 0.00011 - 
- 26.88 1.75 0.87 4.62 0.62 2.57 - 651.37 

** in hours 
(b) ’ sec2  

TABLE VI 
COMPARISON OF @, 8 ,  AND STANDARD DEVIATION 

I II 

- O.OOO8 0.0031 0.0242 0.0156 0.0156 0.022 0.033 
a1 

E : the absolute error. I Model - Actual I 

are around 3 percent or less, indicating that the proposed semi- 
Markov model is an accurate estimator of the real system behavior. 
This also provides support for the model structure identification 
method employed in this paper. 

D. Markov Versus Semi-Markov 
This section investigates the significance of using a semi-Markov 

model to describe the overall resource-usage/error/recovery process. 
It has been argued that since errors only occur infrequently (i.e., h is 
small), a Markov model may well approximate the real behavior. 
Clearly, if only the first moments, e.g., MTBE, are of interest, the 
Markov model provides adequate information. If the distributions 
(e.g., the time to error distribution) or higher moments are of 
interest, the Markov model may be inadequate. Thus, although our 
evidence shows that the semi-Markov process is a better model, i.e., 
more closely approximates the data from the measured system, it is 
reasonable to ask what deviations occur if a Markov process is 
assumed. In order to answer this question, we use a Markov model to 
describe our system and compare the results to those obtained 
through the more realistic semi-Markov model. 

We compared the two by calculating two steady-state parameters. 
The first is the complementary distribution of the time to error 
[referred to as R(t)] for different error types. The second is the 
standard deviation of R(t).  The results for the SWE state are shown in 
Table VII. It is clear that the Markov model overestimates the R(t) in 
the early life (for low time to error probabilities) and underestimates 
R(t) for high time to error probabilities. The standard deviation is 
also considerably underestimated by the Markov model thus casting 
doubts on the validity of using MTBE estimates themselves. 
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R(t) 

483 

Std (mins) 

Markov 1.00 0.71 0.50 0.35 0.25 0.17 0.12 0.09 25.13 

TABLE VI11 
REWARD RATES FOR ERROR STATES 

State 11 DASD 1 SWE I CHAN I MULT 
11 0.5708 I 0.2736 I 0.9946 I 0.2777 ri 

In summary, our measurements show that using a Markov model is 
optimistic in the short run and pessimistic in the long run. The 
underestimation of the standard deviation of R(t )  is also a serious 
problem because it calls into question the representativeness of the 
MTBE estimates. 

VI. PERFORMABILITY ANALYSIS 
In this section, we use the workload/error/recovery model to 

evaluate the performability of the system. Reward functions are used 
to depict the performance degradation due to errors and also due to 
different types of recovery procedures. Since the recovery overhead 
for each recovery state in the modeled system is approximately 
constant, the total recovery overhead for each error event and thus the 
reward depends on the error rate during that event. Thus, the higher 
the error rate during an error event, the higher is the recovery 
overhead and, hence lower the reward. On this basis we define a 
reward the reward rate, r, (per unit time) for each state of the model 
as follows: 

st i f i  E S,  U sE 
r,= S,+ e,  ts if i E SR 

where the s, and e, are the service rate and the error rate in state i, 
respectively. Thus, one unit of reward is given for each unit of time 
when the process stays in the good states S,. The penalty paid 
depends on the number of errors generated by an error event. With an 
increasing number of errors, the penalty per unit time increases, and 
accordingly, the reward rate decreases. Zero reward is assigned to 
recovery states. Based on this proposal, reward rates for the error 
states are as shown in Table VIII. 

The reward rate of the modeled system at time t is a random 
variable X(t ) ,  which is defined as 

1 
r, 
0 otherwise. 

process is in state i E SN 
process is in state i E SE 

Therefore, the expected reward rate E[X(t)] can be evaluated from 
E[X(t)] = C p ( t ) r , .  The cumulative reward by time t is Y(t) = .(; 
X(o)  do, and the expected cumulative reward is given by [16] 

where p l ( t )  is the probability of being in state i at time t .  In order to 
evaluatep,(t) and hence other measures, we convert the semi-Markov 
process into a Markov process using the method of stages [15], 1171. 
The state probability vector P*(t) = (. . . , pi(t) ,  . . .) of the Markov 
process can be derived from P*(t) = P*(O)e@, where P*(O) = (1 , 0, 
. . . , 0) and Q is transition rate matrix of the Markov process [ 141. 

In order to study the performance degradation due to different 

types of errors, the irreducible semi-Markov process was trans- 
formed by considering the OFFL (off-line repair) state as the 
absorbing state. The expected reward calculated with this assumption 
indeed reflects the true performability until system failure. Next, for 
evaluating the impact of different error events we first observe that 
often these events have significant error duration time (e.g., MULT 
state has an mean error duration of 5 min with a standard deviation of 
4 min). Since the majority ofjobs last less than a few minutes, as far 
as a user program is concerned, an entry into a long duration error 
state is similar to entering an absorption state with ri > 0. Thus, the 
impact of the MULT can be evaluated by making it into an absorption 
state with ri > 0. A similar analysis can be performed for other error 
states. 

In our analysis, we first make the OFFL state the absorbing state. 
This gives the expected performance until an off-line failure. Then 
we evaluate three other cases. 

a) OFFL case (OFFL), 
b) MULT and OFFL case (MULT), 
c) SWE, MULT and OFFL case (SWE), and 
d) DASD, MULT and OFFL case (DASD). 

Case a) gives the overall performability of the system assuming that 
OFFL (off-line repair) is the absorbing state, i.e., the impact of all 
other error events are taken into account. This gives both the transient 
and steady-state performability of the system. Next we assume in case 
b) that both MULT and OFFL are absorbing. The difference between 
a) and b) approximates the expected performance loss due to possible 
entry into a long duration MULT state. Similarly, the difference 
between a) and c) provides an estimate of loss of performance due to 
entry into an SWE state. In the long term, of course, each will reach a 
steady-state value. The above analyses were performed on the 
resulting Markov reward of the system using SHARPE (the symbolic 
hierarchical automated reliability and performance evaluator) ’ devel- 
oped at Duke University. 

The curves of Fig. 7 show the expected reward rate at time t ,  
E[X( t ) ] ,  for these four cases. The evaluations of the cumulative 
reward, E[Y(t)] ,  are discussed in [ l l ] .  In practical terms, the 
differences provide an estimate of the loss in reward due to various 
error types assuming that the jobs are initiated when the system is 
fully operational. As an example, in Fig. 7, we find that the SWE 
event degrades system effectiveness considerably more than the 
DASD event. This is because the reward rate of SWE error is lower 
than DASD error even though the error probability of DASD event is 
higher than of SWE event. 

VII. CONCLUSION 
In this study, we have proposed a methodology to construct a 

model of resource usage, error, and recovery in a computer system, 
using real data from a production system. The semi-Markov model 
obtained is capable of reflecting both the normal and error behavior 
of our measured system. The errors are classified into various types, 
based on the components involved. Both hardware and software 
errors are considered, and the interaction between the system 

An alternative approach, the performance loss (PL) based on the steady- 
state occupancy probabilities, was suggested by one of the referees. PL, = 
@ , ( I  - r , )  + C r E S R  is the probability of visiting a recovery 
state r after an error state i. ’ SHARPE is a modeling tool. It provides several model types ranging from 
reliability block diagrams to complex semi-Markov models [ 171. 

where 
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components (hardware and software) is reflected in a multiple error 
model. The proposed reward measure allows us to predict the 
performability of the system based on the service and error rates. It is 
suggested that other production systems be similarly analyzed so that 
a body of realistic data on computer error and recovery models is 
available. 
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Distributed and Fault-Tolerant Computation for Retrieval 
Tasks Using Distributed Associative Memories 

JOIS MALATHI CHAR, VLADIMIR CHERKASSKY, 
HARRY WECHSLER, AND GEORGE LEE ZIMMERMAN 

Abstract-We suggest the distributed associative memory (DAM) 
model for distributed and fault-tolerant computation as related to 
retrieval tasks. The fault tolerance is with respect to noise in the input key 
data and/or local and global failures in the memory itself. We have 
developed working models for fault-tolerant image recognition and 
database information retrieval backed up by experimental results which 
show the feasibility of such an approach. 

Index Terms-Database retrieval, distributed associative memory 
(DAM), distributed computation, fault tolerance, neural networks, 
recognition. 

I .  INTRODUCTION 
Artificial Intelligence (AI) deals with the types of problem solving 

and decision making that humans continuously face in dealing with 
the world. Such activity involves by its very nature complexity, 
uncertainty, and ambiguity, all of  which can distort the phenomena 
being analyzed. However, following the human example, any 
corresponding computer system should process information such that 
the results are invariant to the vagaries of the data acquisition 
process. Furthermore, one would expect such computer systems to be 
fault tolerant, i.e., to display robustness, if and when some of their 
hardware were to fail. We suggest in this paper how a particular type 
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