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Abstract—We consider an opportunistic communication system
consisting of multiple independent channels with time-vaying
states. We formulate the problem of optimal sequential chanel
selection as a restless multi-armed bandit process, for wtih a
powerful policy—Whittle’s index policy—can be implementel
based on the indexability of the system. We obtain Whittle’'s
index in closed-form under the average reward criterion, wlich
leads to the direct implementation of Whittle’s index poligy. To
evaluate the performance of Whittle’s index policy, we proiwde
simple algorithms to calculate an upper bound of the optimal
performance. The tightness of the upper bound and the near-
optimal performance of Whittle's index policy are illustrated with
simulation examples. When channels are stochastically idécal,
we show that Whittle's index policy is equivalent to the myojic
policy, which has a simple and robust structure. Based on
this structure, we establish the approximation factors of he
performance of Whittle’s index policy. Furthermore, we shav
that Whittle’s index policy is optimal under certain conditions.

Index Terms—Multi-channel opportunistic access, restless

multi-armed bandit, Whittle's index, indexability

I. INTRODUCTION

A. Multichannel Opportunistic Access

Consider a system consisting &f independent channels.

We adopt the Gilbert-Elliot channel model [1], where theOI
state of a channel—"good” or “bad’—evolves as a Markoy,

chain from slot to slot. Due to limited sensing,
only sense and acceds of these N channels in each slot

and accrue rewards determined by the states of the chosen

However, not every RMBP has a well-defined Whittle’s
index; those that admit Whittle’s index policy are called
indexable[2]. The indexability of an RMBP is often difficult
to establish, and computing Whittle’s index can be complex,
often relying on numerical approximations.

(1)
Poo

i

Fig. 1. The Gilber-Elliot channel model.

B. Contribution

We formulate the design of the optimal sensing policy as an
RMBP which has an uncountable state space. By exploiting
the rich structure of the problem, we extend the indexabilit
under the discounted reward criterion established in [th&
average reward criterion. Furthermore, we obtain the diose
form Whittle’s index which is the limit of that under the
iscounted reward criterion as the discount factor goes.to 1
Whittle's index policy can then be implemented with simple

a user can

evaluations of the closed-form expressions.
To develop the performance bound of Whittle's index policy,

WE consider the same RMBP but under the relaxed constraint

channels. The objective is to design an optimal sensing .
: - on the average number of channels to sense. The optimal
policy to maximize the long-run reward.€., throughput).

We formulate the problem as a Restless Multi-armed Bamgifrformance of this bandit process is thus an upper bound

the original one under the strict constraint. In this pape
Process (RMBP) [2]. Unfortunately, a general RMBP has bef‘\?vré provide simple algorithms to evaluate this upper bound.

shown to be PSPACE-hard [3]. By considering the LagranglarrF]e strong performance of Whittle’s index policy can thus

relaxation of the problem, Whittle proposed a heuristiceind . . . .
policy for RMBP [2], which is optimal under the relaxedbe demonstrated by comparing with this upper bound instead

. : %f the optimal performance of the original bandit procesd th
constraint on the average number of activated arms over treeuires the exponential complexity. The tightness of
infinite horizon. Under the strict constraint that exadilyarms 4 P P X 9

are to be activated at each time, Whittle’s index policy et bound and the powerful performance of Whittle’s index pplic

shown to be asymptoticallyN — oo) optimal under certain are illustrated in simulation examples.
. ymproti > ©0) Oplir L . When channels are stochastically identical, we show that
conditions [4]. In the finite regime, extensive empiricaldies

i . Whittle’s index policy coincides with the myopic policy. this
have demonstrated the near-optimal performance of Wb'tﬂ%ase Whittle’s index policy has a simple and robust stmectu
index policy, see, for example, [5], [6]. that does not need the update of the belief values or thegareci
O knowledge of the transition probabilities of the undertyin
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probabilities is unchanged. Based on the structure, wed buthood”(1) or “bad”(0)— evolves from slot to slot as a Markov
a lower bound of the performance by Whittle’s index policyzhain with transition matri¥; = {p§fi}.j7ke{071} as shown in
leading to approximation factors of its performance. WewshoFig. 1. At the beginning of slot, the user select& out of
that Whittle’s index policy achieves at leagt the optimal N channels to sense. If the stafg(t) of the sensed channel
performance. Furthermore, Whittle’s index policy is omim ;5 is 1, the user transmits and colleci units of reward in
when K = N — 1 or N. The factor £ can be further this channel. Otherwise, the user collects no reward in this
improved when each channel is negatively correlated. Is thdghannel. Let/(¢) denote the set ok channels chosen in slot

case, Whittle’s index policy achieves at leasix{2, £} the t. The reward obtained in slatis thus given by

optimal performance.
Ryy(t) = Zicv)Si(t)Bi.

C. Rel-ated Work o ) The channel stategS; (), ..., Sn(t)] € {0,1}" are not di-
Multichannel opportunistic access in the context of cognjactly observable before the sensing action is made. The use
tive radio systems has been studied in [8], [9] where theproly, “however, infer the channel states from its decision and
lem is formulated as a Partially Observable Markov Decisig¥,,servation history. It has been shown that a sufficienisitat
Process (POMDP) to take intq account potential _correlatioFbr optimal decision making is given by the conditional prob
among channels. For stochastically identical and indegendapility that each channel is in stategiven all past decisions
channels and under the assumption of single-channel $ensifg observations [16]. Referred to as the belief vectos thi
(K = 1), the structure, optimality, and performance of th@ufﬁcient statistic is denoted b@(t)é[wl(t),--- L wn (b)),
myopic policy have been investigated in [10], where the semj oo w;(t) is the conditional probability thaf;(t) = 1.
universal structure of the myopic policy was establishedfd i an the sensing actiot () and the observation in slat

N and the optimality of the rr_1yopic policy prove_d for - 2. the belief state in slot + 1 can be obtained recursively as
In a recent work [11], the optimality of the myopic policy Wag|iows:

extended taNV > 2 under the condition op;; > po:. In this 0

paper, we establish the equivalence relationship between t Pi1s 1eUt),Si(t)=1
myopic policy and Whittle’s index policy when channels are  w;(t +1) = pé?, ieU(t),Sit)y=0 » @)
stochastically identical. This equivalence relationskipws T (wi(t), 1¢U()

that the results obtained in [10], [11] for the myopic policy _ _
are directly applicable to Whittle’s index policy. Furtheore, where 7 (w;(t)) £ wi(t)pﬁ) +(1- wi(t))pézl) denotes the
we extend these results to multichannel sensiig( 1). one-step belief update for unobserved channels.

In [7], we have established the indexability and obtained We thus have an RMBP formulation, where each channel
closed-form Whittle’s index of the RMBP for multichannelis considered as an arm and the state of aimslot ¢ is the
opportunistic access under the discounted reward cniteridelief statew;(t). The user chooses an actidf{t) consisting
These results are key to analyzing the indexability andesolof K arms to activate (sense) in each slot, while other arms
for Whittle's index of the RMBP under the average discounteafe made passive (unobserved). The states of both active and
reward criterion. In [12], Le Nyet al. have considered the passive arms change as given in (1). A policyQ(t) — U(t)
same class of RMBP motivated by the applications of targeta function that maps from the belief vecfoft) to the action
tracking. They have independently established the indétyab U(¢) in slot . Our objective is to design the optimal policy
and obtained the closed-form expressions for Whittle'sind 7* to maximize the expected average reward over the infinite
under the discounted reward criterion. However, the aggroahorizon:
in [7] is different from that used in [12]. N

In the general context of RMBP, there is a rich literature m,%X{]Ew[Tlgr;O fztleﬂ(Q(t))(t)m(l)]}- @)
on indexability. See [13] for the linear programming repre-
sentation of conditions for indexability and [6] for exarapl
of specific indexable restless bandit processes. Confgtetutr . WHITTLE’S INDEX PoLICY

approximation algorithms for RMBP have also been exploredTo introduce indexability and Whittle’s index policy, it

in the literature. For the same class of RMBP as ConSiderﬁ(ﬁfﬁces to consider asing|e arm. Assume a constant SUbSldy

in this paper, Guha and Munagala [14] have developed(gubsidy for passivilyis obtained whenever the arm is made
constant-factor (1/68) approximation via LP relaxatioml@n passive. In each slot, the user chooses one of two possible
the condition thapy; > 5 > po: for each channel. In [15], actions— € {0 (passive, 1 (active}—to make the arm
Guhaet al. have developed a factor-2 approximation policy Vigassive or active. The objective is to decide whether tvaieti

LP relaxation for the so-called monotone bandit processesthe arm in each slot to maximize the average reward. Let

u’ (w) denote the optimal action for belief state under

sGlbsidym. The passive seP(m) under subsidym is given
by

ConsiderN independent Gilbert-Elliot channels, each with .
transmission raté; (i = 1,--- , N). The state of channe— P(m) = {w: up(w) =0} 3)

Il. MULTI-CHANNEL OPPORTUNISTICACCESS AND
RESTLESSBANDIT FORMULATION



Definition 1: An arm isindexabldf the passive seP(m) of Lemma 2:Let wj(m) denote the threshold of the optimal
the corresponding single-armed bandit process with syhsid policy for the single-armed bandit process with subsidy
monotonically increases frofhto the whole state spage, 1] under the discounted reward criterion. ThEmg_.q wj(m)
asm increases from-oo to +00. An RMBP is indexable if exists for anym. Furthermore, the optimal policy for the
every arm is indexable. single-armed bandit process with subsidyunder the average

Under the indexability condition, Whittle’s index is defthe reward criterion is also a threshold policy with threshold

as follows. w*(m) = limg_1 wj(m).
Definition 2: If an arm is indexable, itsWhittle’s index Proof: Omitted due to space limit. See [18] for details.
W (w) of the statew is the infimum subsidyn such that it is [ |

optimal to make the arm passivewat Equivalently, Whittle’s ~ Based on Lemma 2, the restless multi-armed bandit process
index W (w) is the infimum subsidyn that makes the passiveis indexable if the threshold*(m) of the optimal policy
and active actions equally rewarding. is monotonically increasing with subsidy.. Based on the
indexability property of the RMBP under the discounted
reward criterion established in [7], we hawg(m) increases
with m. Sincew™(m) = limg_.1 wj(m), it is easy to see that
w*(m) also increases withn. The bandit is thus indexable.
Furthermore, Whittle's index is the limit of that under the
discounted reward criterion obtained in [7] by letting the

: . . L . discount factor goes to.
Our analysis on the indexability and Whittle's index hinges Theorem 1:The restless multi-armed bandit process is in-

on the previous results under the discounted reward Critgsyable with Whittle’s index¥V (w) given below.
rion [7]. First, we present a general result by Dutta [17] on

the relationship between the value function and the optimal®

W(w) = irrrllf{m: ur, (w) = 0}. (4)

In each slot, Whittle’s index policy senses the channels
with the largest Whittle’s indices.

A. Indexability and Closed-form Whittle’s Index

Case 1: Positively correlated channg g? > péil)).

policy under the discounted reward criterion and those unde
the average reward criterion. This result allows us to study
Whittle's index policy under the average reward criterion bW(w) -
examining its limiting behavior as the discount factor 1. o
Dutta’s Theorem[17]. Let F be the belief space of a
POMDP andVj3(2) the value function i(e., the maximum
expected total discounted reward starting from befiefe
F) with discount factorg. The POMDP satisfies the value
boundedness condition if there exist a beligf a real-valued
functionc¢; () : F — R, and a constant, < co such that

e1(Q) < Va() — Va(@) < e,

W(w) =

for any 2 € F and g € [0,1). Under the value-boundedness
condition, if a series of optimal policiesg, for a POMDP
with discount factorg,, pointwise converges to a limit* as

B, — 1, thenn* is the optimal policy for the POMDP under
the average reward criterion. Furthermore Jéf2) denote the

wB;, fw< p((fl) orw > pgil)
) (i) )
(=T (W) (L(p§) )+ +TEPo1 ) (p())
i 7 (1) w i
() (w=T 1 (@) L(pGy )+ T o0 (7))

1-p 1
if pglll> <w<w®

19

i (0) (2)
%Bi, if Wo S w < P11

(@)

« Case 2: Negatively correlated chanr(@lgil) < Poi)-

if w< pgil) orw > pgil)
_wtp{) T (w)

Lpl) =T (pi))+ T (w) —w
if pl) < w<wd

(i) . .

— Pl B if W) <w< TP

1+p((611)_7*1 (pgil)) 3l o = (pll )
P w1 (1) (2)
1+p§il)7wBi7 if 7'(pi7) <w < py;

WBi,

%

Proof: Omitted due to the space limit. See [18] for details.

maximum expected average reward over the infinite horizon .
starting from the initial belief2, we have B. The Performance of Whittle's Index Policy
(1= Bi)Va, () Whittle’s index policy is optimal when the constraint on

the number of activated armis (¢) (¢t > 1) is relaxed to the
following.

J(Q) = ﬁlku_r)ll
and J(Q) = J is independent of the initial belie®.
Lemma 1:The single-armed bandit process with subsidy

under the discounted reward criterion satisfies the value- _ .
boundedness condition. Let J(£2(1)) denote the maximum expected average reward

Proof: Omitted due to space limit. See [18] for detailsthat can be obtained under this relaxed constraint. Based on
m the Lagrangian multiplier theorem, we have [2]
In [7], we s_hovyed that the optim_al pol_icy under discounted J=inf{S¥,JD —m(N - K)}, (5)
reward criterion is a threshold policy with threshald (m). m
By Dutta’s theorem and Lemma 1, we can show that the ofhere J.? is the maximum expected average reward of the

timal policy for the single-armed bandit process with sdpsi single-armed bandit process with subsigythat corresponds
under the average reward criterion is also a threshold yoligg the ;-th channel.

1
Er[ im %[ K ()] = K.



Let J(€2(1)) denote the maximum expected average reward
of the RMBP under the strict constraint thAt(t) = K for
all t. Obviously,J(Q(1)) < J. J thus provides a performance 16r
benchmark for Whittle’s index policy under the strict con- 14l
straint. To evaluate/, we consider the single-armed bandit
with subsidym under the average reward criterion (assume
the bandwidthB = 1). The value function’,,, and the average
passive timeD,,, = % can be obtained in closed-form as
shown in Lemma 3 below.

Lemma 3:Let w*(m) be the threshold of the optimal ol
policy. We have

18

12

10

Discounted total reward

*  Whittles index plicy
The upper bound of the optimal policy

Wo, If w*(m) < min{po1, p11}

(1=p1) L(poro” (m))m L THF01=" ) () 1z s 4 s o 1 @
(A=p11)(L(po1,w* (m))+1)+T L@o1=" (M) (pgy)? :
Im = if po1 < w*(m) < wo
i \ 1 ) T I
#7%’ if p11 < w*(m) <T'(p11) Fig. 2. The Performance of Whittle’s index policN(= 8).

m, other cases

and Q(t) = [wi(t),- - ,wn(t)] is given by
0, if w*(m) < min{po1,p11} U(t) = arg max Yiev@) wi(t)Bi. (6)
(1*P11)L(Po1-,w*j(jzl)) S— U(t)
D,, = i(flgjg’?)éLg*“E;;;(z)zjl)*T POt (por) We can analyze Whittle’s index policy by focusing on the
1+2p01p—0171(pn)v if p11 < w*(m) < T (p11) myopic policy which has a much simpler index form.
1, other cases A. The Structure of Whittle’s Index Policy

Furthermore,D,, is piecewise constant and increasing with 1€ implementation of Whittle’s index policy can be de-
m. scribed with a queue structure. Specifically, all channels

are ordered in a queue, and in each slot, thEsehannels at
gﬁe head of the queue are sensed. The initial channel ogderin
is determined by the initial belief vector as given below.

Proof: By Dutta’s Theorem and Lemma 1/, can
be obtained from the limit of the value function under th |
discounted reward criterion as the discount factor goes I{t; )

1. D,, can be obtained directly from the closed forfy,. W, (1) > >wp (1) = KQ) = (ng,--- ,nn).
The monotonicity ofD,,, follows from the convexity of/,,,. )
See [18] for details. m Based on the observations, channels are reordered at the end

Based on the closed-fornD,, given in Lemma 3, the of each slot according to the following simple rules. When

subsidym* that achieves the infimum in (5) is the supremurfi!! > por, the channgls observed in statewill stay at the
) « N _ K. After head of the queue while the channels observed in stati!

value of m € [0,1] satisfying X, D,
m € [0,1] fying ;- @e moved to the end of the queue. When < poi, the

obtainingm*, it is easy to calculate the infimum according t h s ob di il he head of th
the closed-forny,,, given in Lemma 3. Based on the piecewisg annels observed in staewill stay at the head of the queue

constant property oD,,, we can design an algorithm WhiChWhile the channels observed in stdtewill be moved to the
runs in O(N (log N)Q)Ti;ne to compute] within e-accuracy end of the queue. The order of the unobserved channels are
reversed.

for any ¢ > 0. Furthermore, when every channel satisfie . . .
p11 < po1, We can computel without error with complexity Based on the structure, Whittle’s index policy can be im-
O(N?log N). See [18] for the detailed algorithms plemented without knowing the channel transition probgd

) : xcept the order op1; andpoi. As a result, Whittle’s index

Figure 2 below shows an example of the performance oreept . . )
Whittle’s index policy. We notice that the performance IosgOIICy is robust against model mismatch and automatically
acks variations in the channel model provided that theord

by Whittle’s ind licy i ligibl d th bound ) -
o?‘lthe :)pzri;?pi)l(iczoiéczglﬁtneg 'gible an © Upper Ounof p11 and py; remains unchanged. As show in Fig. 3, the

transition probabilities change abruptly in the fifth shahich
corresponds to an increase in the occurrence of good channel
state in the system. From this figure, we can observe, from the
Based on the monotonicity of Whittle’s index with thechange in the throughput increasing rate, that Whittletein

belief state, Whittle’s index pOIle is equivalent to the(ﬂm}c po“cy ef‘fective|y tracks the model variations.
policy for stochastically identical arms. A myopic policy

ignores the impact of the current action on the future r& Optimality and Approximation Factor
ward, focusing solely on maximizing the expected immedi- Based on the simple structure of Whittle's index policy
ate reward. The myopic actioty(¢) under the belief state for stochastically identical channels, we can obtain a fowe

IV. STOCHASTICALLY IDENTICAL CHANNELS



=0.6, =0,1 (T<=5); =0.9, =0,4 (T>5 . . .
P00 Poy"02 (T2 P70 Py 04 (9) randomly generated sample paths, suggesting the optymalit

of Whittle’s index policy.

0.65

0.6 Bl
V. CONCLUSION

In this paper, we extended the indexability and Whittle’'s
index in [7] to the average reward criteria. We provided
simple algorithms to evaluate an upper bound of the optimal

0.55

0.5

Model Variation
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Throughput
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Fig. 3.
t = 6.

Tracking the change in channel transition probtdslioccurred at

bound of its performance. Combining this lower bound and?!
the upper bound shown in Sec. IlI-B, we further obtain thes,
approximation factor of the performance by Whittle’s index

policy, which are independent of channel parameters. Rec %
that J denote the average reward achieved by the optim ]
policy. LetJ,, denote the average reward achieved by Whittle's

index policy, (7]

Theorem 2: Lower and Upper Bounds of The Performance
of Whittle’s Index Policy

« Case 1lip1; > po1 18]

1- TQL%J_Q(Z)M) + Do1

KTL%I-1 Kw,
t N(pm) < J,<J<L min{iw, woN}
1—pi1+ TxI"(por) L=pu+wo [9]
o Case 2:p11 < po1
K K
Por < Jy < J < min{ Por , WwoN'} (10]

1 —TY(p11) + por

Proof: The upper bound of is obtained from the upper [11]
bound of the optimal performance for generally non-ideaitic
channels as given in (5). The lower bound.ff is obtained
from the structure of Whittle's index policy. See [18] forl12]
details. [ |

Corollary 1: Let 7 =+ be the approximation factor
defined as the ratio of the performance by Whittle’s indd3l
policy to the optimal performance. We have

Jw

[14]
P11 = Po1 P11 < Po1
n=1, for K =1,N—-1,N n=1, for K=N—-1,N
n>% ow. n > max{3, £} o.w. [15]

Proof: Omitted due to the space limit. See [18] for details[.16]
From Corollary 1, Whittle’s index policy is optimal when[17]
K =1 (for positively correlated channels) add = N — 1.
The optimality for K = N is trivial. We point out that for a [18]
generalK, numerical examples have shown that actions given
by Whittle’s index policy match with the optimal actions for

performance. When channels are stochastically identieal,

1 have shown that Whittle’'s index policy coincides with the
1 myopic policy. Based on this equivalency, we have estabiish
| the semi-universal structure and the optimality of Whittle
index policy under certain conditions.

REFERENCES

E. N. Gilbert, “Capacity of burst-noise channels,” B&yst. Tech. J.,
vol. 39, pp. 1253-1265, Sept. 1960.

P. Whittle, "Restless bandits: Activity allocation inchanging world”,
in Journal of Applied ProbabilityVol. 25, 1988.

C. H. Papadimitriou and J. N. Tsitsiklis, “The Complgxiof Optimal
Queueing Network Control,” inMlathematics of Operations Research
Vol. 24, No. 2, May 1999, pp. 293-305.

R. R. Weber and G. Weiss, “On an Index Policy for Restlessdits,”
in Journal of Applied ProbabilityVol.27, No.3, pp. 637-648, Sep 1990.
P. S. Ansell, K. D. Glazebrook, J.E. Nio-Mora, and M. Ouffe,
“Whittle’s index policy for a multi-class queueing systenittwconvex
holding costs,” inMath. Meth. Operat. Re&§7, 21-39, 2003.

K. D. Glazebrook, D. Ruiz-Hernandez, and C. Kirkbrid§dme Index-
able Families of Restless Bandit Problems ,”Advances in Applied
Probability, 38:643-672, 2006.

K. Liu and Q. Zhao, “A Restless Bandit Formulation of Opjmistic
Access: Indexablity and Index Policy,” ifProc. of the 5th IEEE
Conference on Sensor, Mesh and Ad Hoc Communications amebMst
(SECON) Workshopslune, 2008.

Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralizedg@itive
MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A
POMDP Framework,” inlEEE Journal on Selected Areas in Com-
munications (JSAC): Special Issue on Adaptive, Spectruite Agd
Cognitive Wireles NetworksApril 2007.

Y. Chen, Q. Zhao, and A. Swami, “Joint design and sepamapirinciple
for opportunistic spectrum access in the presence of sgrsiors,” in
IEEE Transactions on Information Theomol. 54, no. 5, pp. 2053-2071,
May, 2008

Q. Zhao, B. Krishnamachari, and K. Liu, “On Myopic Sewgior Multi-
Channel Opportunistic Access: Structure, Optimality, Redformance,”
to appear in IEEE Trans. Wireless Communicatiobgc., 2008.

S. H. Ahmad, M. Liu, T. Javadi, Q. Zhao and B. Krishnamath
“Optimality of Myopic Sensing in Multi-Channel Opportutis Access,”
submitted to IEEE Transactions on Information Theory, M2908,
available at http://arxiv.org/abs/0811.0637

J. Le Ny, M. Dahleh, E. Feron, “Multi-UAV Dynamic Routinwith
Partial Observations using Restless Bandit Allocationices!”, in
Proceedings of the 2008 American Control ConferenBeattle, WA,
June 2008.

J. E. Nio-Mora, “Restless bandits, partial consepmtiaws and index-
ability,” in Advances in Applied Probability83:7698, 2001.

S. Guha and K. Munagala, “Approximation algorithms fpartial-
information based stochastic control with Markovian rededrin Proc.
48th IEEE Symposium on Foundations of Computer Science $0C
2007.

S. Guha, K. Munagala, “Approximation Algorithms for &ess Bandit
Problems,” http://arxiv.org/abs/0711.3861.

E. J. Sondik, “ The Optimal Control at Partially Obsdiea Markov
Processes Over the Infinite Horizon: Discounted CostsOperations
Research\ol.26, No.2 (Mar. - Apr,. 1978), 282 - 304.

P. K. Dutta, “What do discounted optima converge to? Aatly of
discount rate asymptotics in economic models,” in Jourh&amnomic
Theory 55, pp. 6494, 1991.

K. Liu and Q. Zhao, “Indexability of Restless Bandit Blems and
Optimality of Whittle's Index for Dynamic Multichannel Aess,” sub-
mitted to IEEE Transactions on Information Theory, Novem[2008.
Available at http://arxiv.org/abs/0810.4658.



