
478 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 4, APRIL 1988

D. K. Pradhan and S. M. Reddy, “A fault-tolerant communication
architecture for distributed systems,” IEEE Trans. Comput., vol. C-
31, pp. 863-870, Sept. 1982.
F. P. Preparata and J . Vuillemin, “The cube-connected cycles: A
versatile network for parallel computation,” Commun. ACM, vol. 24,
pp. 300-309, May 1981.
A. Rucinski and J . L. Pokoski, “Polystructural, reconfigurable, and
fault-tolerant computers,” in Proc. 6th Int. Conf. Distributed
Comput. Syst., Cambridge, MA, May 1986, pp. 175-182.
A. Sengupta, A. Sen, and S. Bandyopadhyay, “On an optimally fault-
tolerant multiprocessor network architecture,” IEEE Trans. Com-
put., vol. C-36, pp. 619-623, May 1987.
S. Toida, F. J. Meyer, and D. K . Pradhan, “A theorem on the fault-
tolerance of a modified de Bruijn network topology,” IEEE Trans.
Comput., submitted for publication.
D. K. Pradhan, Fault-Tolerant Computing. Theory and Tech-
niques. Englewood Cliffs, NJ: Prentice-Hall, 1986, ch. 6.

Performability Modeling Based on Real Data: A Case Study

M. C. HSUEH, R. K. IYER, AND K. S. TRIVEDI

Abstract-This paper describes a measurement-based performability
model based on error and resource usage data collected on a multiproces-
sor system. A method for identifying the model structure is introduced
and the resulting model is validated against real data. Model development
from the collection of raw data to the estimation of the expected reward is
described. Both normal and error behavior of the system are character-
ized. The measured data show that the holding times in key operational
and error states are not simple exponentials and that a semi-Markov
process is necessary to model the system behavior. A reward function,
based on the service rate and the error rate in each state, is then defined in
order to estimate the performability of the system and to depict the cost
of different types of errors.

Index Terms-Error, measurements, performability, semi-Markov,
workload.

I . INTRODUCTION
Analytical models for hardware failure have been extensively

investigated in the literature along with performability issues [I].
Although the time for different components to fail is usually assumed
to be exponentially distributed, time-dependent failure rates and
graceful degradation have been considered [2]. Automatic availability
evaluation, assuming a Markov model, is discussed in [3]. A job/task
flow-based model is described in [4], where failure occurrence is
assumed to be a linear function of the service requests from a job/task
flow. As shown in [5], this linear assumption may result in
underestimating the effect of the workload, especially when the load
is high. A summary of research in software reliability growth models
is discussed in [6]; run-time software reliability modeling is discussed
in [7].

Although many authors have addressed the modeling issue and
have significantly advanced the state of the art, none have addressed

Manuscript recevied June 16, 1987; revised November 5 , 1987. This work
was supported in part by NASA Grant NAG-1-613, in part by IBM
Corporation, and in part by the Joint Services Electronics Program (U.S.
Army, U.S. Navy, U.S. Air Force) under Contract N00014-84-C-0149 to R.
K . Iyer and by the Air Force Office of Scientific Research under Contract
AFOSR-84-0132 to K. S. Trivedi.

M. C. Hsueh and R. K. Iyer are with the Computer Systems Group,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL 61801.

K . S. Trivedi is with the Department of Computer Science, Duke
University, Durham, NC 27706.

IEEE Log Number 8719332.

the issue of how to identify the model structure. Furthermore, very
few of either the hardware or the software models have been
validated with real data. Exceptions are the joint hardwarehoftware
model discussed in [8] and a measurement-based model of workload
dependent failures discussed in [5]. Both, however, describe only the
external behavior of the system and thus do not provide insight into
component-level behavior.

In this paper, we build a semi-Markov model to describe the
resource-usage/error/recovery process in a large mainframe system.
The model is based on one year of low-level error and performance
data collected on a production IBM 3081 system running under the
MVS operating system. The 3081 system consisted of dual proces-
sors with two multiplexed channel sets. Both the normal and
erroneous behavior of the system are modeled. A reward function,
based on the service rate and the error rate in each state, is defined in
order to estimate the performability of the system, and to depict the
cost of different error types and recovery procedures. Two key
contributions of this paper are the following.

1) A method for identifying a model-structure for the resource-
usage/error/recovery process is introduced and the resulting model is
validated against real data.

2) It is shown that a semi-Markov model may better represent
system behavior as opposed to a Markov model.

11. RESOURCE USAGE CHARACTERIZATION
In this section, we identify a state-transition model to describe the

variation in system activity. System activity was characterized by
measuring a number of resource usage parameters. A statistical
clustering technique was then employed to identify a small number of
representative states.

The resource usage data were collected by sampling, at predeter-
mined intervals, a number of resource usage meters, using the IBM
MVS/370 system resource measurement facility (RMF). A sample-
time of 500 ms was used in this study. Four different resource usage
measures were used.

CPU - fraction of the measured interval for which the CPU is
executing instructions,

CHB - fraction of the measured interval for which the channel
was busy and the CPU was in the wait state (this
parameter is commonly used to measure the degree of
contention in a system)

S I 0 - number of successful Start I/O and Resume I/O instruc-
tions issued to the channel

DASD - number of requests serviced on the direct access storage
devices.

At any interval of time, the measured workload is represented by a
point in a four-dimensional space, (CPU, CHB, SIO, DASD).
Statistical cluster analysis is used to divide the workload into similar
classes according to a predefined criterion. This allows us to
concisely describe the dynamics of system behavior and extract a
structure that already exists in the workload data. I

Each cluster (defined by its centroid) is then used to depict a system
state and, a state-transition diagram (consisting of intercluster
transition probabilities and cluster sojourn times) is developed. A k-
means clustering algorithm [lo] is used for cluster analysis. The
algorithm partitions an N-dimensional population into k sets on the
basis of a sample. The k nonempty clusters sought, CI, Cz, . . . , Ck,
are such that the sum of the squares of the Euclidean distances of the
cluster members from their centroids, E:=, Cx ,E~ , Ilx, - % , \ I 2 , is
minimized, where 2, is the centroid of cluster C,.

Two types of workload clusters were formed. In the first case,
CPU and CHB were selected to be the workload variables. This
combination was found to best describe the CPU-bound load (nearly

’ Similar clustering techniques are also used for workload characterization
in [9].

0018-9340/88/0400-0478$01 .OO 0 1988 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 31 , NO. 4, APRIL 1988 479

TABLE I
CHARACTERISTICS OF CPU-BOUND WORKLOAD CLUSTERS

I Cluster 11 %of I Mean I Mean 11 Stddev 1 Stddev I
id I(obs I of CPU I O f C H B II of CPU I of CHB
W . 7.44 I 0.0981 I 0.1072 1 1 0.0462 1 0.0436

R2 of CHB = 0.8095
overall RZ = 0.9604

R2 : the square of correlation eoe5cient

to W O to W O from W O

I \ 0.20

from W O o?sl 0.037 0.162

to WO from WO to WO from WO
Fig. 1. State-transition diagram of CPU-bound load.

60 percent of the observations have a CPU usage greater than 0.72).
In the second case, the clusters were formed considering SI0 and
DASD as the workload variables. This combination was found to best
describe the I/O workload. In this paper, only the results for CPU-
bound load clusters are presented. Details of U0 activity can be found
in [I l l . Table I shows the results of the clustering operation. The
table shows that about 36 percent of the time the CPU was heavily
loaded (0.96) and almost 76 percent of the time the CPU load was
above 0.5. Since the measured system consisted of two processors,
we may say that 76 percent of the time at least one of the processors is
busy. A state-transition diagram of CPU-bounded load activity is
shown in Fig. 1. Note that a null state WO has been incorporated to
represent the state of the system during the nonmeasured period. The
time spent in the null state was assumed to be zero. The transition
probability from state i to state j , p i j , was estimated from the
measured data using

observed number of transitions from state i to state j
observed number of transitions from state i

In the next section, the characterization of the errors and the
recovery process is discussed. The appropriate error and recovery
states are identified for subsequent use in developing an overall
model.

p . .= '

111. ERROR AND RECOVERY CHARACTERIZATION
The IBM system has built-in error detection facilities and there are

many provisions for hardware and software initiated recovery
through retry and redundancy. The error and recovery data are
automatically logged by the operating system as the errors occur. On

the occurrence of an error, the operating system creates a time-
stamped record describing the error, the state of the machine at the
time of the error, and the result of the hardware and/or software
attempts to recover from the error. Details of this logging mechanism
are described in [12]. Due to the manner in which errors are detected
and reported in a computer system, it is possible that a single fault
may manifest itself as more than one error, depending on the activity
at the time of the error. The different manifestations may not all be
identical [13]. The system recovery usually treats these errors as
isolated incidents. Thus, the raw data can be biased by error records
relating to the same problem. In order to address this problem, two
levels of data reduction were performed. First, a coalescing
algorithm described in [5] was used to analyze the data and merge
observations which occur in rapid succession and relate to the same
problem. Next, a reduction technique described in [13] to automati-
cally group records most likely to have a common cause was used. By
using these two methods, the errors were classified into five different
classes. These classes are called error events since they may contain
more than one error and are explained below.

CPU : Errors which affect the normal operation of the CPU;
may originate in the CPU, in the main memory, or in a
channel

CHAN : Channel errors (the great majority are recovered)
DASD : Disk errors, recoverable (by data correction, hardware

instruction retry or software instruction retry), and
nonrecoverable disk

SWE : Software incidents due to invalid supervisor calls,
program checks, and other software exception condi-
tions
Multiple errors affecting more than one type of compo-
nent (i.e., involving more than one of the above).

Table I1 lists the frequencies of different types of errors. Notice
that about 17 percent of errors are classified as multiple errors
(MULT). A MULT error is mostly due to a single cause but the fault
has nonidentical manifestations, provoked by different types of
system activity. Since the manifestations are nonidentical, recovery
may be complex and, hence, can (as will be seen latter) impose
considerable overhead on the system.

The recovery procedures were divided into four categories based
on recovery cost, which was measured in terms of the system
overhead required to handle an error. The lowest level (hardware
recovery) involves the use of an error correction code (ECC) or
hardware instruction retry and has minimal overhead. If hardware
recovery is not possible (or unsuccessful), software-controlled
recovery is invoked. This could be simple, e.g., terminating the
current program or task in control, or complex, e.g., invoking
specially designed recovery routine(s) to handle the problem. The
third level, alternative (ALT), involves transferring the tasks to
functioning processor(s) when one of the processors experiences an
unrecoverable error. If no on-line recovery is possible, the system is
brought down for off-line (OFFL) repair. Fig. 2 shows a flow chart
of the recovery process. The time spent in each recovery state was
taken to be constant, since each recovery type except OFFL requires
almost constant overhead.

IV. RESOURCE-USAGE/ERROR/RECOVERY MODEL
In this section, we combine the separate workload, error, and

recovery models developed into a single model shown in Fig. 3. The

MULT :

Hardware recovery involves hardware instruction retry or ECC correc-
tion. The maximum number of retries is predetermined. Each CPU has a 26-
ns machine cycle time and the disk seek time is about 25 ms. We estimate a
worst case hardware recovery cost of 0.5 s, i.e., incorporating 20 IiO retries:
ten through the original U0 path and another ten through an alternative 110
path if the alternative is available. This, of course, overestimates the cost of
hardware retry used for the CPU errors. Similarly, the worst case software
recovery time was estimated to be 1 s. The ALT state was not evaluated since
it did not occur in the data. For OFFL, the time was calculated to be 1 h based
on our experience and through discussion with maintenance engineers.

480 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 4, APRIL 1988

TABLE I1
FREQUENCY OF ERRORS

~ s p e of error 11 ~ r e q uency I Percent
CPU 2 1 0.04

DASD 44.33
total 1) 5332 1 100.00

/ failed

sw

Fig. 2. Flow chart of recovery processes.

null state WO is not shown in this diagram. The model has three
different classes of states: normal operation states (S N) , error states
(SE) , and recovery states (S R) . Under normal conditions, the system
makes transitions from one workload state to another. The occur-
rence of an error results in a transition to one of the error states. The
system then goes into one or more recovery modes after which, with
a high probability, it returns to one of the “good” workload states3
The state transition diagram shows that nearly 98.3 percent of
hardware recovery requests and 99.7 percent of software recovery
requests are successful. Thus, the error detection, fault isolation, and
on-line recovery mechanisms allow the measured system to handle an
error efficiently and effectively. In less than 1 percent of the cases is
the system not able to recover.

One state which needs further elaboration is the MULT state.
Recall that a MULT state denotes a multiple error event affecting
more than one component type. Fig. 4 shows the state-transition
diagram of a MULT error event, i.e., the transition diagram given a
MULT error. The model quantifies the interactions between the
different components in a multiple error occurrence. From the
diagram, it is seen that in about 65 percent of the cases, a multiple
error starts as a software error (SWE) and in 32 percent of the cases it
starts as a disk error (DASD). Given that a disk error has occurred,
there is nearly a 30 percent chance that a software error will follow. It
is also interesting to note that there is a 64 percent chance that one
software error will be followed by another different software error.

A . Distributions for Workload and Error States

Table I11 shows the characteristics of both the workload and error
states in terms of their waiting times. An examination of the mean and
standard deviation of the waiting times indicates that not all waiting
times are simple exponentials. This is particularly pronounced for the
error states. Fig. 5(a) and (b) shows the densities of waiting time for
W, state and also the specific holding time to the SWE error state.
The waiting time for state i is the time that the process spends in state
i before making a transition to any other state. The holding time for a

transition from state i to state j is the time that the process spends in
state i before making a transition to state j [14]. This is the same as
the distribution of a one-step transition from state i to j . The
distributions in Fig. 5 are fitted to phase-type exponential density
functions [15] and tested by using the Kolmogorov-Smirnov test at a
0.01 significance level.

B. Error Duration Distributions

Recall that an error event can involve more than one error since
errors frequently occur in bursts. During an error burst, the system
goes into an error+recovery cycle until the error condition disap-
p e a r ~ . ~ In such cases, we measure the duration of an error event
as the time difference between the first detected error and the last
detected error caused by the same event. The duration of an error
event can be used to measure the severity of the error. Since each
recovery type takes approximately a constant amount of time, the loss
of work can be approximated by the error rate in this period. In
Section VI, we use this information to build a reward model for the
system. Fig. 6 shows examples of error duration densities for two
different types of errors, SWE and MULT.

In summary, we have developed a state-transition model which
describes the normal and error behavior of the system. A key
characteristic of the model is that the waiting time in some of the
workload states and in most error states cannot be modeled as simple
exponentials. Furthermore, the folding times from a given workload
state to different error states are dependent on the destinations. Thus,
the overall system is modeled as a complex irreducible semi-Markov
process.

V. MODEL BEHAVIOR ANALYSIS

Now that we have an overall model, we show the usage of this
model to predict key system characteristics. The mean time between
different types of errors is evaluated along with model characteristics,
such as the occupancy probabilities of key normal and error states.

A. General Characteristics
By solving the semi-Markov model, we find that the modeled

system made a transition every 9 min and 8 s, on average. In
comparing this to the mean time between errors (MTBE) listed in
Table IV, it is clear that most often the transitions are from one
normal state to another. The table also shows that a DASD error was
detected almost every 52 min (0.87 h) while a software error was
detected every 1 h and 45 min. Most of the DASD errors (95 percent)
were recovered through hardware recovery (i.e., hardware instruc-
tion retry or ECC), thus resulting in negligible overhead. Table IV
also lists the mean recurrence time for recovery states. Thus, the on-
line hardware recovery routine is invoked once every 0.62 h, while
the software recovery occurs every 2.57 h. By using an estimated
time for each hardware recovery and comparing the results to the
recovery overhead, we estimate that the cost of hardware recovery is
only 0.02 percent of total computation time. The mean recurrence
time of the alternative recovery routine was not estimated, due to lack
of data, i.e., this event seldom occurred.

B. Summary Model Probabilities
Since the process is modeled as an irreducible semi-Markov

process, we can evaluate the following steady state parameters [14]:
1) occupancy probability (+,)-the probability that the process

occupies state j ,
2) conditional entrance probability (.lr,)-given that the process is

now making a transition, the probability that the transition is to state

3) entrance rate (e,)-the rate at which the process enters state; at
any time instance (e, = r,/?, where 7‘ is the mean time between
transitions), and

j ,

Note that the transition probabilities from W, to W, are different from
those in Fig. 1 where error states were not considered in computing the
transition probabilities.

This is typical of many systems (e.g., see [8]). The final recovery usually
occurs because the conditions which triggered the error disappear due to
change in system activity.

48 1 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 4, APRIL 1988

entry to

.32

0.0 U
O 2o 40 k 0 a t i o n % i n u 3 120 140

(a)

exit from /'
MULT

Fig. 4. State-transition diagram of a given multiple error (MULT)

TABLE 111

ERROR STATES
CHARACTERISTICS OF WAITING TIME (SECONDS) IN WORKLOAD AND

* statistically insigni5cant

(b)
Fig. 5 . Waiting and holding time densities. (a) Waiting time density for W,.

(b) Holding time density from W, to S W E state.

f (t) = 0.041181 e4'0445181
Prob.0.5 - - - - -___________________________________- - - - + 0.0002704 e-0'00360751 I

(b)

Waiting time density for MULT.
Fig. 6. Error duration densities. (a) Waiting time density for SWE. (b)

482

Error states

CPU I CHAN I SWE I DASD I MULT
- I 26.88 I 1.75 I 0.87 I 4.62

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 4. APRIL 1988

Recovery states

HWR I SWR I ALT I OFFL
0.62 I 2.57 I - I 651.37

Error states
CPU I CHAN I SWE I DASD I MULT

- I 26.88 I 1.75 I 0.87 I 4.62

Recovery states
HWR I SWR I ALT I OFFL
0.6’ ’ ’ C 7 I - I 6 5 ’ 77

Measure

a 0

T
e
0”

Normal state

WO W, w, w, w, w, w6 w, w8
0.0625 0.0008 0.0136 0.1258 0.0054 0.1639 0.2255 0.3398

0.0257 0.0264 0.0014 0.0104 0.0559 0.0047 0.0635 0.1125 0.1127
O.oooo5 o.oooo5 - o.ooo02 0.0001 o.oooo1 0.00012 0.00021 0.00021
5.78 5.62 102.56 14.32 2.65 31.38 2.33 1.32 1.32

Error state

4) mean recurrence time @,)-mean time between successive
entries into state j .

The model characteristics are summarized in Table V. A dashed
line in this table indicates a negligible value (statistically insignifi-
cant). Table V(a) shows the normal system behavior. For example,
given that a transition occurs, the system is most likely to go to states
W, or W,. This is also reflected in the respective entrance rates and

Recovery state

occupancy probabilities for the mentioned states. From the occu-
pancy probabilities (+) we see that almost 34 percent of the time the
CPU load is as high as 0.96 (W,); 39 percent of the time, the CPU is
moderately loaded (W, + W,). Table V(b) shows the error behavior
of the system. The table shows that about 30 percent of the transitions
are to an error state (obtained by summing all the a’s for all the error
states). The DASD errors have the highest entrance probability. For
the data shown in the table, it can be estimated that an error is
detected, on the average, every 30 min. Of course, over 98 percent of
these errors incur negligible overhead.

An interesting characteristic of the multiple errors is also seen in
Table V(b). Although the entrance probability of a MULT error is
lower than that for SWE, its occupancy probability is higher. This is
due to the fact that a MULT error event has a longer mean waiting
time as compared to SWE error events (293 s versus 41 s).

C. Model Validation
Even though our model is developed from real data, it needs to be

validated since the model identification process, e.g., the workload
clustering, allows us to only approximate the real system behavior. In
order to evaluate the validity of the model, three measures evaluated
via the model were compared to direct calculations from the actual
data. Table VI shows the comparison of the occupancy probabilities
for key normal states (occupancy probability greater than 0.1) and for
one key error state (DASD). The table also shows the comparison
for the mean recurrence time (0) of the SWE error event and for its
standard deviation (Std). It can be seen that all the predicted values

Measure

77

e
0
_n

The “actual” values are calculated from observed data. For example,

total time that the system was observed to be in state i.
length of the observation period

a, =

CPU CHAN SWE DASD MULT HWR SWR ALT OFFL

- O.oooO5 0.0066 0.0383 0.0179 0.00022 0.00011 -

- 0.0055 0.0850 0.1692 0.0322 0.2379 0.0572 - 0.00023
- O.oooO1 0.00016 0.00032 0.00006 0.00045 0.00011 -
- 26.88 1.75 0.87 4.62 0.62 2.57 - 651.37

** in hours
(b) ’ sec2

TABLE VI
COMPARISON OF @, 8 , AND STANDARD DEVIATION

I II

- O.OOO8 0.0031 0.0242 0.0156 0.0156 0.022 0.033
a1

E : the absolute error. I Model - Actual I

are around 3 percent or less, indicating that the proposed semi-
Markov model is an accurate estimator of the real system behavior.
This also provides support for the model structure identification
method employed in this paper.

D. Markov Versus Semi-Markov
This section investigates the significance of using a semi-Markov

model to describe the overall resource-usage/error/recovery process.
It has been argued that since errors only occur infrequently (i.e., h is
small), a Markov model may well approximate the real behavior.
Clearly, if only the first moments, e.g., MTBE, are of interest, the
Markov model provides adequate information. If the distributions
(e.g., the time to error distribution) or higher moments are of
interest, the Markov model may be inadequate. Thus, although our
evidence shows that the semi-Markov process is a better model, i.e.,
more closely approximates the data from the measured system, it is
reasonable to ask what deviations occur if a Markov process is
assumed. In order to answer this question, we use a Markov model to
describe our system and compare the results to those obtained
through the more realistic semi-Markov model.

We compared the two by calculating two steady-state parameters.
The first is the complementary distribution of the time to error
[referred to as R(t)] for different error types. The second is the
standard deviation of R(t). The results for the SWE state are shown in
Table VII. It is clear that the Markov model overestimates the R(t) in
the early life (for low time to error probabilities) and underestimates
R(t) for high time to error probabilities. The standard deviation is
also considerably underestimated by the Markov model thus casting
doubts on the validity of using MTBE estimates themselves.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 4, APRIL 1988

R(t)

483

Std (mins)

Markov 1.00 0.71 0.50 0.35 0.25 0.17 0.12 0.09 25.13

TABLE VI11
REWARD RATES FOR ERROR STATES

State 11 DASD 1 SWE I CHAN I MULT
11 0.5708 I 0.2736 I 0.9946 I 0.2777 ri

In summary, our measurements show that using a Markov model is
optimistic in the short run and pessimistic in the long run. The
underestimation of the standard deviation of R(t) is also a serious
problem because it calls into question the representativeness of the
MTBE estimates.

VI. PERFORMABILITY ANALYSIS
In this section, we use the workload/error/recovery model to

evaluate the performability of the system. Reward functions are used
to depict the performance degradation due to errors and also due to
different types of recovery procedures. Since the recovery overhead
for each recovery state in the modeled system is approximately
constant, the total recovery overhead for each error event and thus the
reward depends on the error rate during that event. Thus, the higher
the error rate during an error event, the higher is the recovery
overhead and, hence lower the reward. On this basis we define a
reward the reward rate, r, (per unit time) for each state of the model
as follows:

st i f i E S, U sE
r,= S,+ e, ts if i E SR

where the s, and e, are the service rate and the error rate in state i,
respectively. Thus, one unit of reward is given for each unit of time
when the process stays in the good states S,. The penalty paid
depends on the number of errors generated by an error event. With an
increasing number of errors, the penalty per unit time increases, and
accordingly, the reward rate decreases. Zero reward is assigned to
recovery states. Based on this proposal, reward rates for the error
states are as shown in Table VIII.

The reward rate of the modeled system at time t is a random
variable X(t) , which is defined as

1
r,
0 otherwise.

process is in state i E SN
process is in state i E SE

Therefore, the expected reward rate E[X(t)] can be evaluated from
E[X(t)] = C p (t) r , . The cumulative reward by time t is Y(t) = .(;
X(o) do, and the expected cumulative reward is given by [16]

where p l (t) is the probability of being in state i at time t . In order to
evaluatep,(t) and hence other measures, we convert the semi-Markov
process into a Markov process using the method of stages [15], 1171.
The state probability vector P*(t) = (. . . , pi(t) , . . .) of the Markov
process can be derived from P*(t) = P*(O)e@, where P*(O) = (1 , 0,
. . . , 0) and Q is transition rate matrix of the Markov process [141.

In order to study the performance degradation due to different

types of errors, the irreducible semi-Markov process was trans-
formed by considering the OFFL (off-line repair) state as the
absorbing state. The expected reward calculated with this assumption
indeed reflects the true performability until system failure. Next, for
evaluating the impact of different error events we first observe that
often these events have significant error duration time (e.g., MULT
state has an mean error duration of 5 min with a standard deviation of
4 min). Since the majority ofjobs last less than a few minutes, as far
as a user program is concerned, an entry into a long duration error
state is similar to entering an absorption state with ri > 0. Thus, the
impact of the MULT can be evaluated by making it into an absorption
state with ri > 0. A similar analysis can be performed for other error
states.

In our analysis, we first make the OFFL state the absorbing state.
This gives the expected performance until an off-line failure. Then
we evaluate three other cases.

a) OFFL case (OFFL),
b) MULT and OFFL case (MULT),
c) SWE, MULT and OFFL case (SWE), and
d) DASD, MULT and OFFL case (DASD).

Case a) gives the overall performability of the system assuming that
OFFL (off-line repair) is the absorbing state, i.e., the impact of all
other error events are taken into account. This gives both the transient
and steady-state performability of the system. Next we assume in case
b) that both MULT and OFFL are absorbing. The difference between
a) and b) approximates the expected performance loss due to possible
entry into a long duration MULT state. Similarly, the difference
between a) and c) provides an estimate of loss of performance due to
entry into an SWE state. In the long term, of course, each will reach a
steady-state value. The above analyses were performed on the
resulting Markov reward of the system using SHARPE (the symbolic
hierarchical automated reliability and performance evaluator) ’ devel-
oped at Duke University.

The curves of Fig. 7 show the expected reward rate at time t ,
E[X(t)] , for these four cases. The evaluations of the cumulative
reward, E[Y(t)] , are discussed in [l l] . In practical terms, the
differences provide an estimate of the loss in reward due to various
error types assuming that the jobs are initiated when the system is
fully operational. As an example, in Fig. 7, we find that the SWE
event degrades system effectiveness considerably more than the
DASD event. This is because the reward rate of SWE error is lower
than DASD error even though the error probability of DASD event is
higher than of SWE event.

VII. CONCLUSION
In this study, we have proposed a methodology to construct a

model of resource usage, error, and recovery in a computer system,
using real data from a production system. The semi-Markov model
obtained is capable of reflecting both the normal and error behavior
of our measured system. The errors are classified into various types,
based on the components involved. Both hardware and software
errors are considered, and the interaction between the system

An alternative approach, the performance loss (PL) based on the steady-
state occupancy probabilities, was suggested by one of the referees. PL, =
@ , (I - r ,) + C r E S R is the probability of visiting a recovery
state r after an error state i. ’ SHARPE is a modeling tool. It provides several model types ranging from
reliability block diagrams to complex semi-Markov models [171.

where

484

I \ 1 nm.

- - - MULT
1.0

.. L
t I

0.01-. ” ’ ’ ” ’ . ’ ’ ’ . . . ’ _ . . * I
0 5 10 15 20 25 30 35

Expected reward rate, E[X(t)] .

Minutes
(b)

Fig. 7.

components (hardware and software) is reflected in a multiple error
model. The proposed reward measure allows us to predict the
performability of the system based on the service and error rates. It is
suggested that other production systems be similarly analyzed so that
a body of realistic data on computer error and recovery models is
available.

ACKNOWLEDGMENT
The authors would like to thank J . Gerardi and the members of

Reliability, Availability and Serviceability Group at IBM-Poughkeep-
sie for access to the data and for their valuable comments and
suggestions. Thanks are also due to Dr. W. C. Carter for valuable
discussions during the initial phase of this work. We also thank L. T.
Young and P. Duba for their careful proofreading of the draft of this
manuscript. Finally, we thank the referees for their constructive
comments which were extremely valuable in revising the paper.

REFERENCES
J. F. Meyer, “Closed-form solutions of performability,” IEEE Trans.
Comput., pp. 648-657, July 1982.
R. M. Geist, M. Smotherman, K . S . Trivedi, and J. Bechta Dugan,
“The reliability of life critical systems,” Acta Informatica, vol. 23,

A. Goyal, W. C. Carter, E. de Souza e Silva, S . S . Lavenberg, and K.
S. Trivedi, “The system availability estimator,” in Proc. 16th In?.
Symp. Fault-Tolerant Comput., Vienna, Austria, July 1986.
0. Schoen, “On a class of integrated performanceireliability models
based on queuing networks,” in Proc. 16th Int. Symp. Fault-
Tolerant Comput., Vienna, Austria, July 1 4 , 1986, pp. 90-95.
R. K. Iyer, D. J. Rossetti, and M. C. Hsueh, “Measurement and
modeling of computer reliability as affected by system activity,” ACM
Trans. Comput. Syst.. vol. 4, pp. 214-237, Aug. 1986.
B. Littlewood, “Theories of software reliability: How good are they
and how can they be improved?” IEEE Trans. Software Eng., vol.
SE-6, pp. 489-500, Sept. 1980.
M. C. Hsueh and R. K . Iyer, “A measurement-based model of
software reliability in a production environment,” in Proc. 11th
Annu. In?. Comput. Software Appl. Conf., Tokyo, Japan, Oct. 7-9,

X. Castillo, “A compatible hardware/software reliability prediction
model,” Ph.D. dissertation, Carnegie-Mellon Univ., July 1981.

pp. 621-642, 1986.

1987, pp. 354-360.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 4, APRIL 1988

D. Ferrari, G . Serazzi, and A. Zeigner, Measurement and Tuning of
Computer Systems.
H. Spath, Cluster Anabsis Algorithms. West Sussex, England:
Ellis Horwood, 1980.
M. C. Hsueh, “Measurement-based reliabilityiperformability
models,’’ Ph.D. dissertation, Dep. Comput. Sci., Univ. Illinois at
Urbana-Champaign, Aug. 1987.
IBM Corp. Environmental Record Editing & Printing Program,
IBM Corp., 1984.
R. K . Iyer, L. T. Young, and V. Sridhar, “Recognition of error
symptoms in large systems,” in Proc. I986 IEEE-ACM Fall Joint
Comput. Conf., Dallas, TX, Nov. 2-6, 1986, pp. 797-806.
R. A. Howard, Dynamic Probabilistic Systems. New York: Wiley,
1971.
K . S . Trivedi, Probability and Statistics with Reliability, Queuing,
and Cornputer Science Applications. Englewood Cliffs, NJ: Pren-
tice-Hall, 1982.
R. M. Smith and K. S . Trivedi, “A performability analysis of two
multiprocessor systems,” in Proc. 17th Int. Symp. Fault-Tolerant
Comput., Pittsburgh, PA, July 6-8, 1987, pp. 224-229.
R. A. Sahner and K. S . Trivedi, “Reliability modeling using
SHARPE,” IEEE Trans. Reliability, pp. 186-193, June 1987.

Englewood Cliffs, NJ: Prenctice-Hall, 1981.

Distributed and Fault-Tolerant Computation for Retrieval
Tasks Using Distributed Associative Memories

JOIS MALATHI CHAR, VLADIMIR CHERKASSKY,
HARRY WECHSLER, AND GEORGE LEE ZIMMERMAN

Abstract-We suggest the distributed associative memory (DAM)
model for distributed and fault-tolerant computation as related to
retrieval tasks. The fault tolerance is with respect to noise in the input key
data and/or local and global failures in the memory itself. We have
developed working models for fault-tolerant image recognition and
database information retrieval backed up by experimental results which
show the feasibility of such an approach.

Index Terms-Database retrieval, distributed associative memory
(DAM), distributed computation, fault tolerance, neural networks,
recognition.

I . INTRODUCTION
Artificial Intelligence (AI) deals with the types of problem solving

and decision making that humans continuously face in dealing with
the world. Such activity involves by its very nature complexity,
uncertainty, and ambiguity, all of which can distort the phenomena
being analyzed. However, following the human example, any
corresponding computer system should process information such that
the results are invariant to the vagaries of the data acquisition
process. Furthermore, one would expect such computer systems to be
fault tolerant, i.e., to display robustness, if and when some of their
hardware were to fail. We suggest in this paper how a particular type

Manuscript received April 15, 1987; revised October 15, 1987. This work
was supported in part by the Graduate School at the University of Minnesota
(J. M. Char and V. Cherkassky). by the National Science Foundation under
Grant EET-8713563 to H. Wechsler, and by the Microelectronics and
Information Science Center (MEIS) of the University of Minnesota (G. L.
Zimmerman).

J. M. Char is with the Department of Computer Science, University of
Minnesota, Minneapolis, MN 55455

V. Cherkassky, H. Wechsler, and G. L. Zimmerman are with the
Department of Electrical Engineering, University of Minnesota, Minneapolis,
MN 55455

IEEE Log Number 8719338.

0018-9340/88/0400-0484$01.00 0 1988 IEEE

