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Abstract—We consider an opportunistic communication system
consisting of multiple independent channels with time-varying
states. We formulate the problem of optimal sequential channel
selection as a restless multi-armed bandit process, for which a
powerful policy—Whittle’s index policy—can be implemented
based on the indexability of the system. We obtain Whittle’s
index in closed-form under the average reward criterion, which
leads to the direct implementation of Whittle’s index policy. To
evaluate the performance of Whittle’s index policy, we provide
simple algorithms to calculate an upper bound of the optimal
performance. The tightness of the upper bound and the near-
optimal performance of Whittle’s index policy are illustra ted with
simulation examples. When channels are stochastically identical,
we show that Whittle’s index policy is equivalent to the myopic
policy, which has a simple and robust structure. Based on
this structure, we establish the approximation factors of the
performance of Whittle’s index policy. Furthermore, we show
that Whittle’s index policy is optimal under certain condit ions.

Index Terms—Multi-channel opportunistic access, restless
multi-armed bandit, Whittle’s index, indexability

I. I NTRODUCTION

A. Multichannel Opportunistic Access

Consider a system consisting ofN independent channels.
We adopt the Gilbert-Elliot channel model [1], where the
state of a channel—“good” or “bad”—evolves as a Markov
chain from slot to slot. Due to limited sensing, a user can
only sense and accessK of theseN channels in each slot
and accrue rewards determined by the states of the chosen
channels. The objective is to design an optimal sensing
policy to maximize the long-run reward (i.e., throughput).
We formulate the problem as a Restless Multi-armed Bandit
Process (RMBP) [2]. Unfortunately, a general RMBP has been
shown to be PSPACE-hard [3]. By considering the Lagrangian
relaxation of the problem, Whittle proposed a heuristic index
policy for RMBP [2], which is optimal under the relaxed
constraint on the average number of activated arms over the
infinite horizon. Under the strict constraint that exactlyK arms
are to be activated at each time, Whittle’s index policy has been
shown to be asymptotically(N → ∞) optimal under certain
conditions [4]. In the finite regime, extensive empirical studies
have demonstrated the near-optimal performance of Whittle’s
index policy, see, for example, [5], [6].
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However, not every RMBP has a well-defined Whittle’s
index; those that admit Whittle’s index policy are called
indexable[2]. The indexability of an RMBP is often difficult
to establish, and computing Whittle’s index can be complex,
often relying on numerical approximations.
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Fig. 1. The Gilber-Elliot channel model.

B. Contribution

We formulate the design of the optimal sensing policy as an
RMBP which has an uncountable state space. By exploiting
the rich structure of the problem, we extend the indexability
under the discounted reward criterion established in [7] tothe
average reward criterion. Furthermore, we obtain the closed-
form Whittle’s index which is the limit of that under the
discounted reward criterion as the discount factor goes to 1.
Whittle’s index policy can then be implemented with simple
evaluations of the closed-form expressions.

To develop the performance bound of Whittle’s index policy,
we consider the same RMBP but under the relaxed constraint
on the average number of channels to sense. The optimal
performance of this bandit process is thus an upper bound
of the original one under the strict constraint. In this paper,
we provide simple algorithms to evaluate this upper bound.
The strong performance of Whittle’s index policy can thus
be demonstrated by comparing with this upper bound instead
of the optimal performance of the original bandit process that
requires the exponential complexity. The tightness of the upper
bound and the powerful performance of Whittle’s index policy
are illustrated in simulation examples.

When channels are stochastically identical, we show that
Whittle’s index policy coincides with the myopic policy. Inthis
case, Whittle’s index policy has a simple and robust structure
that does not need the update of the belief values or the precise
knowledge of the transition probabilities of the underlying
Markovian channel model. This structure automatically tracks
the model variations as long as the order of the transition



probabilities is unchanged. Based on the structure, we build
a lower bound of the performance by Whittle’s index policy,
leading to approximation factors of its performance. We show
that Whittle’s index policy achieves at leastK

N
the optimal

performance. Furthermore, Whittle’s index policy is optimal
when K = N − 1 or N . The factor K

N
can be further

improved when each channel is negatively correlated. In this
case, Whittle’s index policy achieves at leastmax{ 1

2 , K
N
} the

optimal performance.

C. Related Work

Multichannel opportunistic access in the context of cogni-
tive radio systems has been studied in [8], [9] where the prob-
lem is formulated as a Partially Observable Markov Decision
Process (POMDP) to take into account potential correlations
among channels. For stochastically identical and independent
channels and under the assumption of single-channel sensing
(K = 1), the structure, optimality, and performance of the
myopic policy have been investigated in [10], where the semi-
universal structure of the myopic policy was established for all
N and the optimality of the myopic policy proved forN = 2.
In a recent work [11], the optimality of the myopic policy was
extended toN > 2 under the condition ofp11 ≥ p01. In this
paper, we establish the equivalence relationship between the
myopic policy and Whittle’s index policy when channels are
stochastically identical. This equivalence relationshipshows
that the results obtained in [10], [11] for the myopic policy
are directly applicable to Whittle’s index policy. Furthermore,
we extend these results to multichannel sensing (K > 1).

In [7], we have established the indexability and obtained
closed-form Whittle’s index of the RMBP for multichannel
opportunistic access under the discounted reward criterion.
These results are key to analyzing the indexability and solve
for Whittle’s index of the RMBP under the average discounted
reward criterion. In [12], Le Nyet al. have considered the
same class of RMBP motivated by the applications of target
tracking. They have independently established the indexability
and obtained the closed-form expressions for Whittle’s index
under the discounted reward criterion. However, the approach
in [7] is different from that used in [12].

In the general context of RMBP, there is a rich literature
on indexability. See [13] for the linear programming repre-
sentation of conditions for indexability and [6] for examples
of specific indexable restless bandit processes. Constant-factor
approximation algorithms for RMBP have also been explored
in the literature. For the same class of RMBP as considered
in this paper, Guha and Munagala [14] have developed a
constant-factor (1/68) approximation via LP relaxation under
the condition thatp11 > 1

2 > p01 for each channel. In [15],
Guhaet al.have developed a factor-2 approximation policy via
LP relaxation for the so-called monotone bandit processes.

II. M ULTI -CHANNEL OPPORTUNISTICACCESS AND

RESTLESSBANDIT FORMULATION

ConsiderN independent Gilbert-Elliot channels, each with
transmission rateBi(i = 1, · · · , N). The state of channeli—

“good”(1) or “bad”(0)— evolves from slot to slot as a Markov
chain with transition matrixPi = {p

(i)
j,k}j,k∈{0,1} as shown in

Fig. 1. At the beginning of slott, the user selectsK out of
N channels to sense. If the stateSi(t) of the sensed channel
i is 1, the user transmits and collectsBi units of reward in
this channel. Otherwise, the user collects no reward in this
channel. LetU(t) denote the set ofK channels chosen in slot
t. The reward obtained in slott is thus given by

RU(t)(t) = Σi∈U(t)Si(t)Bi.

The channel states[S1(t), ..., SN (t)] ∈ {0, 1}N are not di-
rectly observable before the sensing action is made. The user
can, however, infer the channel states from its decision and
observation history. It has been shown that a sufficient statistic
for optimal decision making is given by the conditional prob-
ability that each channel is in state1 given all past decisions
and observations [16]. Referred to as the belief vector, this
sufficient statistic is denoted byΩ(t)

∆
= [ω1(t), · · · , ωN (t)],

where ωi(t) is the conditional probability thatSi(t) = 1.
Given the sensing actionU(t) and the observation in slott,
the belief state in slott + 1 can be obtained recursively as
follows:

ωi(t + 1) =











p
(i)
11 , i ∈ U(t), Si(t) = 1

p
(i)
01 , i ∈ U(t), Si(t) = 0

T (ωi(t)), i /∈ U(t)

, (1)

where T (ωi(t)) , ωi(t)p
(i)
11 + (1 − ωi(t))p

(i)
01 denotes the

one-step belief update for unobserved channels.
We thus have an RMBP formulation, where each channel

is considered as an arm and the state of armi in slot t is the
belief stateωi(t). The user chooses an actionU(t) consisting
of K arms to activate (sense) in each slot, while other arms
are made passive (unobserved). The states of both active and
passive arms change as given in (1). A policyπ : Ω(t) → U(t)
is a function that maps from the belief vectorΩ(t) to the action
U(t) in slot t. Our objective is to design the optimal policy
π∗ to maximize the expected average reward over the infinite
horizon:

max
π

{Eπ[ lim
T→∞

1

T
ΣT

t=1Rπ(Ω(t))(t)|Ω(1)]}. (2)

III. W HITTLE ’ S INDEX POLICY

To introduce indexability and Whittle’s index policy, it
suffices to consider a single arm. Assume a constant subsidym
(subsidy for passivity) is obtained whenever the arm is made
passive. In each slot, the user chooses one of two possible
actions—u ∈ {0 (passive), 1 (active)}—to make the arm
passive or active. The objective is to decide whether to activate
the arm in each slot to maximize the average reward. Let
u∗

m(ω) denote the optimal action for belief stateω under
subsidym. The passive setP(m) under subsidym is given
by

P(m) = {ω : u∗
m(ω) = 0}. (3)



Definition 1: An arm isindexableif the passive setP(m) of
the corresponding single-armed bandit process with subsidy m
monotonically increases from∅ to the whole state space[0, 1]
asm increases from−∞ to +∞. An RMBP is indexable if
every arm is indexable.

Under the indexability condition, Whittle’s index is defined
as follows.

Definition 2: If an arm is indexable, itsWhittle’s index
W (ω) of the stateω is the infimum subsidym such that it is
optimal to make the arm passive atω. Equivalently, Whittle’s
indexW (ω) is the infimum subsidym that makes the passive
and active actions equally rewarding.

W (ω) = inf
m
{m : u∗

m(ω) = 0}. (4)

In each slot, Whittle’s index policy senses theK channels
with the largest Whittle’s indices.

A. Indexability and Closed-form Whittle’s Index

Our analysis on the indexability and Whittle’s index hinges
on the previous results under the discounted reward crite-
rion [7]. First, we present a general result by Dutta [17] on
the relationship between the value function and the optimal
policy under the discounted reward criterion and those under
the average reward criterion. This result allows us to study
Whittle’s index policy under the average reward criterion by
examining its limiting behavior as the discount factorβ → 1.

Dutta’s Theorem[17]. Let F be the belief space of a
POMDP andVβ(Ω) the value function (i.e., the maximum
expected total discounted reward starting from beliefΩ ∈
F ) with discount factorβ. The POMDP satisfies the value
boundedness condition if there exist a beliefΩ′, a real-valued
function c1(Ω) : F → R, and a constantc2 < ∞ such that

c1(Ω) ≤ Vβ(Ω) − Vβ(Ω′) ≤ c2,

for any Ω ∈ F andβ ∈ [0, 1). Under the value-boundedness
condition, if a series of optimal policiesπβk

for a POMDP
with discount factorβk pointwise converges to a limitπ∗ as
βk → 1, thenπ∗ is the optimal policy for the POMDP under
the average reward criterion. Furthermore, letJ(Ω) denote the
maximum expected average reward over the infinite horizon
starting from the initial beliefΩ, we have

J(Ω) = lim
βk→1

(1 − βk)Vβk
(Ω)

andJ(Ω) = J is independent of the initial beliefΩ.
Lemma 1:The single-armed bandit process with subsidy

under the discounted reward criterion satisfies the value-
boundedness condition.

Proof: Omitted due to space limit. See [18] for details.

In [7], we showed that the optimal policy under discounted
reward criterion is a threshold policy with thresholdω∗

β(m).
By Dutta’s theorem and Lemma 1, we can show that the op-
timal policy for the single-armed bandit process with subsidy
under the average reward criterion is also a threshold policy.

Lemma 2:Let ω∗
β(m) denote the threshold of the optimal

policy for the single-armed bandit process with subsidym
under the discounted reward criterion. Thenlimβ→1 ω∗

β(m)
exists for anym. Furthermore, the optimal policy for the
single-armed bandit process with subsidym under the average
reward criterion is also a threshold policy with threshold
ω∗(m) = limβ→1 ω∗

β(m).
Proof: Omitted due to space limit. See [18] for details.

Based on Lemma 2, the restless multi-armed bandit process
is indexable if the thresholdω∗(m) of the optimal policy
is monotonically increasing with subsidym. Based on the
indexability property of the RMBP under the discounted
reward criterion established in [7], we haveω∗

β(m) increases
with m. Sinceω∗(m) = limβ→1 ω∗

β(m), it is easy to see that
ω∗(m) also increases withm. The bandit is thus indexable.
Furthermore, Whittle’s index is the limit of that under the
discounted reward criterion obtained in [7] by letting the
discount factor goes to1.

Theorem 1:The restless multi-armed bandit process is in-
dexable with Whittle’s indexW (ω) given below.

• Case 1: Positively correlated channel(p
(i)
11 ≥ p

(i)
01 ).

W (ω) =































ωBi, if ω ≤ p
(i)
01 or ω ≥ p

(i)
11

(ω−T 1(ω))(L(p
(i)
01 ,ω)+1)+T L(p

(i)
01

,ω)(p
(i)
01 )

1−p
(i)
11 +(ω−T 1(ω))L(p

(i)
01 ,ω)+T L(p

(i)
01 ,ω)(p

(i)
01 )

Bi,

if p
(i)
01 < ω < ω

(i)
o

ω

1−p
(i)
11 +ω

Bi, if ω
(i)
o ≤ ω < p

(i)
11

.

• Case 2: Negatively correlated channel(p
(i)
11 < p

(i)
01 ).

W (ω) =











































ωBi, if ω ≤ p
(i)
11 or ω ≥ p

(i)
01

ω+p
(i)
01 −T 1(ω)

1+p
(i)
01 −T 1(p

(i)
11 )+T 1(ω)−ω

Bi

if p
(i)
11 < ω < ω

(i)
o

p
(i)
01

1+p
(i)
01 −T 1(p

(i)
11 )

Bi, if ω
(i)
o ≤ ω < T 1(p

(i)
11 )

p
(i)
01

1+p
(i)
01 −ω

Bi, if T 1(p
(i)
11 ) ≤ ω < p

(i)
01

.

Proof: Omitted due to the space limit. See [18] for details.

B. The Performance of Whittle’s Index Policy

Whittle’s index policy is optimal when the constraint on
the number of activated armsK(t) (t ≥ 1) is relaxed to the
following.

Eπ [ lim
T→∞

1

T
ΣT

t=1K(t)] = K.

Let J̄(Ω(1)) denote the maximum expected average reward
that can be obtained under this relaxed constraint. Based on
the Lagrangian multiplier theorem, we have [2]

J̄ = inf
m
{ΣN

i=1J
(i)
m − m(N − K)}, (5)

whereJ
(i)
m is the maximum expected average reward of the

single-armed bandit process with subsidym that corresponds
to the i-th channel.



Let J(Ω(1)) denote the maximum expected average reward
of the RMBP under the strict constraint thatK(t) = K for
all t. Obviously,J(Ω(1)) ≤ J̄ . J̄ thus provides a performance
benchmark for Whittle’s index policy under the strict con-
straint. To evaluateJ̄ , we consider the single-armed bandit
with subsidym under the average reward criterion (assume
the bandwidthB = 1). The value functionJm and the average
passive timeDm = d(Jm)

dm
can be obtained in closed-form as

shown in Lemma 3 below.
Lemma 3:Let ω∗(m) be the threshold of the optimal

policy. We have

Jm =



























ωo, if ω∗(m) < min{p01, p11}
(1−p11)L(p01,ω∗(m))m+T L(p01,ω∗(m))(p01)

(1−p11)(L(p01,ω∗(m))+1)+T L(p01,ω∗(m))(p01)
,

if p01 ≤ ω∗(m) < ωo
p01m+p01

1+2p01−T 1(p11) , if p11 ≤ ω∗(m) < T 1(p11)

m, other cases

and

Dm =



























0, if ω∗(m) < min{p01, p11}
(1−p11)L(p01,ω∗(m))

(1−p11)(L(p01,ω∗(m))+1)+T L(p01,ω∗(m))(p01)
,

if p01 ≤ ω∗(m) < ωo
p01

1+2p01−T 1(p11) , if p11 ≤ ω∗(m) < T 1(p11)

1, other cases

Furthermore,Dm is piecewise constant and increasing with
m.

Proof: By Dutta’s Theorem and Lemma 1,Jm can
be obtained from the limit of the value function under the
discounted reward criterion as the discount factor goes to
1. Dm can be obtained directly from the closed formJm.
The monotonicity ofDm follows from the convexity ofJm.
See [18] for details.

Based on the closed-formDm given in Lemma 3, the
subsidym∗ that achieves the infimum in (5) is the supremum
value of m ∈ [0, 1] satisfying ΣN

i=1D
(i)
m ≤ N − K. After

obtainingm∗, it is easy to calculate the infimum according to
the closed-formJm given in Lemma 3. Based on the piecewise
constant property ofDm, we can design an algorithm which
runs in O(N(log N)2) time to computeJ̄ within ǫ-accuracy
for any ǫ > 0. Furthermore, when every channel satisfies
p11 < p01, we can computēJ without error with complexity
O(N2 log N). See [18] for the detailed algorithms.

Figure 2 below shows an example of the performance of
Whittle’s index policy. We notice that the performance loss
by Whittle’s index policy is negligible and the upper bound
of the optimal policy is tight.

IV. STOCHASTICALLY IDENTICAL CHANNELS

Based on the monotonicity of Whittle’s index with the
belief state, Whittle’s index policy is equivalent to the myopic
policy for stochastically identical arms. A myopic policy
ignores the impact of the current action on the future re-
ward, focusing solely on maximizing the expected immedi-
ate reward. The myopic action̂U(t) under the belief state
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Fig. 2. The Performance of Whittle’s index policy (N = 8).

Ω(t) = [ω1(t), · · · , ωN(t)] is given by

Û(t) = argmax
U(t)

Σi∈U(t) ωi(t)Bi. (6)

We can analyze Whittle’s index policy by focusing on the
myopic policy which has a much simpler index form.

A. The Structure of Whittle’s Index Policy

The implementation of Whittle’s index policy can be de-
scribed with a queue structure. Specifically, allN channels
are ordered in a queue, and in each slot, thoseK channels at
the head of the queue are sensed. The initial channel ordering
K(1) is determined by the initial belief vector as given below.

ωn1(1) ≥ · · · ≥ ωnN
(1) =⇒ K(1) = (n1, · · · , nN ).

Based on the observations, channels are reordered at the end
of each slot according to the following simple rules. When
p11 ≥ p01, the channels observed in state1 will stay at the
head of the queue while the channels observed in state0 will
be moved to the end of the queue. Whenp11 < p01, the
channels observed in state0 will stay at the head of the queue
while the channels observed in state1 will be moved to the
end of the queue. The order of the unobserved channels are
reversed.

Based on the structure, Whittle’s index policy can be im-
plemented without knowing the channel transition probabilities
except the order ofp11 andp01. As a result, Whittle’s index
policy is robust against model mismatch and automatically
tracks variations in the channel model provided that the order
of p11 and p01 remains unchanged. As show in Fig. 3, the
transition probabilities change abruptly in the fifth slot,which
corresponds to an increase in the occurrence of good channel
state in the system. From this figure, we can observe, from the
change in the throughput increasing rate, that Whittle’s index
policy effectively tracks the model variations.

B. Optimality and Approximation Factor

Based on the simple structure of Whittle’s index policy
for stochastically identical channels, we can obtain a lower
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bound of its performance. Combining this lower bound and
the upper bound shown in Sec. III-B, we further obtain the
approximation factor of the performance by Whittle’s index
policy, which are independent of channel parameters. Recall
that J denote the average reward achieved by the optimal
policy. LetJw denote the average reward achieved by Whittle’s
index policy,

Theorem 2: Lower and Upper Bounds of The Performance
of Whittle’s Index Policy

• Case 1:p11 ≥ p01

KT ⌊N
K

⌋−1(p01)

1 − p11 + T ⌊N
K

⌋−1(p01)
≤ Jw ≤ J ≤ min{

Kωo

1 − p11 + ωo

, ωoN}

• Case 2:p11 < p01

Kp01

1 − T 2⌊N
K

⌋−2(p11) + p01

≤ Jw ≤ J ≤ min{
Kp01

1 − T 1(p11) + p01
, ωoN}

Proof: The upper bound ofJ is obtained from the upper
bound of the optimal performance for generally non-identical
channels as given in (5). The lower bound ofJw is obtained
from the structure of Whittle’s index policy. See [18] for
details.

Corollary 1: Let η = Jw

J
be the approximation factor

defined as the ratio of the performance by Whittle’s index
policy to the optimal performance. We have

p11 ≥ p01 p11 < p01
{

η = 1, for K = 1, N − 1, N
η ≥ K

N
, o.w.

{

η = 1, for K = N − 1, N
η ≥ max{ 1

2 , K
N
}, o.w.

Proof: Omitted due to the space limit. See [18] for details.

From Corollary 1, Whittle’s index policy is optimal when
K = 1 (for positively correlated channels) andK = N − 1.
The optimality forK = N is trivial. We point out that for a
generalK, numerical examples have shown that actions given
by Whittle’s index policy match with the optimal actions for

randomly generated sample paths, suggesting the optimality
of Whittle’s index policy.

V. CONCLUSION

In this paper, we extended the indexability and Whittle’s
index in [7] to the average reward criteria. We provided
simple algorithms to evaluate an upper bound of the optimal
performance. When channels are stochastically identical,we
have shown that Whittle’s index policy coincides with the
myopic policy. Based on this equivalency, we have established
the semi-universal structure and the optimality of Whittle
index policy under certain conditions.
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