
Vision for Liquid Architecture

Roger D. Chamberlain
Ron K. Cytron
Jason E. Fritts
John W. Lockwood

Roger D. Chamberlain, Ron K. Cytron, Jason E. Fritts, and John W.
Lockwood, “Vision for Liquid Architecture,” in Proc. of Next Generation
Software Workshop, April 2006.

Dept. of Computer Science and Engineering
Washington University

Dept. of Mathematics and Computer Science
Saint Louis University

Vision for Liquid Architecture

Roger D. Chamberlain1, Ron K. Cytron1, Jason E. Fritts2, and John W. Lockwood1

1Washington University 2Saint Louis University
Dept. of Computer Science and Engineering Dept. of Mathematics and Computer Science

Saint Louis, MO 63130 USA Saint Louis, MO 63103 USA
{cytron,roger,lockwood}@wustl.edu jfritts@slu.edu

Abstract

In the liquid architecture project, we are exploring
ways in which architectural flexibility can be exploited
to improve the execution properties of individual appli-
cations. Here, we report on successes we have had to
date in this area, and present our vision of where this
research should proceed into the future.

1. Introduction

Traditional general-purpose processors have physi-
cal properties and characteristics that are fixed in many
cases well before the application is designed. The hard-
ware design team has completed its work, the pro-
cessor has been fabricated, and the software design
team (with the help of compilation tools) must conform
their applications to the limitations and constraints
of the pre-existing hardware. The instruction set ar-
chitecture (ISA) forms a stable interface between the
hardware and software design teams, yet this interface
hides many details of the system’s microarchitecture;
those details may dramatically influence the applica-
tion’s predictability and performance.

The motivation for the above state of affairs is
strongly influenced by the high design and fabrication
costs of general-purpose processors. Literally billions
of dollars are spent on fabrication lines, and hundreds
to thousands of man-years are expended on the part of
the hardware design team in an attempt to ensure that
“typical” applications (whatever that means) achieve
the best performance that can be managed. Worse
still, processors are often marketed based on perfor-
mance statistics on popular benchmarks that may have
little in common with any given application.

Reconfigurable hardware, in the form of Field Pro-
grammable Gate Arrays (FPGAs), offers a number of

This work was supported by NSF grant CNS-0313203.

alternatives. First, when deploying soft-core proces-
sors on an FPGA, microarchitecture implementation
and configuration can be quite flexible. Second, FP-
GAs enable the integration of both general-purpose
processors and application-specific functional units or
coprocessors on the same chip. Third, the hardware de-
sign need not be fixed prior to software development.
Hardware and software can be designed in tandem (i.e.,
hardware/software codesign). In short, significant op-
portunities for customization are available, providing
the ability to improve performance, predictability, reli-
ability, size, power consumption, or any other property
of interest.

A number of these properties are of particular in-
terest to embedded applications, where the design con-
straints are often much tighter than for general-purpose
systems (i.e., those on the desktop or in the server
room). The ability to alter the physical properties of
computational engine provides significant benefits for
embedded applications.

Our group has been exploring the potential benefits
achievable with a liquid architecture, in which the prop-
erties of the execution platform can be more responsive
to the needs of the application. Instead of the software
having to completely conform to the reality of a fixed
hardware platform, in a liquid architecture the hard-
ware also conforms to the needs (requirements) of the
application. In this paper, we briefly describe our past
work on the liquid architecture project and present our
vision of the future for research into flexible architec-
tures.

2. Current Work

The focus of the liquid architecture research is in-
vestigation into techniques by which the architecture
of the underlying processor can adapt to the spe-
cific needs of individual applications. Our experi-

1-4244-0054-6/06/$20.00 ©2006 IEEE

mental work uses the Field-programmable Port Ex-
tender (FPX) platform [15]. The FPX, built at
Washington University, provides an environment where
FPGA designs can be interfaced with memory and a
high-speed network interface. We have deployed the
LEON [14] (a SPARC V8 compatible, soft-core pro-
cessor), a memory controller, control processor, and
statistics module (described below) on the FPX. Cus-
tom, application-specific functional modules are inter-
faced either through the high-speed bus (AHB) or the
standard SPARC coprocessor interface. OS support
includes both uClinux [25] when the memory manage-
ment unit (MMU) is absent and Linux kernel 2.6.x
when the MMU is present. The liquid architecture sys-
tem is illustrated in Figures 1 and 2 [12, 19, 21].

Leon
SPARC V8
processor

FPX
FPGA

External
memory
(SRAM,
SDRAM)

Memory
controller

Control
packet

processor

Network
interface

Statistics
module

AMBA bus
adapter

UART

AHB

APB

Event bus

Application
specific
functions

Coprocessor
interface

I-cache D-cache

Figure 1. Liquid architecture block diagram.

Figure 2. Liquid architecture photograph.

To date, our research activities in the liquid archi-
tecture group include the following:

• We have developed a statistics module that is de-
signed for non-intrusive monitoring and report-
ing of application performance [10]. The statistics

module is constructed using dedicated monitoring
logic on the FPGA that can be dynamically allo-
cated at execution time to measure virtually any
signal of interest within the system. In addition,
monitoring can be selectively enabled/disabled on
method boundaries. The statistics module has re-
cently been enhanced to work seamlessly with the
MMU and the Linux 2.6.x OS.

• We have implemented a technique for microarchi-
tecture configuration tailored to a particular ap-
plication using a binary integer programming for-
mulation [17, 18]. Rather than rely on simulated
performance estimates, this technique uses actual
measured execution times to evaluate application
run time.

• We have investigated the utility of a specialized
cache subsystem aimed at reducing unnecessary
writebacks [9]. Called a dusty cache, it avoids
flushing of cache blocks that have been altered
and then returned to their original value. This
is a common circumstance when reference count-
ing for garbage collection. It is currently being
enhanced to avoid writebacks of unallocated stack
frames.

• We have extensively used a common biosequence
search application for benchmarking and hard-
ware/software codesign experience [13]. The
BLAST nucleotide search engine has been acceler-
ated to provide greater than a 30× speedup over
a high-end Pentium workstation.

• Analytic performance models for pipelined ap-
plications have been developed that account for
variability in execution requirements at individ-
ual pipeline stages and also evaluate the blocking
probabilities associated with fixed-length, stage-
to-stage queues.

• We are investigating the use of partial reconfigura-
tion of the FPGA to dynamically load application-
specific functional units at execution time.

In addition to the research activities described
above, we are now using the liquid architecture plat-
form as the core of our senior-level hardware/software
codesign course [4].

3. Vision for the Future

Having described what we have been doing in the
previous section, here we articulate our vision for future
research in this area.

3.1. Cutting across Interfaces

Computing systems designed with hardware and
software components typically involve standard inter-
faces at various levels. The ISA is but one example,
a coprocessor interface is another. These interfaces
are widely adopted to simplify the development tasks
and to provide a level of abstraction to promote inter-
changeable and reuseable components. While the in-
terfaces facilitate system design and implementation,
they carry a number of disadvantages:

• Traversal of the interface can be a source of over-
head. Indeed, consideration of what can be de-
ployed on either side of the interface is typically
limited by the overhead of using the interface. For
example, the nature of what might be deployed in
a coprocessor is dictated largely by the cost of ac-
tivating the coprocessor, sending it the data nec-
essary for its function, and retrieving the values
produced by the coprocessor.

While the standard interfaces should be kept as a
development and implementation mechanism, re-
configurable platforms offer the opportunity to op-
timize across and through the interfaces to obtain
better performance and predictability. We give an
example of this kind of optimization below.

• The structures hidden by an interface may be use-
ful for direct access by functions deployed across
the interface. The register files, cache subsystems,
and function units of a processor may be useful for
associated firmware or coprocessor logic, but the
ISA does not expose those components directly.

The resources of a soft-core processor could be
made available to all logic involved in a compu-
tation, so as to improve overall performance and
increase resource utilization. In our vision, this
is a form of a code-generation or synthesis prob-
lem whose solution could push software/hardware
codesign to new levels for reconfigurable devices.

• Some interfaces, such as JNI and Beans (compo-
nent models), are currently deployed only in soft-
ware, but these interfaces also make sense for hard-
ware/software codesign. For example, activation
of hardware logic via JNI simplifies the software
programming task because of the already under-
stood semantics of JNI method calls. Logic acti-
vated in this manner may require obtaining values
from the runtime heap—activities also supported
by JNI but currently unavailable via any standard
interface to hardware.

We are currently pioneering a Java Firmware In-
terface, akin to the Java Native Interface, that
would allow firmware to interface with Java struc-
tures available through JNI, such as the runtime
heap and method activations.

Formal interfaces play a central role in application
development. By articulating a formal interface, de-
velopment on both sides of that interface can proceed
without undue attention to the implementation details
on the other side. Applications developed in a high-
level programming language are generally unconcerned
with the ISA of the target architecture, given a com-
piler that acts as an appropriate interface to the ISA.
Similarly, the compiler writer sees the ISA, but is gen-
erally unconcerned with microarchitecture implemen-
tation, trusting the hardware designers to do their best
job on that side of the ISA interface.

From a functional view of an application, details
across such interfaces can remain abstract: correct
results will be provided if the interfaces are cor-
rectly defined and consistently used. However, for
nonfunctional properties—performance, predictabil-
ity, power—the otherwise hidden details can be of
paramount importance. In previous work, we have
seen the value of automatically configuring microar-
chitectures on a per-application basis [17, 19]; exten-
sions to that work are considered in Section 3.3. For
many embedded-systems applications, these nonfunc-
tional properties loom large in terms of requirements
placed on the end system; research beyond automatic
configuration is needed to customize an implementa-
tion across formal interfaces.

For example, consider a sensor whose data must be
processed at some rate r. When the sensor is active,
a high-speed commodity processor is necessary to pace
the sensor’s ingest rate; when the sensor is inactive, no
processing is necessary. On a commodity processor, a
high clock rate is necessary to pace the sensor’s ingest
rate. On the other hand, specialized logic could be
deployed to process the sensor data, operating at a
much lower clock rate and consuming correspondingly
less power.

As another example, consider applications deployed
as coprocessors on platforms like MIPS and SPARC.
The coprocessor interface serves as a standard that al-
lows processor and microarchitecture development to
occur independently of the coprocessor implementa-
tion. As a result, the processor and coprocessor share
only the most common structures that can be defined
for them—typically, only a small set of registers and
control signals—and the vast resources of a given MIPS
or SPARC implementation are hidden from the copro-
cessor. For standardization purposes, and for ASIC

processor implementations, such abstraction is neces-
sary. However, for soft-core processors used in the ap-
plications we consider, the coprocessor interface is use-
ful from a development standpoint, but it stands in the
way of high performance.

Figure 3. Application architecture from [1].

For example, consider Figure 3, which shows a
signal-processing (wavelet) application architecture [1]
involving a coprocessor. The coprocessor is forced to
obtain data (via DMA) from RAM. That same data
was streamed through the CPU and could have been
presented to the coprocessor from the CPU’s cache, but
the cache is not part of the formal interface between the
processor and coprocessor. With the coprocessor inter-
face, the data must be funneled through a narrow set
of registers or slow RAM to reach the coprocessor.

While the above is the best that can be done with an
ASIC CPU and the formal coprocessor interface, much
more can be done for soft-core CPUs and reconfigurable
platforms: By cutting across the interface, the copro-
cessor could have direct access to the on-chip cache,
dedicated multipliers, and other resources offered by
the soft-core implementation.

We believe that compile-time analysis and transfor-
mation techniques are needed, that would allow a sys-
tem implemented with standard interfaces to be op-
timized through the interfaces to make better use of
resources on both sides. To demonstrate feasibility of
our idea, consider the example above and its optimiza-
tion across the coprocessor interface. Using analysis
akin to method inlining, the VHDL code of the soft-
core processor and coprocessor implementation can be
analyzed, so that the true source and sink of the data
across the interface can be more readily determined.
Accesses to the coprocessor registers on the coproces-
sor side are then automatically transformed into on-
chip RAM accesses, with the coprocessor code woven
into the soft-core implementation.

Of course, this transformation cannot happen on
ASIC implementations, but for the reconfigurable plat-
forms we investigate, such transformation is easily
achieved, even on a per-application basis.

3.2. Robust Hardware/Sofware Codesign

Because of its popularity, its widespread and stan-
dardized implementations, and its ability to interface
with other systems and languages, Java is a reasonable
choice for experimentation in the hardware/software
codesign space. But how should Java interface with
hardware components? We are currently considering
the following ideas:

JFI or Java Firmware Interface: Java already has an
interface for other programming languages, known
as JNI for Java Native Interface. JNI offers mech-
anisms for activating methods on both sides of the
interface and for reading and writing Java (heap-
allocated) data. We seek to implement those same
methods for firmware, so that construction of the
Java program to activate, inteface with, and re-
trieve results from hardware-deployed functional-
ity is as simple as writing JNI code today. The
semantics of this mechanism, as for JNI, is syn-
chronous, in that the Java thread invoking JFI
methods would block until the method completed.

Beans Because much of hardware logic is meant to
operate asynchronously, we are also considering
a Beans-based implementation of Java hardware
components. Our work here is inspired by [8], who
have considered deploying hardware components
in this fashion.

Because of our interest in optimizing across interfaces,
each of the above codesign environements is only the
beginning of the solution. For a soft-core architec-
ture, we can consider a view from the Java applica-
tion, through JFI, and into the logic deployed on the
firmware side. Optimization across those interfaces
can improve the nonfunctional properties we describe
above.

As examples of this kind of effort, we are currently
involved with Boeing and the University of Dayton in
providing a compiled Java environment [7] that inter-
faces with a firmware storage-management subsystem
and with firmware logic to accelerate certain computa-
tions. The interfaces are managed manually at present,
but their automation would bring this kind of pro-
gramming and experimentation within reach of a much
wider audience.

3.3. Microarchitecture Autoconfiguration

While interfaces abstract detail and thus simplify
component interaction, the structures hidden by the
interface may be critical for an application’s perfor-
mance. For example, an ISA abstracts cache subsys-
tems, branch prediction, and out-of-order execution,
yet those microarchitecture structures can significantly
impact application performance.

Soft-core processors offer the opportunity to change
their microarchitecture support quickly, in response to
the needs of a given application. Our experience shows
that application-specific configuration of the microar-
chitecture can play an important role in an applica-
tion’s performance.

Reconfigurable architectures based on FPGAs of-
fer significant advantages for embedded applications,
not only in the versatility of the dynamically recon-
figurable architecture, but also in the ability to per-
form non-intrusive, cycle-accurate hardware profiling,
i.e. cycle-accurate performance evaluation can be per-
formed in real-time for free. Conversely, the flexibility
of an FPGA-based, dynamically-reconfigurable archi-
tecture provides an enormous design space for hard-
ware and soft-core based computer architectures, so ef-
fectively exploring that design space presents a difficult
and potentially very time-consuming problem.

The classical performance analysis tool used to ex-
plore the architectural design space is simulation. How-
ever, simulation generally is plagued both by long ex-
ecution time and uncertainty as to the fidelity of the
underlying model. We avoid these issues by exploiting
the reconfigurable nature of FPGAs and use direct exe-
cution as our performance measurement tool of choice.
By adding explicit monitoring and reporting logic to
the system, we can achieve visibility into any compo-
nent or subsystem we desire, all with zero impact on
the performance of the monitored system [10]

To effectively explore the design space and deter-
mine a highly-effective architecture for an application
or set of applications, we envision a 4-stage methodol-
ogy to maximize the exploration of this design space in
the most efficient fashion. This 4-stage methodology is
designed to quickly find the architecture designs that
most efficiently support the individual stages of an ap-
plication. It uses phase detection to identify the unique
phases in an application, a statistically-rigorous evalu-
ation methodology [26] to expeditiously find the most
important architecture parameters for each phase of an
application, and a binary integer programming method
we developed [17] to select the appropriate parameters
based on their importance and the resource constraints
of the FPGA. The methodology is intended to identify

the best hardware parameterizations for each phase of
an application in both a fast and statistically-rigorous
fashion, leveraging the real-time full-system hardware
evaluation capabilities of FPGAs to effectively address
the challenges of computer architecture evaluation [23].

The first stage of the methodology uses phase detec-
tion, as proposed by Cook et al. [6] and Sherwood et
al. [22], to detect the unique phases within a program.
Phase detection is now starting to be used as a tool
for fast software-based simulation, such as Srinivasan
et al.’s method [24] that only simulates each unique
phase of a program once. However, we envision using
it in an alternative fashion. Since FPGA-based archi-
tectures are dynamically reconfigurable, the architec-
ture can be dynamically adjusted for unique phases of
a program, and we intend to use phase detection to en-
able design space exploration that considers alternate
architectures for separate phases in the application.

The second stage of the methodology uses Yi et
al.’s [26] statistically-rigorous approach to performance
analysis. Traditional regression-based design space ex-
ploration methods require kN simulations/evaluations
in order to do single-parameter evaluations, where N
is the number of architecture parameters and k is
the average number of values tested in each regres-
sion of a single parameter. Even worse, evaluation
of two-parameter interactions for all parameters re-
quires an exponential number, kN , of evaluations. Con-
versely, Yi et al.’s method uses the Plackett and Bur-
man (PB) statistical method [20] to rank the impor-
tance of each parameter for both single parameters
and two-parameter interactions using only about 2N
simulations/evaluations. Furthermore, it does so in
a statistically-rigorous fashion, supporting the evalua-
tion recommendations put forth by Skadron et al. [23].
Yi et al.’s method was originally proposed for high-
performance general-purpose processor research, but
the theory is applicable to reconfigurable architectures
as well. In using their method for reconfigurable archi-
tectures, not only can we consider the large number of
parameterizations possible in a soft-core processor, but
we can also use the PB method for each phase of a pro-
gram (with only one run needed to cover all phases of
the program), and thereby identify the most important
parameters for each phase of an application. Hence,
this method will quickly rank the importance of each
architecture parameter/coprocessor for each phase of
an application.

After identifying the important single parameters
and two-parameter interactions for each phase of an
application, in the third stage of the method we per-
form standard regressions (including generating covari-
ance matrices from multivariate regressions for impor-

tant two-parameter interactions) in order to quantify
the effects on execution time, area, power, reliability,
etc. for these parameters and coprocessors.

In the final stage of the methodology, we use our
recently developed binary integer programming tech-
nique [17] to select microarchitecture parameters for
maximizing performance given constrained resources.
This method is both feasible and scalable, so can read-
ily support a large number of architecture parameters.
While initial use of this method was limited by its re-
liance on application execution time as the single per-
formance metric, we now have the capability to use ar-
bitrary metrics on constituent subsystems (e.g., cache
hit and miss rates) which will allow us to more fully
understand the potential interactions between archi-
tecture parameter settings. A clear advantage of this
will be the ability to reason about parameter intera-
tions in a more rigorous way, making definitive judge-
ments rather than looking for correlations in empirical
performance data.

3.4. Performance Predictability

While general-purpose computing systems are typ-
ically optimized for best average-case performance, in
embedded systems it is often the the worst-case perfor-
mance that drives design decisions. Real-time systems
include performance in their correctness criteria, and
the penalties for not succeeding (i.e., missing a dead-
line) can range from minor inconvenience (for some
soft real-time requirements) to total system failure (for
some hard real-time requirements). As a result, the
predictability of system performance is a critical factor
in the design process, and the use of reconfigurable
hardware in the design of these systems provides a
number of opportunities to improve the performance
predictability of the resulting deployed application. For
example, instantiation of an object in firmware makes
the instance variables available in firmware registers—
always one cycle away—as compared with the memory
subsystem which could take from one to hundreds of
cycles to reach the variable.

Intrinsic in the ability to ensure a given performance
level is the need to understand the performance impli-
cations of design decisions that are being made. This
understanding is getting more difficult, as systems be-
come more complex and hierarchical. Abstraction bar-
riers that are introduced to simplify the design process
when one is concerned primarily with average-case per-
formance end up making the design task much more
difficult when one is concerned with meeting real-time
constraints. Examples include both hardware abstrac-
tions (e.g., the ISA hiding microarchitectural details

such as cache hierarchies) and software abstractions
(e.g., the unintended priority inversion that happens
in the OS when a low-priority interrupt is allocated
processor resources instead of a high-priority task). Re-
search has been undertaken to address the need for pre-
dictability in a number of areas, including cache sub-
systems [5, 11], branch prediction [2], instruction issue
in SMTs [3], and open-source operating systems [16].

There are many opportunities to improve perfor-
mance predictability by exploiting the unique capabil-
ities that exist in reconfigurable systems. A simple
example is the fact that a set of functionality that
is deployed in dedicated logic typically has end-to-
end performance characteristics that are well under-
stood at design time. Once inputs have been provided,
some known number of clock cycles later the results
are available. A second example is the uncertainty
generally associated with a cache memory hierarchy.
Customized memory subsystems can be designed for
predictable performance rather than best average-case
performance.

An area in which we see immediate opportunity is
the management of real-time structures for schedul-
ing, thread management, synchronization, and priority
management and inheritance. Programs are currently
at the mercy of an operating system to provide those
functions predictably and reliably. Unfortunately, the
latest releases of stable, open-source systems do not
provide such functions. Patches to those systems to
obtain the desired properties are fragile; custom, real-
time operating systems (such as VxWorks) can be dif-
ficult and expensive to use.

As an example, consider the access to a semaphore
that is enforcing mutual exclusion for a critical section
of code. If the access to the semaphore is via a multi-
master system bus (e.g., one with two or more pro-
cessors or smart peripherals), there can be significant
uncertainty in the delay introduced by the bus itself.
In a system with reconfigurable logic, it is straightfor-
ward to deploy a multiport hardware semaphore that is
accessed completely independently of the system bus.
Access by the processor’s ISA can still be via common
load/store mechanisms; however, the physical path no
longer traverses the bus and therefore avoids the per-
formance uncertainty introduced by the bus.

Note that the above example illustrates not only the
ideas here in this section but also those of Section 3.1
above. A classical resource, a semaphore, is referenced
by the application in the traditional way. However, the
physical deployment of the resource has been altered to
improve one or more aspects of the application’s exe-
cution (in this case improving performance predictabil-
ity).

4. Conclusions

When we began our research on liquid architectures,
reconfigurable platforms were insufficiently mature to
host real applications. While FPGA chips were avail-
able, they were not typically deployed with the acces-
sories necessary to offer them access to high-speed net-
works or reasonable amounts of memory. They were
considered slow, small, and difficult to use.

We developed and constructed liquid platforms with
high-speed access to networks and we developed tool-
chain support to enable reprogramming the platforms
from any Internet connection. That infrastructure in
turn supported several new directions of research that
would not have been possible without reconfigurability.

• Application-specific microarchitecture configura-
tion allows a soft-core processor implementation
to be tuned with respect to performance, area,
or power. Such a problem cannot be considered
for an ASIC processor implementation, and the
scope of experimentation necessary to solve the
optimization problem required the tool-chain in-
frastructure we developed.

• Performance profiling that is accurate and com-
pletely nonintrusive has long been a dream of
application developers. We have developed and
demonstrated the performance of an efficient
performance-monitoring circuit that would not
have been possible without reconfigurability.

• Almost every application relies on efficiency of the
storage subsystem. While caches generally serve
an application well, we identified an important
area in which standard cache structures do not
provide the best performance. We developed the
idea of a “dusty” cache [9] and showed that its per-
formance on reference-counting garbage collectors
is superior to standard caches. This kind of ex-
perimentation was greatly facilitated by the liquid
architecture system. We were able to implement
the cache structure and obtain measurements of
its performance at full-speed, without recourse to
simulation or modeling, which can give only ap-
proximate characterizations of behavior.

During the course of our work, reconfigurable platforms
matured in the manner we predicted. Today one can
buy affordable FPGA-based systems that offer most
of the amenities found on high-end systems. Stan-
dard versions of Linux run on these boards, and they
have the memory and network capabilities that make
them viable as platforms for Next-Generation Systems.

The boards are manufactured in quantity by companies
that are likely to stay in business.

From a codesign perspective, the advent of the af-
fordable FPGA-based system is a strong motivation
for the research problems we have identified in this pa-
per. To use these systems as if they were only smaller
desktop machines would make no use of their reconfig-
urability and belie their true potential.

References

[1] S. Bilavarn, E. Debes, P. Vandergheynst, and
J. Diguet. Processor enhancements for media stream-
ing applications. Journal of VLSI Signal Processing-
Systems for Signal, Image, and Video Technology,
41(2), September 2005.

[2] F. Bodin and I. Puaut. A WCET-oriented static
branch prediction scheme for real time systems. In
Proc. of 17th Euromicro Conf. on Real-Time Systems,
July 2005.

[3] F. J. Cazorla, P. M. Knijnenburg, R. Sakellariou,
E. Fernandez, A. Ramirez, and M. Valero. Predictable
performance in SMT processors. In Proc. of Conf. on
Computing Frontiers, pages 433–443, Apr. 2004.

[4] R. Chamberlain, J. Lockwood, S. Gayen, R. Hough,
and P. Jones. Use of a soft-core processor in a hard-
ware/software codesign laboratory. In Proc. of Int’l
Conf. on Microelectronic Systems Education, June
2004.

[5] D. Chiou, P. Jain, L. Rudolph, and S. Devadas.
Application-specific memory management for embed-
ded systems using software-controlled caches. In Proc.
of Design Automation Conf., 2000.

[6] J. Cook, R. L. Oliver, and E. E. Johnson. Examining
performance differences in workload execution phases.
In Proc. of the 4th IEEE Int’l Workshop on Workload
Characterization, December 2001.

[7] A. Corsaro and R. K. Cytron. Implementing and op-
timizing real-time Java. In Proc. of The 11th Int’l
Workshop on Parallel and Distributed Real-time Sys-
tems. IEEE, 2003.

[8] J. Fleischmann, K. Buchenrieder, and R. Kress. Java
driven codesign and prototyping of networked embed-
ded systems. In Proc. of the 36th ACM/IEEE Design
Automation Conf., pages 794–797, New York, NY,
USA, 1999. ACM Press.

[9] S. Friedman, P. Krishnamurthy, R. Chamberlain,
R. K. Cytron, and J. E. Fritts. Dusty caches for ref-
erence counting garbage collection. In Proc. of Work-
shop on Memory Performance: Dealing with Applica-
tions, Systems and Architecture, Sept. 2005.

[10] R. Hough, P. Jones, S. Friedman, R. Chamberlain,
J. Fritts, J. Lockwood, and R. Cytron. Cycle-accurate
microarchitecture performance evaluation. In Proc. of
Workshop on Introspective Architecture, Feb. 2006.

[11] J. Irwin, D. May, H. L. Muller, and D. Page. Pre-
dictable instruction caching for media processors. In

13th Int’l Conf. on Application-Specific Systems, Ar-
chitectures and Processors, pages 141–150. IEEE Com-
puter Society Press, July 2002.

[12] P. Jones, S. Padmanabhan, D. Rymarz,
J. Maschmeyer, D. V. Schuehler, J. W. Lock-
wood, and R. K. Cytron. Liquid architecture. In
Proc. of Workshop on Next Generation Software,
Apr. 2004.

[13] P. Krishnamurthy, J. Buhler, R. Chamberlain,
M. Franklin, K. Gyang, and J. Lancaster. Biosequence
similarity search on the Mercury system. In Proc.
of the IEEE 15th Int’l Conf. on Application-Specific
Systems, Architectures and Processors, pages 365–375,
Sept. 2004.

[14] Free Hardware and Software Resources for System on
Chip. http://www.leox.org.

[15] J. W. Lockwood. Evolvable Internet hardware plat-
forms. In The Third NASA/DoD Workshop on Evolv-
able Hardware, pages 271–279, July 2001.

[16] T. Nakajima and M. Iwasaki. Issues for making Linux
predictable. In Proc. of Symp. on Applications and the
Internet, Jan. 2002.

[17] S. Padmanabhan, R. K. Cytron, R. D. Chamberlain,
and J. W. Lockwood. Application-specific automatic
microarchitecture reconfiguration. In Proc. of 13th Re-
configurable Architectures Workshop, Apr. 2006.

[18] S. Padmanabhan, P. Jones, D. V. Schuehler, S. J.
Friedman, P. Krishnamurthy, H. Zhang, R. Chamber-
lain, R. K. Cytron, J. Fritts, and J. W. Lockwood. Ex-
tracting and improving microarchitecture performance
on reconfigurable architectures. In Proc. of Work-
shop on Compilers and Tools for Constrained Embed-
ded Systems, Sept. 2004.

[19] S. Padmanabhan, P. Jones, D. V. Schuehler, S. J.
Friedman, P. Krishnamurthy, H. Zhang, R. Chamber-
lain, R. K. Cytron, J. Fritts, and J. W. Lockwood. Ex-
tracting and improving microarchitecture performance
on reconfigurable architectures. Int’l Journal of Par-
allel Programming, 33(2–3):115–136, June 2005.

[20] R. Plackett and J. Burman. The design of optimum
multifactorial experiments. Biometrika, 33(4):305–
325, June 1946.

[21] D. V. Schuehler, B. C. Brodie, R. D. Chamberlain,
R. K. Cytron, S. J. Friedman, J. Fritts, P. Jones,
P. Krishnamurthy, J. W. Lockwood, S. Padmanab-
han, and H. Zhang. Microarchitecture optimization
for embedded systems. In Proc. of 8th High Perfor-
mance Embedded Computing Workshop, Sept. 2004.

[22] T. Sherwood, E. Perelman, and B. Calder. Block dis-
tribution analysis to find periodic behavior and sim-
ulation points in applications. In Proc. of the 2001
Int’l Conf. on Parallel Architectures and Compilation
Techniques, September 2001.

[23] K. Skadron, M. Martonosi, D. I. August, M. D. Hill,
D. J. Lilja, and V. S. Pai. Challenges in computer
architecture evaluation. IEEE Computer, 36(8):30–36,
August 2003.

[24] R. Srinivasan, J. Cook, and S. Cooper. Fast, ac-
curate microarchitecture simulation using statistical
phase detection. In Proc. of the 2005 IEEE Int’l Sym-
posium on Performance Analysis of Systems and Soft-
ware, pages 147–156, March 2005.

[25] µClinux – Embedded Linux/Microcontroller Project.
http://www.uClinux.org.

[26] J. J. Yi, D. J. Lilja, and D. M. Hawkins. Improv-
ing computer architecture simulation methodology by
adding statistical rigor. IEEE Transactions on Com-
puters, 54(11):1360–1373, November 2005.

