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Abstract. Constraint-based routing is an invaluable part of a full-fledged
Quality of Service architecture. Unfortunately, QoS routing with multi-
ple additive constraints is known to be a NP-complete problem. Hence,
accurate constraint-based routing algorithms with a fast running time
are scarce, perhaps even non-existent. The expected impact of such an
efficient constraint-based routing algorithm has resulted in the proposal
of numerous heuristics and a few exact QoS algorithms.
This chapter presents a thorough, concise and fair evaluation of the most
important multi-constrained path selection algorithms known today. A
performance evaluation of these algorithms is presented based on a com-
plexity analysis and simulation results. Besides the routing algorithm,
dynamic aspects of QoS routing are discussed: how to cope with incom-
plete or inaccurate topology information and (in)stability issues.

1 Introduction

The continuous demand for using multimedia applications over the Internet has
triggered a spur of research on how to satisfy the Quality of Service (QoS)
requirements of these applications, e.g. requirements regarding bandwidth, delay,
jitter, packet loss and reliability. These efforts resulted in the proposals of several
QoS-based frameworks, such as Integrated Services (Intserv) [11], Differentiated
Services (Diffserv) [10] and Multi-Protocol Label Switching (MPLS) [73]. One of
the key issues in providing QoS guarantees is how to determine paths that satisfy
QoS constraints. Solving this problem is known as QoS routing or constraint-
based routing.
The research community has extensively studied the QoS routing problem, re-

sulting in many QoS routing algorithms. In this chapter, we provide an overview
and performance evaluation for unicast1 QoS routing algorithms, which try to
find a path between a source node and a destination node that satisfies a set of
constraints.
Routing in general involves two entities, namely the routing protocol and the

routing algorithm. The routing protocol manages the dynamics of the routing
process: capturing the state of the network and its available network resources
and distributing this information throughout the network. The routing algorithm
1 Multicast QoS routing faces different conceptual problems as discussed in [48]. An
overview of several multicast QoS algorithms has been given in [75] and more recently
in [86].



uses this information to compute paths that optimize a criterion and/or obey
constraints. Current best-effort routing consists of shortest path routing that
optimizes the sum over the constituent links of a single measure like hopcount
or delay. QoS routing takes into account multiple QoS requirements, link dy-
namics, as well as the implication of the selected routes on network utilization,
turning QoS routing into a notoriously challenging problem. Despite its diffi-
culty, we argue that QoS routing is invaluable in a network architecture that
needs to satisfy traffic and service requirements. For example, in the context of
ATM (PNNI), QoS routing is performed by source nodes to determine suitable
paths for connection requests. These connection requests specify QoS constraints
that the path must obey. Since ATM is a connection-oriented technology, a path
selected by PNNI will remain in use for a potentially long period of time. It is
therefore important to choose a path with care. The IntServ/RSVP framework
is also able to guarantee some specific QoS constraints. However, this framework
relies on the underlying IP routing table to reserve its resources. As long as this
routing table is not QoS-aware, paths may be assigned that cannot guarantee
the constraints, which will result in blocking. In MPLS, which is a convergence
of several efforts aimed at combining the best features of IP and ATM, a source
node selects a path, possibly subject to QoS constraints, and uses a signaling
protocol (e.g. RSVP or CR-LDP) to reserve resources along that path. In the
case of DiffServ, QoS-based routes can be requested, for example, by network
administrators for traffic engineering purposes. Such routes can be used conform
to a certain service level agreement [91]. These examples all indicate the impor-
tance of constraint-based routing algorithms, both in ATM and IP. Depending
on the frequency at which constrained paths are requested, the computational
complexity of finding a path subject to multiple constraints is often a compli-
cating but decisive factor.

To enable QoS routing, it is necessary to implement state-dependent, QoS-
aware networking protocols. Examples of such protocols are PNNI [7] of the ATM
Forum and the QoS-enhanced OSPF protocol [5]. For the first task in routing
(i.e., the representation and dissemination of network-state information), both
OSPF and PNNI use link-state routing, in which every node tries to acquire a
“map” of the underlying network topology and its available resources via flood-
ing. Despite its simplicity and reliability, flooding involves unnecessary commu-
nications and causes inefficient use of resources, particularly in the context of
QoS routing that requires frequent distribution of multiple, dynamic parame-
ters, e.g., using triggered updates [3]. Designing efficient QoS routing protocols
is still an open issue that needs to be investigated further. Hereafter in Sections
2 and 3, we assume that the network-state information is temporarily static and
has been distributed throughout the network and is accurately maintained at
each node using QoS link-state routing protocols. Once a node possesses the
network-state information, it performs the second task in QoS routing, namely
computing paths based on multiple QoS constraints. In this chapter, we focus on
this so-called multi-constrained path selection problem and consider numerous



proposed algorithms. Before giving the formal definition of the multi-constrained
path problem, we explain the notation that is used throughout this chapter.
Let G(N,E) denote a network topology, where N is the set of nodes and

E is the set of links. With a slight abuse of notation, we also use N and E to
denote the number of nodes and the number of links, respectively. The number
of QoS measures (e.g., delay, hopcount, ...) is denoted by m. Each link is charac-
terized by a m-dimensional link weight vector, consisting of m non-negative QoS
weights (wi(u, v), i = 1, ...,m, (u, v) ∈ E) as components. The QoS measure of
a path can either be additive (e.g., delay, jitter, the logarithm of 1 minus the
probability of packet loss), in which case the weight of that measure equals the
sum of the QoS weights of the links defining that path. Or the weight of a QoS
measure of a path can be the minimum(maximum) of the QoS weights along the
path (e.g., available bandwidth and policy flags). Constraints on min(max) QoS
measures can easily be treated by omitting all links (and possibly disconnected
nodes) which do not satisfy the requested min(max) QoS constraints. We call
this topology filtering. In contrast, constraints on additive QoS measures cause
more difficulties. Hence, without loss of generality, we assume all QoS measures
to be additive.
The basic problem considered in this chapter can be defined as follows:

Definition 1 Multi-Constrained Path (MCP) problem: Consider a network
G(N,E). Each link (u, v) ∈ E is specified by a link weight vector with as compo-
nents m additive QoS weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li,
i = 1, ...,m, the problem is to find a path P from a source node s to a destination

node d such that wi(P )
def
=
P
(u,v)∈P wi(u, v) ≤ Li for i = 1, ...,m.

A path that satisfies all m constraints is often referred to as a feasible path.
There may be multiple different paths in the graph G(N,E) that satisfy the
constraints. According to Definition 1, any of these paths is a solution to the
MCP problem. However, it might be desirable to retrieve the path with smallest
length l(P ) from the set of feasible paths. This problem is called the multi-
constrained optimal path problem and is formally defined as follows:

Definition 2 Multi-Constrained Optimal Path (MCOP) problem: Consider
a network G(N,E). Each link (u, v) ∈ E is specified by a link weight vector
with as components m additive QoS weights wi(u, v) ≥ 0, i = 1, ...,m. Given m
constraints Li, i = 1, ...,m, the problem is to find a path P from a source node
s to a destination node d such that:
(i) wi(P )

def
=
P
(u,v)∈P wi(u, v) ≤ Li for i = 1, ...,m

(ii) l(P ) ≤ l(P ∗), ∀P ∗, P satisfying (i)

where l(P ) can be any function of the weights wi(P ), i = 1, ...,m, provided it
obeys the criteria for ”length” or ”distance” in vector algebra (see [80], Appendix
A). Minimizing a properly chosen length function, can result in an efficient use
of the network resources and/or result in a reduction of monetary cost.



In general, MCP, irrespective of path optimization, is known to be a NP-
complete problem [24]. Because MCP and MCOP are NP-complete, they are
considered to be intractable for large networks. Accordingly, mainly heuristics
have been proposed for these problems. In Section 2, the lion’s share of the
published QoS algorithms is briefly described and compared based on extensive
simulations. Complexity will be an important criterion for evaluating the algo-
rithms. Complexity refers to the intrinsic minimum amount of resources needed
to solve a problem or execute an algorithm. Complexity can be divided into
time complexity and space complexity, but only the worst-case computational
time-complexity and the execution time is here considered. There can be a sig-
nificant difference between these complexities. Kuipers and Van Mieghem [47]
demonstrate that, under certain conditions and on average, the MCP problem
can be solved in polynomial time despite its worst-case NP-complete complexity.
Moreover, there exist specific classes of graphs, for which the MCP problem is
not NP-complete at all, e.g. if each node has only two neighbors [49].
This chapter follows the two parts structure of routing: the first two sections

concentrate on the routing algorithm, while the remaining sections emphasize
the routing dynamics. In Section 2 we present an overview of the most impor-
tant MCP algorithms. Section 3 continues with a performance evaluation of the
algorithms listed in Section 2 and based on the simulation results, deduces the
fundamental concepts involved in QoS routing. The origins of incomplete or inac-
curate topology state information are explained in Section 4. Section 5 provides
an overview for QoS protocols and Section 6 treats stability of QoS routing.
Finally, Section 7 concludes and lists open issues.

2 Overview of MC(O)P Algorithms

2.1 Jaffe’s Approximate Algorithm

Jaffe [33] has presented two MCP algorithms. The first is an exact pseudo-
polynomial-time algorithm with a worst-case complexity ofO(N5b logNb), where
b is the largest weight in the graph. Because of this prohibitive complexity, only
the second algorithm, coined further as Jaffe’s algorithm, is discussed. Jaffe pro-
poses to use a shortest path algorithm on a linear combination of the two link
weights,

w(u, v) = d1 · w1(u, v) + d2 ·w2(u, v) (1)

where d1 and d2 are positive multipliers.
Each line in Figure 1 shows equilength paths with respect to (w.r.t.) the

linear length definition (1). Jaffe’s algorithm searches the path weight space
along parallel lines specified by w (P ) = c. As soon as this line hits a path
represented by the encircled black dot, the algorithm returns this path as the
shortest w.r.t. the linear length definition (1). Figure 1 also illustrates that
the shortest path based on a linear combination of link weights does not nec-
essarily reside within the constraints. Jaffe had also observed this fact and
he therefore provided the following nonlinear definition for the path length
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Fig. 1. Representation of the link weight vector w (P ) of paths in two dimensions.
Jaffe’s scanning procedure first encounters the encircled node, which is the path with
minimal length.

f(P ) = max{w1(P ), L1} + max{w2(P ), L2}, whose minimization can guaran-
tee to find a feasible path if such a path exists. However, because no simple
shortest path algorithm can cope with this nonlinear length function, Jaffe ap-
proximates the nonlinear length by the linear length function (1). Andrew and
Kusuma [1] generalized Jaffe’s analysis to an arbitrary number of constraints m,
by extending the linear length function to

l(P ) =
mX
i=1

diwi(P ) (2)

and the nonlinear function to

f(P ) =
mX
i=1

max (wi(P ), Li)

For the simulations in Section 3 we have used di =
1
Li
which maximizes the

volume of the solution space that can be scanned by linear equilength lines (2)
subject to wi(P ) ≤ Li. Furthermore, we have used Dijkstra’s algorithm with
Fibonacci heaps, leading to a complexity for Jaffe’s algorithm of O(N logN +
mE).
If the returned path is not feasible, then Jaffe’s algorithm stops, although the

search could be continued by using different values for di, which might result in
a feasible path. Unfortunately, in some cases, even if all possible combinations of
di are exhausted, a feasible path may not be found using linear search. As shown
in [80], an exact algorithm necessarily must use a nonlinear length function, even



though a nonlinear function cannot be minimized with a simple shortest path
algorithm.

2.2 Iwata’s Algorithm

Iwata et al. [32] proposed a polynomial-time algorithm to solve the MCP prob-
lem. The algorithm first computes one (or more) shortest path(s) based on one
QoS measure and then checks if all the constraints are met. If this is not the
case, the procedure is repeated with another measure until a feasible path is
found or all QoS measures are examined. A similar approach has been proposed
by Lee et al. [51]. In the simulations we only evaluate Iwata’s algorithm [32].

The problem with Iwata’s algorithm is that there is no guarantee that any
of the shortest paths for each measure individually is close to a path within
the constraints. This is illustrated in Figure 2, which shows the twenty shortest
paths of a two-constraint problem applied to a random graph with 100 nodes.
Only the second and third shortest path for measure 1 and the second and fourth
shortest path for measure 2 lie within the constraints.

0

0

1 2 43

1
2
3

L2

L1

w2(P)

w1(P)

Fig. 2. Twenty shortest paths for a two-constraint problem. Each path is represented as
a dot and the coordinates of each dot are its path-length for each measure individually.

In our simulations we will only consider one shortest path per QoS measure
computed via Dijkstra’s algorithm, leading to a complexity of O(mN logN +
mE).



2.3 SAMCRA: A Self-Adaptive Multiple Constraints Routing
Algorithm

SAMCRA [80] is the exact successor of TAMCRA, a Tunable Accuracy Multiple
Constraints Routing Algorithm [20, 19]. TAMCRA and SAMCRA are based on
three fundamental concepts: (1) a nonlinear measure for the path length, (2) a
k-shortest path approach [17] and (3) the principle of non-dominated paths [30]:
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Fig. 3. Scanning procedure with (a) straight equilength lines. (b) curved equilength
lines.

1. Figure 3 illustrates that the curved equilength lines of a nonlinear length
function scan the constraints area in a more efficient way than the linear
equilength lines of linear length definitions. The formula in Figure 3b is de-
rived from Holder’s q-vector norm [25]. Ideally, the equilength lines should
perfectly match the boundaries of the constraints. Scanning the constraint
area without ever selecting a solution outside the constraint area is only
achieved when q → ∞. Motivated by the geometry of the constraints sur-
face in m-dimensional space, the length of a path P is defined, equivalent to
Holder’s q-vector norm with q →∞, as follows [20]:

l(P ) = max
1≤i≤m

µ
wi(P )

Li

¶
(3)

where wi(P ) =
P
(u,v)∈P wi(u, v).

A solution to the MCP problem is a path whose weights are all within the
constraints: l(P ) ≤ 1. Depending on the specifics of a constrained optimiza-
tion problem, SAMCRA can be used with different length functions, provided
they obey the criteria for length in vector algebra. Example length functions
are given in [80]. The length function (3) treats all QoS measures as equally
important. An important corollary of a nonlinear path length as (3) is that



the subsections of shortest paths in multiple dimensions are not necessarily
shortest paths. This suggests to consider in the computation more paths than
only the shortest one, leading to the k-shortest path approach.

2. The k-shortest path algorithm as presented in [17] is essentially Dijkstra’s
algorithm that does not stop when the destination is reached, but contin-
ues until the destination has been reached by the shortest path, the second
shortest, ... , k-th shortest path. In SAMCRA the k-shortest path concept
is applied to the intermediate nodes i on the path from source node s to
destination node d, to keep track of multiple sub-paths from s to i. Not
all sub-paths are stored, but the search-space is reduced by applying the
principle of non-dominance.

3. The principle of non-dominance is the third concept in SAMCRA. A path Q
is dominated by a path P if wi(P ) ≤ wi(Q) for i = 1, ..,m, with an inequality
for at least one i. SAMCRA only considers non-dominated (sub)-paths. This
property allows to efficiently reduce the search-space without compromising
the solution. ”Dominance” can be regarded as a multidimensional relaxation.
The latter is a key fundament of single parameter shortest path algorithms
(such as Dijkstra and Bellman-Ford).

SAMCRA and TAMCRA have a worst-case complexity of

O(kN log(kN) + k2mE)

For TAMCRA the number k of paths considered during execution is fixed and
hence the complexity is polynomial, while SAMCRA self-adaptively controls this
k, which can grow exponentially in the worst case. Knowledge about k is crucial
to the complexity of SAMCRA. One upper-bound for k is kmax = be(N − 2)!c,
which is an upper-bound on the total number of paths between a source and
destination in G(N,E) [81]. If the constraints/measures have a finite granularity,
another upper-bound applies

kmax = min

µ Qm
i=1 Li

maxj(Lj)
, be(N − 2)!c

¶
where the constraints Li are expressed as an integer number of a basic unit.
The self-adaptivity in k makes SAMCRA an exact MCOP algorithm: SAM-

CRA guarantees to find the shortest path within the constraints provided such
a path exists. In this process, SAMCRA only allocates queue-space when truly
needed and self-adaptively adjusts the number of stored paths k in each node. In
TAMCRA the allocated queue-space is predefined via k. During the simulations
with TAMCRA we chose k = 2, because this small value for k already produces
good results. Of course a better performance is achieved when k is increased.
Simulation results for different values for k can be found in [20].

2.4 Chen’s Approximate Algorithm

Chen and Nahrstedt [12] provided an approximate algorithm for the MCP prob-
lem. This algorithm first transforms the MCP problem into a simpler problem



by scaling down m− 1 (real) link weights to integer weights as follows,

w∗i (u, v) =
»
wi(u, v) · xi

Li

¼
for i = 2, 3, . . . ,m,

where xi are predefined positive integers. The simplified problem consists of
finding a path P for which w1(P ) ≤ L1 and w∗i (P ) ≤ xi, 2 ≤ i ≤ m. A solution
to this simplified problem is also a solution to the original MCP problem, but
not vice versa, because the conditions of the simplified problem are more strict.
Since the simplified problem can be solved exactly, Chen and Nahrstedt have
shown that the MCP problem can be solved exact in polynomial time, when at
least m− 1 QoS measures have bounded integer weights.
To solve the simplified MCP problem, Chen and Nahrstedt proposed two

algorithms based on dynamic programming: the Extended Dijkstra’s Shortest
Path algorithm (EDSP) and the Extended Bellman-Ford algorithm (EBF). The
algorithms return a path that minimizes the first (real) weight provided that the
other m− 1 (integer) weights are within the constraints. The EBF algorithm is
expected to give the better performance in terms of execution time when the
graph is sparse and the number of nodes relatively large. We have chosen to
implement the EBF version for our simulations.
The complexities of EDSP and EBF are O(x22 · · ·x2mN2) and O(x2 · · ·xmNE),

respectively. To achieve a good performance, high xi’s are needed, which makes
this approach rather computationally intensive for practical purposes. By adopt-
ing the concept of non-dominance, like in SAMCRA, this algorithm could2 reduce
its search-space, resulting in a faster execution time.

2.5 Randomized Algorithm

Korkmaz and Krunz [45] have proposed a randomized heuristic for the MCP
problem. The concept behind randomization is to make random decisions dur-
ing the execution of an algorithm [62] so that unforeseen traps can potentially be
avoided when searching for a feasible path. The proposed randomized algorithm
is divided into two parts: the initialization phase and the randomized search. In
the initialization phase, the algorithm computes the shortest paths from every
node u to the destination node d w.r.t. each QoS measure and the linear combi-
nation of allmmeasures. This information will provide lower bounds for the path
weight vectors of the paths from u to d. Based on the information obtained in the
initialization phase, the algorithm can decide whether there is a chance of finding
a feasible path or not. If so, the algorithm starts from the source node s and
explores the graph using a randomized breadth-first search (BFS). In contrast to
conventional BFS, which systematically discovers every node that is reachable
from a source node s, the randomized BFS discovers nodes from which there is
a good chance to reach a destination node d. By using the information obtained
in the initialization phase, the randomized BFS can check whether this chance
2 In Section 3 we have simulated all algorithms in their original form, without any
possible improvements.



exists before discovering a node. If there is no chance, the algorithm can foresee
the trap and does not explore such nodes further. We will refer to this search-
space reducing technique as the look-ahead property. The look-ahead property
is twofold: (1) the lower bound vectors obtained in the initialization phase are
used to check whether a subpath from s to u can become a feasible path. This
is a search-space reducing technique. (2) A different preference rule to extract
nodes can be adopted, based on the predicted end-to-end length, i.e. the length
of the subpath weight vector plus the lower bound vector. The randomized BFS
continues searching by randomly selecting discovered nodes until the destination
node is reached. If the randomized BFS fails in the first attempt, it is possible
to execute only the randomized BFS again so that the probability of finding a
feasible path can be increased.
Under the same network conditions, multiple executions of the randomized

algorithm may return different paths between the same source and destination
pair, providing some load-balancing. However, some applications might require
the same path again. In such cases, path caching can be used [70].
The worst-case complexity of the randomized algorithm is O(mN logN +

mE). For the simulations we only executed one iteration of the randomized
BFS.

2.6 H_MCOP

Korkmaz and Krunz [46] also provided a heuristic called H_MCOP. This heuris-
tic tries to find a path within the constraints by using the nonlinear path length
function (3) of SAMCRA. In addition, H_MCOP tries to simultaneously min-
imize the weight of a single ”cost” measure along the path. To achieve both
objectives simultaneously, H_MCOP executes two modified versions of Dijk-
stra’s algorithm in backward and forward directions. In the backward direction,
H_MCOP uses the Dijkstra algorithm for computing the shortest paths from
every node to the destination node d w.r.t. w(u, v) =

Pm
i=1

wi(u,v)
Li

. Later on,
these paths from every node u to the destination node d are used to estimate
how suitable the remaining sub-paths are. In the forward direction, H_MCOP
uses a modified version of Dijkstra’s algorithm. This version starts from the
source node s and discovers each node u based on a path P , where P is a
heuristically determined complete s-d path that is obtained by concatenating
the already traveled sub-path from s to u and the estimated remaining sub-path
from u to d. Since H_MCOP considers complete paths before reaching the des-
tination, it can foresee several infeasible paths during the search. If paths seem
feasible, then the algorithm can switch to explore these feasible paths based
on the minimization of the single measure. Although similar to the look-ahead
property, this technique only provides a preference rule for choosing paths and
cannot be used as a search-space reducing technique.
The complexity of the H_MCOP algorithm is O(N logN + mE). If one

deals only with the MCP problem, then H_MCOP should be stopped whenever
a feasible path is found during the search in the backward direction, reducing
the computational complexity. The performance of H_MCOP in finding feasible



paths can be improved by using the k-shortest path algorithm and by eliminating
dominated paths.

2.7 Limited Path Heuristic

Yuan [92] presented two heuristics for the MCP problem. The first “limited
granularity” heuristic has a complexity of O(NmE), whereas the second “limited
path” heuristic (LPH) has a complexity of O(k2NE), where k corresponds to
the queue-size at each node. The author claims that when k = O(N2 log2N),
the limited path heuristic has a very high probability of finding a feasible path,
provided that such a path exists. However, applying this value results in an
excessive execution time.
The performance of both algorithms is comparable when m ≤ 3, but for

m > 3 the limited path heuristic is better than the limited granularity heuristic.
Hence, we will only evaluate the limited path heuristic. Another reason for omit-
ting an evaluation of the limited granularity heuristic is that it closely resembles
the algorithm from Chen and Nahrstedt (Section 2.4).
The limited path heuristic is an extended Bellman-Ford algorithm that uses

two of the fundamental concepts of TAMCRA. Both use the concept of non-
dominance and maintain at most k paths per node. However, TAMCRA uses a
k-shortest path approach, while LPH stores the first (and not necessarily short-
est) k paths. Furthermore LPH does not check whether a sub-path obeys the
constraints, but only at the end for the destination node. An obvious difference
is that LPH uses a Bellman-Ford approach, while TAMCRA uses a Dijkstra-
like search. The simulations revealed that Bellman-Ford-like implementations
require more execution time than Dijkstra-like implementations, especially when
the graphs are dense. Conform the queue-size allocated for TAMCRA, we also
allocated k = 2 in the simulations for LPH.

2.8 A*Prune

Liu and Ramakrishnan [53] considered the problem of finding not only one but
multiple (K) shortest paths satisfying the constraints. The length function used
is the same as Jaffe’s length function (2). Liu and Ramakrishnan proposed an
exact algorithm called A*Prune. If there are no K feasible paths present, the
algorithm will only return those that are within the constraints. For the simula-
tions we took K = 1.
A*Prune first calculates for each QoS measure the shortest paths from the

source s to all i ∈ N\{s} and from the destination d to all i ∈ N\{d}. The
weights of these paths will be used to evaluate whether a certain sub-path can
indeed become a feasible path (similar look ahead features were also deployed
by Korkmaz and Krunz [45]). After this initialization phase the algorithm pro-
ceeds in a Dijkstra-like fashion. The node with the shortest predicted end-to-end



length3 is extracted from a heap and then all of its neighbors are examined. The
neighbors that cause a loop or lead to a violation of the constraints are pruned.
The A*Prune algorithm continues extracting/pruning nodes until K constrained
shortest paths from s to d are found or until the heap is empty.
IfQ is the number of stored paths, then the worst-case complexity isO(QN(m+

h+logQ)), where h is the number of hops of the retrieved path. This complexity
is exponential, because Q can grow exponentially with G(N, E). Liu and Ra-
makrishnan [53] do mention that it is possible to implement a Bounded A*Prune
algorithm, which runs polynomial in time at the risk of loosing exactness.

2.9 Overview of special-case QoS Routing Algorithms

Several works in the literature have aimed at addressing special yet important
sub-problems in QoS routing. For example, researchers addressed QoS routing
in the context of bandwidth and delay. Routing with these two measures is not
NP-complete. Wang and Crowcroft [88] presented a bandwidth-delay based rout-
ing algorithm which simply prunes all links that do not satisfy the bandwidth
constraint and then finds the shortest path w.r.t. the delay in the pruned graph.
A much researched problem is the NP-complete Restricted Shortest Path (RSP)
problem. The RSP problem only considers two measures, namely delay and cost.
The problem consist of finding a path from s to d for which the delay obeys a
given constraint and the cost is minimum. In the literature, the RSP problem
is also studied under different names such as the delay-constrained least-cost
path, minimum-cost restricted-time path, or constrained shortest path. Many
heuristics have been proposed for this problem, e.g. [29, 72, 36, 28]. Several path
selection algorithms based on different combinations of bandwidth, delay, and
hopcount were discussed in [68] (e.g. widest-shortest path and shortest-widest
path). In addition, new algorithms were proposed to find more than one feasible
path w.r.t. bandwidth and delay (e.g. Maximally Disjoint Shortest and Widest
Paths) [79]. Kodialam and Lakshman [41] proposed bandwidth guaranteed dy-
namic routing algorithms. Orda and Sprintson [69] considered pre-computation
of paths with minimum hopcount and bandwidth guarantees. They also provided
some approximation algorithms that take into account certain constraints during
the pre-computation. Guerin and Orda [27] focussed on the impact of reserving
in advance on the path selection process. They describe possible extensions to
path selection algorithms in order to make them advance-reservation aware, and
evaluate the added complexity introduced by these extensions. Fortz and Thorup
[22] investigated how to set link weights based on previous measurements so that
the shortest paths can provide better load balancing and can meet the desired
QoS constraints. When there exist certain specific dependencies between the
QoS measures, due to specific scheduling schemes at network routers, the path
selection problem is also simplified [56]. Specifically, if Weighted Fair Queueing

3 The length function is a linear function of all measures (2). If there are multiple
sub-paths with equal predicted end-to-end length, the one with the shortest length
so-far is chosen.



scheduling is being used and the constraints are on bandwidth, queueing delay,
jitter, and loss, then the problem can be reduced to a standard shortest path
problem by representing all the constraints in terms of bandwidth. However,
although queueing delay can be formulated as a function of bandwidth, this is
not the case for the propagation delay, which cannot be ignored in high-speed
networks.

3 Performance Analysis of MCP Algorithms

3.1 Comparison of MCP Algorithms.

In this section we will present and discuss the simulations results for the MCP
problem. The simulations consist of creating a Waxman topology [90], [81] in
which the evaluated algorithms compute a path based on a set of constraints.
After storing the desired results, this procedure is repeated. Waxman graphs are
often chosen in simulations as topologies resembling communication networks.
Moreover these graphs are easy to generate, allowing us to evaluate a large
number of topologies. This last property is crucial in an algorithmic study, where
it is necessary to evaluate many scenarios in order to be able to draw confident
conclusions. As shown in [81], the conclusions reached for the Waxman graphs
are also valid for the class of random graphs Gp(N). All simulations consisted
of generating 104 topologies. The m weights of a link were assigned independent
uniformly distributed random variables in the range (0,1).
The choice of the constraints is important, because it determines how many

(if any) feasible paths exist. We adopt two sets of constraints, referred to as L1
and L2:

— L1 : Li = wi(P ), i = 1, ...,m, where P is the shortest path according to (3)
— L2 : Li = maxj=1,...,m(wi(SPj)), i = 1, ...,m, where SPj is the shortest
path based on the j-th measure.

The first set of constraints, denoted by L1, is very strict: there is only one
feasible path present in the graph. The second set of constraints (L2) is based
on the weights of the shortest paths for each QoS measure. We use Dijkstra to
compute these shortest paths and for each of these m paths we store their path
weight vectors. We then choose for each measure i the maximum i-th component
of these m path weight vectors. With these constraints, the MCP problem can
be shown to be polynomial [49]. (Iwata’s algorithm can always find a feasible
path with this set of constraints)
During all simulations we stored the success rate and the normalized execu-

tion time. The success rate of an algorithm is defined as the number of feasible
paths found divided by the number of examined graphs. The normalized execu-
tion time of an algorithm is defined as the execution time of the algorithm (over
all examined graphs) divided by the execution time of Dijkstra’s algorithm.
Our simulations revealed that the Bellman-Ford-like algorithms (Chen’s al-

gorithm and the Limited Path Heuristic) consume significantly more execution



time than their Dijkstra-like counterparts. We therefore omitted them from the
results presented in this chapter.
Figure 4 gives the success rate for four different topology sizes (N = 50,

100, 200 and 400), with m = 2. The exact algorithms SAMCRA and A*Prune
always give the highest success rate possible. The difference in the success rate
of the heuristics is especially noticeable when the constraints are strict. In this
case Jaffe’s algorithm and Iwata’s algorithm perform significantly worse than
the others. The only heuristic that is not affected much by strict constraints is
the randomized algorithm. However, its execution time is comparable to that of
the exact algorithms.
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Fig. 4. The success rate for m = 2. The results for the set of constraints L1 is depicted
on the left and for L2 on the right.

Figure 5 displays the normalized execution time. It is interesting to observe
that the execution time of the exact algorithm SAMCRA does not deviate much
from the polynomial time heuristics. This difference increases with the num-
ber of nodes, but an exponential growing difference is not noticeable! A first
step towards understanding this phenomenon was provided by Kuipers and Van
Mieghem in [47] and [49]. Furthermore, it is noticeable that when the constraints
get looser, the execution time increases. The algorithms to which this applies,
all try to minimize some length function (MCOP). When constraints get loose,
this means that there will be more paths within the constraints, among which
the shortest path has to be found. Searching through this larger set results in
an increased execution time. If optimization is not strived for (MCP), then it is
easier to find a feasible path under loose constraints than when constraints are
strict.

We have also simulated the performance of the algorithms as a function of
m (m = 2, 4, 8 and 16). The results are plotted in Figures 6 and 7. We can
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Fig. 5. The normalized execution times for m = 2. The results for the set of constraints
L1 are plotted on the left and for L2 on the right.

see that the algorithms display a similar ranking in success rate as in Figure 4.
All link weights are independent uniformly distributed random variables. Under
independent link weights, the largerm, the larger the set of non-dominated paths
to evaluate. However, at a certain threshold point (m), the constraint values will
become dominant, leading to an increasing number of paths that violate the
constraints and hence less paths to evaluate. This property is explained in [80].
The impact of the constraint values can also be seen by comparing the execution
times in Figures 6 and 7. If the constraints are loose, then a significant difference
in execution time is noticeable between the exact algorithms SAMCRA and
A*Prune. This can be attributed to the look-ahead property of A*Prune, which
can foresee whether sub-paths can lead to feasible end-to-end paths. Again, note
that we do not see any NP-complete behavior in the execution times.
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Fig. 6. The success rate and normalized execution time in a 100-node network, as a
function of m, with the set of constraints L1.
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Fig. 7. The success rate and normalized execution time in a 100-node network, as a
function of m, with the set of constraints L2.

Based on these results we can rank the heuristics according to their success
rate and execution time as follows: TAMCRA, H_MCOP, Randomized algo-
rithm, Jaffe’s algorithm, Iwata’s algorithm. The simulation results presented in
[46] displayed a higher success rate for H_MCOP than for TAMCRA. This
was due to a programming error, where the forward search of H_MCOP was
revisiting the previously explored nodes (which is similar to using k > 1 in the k-
shortest-paths-based algorithms). This implementation bug has now been fixed,
which resulted in a better success rate for TAMCRA.

3.2 Summary of the Performance of MCP algorithms.

Based on the simulation results of the previous section, the strengths of these
algorithms are summarized. The conclusions are only valid for the considered
class of graphs, namely the Waxman graphs (and according to [81] also random
graphs) with independent uniformly distributed link weights, but might also hold
for other classes of graphs.
For the MCP problem, we observe that TAMCRA-like algorithms have a

higher success rate than linear approximations and Bellman-Ford based algo-
rithms. This higher success rate is attributed to the following concepts:

1. Using a Dijkstra-like search along with a nonlinear length function
A nonlinear length function is a prerequisite for exactness. When the link
weights are positively correlated, a linear approach may give a high success
rate in finding feasible paths, but under different circumstances the returned
path may violate the constraints by 100%.
A Bellman-Ford-like search runs better on sparse than on dense graphs,
however our simulations indicated that even on sparse graphs, the Dijkstra-
like heap-optimized search runs significantly faster.



2. Tunable accuracy through a k-shortest path functionality
Routing with multiple constraints may require that multiple paths be stored
at a node, necessitating a k-shortest path approach.

3. Reducing the search-space through the concept of non-dominance
Reducing the search-space is always desirable, because this reduces the exe-
cution time of an algorithm. The non-dominance principle is a strong search-
space reducing technique, especially when the number of constraints is small.
Note that the constraints themselves, if strict, also provide a search-space
reduction, since many sub-paths will violate those constraints.

4. Predicting the feasibility of paths (look-ahead property)
First calculating a path in polynomial time between the source and desti-
nation and using this information to find a feasible path between the same
source and destination is especially useful when graphs become ”hard to
solve”, i.e. N,E and m are large. This look-ahead property allows to com-
pute lower bounds for end-to-end paths, which can be used to check the
feasibility of paths. Moreover, better preference rules could be adopted to
extract nodes from the queue.

The exactness of the TAMCRA-like algorithms depends on the liberty to
choose k. If k is not restricted, then both MCP and MCOP problems can be
solved exact, as done by SAMCRA. Although k is not restricted in SAMCRA,
simulations on Waxman graphs with independent uniformly distributed random
link weights show that the execution time of this exact algorithm increases lin-
early with the number of nodes, providing a scalable solution to the MC(O)P
problem. If a slightly larger execution time is permitted, then such exact algo-
rithms are a good option. Furthermore, simulations show that TAMCRA-like
algorithms with small values of k render near-exact solutions with a Dijkstra-
like complexity. For example, TAMCRA with k = 2 has almost the same success
rate as the exact algorithms.

4 Influence of network dynamics on QoS routing

The QoS path selection problem has been addressed in previous sections as-
suming that the exact state of the network is known. Such an assumption is
often imposed to isolate the impact of network dynamics from the path selection
problem. In practice, however, network dynamics can greatly affect the accuracy
of the captured and disseminated state information, resulting in some degree of
uncertainty in state information.
In current networks, the routing protocol is dynamic and distributed. The

dynamic behavior means that important topology changes are flooded to all
nodes in the network while the distributed nature implies that all nodes in
the network are equally contributing to the topology information distribution
process. Since QoS is associated with resources in the nodes of the network,
the QoS link weights are, in general, coupled to these available resources. As
illustrated in Figure 8, we distinguish between topology changes that (1) occur



infrequently and (2) rapidly change in time. The first kind reflects topology
changes due to failures and the joining/leaving of nodes. In the current Internet,
only this kind of topology changes is considered. Its dynamic is relatively well
understood. The key point is that the time between two ‘first kind’ topology
changes is long compared to the time needed to flood this information over the
whole network. Thus, the topology databases on which routing relies, converge
rapidly with respect to the frequency of updates to the new situation and the
transient period where the databases are not synchronized (which may cause
routing loops), is generally small.
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Fig. 8. Network topology changes on different time scales

The second type of rapidly varying changes are typically those related to
the consumption of resources or to the traffic flowing through the network. The
coupling of the QoS measures to state information seriously complicates the
dynamics of flooding because the flooding convergence time T can be longer
than the change rate ∆ of some metric (such as available bandwidth). Figure 8
illustrates how the bandwidth BW on a link may change as a function of time.
In contrast to the first kind changes where T << ∆, in the second kind changes,
T can be of the same order as ∆. Apart from this, the second type changes
necessitates the definition of a significant change that will trigger the process
of flooding. In the first kind, every change was significant enough to start the
flooding. The second kind significant change may be influenced by the flooding
convergence time T and is, generally, strongly related to the traffic load in (a
part of) the network. An optimal update strategy for the second type changes
is highly desirable. So far, unfortunately, no optimal topology update rule for



the second type changes has been published, although some partial results have
appeared as outlined in Section 5.
To reduce the overhead of flooding, tree-based broadcasting mechanisms [31]

are proposed where a given link state advertisement is delivered only once to
every node. Tree-based broadcasting eliminates the unnecessary advertisement
overhead, but it introduces a challenging problem, namely how to determine
and maintain consistent broadcast trees throughout the network. Various tree-
based broadcasting mechanisms have been proposed for this purpose (e.g., [8,
31, 9, 18]), but they all involve complex algorithms and protocols that cannot be
supported with the existing TCP/IP protocol suite. Korkmaz and Krunz [43]
have proposed a hybrid approach that combines the best features of flooding
and tree-based broadcasting.
Besides the update rule (also called triggering policies [52]), a second source

of inaccuracy is attributed to state aggregation. Most link-state routing protocols
are hierarchical, whereby the state of a group of nodes (an OSPF area or a PNNI
peer group) is summarized (aggregated) before being disseminated to other nodes
[42, 84, 82]. While state aggregation is essential to ensuring the scalability of any
QoS-aware routing protocol, it comes at the expense of perturbing the true state
of the network.

5 Overview of dynamic QoSR proposals.

A large amount of proposals to deal with the network dynamics are discussed
in this section. The multitude of the proposals and the lack of optimal solutions
illustrate the challenging difficulty. Moreover, it points to a currently missing
functionality in end-to-end quality assured networking.

5.1 Path Selection under Inaccurate Information

As explained in Section 4, some level of uncertainty in state information is un-
avoidable. To account for such uncertainty, path selection algorithms may follow
a probabilistic approach in which link state parameters (e.g., delay, available
bandwidth) are modelled as random variables (rvs) [26]. Since QoS routing has
not yet been implemented in real networks, one of the difficulties lies in what
distributions are appropriate for these rvs. In a number of simulation-based stud-
ies (e.g., [6, 34, 35]), a uniformly distributed link bandwidth is assumed while for
the link delay, various distributions such as exponential, normal, and gamma are
suggested. The exact shape of the distribution may not be a critical issue, as ro-
bust path selection algorithms require only knowledge of the statistical moments
of the distribution (e.g., mean and variance). These statistical moments can be
computed simply as follows. Each node maintains a moving average and corre-
sponding variance for a given link state parameter. For example, the moments
for the bandwidth can be updated whenever there is a change in the available
bandwidth (e.g., flow is added or terminated), while the ones for the delay can be



updated whenever a packet leaves the router. In case of a high packet transmis-
sion rate, sampling can be used to update the delay parameters. Once the mean
and variance are computed for each QoS metric, they can be disseminated using
QoS-enhanced versions [5] of OSPF4. A crucial question here is when and how
to advertise the mean and variance values. A triggered-based approach similar
to the one in [3] or [52] can be used for this purpose.
In the case of probabilistically modelled network-state information, the ob-

jective of the path selection algorithm is to identify the most probable feasible
path. This problem has mainly been investigated under bandwidth and/or delay
constraints. The general problem at hand can be formulated as follows:

Definition:Most-Probable Bandwidth-Delay Constrained Path (MP-BDCP) Prob-
lem: Consider a network G(N,E), where N is the set of nodes and E is the set of
links. Each link (i, j) ∈ E is associated with an available bandwidth parameter
b(i, j) and a delay parameter d(i, j). It is assumed that the b(i, j)’s and d(i, j)’s
are independent rvs. For any path P from the source node s to the destination
node t, let b(P ) d e f

= min{b(i, j) | (i, j) ∈ P} and d(P )
d e f
=
P
(i,j)∈P d(i, j). Given a

bandwidth constraint B and a delay constraint D, the problem is to find a path
that is most likely to satisfy both constraints. Specifically, the problem is to find
a path P ∗ such that for any other path P from s to t,

πB(P
∗) ≥ πB(P ), and (4)

πD(P
∗) ≥ πD(P ), (5)

where πB(P )
d e f
= Pr[b(P ) ≥ B] and πD(P )

d e f
= Pr[d(P ) ≤ D].

If the b(i, j)’s and d(i, j)’s are constants, the MP-BDCP problem reduces to
the familiar bandwidth-delay constrained path problem, which can be easily
solved in two steps [88]: (i) prune every link (i, j) for which b(i, j) < B, and (ii)
find the shortest path w.r.t. the delay parameter in the pruned graph. However,
MP-BDCP is, in general, a hard problem. In fact, the objectives (4) and (5) of
the MP-BDCP problem give rise to two separate problems: the most-probable
bandwidth constrained path (MP-BCP) problem and themost-probable delay con-
strained path (MP-DCP) problem. We first review the studies focusing on these
problems separately. We then continue our review by considering both parts of
the combined MP-BDCP problem simultaneously.

MP-BCP Problem MP-BCP is a rather simple problem, and can be exactly
solved by using a standard version of the Most Reliable Path (MRP) algo-
rithm [50, 26], which associates a probability measure ρ(i, j) d e f

= Pr[b(i, j) ≥ B]

4 The current version of OSPF considers only a single, relatively static cost metric.
Apostolopoulos et al. [5] described a modification to OSPF that allows for dis-
seminating multiple link parameters by exploiting the type-of-service (TOS) field in
link-state advertisement (LSA) packets.



with every link (i, j). So, πB(P ) =
Q
(i,j)∈P ρ(i, j). To find a path that max-

imizes πB, one can assign the weight − log ρ(i, j) to each link (i, j) and then
run the Dijkstra’s shortest path algorithm. In [44] the authors slightly modified
the Dijkstra’s algorithm for solving the same problem without using logarithms.
While the MP-BCP can be efficiently addressed using such exact solutions, the
MP-DCP problem is, in general, shown to be NP-hard [23]. Accordingly, most
research has focused on the MP-DCP problem.

MP-DCP Problem The MP-DCP problem can be considered under two dif-
ferent models, namely rate-based and delay-based [26]. The “rate-based” model
achieves the delay bound by ensuring a minimum service rate to the traffic flow.
The main advantage of this model is that the end-to-end delay bound can be
mathematically represented depending on the available bandwidth on each link.
So it seems one can address the MP-DCP problem by using the similar ap-
proach of the above MP-BCP problem. In spite of some similarities, however,
these problems are not exactly the same due to the fact that the accumula-
tive effect associated with the delay is not produced in the case of bandwidth.
In [26] Guerin and Orda showed that the problem is, in general, intractable.
Accordingly, they first considered the special cases of the problem and provided
tractable solutions for these cases. They then introduced a near-optimal algo-
rithm, named QP, for the MP-DCP problem under rate-based model. Although
the rate-based model leads to some attractive solutions, it requires to add new
networking mechanisms, mostly regarding using schedulers that allow rate to be
strictly guaranteed along the path.
On the other hand, the “delay-based” model provides a general approach for

achieving the delay bound by concatenating the local delays associated with each
link along the selected path. Note that the above definition formulates the MP-
DCP problem based on this general model. The MP-DCP problem is essentially
an instance of the stochastic shortest path problem, which has been extensively
investigated in the literature (e.g., [54, 30]). One key issue in stochastic short-
est path problems, in general, is how to define the optimality of a path. Some
formulations (e.g., [60, 77, 37, 71]) aim at finding the most likely shortest path.
Others consider the least-expected-delay paths under interdependent or time-
varying probabilistic link delays [78, 59, 76]. Cheung [15] investigated dynamic
stochastic shortest path problems in which the probabilistic link weight is “re-
alized” (i.e., becomes exactly known) once the node is visited. Several studies
define path optimality in terms of maximizing a user-specified objective function
(e.g., [54, 21, 61, 63, 64]). Our formulation of the MP-DCP problem in the above
definition belongs to this category, where the objective is to find a path that is
most likely to satisfy the given delay constraint.
Guerin and Orda [26] also considered the MP-DCP problem under the delay-

based model and provided tractable solutions for some of its special cases. These
cases are relatively limited, so it is desirable to find general tractable solutions
which can cope with most network conditions. In [44], Korkmaz and Krunz pro-
vided two complementary (approximate) solutions for the MP-DCP problem



by employing the central limit theorem approximation and Lagrange relaxation
techniques. These solutions were found to be efficient, requiring, on average, a
few iterations of Dijkstra’s shortest path algorithm. In [26] Guerin and Orda
considered a modification of the problem, in which the goal is to partition the
given end-to-end delay constraint into local link constraints. The optimal path
for the new problem is, in general, different from the one for the MP-DCP prob-
lem [55]. Moreover, the solutions provided for the partitioning problem in [55]
are computationally more expensive than the solutions in [44] which directly
addresses the MP-DCP problem. To reduce the complexity, the authors in [26]
has also considered the hierarchical structure of the underlying networks.

Lorenz and Orda has further studied the modified partitioning problem [55].
They first considered the OP (Optimal Partition) Problem and provided an
exact solution to it under a particular family of probability distributions (in-
cluding normal and exponential distributions), where the family selection crite-
rion is based on having a certain convexity property. They then analyzed the
OP-MP (Optimally Partitioned Most Probable Path) Problem and provided a
pseudopolynomial solution using dynamic programming methods. In fact, the
solution uses a modification of the Dynamic-Restricted Shortest Path Prob-
lem (D-RSP). The RSP problem is a well-known problem which aims to find
the optimal path that minimizes the cost parameter among all the paths that
satisfy the end-to-end delay constraint. Since the RSP Problem is NP-hard,
the authors provided a pseudopolynomial solution from which a new algorithm
named Dynamic-OP-MP algorithm is inferred. The main difference between the
Dynamic-OP-MP algorithm and the D-RSP algorithm is the cost computation
method. As in the OP Problem, the MP-OP Problem is analyzed in detail,
particularly when a uniform distribution exists, generating a Uniform-OP-MP
algorithm. Finally, they proposed a new approach to obtain a fully polynomial
solution to deal with the OP-MP Problem. As in the last case, this approach
is based on making some modifications to the D-RSP algorithm, resulting in a
non-optimal approximation (named discrete solution). This solution introduces a
bounded difference in terms of cost and success probability regarding the optimal
solution by interchanging the cost and delay roles in the D-RSP algorithm.

MP-BDCP problem MP-BDCP belongs to the class of multi-objective opti-
mization problems, for which a solution may not even exist (i.e., the optimal path
w.r.t. πB is not optimal w.r.t. πD, or vice versa). To eliminate the potential con-
flict between the two optimization objectives, one can specify a utility function
that relates πB and πD, and use this function as a basis for optimization. For
example, one could maximize min{πB(P ), πD(P )} or the product πB(P )πD(P ).
Rather than optimizing a specific utility function, Korkmaz and Krunz [44] pro-
posed a heuristic algorithm to compute a subset of nearly nondominated paths
for the given bandwidth and delay constraints. Given this set of paths, a decision
maker can select one of these paths according to his/her specific utility function.



5.2 Safety Based Routing.

The Safety-Based Routing (SBR) was proposed by Apostolopoulos et al. [6].
SBR assumes explicit routing with bandwidth constraints and on-demand path
computation. The idea of SBR is to compute the probability that a path can
support an incoming bandwidth request. Therefore, SBR computes the Safety
(S) parameter defined as the probability that the total required bandwidth is
available on the sequence of links that constitute the path. This probability can
be used to classify every link, and to find the safest path, i.e. the path having the
best chance for supporting total required bandwidth. Since the safety of each
link is considered as independent from that of the others links in a path, the
safety S of a path is the product the safeties of every link in that path. Once
S has been computed it is included in the path selection process as a new link
weight.
SBR uses two different routing algorithms based on combining S with the

number of hops, the safest-shortest path and the shortest-safest path. The safest-
shortest path algorithm selects that path with the larger safety S among the
shortest paths. The shortest-safest path algorithm on the other hand, selects
paths with larger safety and if more than one exists the shortest one is chosen.
In addition, the SBR mechanism uses triggering policies5 in order to reduce the
signaling overhead while keeping a good routing performance.
A performance evaluation of the blocking probability shows [6] that the

shortest-safest path algorithm is the most effective one for any of the triggering
policies that were evaluated.

5.3 Ticket-based Distributed QoS routing.

Three algorithms are simulated in [13]: the flooding algorithm, the TBP and the
shortest-path algorithm (SP). The simulation results are represented using three
parameters, the success ratio, the average messages overhead and the average
path cost. The simulation results in [13] show that the TBP achieves a high
success ratio and low-cost feasible paths with minor overhead.
The Ticket-based Distributed QoS Routing mechanism was proposed by

Chen and Nahrstedt [13]. They focus on the NP-complete delay-constrained
least-cost routing (different from the one explained in Section 2.4). They pro-
pose a routing algorithm which targets to find the low-cost path, in terms of
satisfying the delay constraint, by using only the available inaccurate or impre-
cise routing information. To achieve its purpose, initially, Chen and Nahrstedt
suggest a simple imprecise state model that defines which information must be
stored in every node: connectivity information, delay information, cost informa-
tion and an additional state variable named delay variation which stands for the
estimated maximum change of the delay information before receiving the next
updating message. For simplicity reasons, the imprecise model is not applied to
the connectivity and cost information. They justify this assumption saying that

5 The most important update policies are discussed in [52].



the global routing performance is not significantly degraded. Then, a multipath
distributed routing scheme, named ticket based probing is proposed. The ticket
based probing sends routing messages, named probes, from a source s to a des-
tination d. Based on the (imprecise) network state information available at the
intermediate nodes, these probes are routed on a low-cost path that fulfils the
delay requirements of the LSP request. Each probe carries at least one ticket
in such a way that by limiting the number of tickets, the number of probes
is limited as well. Moreover, since each probe searches a path, the number of
searched paths is also limited by the number of tickets. In this way, the trade-
off between the signalling overhead and the global routing performance may be
controlled. Finally, based on this ticket based probing scheme, Chen and Nahrst-
edt suggest a routing algorithm to address the NP-complete delay-constrained
least-cost routing problem, called Ticket Based Probing algorithm (TBP). Three
algorithms are simulated in [13]: the flooding algorithm, the TBP algorithm and
the shortest-path algorithm. Simulations are presented using three parameters,
the success ratio, the average messages overhead and the average path cost. The
results show that the TBP algorithm exhibits a high success ratio and a low-cost
path satisfying the delay constraint with minor overhead while tolerating a high
degree of inaccuracy in the network state information.

5.4 BYPASS based routing.

BYPASS based routing (BBR) [58] presents a different idea to solve the band-
width blocking due to inaccurate routing information produced by a triggering
policy based on either threshold based triggers or class based triggers. BBR is
an explicit routing mechanism that instructs the source nodes to compute both
the working route and as many paths to bypass the links (named bypass-paths)
that potentially cannot cope with the incoming traffic requirements. The idea of
the BBR mechanism is derived from protection switching for fast rerouting dis-
cussed in [14]. However, unlike the use of protection switching for fast rerouting,
in BBR both the working and the alternative paths (bypass-paths) are computed
simultaneously but not set up; they are only set up when required.
In order to decide those links that might be bypassed (named obstruct-

sensitive links, OSLs), a new policy is added. This policy defines a link as
OSL whenever a path setup message sent along the explicit route reaches a
link with insufficient residual bandwidth. Combining the BBR mechanism and
Dijkstra’s algorithm, two different routing algorithms are proposed [58]: the
Shortest-Obstruct-Sensitive Path (SOSP), which computes the shortest path
among all the paths with the minimum number of obstruct-sensitive links, and
the Obstruct-Sensitive-Shortest Path (OSSP), which computes the path that
minimizes the number of obstruct-sensitive links among all the shortest paths.
Once the working path is selected, BBR computes the bypass-paths that bypass
those links in the working path defined as OSL. When the working path and the
bypass-paths are computed, the working path setup process starts. A signaling
message is sent along the explicit path included in the setup message. When a
node detects that a link in the explicit path has not enough available bandwidth



to support the required bandwidth, it sends the setup signaling message over
the bypass-path of this link. The bypass-paths nodes are included in the setup
signaling message as well, i.e. bypass-paths are also explicitly routed.
The BBR performance is evaluated by simulation. The obtained results shown

in Figure 9 exhibit the reduction obtained in the bandwidth blocking ratio of
the BBR (with both SOSP and OSSP) compared to the Widest-Shortest Path
(WSP) and the Safety Based Routing (Shortest-Safest-Path, SSP). These algo-
rithms are simulated with both the Threshold and the Exponential class trigger-
ing policies. Figure 9 indicates that the SOSP algorithm is, in terms of blocking
probability, the most effective.
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Fig. 9. Bandwidth Blocking Ratio for the threshold and the exponential class triggering
policies

5.5 Path selection algorithm based on available bandwidth
estimation

Anjali et al. [2] propose an algorithm for path selection in MPLS networks.
They note that most recent QoS routing algorithms utilize the nominal avail-
able bandwidth information of the links to optimally select the path. Assuming
that most of the traffic flows do not strictly use the requested bandwidth, the
nominal link utilization overestimate the actual link consumption, which leads to
non-efficient network resource utilization. Therefore, the network performance
can be improved by a path selection process based on an accurate measure-
ment of the actual available link bandwidth instead of the nominal value. For
scalability reasons, this measurement cannot be achieved by any updating link
state database process. Moreover, the authors [2] argue that due to the available
bandwidth variability, a single sample cannot accurately represent the actual
bandwidth availability and as a consequence routing decisions taken based on
single samples are likely wrong. Since perfectly updated network state informa-
tion is in general not possible, Anjali et al. [2] present an Available Bandwidth



Estimation Algorithm that estimates the actual available bandwidth on each
link. A path is computed with a shortest widest path routing algorithm (Section
2.9) that uses these available bandwidth estimations as link weight. Finally, in
order to limit the network congestion, a threshold parameter is added. Once the
path has been computed, the available bandwidth on the bottleneck link of the
path is computed. The threshold parameter is applied to this bottleneck value
to compute a benchmark for path selection in such a way that if the bandwidth
requested is larger than a certain fraction of the bottleneck link bandwidth, the
incoming request is rejected.
The proposed path selection algorithm is shown [2] to perform better than

the shortest path routing algorithm in terms of rejection probability, because
the proposed routing algorithm based on the available bandwidth estimation
algorithm has more accurate information about the actual link load and therefore
can take more precise decisions.

5.6 Centralized server based QoS Routing

Unlike the previous proposals, Kim and Lee [40] do not attempt to enhance the
routing process under inaccurate network state information but rather to elimi-
nate the inaccuracy. Kim and Lee propose a centralized server based QoS routing
scheme, which both eliminates the overhead due to the exchange of network state
update messages and achieves higher routing performance by utilizing accurate
network state information in the path selection process. Routers are clients of
the route server and send routing queries for each one of the incoming requests.
The route server stores and maintains two data structures, the Network Topol-
ogy Data Base (NTDB), which keeps the link state information for each link
in the network, and the Routing Table Cache (RTC) that stores the computed
path information.
Although the main idea is derived from that suggested in [4], these new

schemes differ in how the network state information is collected. Instead of col-
lecting the link state information from the other routers, in this new approach
the proposed router server updates and maintains a link state database as the
paths are assigned to or return back from a certain flow. The main issues in this
centralized scheme are: (1) the processing load and storage overhead required
at the server, (2) the protocol overhead to exchange the router queries and the
replies between the server and the remote routers that act as clients and (3) the
effects produced when the server becomes either a bottleneck point or a single
point of failure. Kim and Lee [40] suggest various alternatives to reduce the loads
and overhead.
Two routing algorithms are used: a modification of the Dijkstra’s algorithm

and the Bellman-Ford algorithm with QoS extensions. Assuming the existence
of a certain locality in the communication pattern, a large number of source-
destination pairs are expected to be unused. Hence, a path caching approach is
used to reduce the path computation overhead. The size of the RTC is controlled
by two parameters: the maximum numberK of entries (source-destination pairs)



in the RTC and the maximum number n of paths for each source-destination
pair.

The server based QoS routing scheme is evaluated by simulation [40]. On
one hand, the simulations show that a simple path caching scheme substantially
reduces the path computation overhead when considering locality in the commu-
nication pattern. On the other hand, the simulations indicate that the proposed
schemes perform better than the distributed QoS routing schemes with similar
protocol overhead.

5.7 A localized QoS Routing approach

The main advantage of a localized approach for QoS routing as proposed by
Nelakuditi et al. [66], is that no global network state information exchange among
network nodes is needed, hence reducing the signaling overhead. The path se-
lection is performed in the sources nodes based on their local view of the global
network state. The main difficulty in implementing any localized QoS routing
scheme is how the path is selected only based on the local network state informa-
tion collected in the source nodes. In order to address this problem Nelakuditi
et al. present a new adaptive proportional routing approach for localized QoS
routing schemes. They propose an idealized proportional routing model, where
all paths between a source-destination pair are disjoint and their bottleneck link
capacities are known. In addition to this ideal model, the concept of virtual ca-
pacity of a path is introduced which provides a mathematically sound way to
deal with shared link among multiple paths. The combinations of these ideas is
called Virtual Capacity based routing (VCR). Their simulations [66] show how
the VCR scheme adapts to traffic load changes by adjusting traffic flows to the
set of predefined alternative paths. However, Nelakuditi et al. describe two signif-
icant difficulties related to the VCR implementation that lead them to propose
an easily realizable implementation of the VCR scheme, named Proportional
Sticky routing (PSR).

The PSR scheme operates in two stages: proportional flow routing and com-
putation of flow proportions. PSR proceeds in cycles of variable lengths. During
each cycle, any incoming request can be routed along a certain path selected
among a set of eligible paths, which initially may include all the candidates
paths. A candidate path is ineligible depending on the maximum permissible
flow blocking parameter, which determines how many times this candidate path
can block a request before being ineligible. When all candidate paths become
ineligible a cycle terminates and all the parameters are reset to start the next
cycle. An eligible path is finally selected depending on its flow proportion: the
larger the flow proportion, the larger the chances for being selected.

Simulation results show that the PSR scheme is simple, stable and adaptive,
and the authors [66] conclude that it is a good alternative to global QoS routing
schemes.



5.8 Crankback and fast re-routing

Crankback and fast re-routing were included in the ATMF PNNI [7] to address
the routing inaccuracy due to fast changes in the resources [83] and due to the
information condensation [82] of the hierarchical network structure.
The establishment of a connection between two nodes A and K as shown in

Figure 10, takes place in two phases. Based on the network topology reflecting
a snap shot at time t1 and flooded to the last node at t1 + T , the routing
algorithm (e.g. SAMCRA) computes the path from A to K subject to some QoS
requirements. Subsequently, in the second phase, the needed resources along that
path are installed in all nodes constituting that path. This phase is known as the
‘connection prerequisite’ and the network functionality that reserves resources is
called signaling. The signaling operates in a hop by hop mode: it starts with the
first node and proceeds further to the next node if the ‘installation’ is successful.
Due to the rapidly changing nature of the traffic in the network, at time t2 > t1
and at a certain node I (as exemplified in Figure 10), the connection set-up
process may fail because the topology situation at time t1 may significantly
differ from that at time t2 (Figure 8). Rather than immediately blocking the
path request from A toK, PNNI invokes an emergency process, called crankback.
The idea is similar to back tracking. The failure in node I returns the previous
node D with the responsibility to compute immediately an alternative path from
itself towards K, in the hope that along that new path the set-up will succeed.
The crankback process consumes both much CPU-time in the nodes as con-

trol data and yet, does not guarantee a successful connection set-up. When the
crankback process returns back to the source node A and this node also fails
to find a path to K, the connection request is blocked or rejected and much
computational effort of cranking back was in vain.
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Fig. 10. Illustration of crankback and fast-rerouting.

Although the crankback process seems an interesting emergency ‘exit’ to
prevent blocking, the efficiency certainly needs further study. For, in emergency
cases due to heavy traffic, the crankback processes generate additional control



traffic possibly causing a triggering of topology flooding, and hence even more
control data is created, eventually initiating a positive feedback loop with severe
consequences. These arguments suggest to prevent invoking crankback as much
as possible by developing a good topology update strategy.

6 Stability aspects in QoS Routing

If the topology changes as explained in Section 4 are inappropriately fast flooded
(and trigger new path computations), route flapping may occur degrading the
traffic performance significantly. This section outlines approaches to avoid rout-
ing instability.
Routing instabilities were already observed in the ARPANET [39]. The rea-

sons for this routing instability were attributed to the type of link weight sam-
pling used and the path selection algorithm. The use of instantaneous values of
the link delay led to frequent changes in the metric, and the shortest paths com-
puted were rapidly out-dated. The application of the Bellman-Ford algorithm
with a dynamically varying metric instead of a static metric led to routing loops.
These problems were partially overcome by using averaged values of link delay
over a ten-second period and by the introduction of a link-state routing protocol
as OSPF. With the constant growth of the Internet, the problem has become
recurrent and other solutions had to be found.

6.1 Quantization of QoS measures and smoothing

A common approach to avoid routing instability is the advertisement of the link
weights that are quantified or smoothed in some manner rather than advertising
instantaneous values. This approach has two main consequences, one directly
related to routing stability and the other related to routing overhead. The quan-
tization/smoothing limits overshoots in the dynamic metric which reduces the
occurrence and the amplitude of routing oscillation. Simultaneously, the distrib-
ution of an excessive amount of routing updates is avoided reducing the flooding
overhead. While improving the routing stability, the quantization/smoothing of
link weights damps the dynamic coupling to actual resource variations and may
lower the adaptation capabilities of the routing protocol. The update strategy
consists of a trade-off between routing stability and routing adaptation.
Besides quantization/smoothing of resource coupled link weights, the link

weight can be evaluated on different time-scales as proposed by Vutukury and
Garcia-Luna-Aceves [85]. A longer time-scale that leads to path computation
and a shorter time-scale that allows for the adaptation to traffic bursts.
The techniques of metric quantization/smoothing proposed by Khanna and

Zinky [39] reduce routing oscillations, but are not sufficient under adverse cir-
cumstances (high loads or bursty traffic) in packet switched networks. When the
link weights are distributed, the information may already be out-dated, leading
to the typical problem of QoS routing under inaccurate information as discussed
in Section 4.



6.2 Algorithms for load balancing

Load-balancing provides ways of utilizing multiple-paths between a source and a
destination, which may avoid routing oscillations. There are approaches for load
balancing in best-effort networks and in QoS-aware networks. Load balancing
including QoS can be done per class, per flow or per traffic aggregate (best-
effort and QoS flows).

Load balancing in best effort networks A simple approach of load balancing
in best-effort networks is to use alternate paths when congestion rises as in
the algorithm Shortest Path First with Emergency Exits (SPF-EE) [87]. This
strategy prevents the excessive congestion of the current path because it deviates
traffic to an alternate path when congestion starts to rise, and thus avoids routing
oscillations. First, the next-hops on the shortest path to all the destinations
in the network are determined. Subsequently, the next-hop on the alternate
path (the emergency exit) is added to the routing table. The emergency exit
is the first neighbor in the link-state database that is not the next-hop of the
shortest path tree nor the final destination. The emergency exit is only used
when the queue length exceeds a configured threshold. With this approach two
objectives are achieved: the pre-computation of alternate paths allows for traffic
distribution over those paths when congestion occurs and the routing update
period is increased due to the limitation of traffic fluctuations.
As an alternative to single shortest path algorithms as SPF-EE, Vutukury

and Garcia-Luna-Aceves [85] introduce multiple paths of unequal cost to the
same destination. The algorithm proposed by these authors finds near-optimal
multiple paths for the same destination based on a delay metric. The algorithm
is twofold: it uses information about end-to-end delay to compute multiple paths
between each source-destination pair, and local delay information to adjust rout-
ing parameters on the previously defined alternate paths. This short scale metric
determines the next hop from the list of multiple next-hops that were computed
based on the larger scale metric.
Even tough the proposals described above permit load balancing and avoid

routing oscillations, they do not take into consideration the requirements of the
different types of traffic. This problem has been addressed by some proposals
within a connection-oriented context.

Load balancing supporting QoS Nahrstedt and Chen [65] conceived a com-
bination of routing and scheduling algorithms to address the coexistence of QoS
and best-effort traffic flows. In their approach, traffic with QoS guarantees is
deviated from paths congested with best-effort traffic in order to guarantee
the QoS requirements of QoS flows and to avoid resource starvation of best-
effort flows. The paths for QoS flows are computed by a bandwidth-constrained
source-routing algorithm and the paths for best-effort flows are computed us-
ing max-min fair routing. The authors also address the problem of inaccurate
information that arises with the use of stale routing information due to the in-
sufficient frequency of routing updates or to dimension of the network. As was



stated above, inaccurate information is a major contributor to routing instabil-
ity. To cope with inaccurate information, besides keeping the values of available
residual bandwidth (RB) on the link, the estimation on the variation of RB is
also kept (ERBV). These two values define an interval (RB-ERBV, RB+ERBV)
where the residual bandwidth on the next period will be. The routing algorithm
of QoS flows will find a path between a source and a destination that maximizes
the probability of having enough available bandwidth to accommodate the new
flow.

Ma and Steenkiste [57] proposed another routing strategy that addresses
inter-class resource sharing. The objective of their proposal is also to avoid star-
vation of best-effort traffic on the presence of QoS flows. The strategy comprises
two algorithms: one to route best-effort traffic and the other to route QoS traffic.
The routing decisions are based on a metric that enables dynamic bandwidth
sharing between traffic classes, particularly, sending QoS traffic through links
that are less-congested with best-effort traffic. The metric used for path compu-
tation is called virtual residual bandwidth (VRB). The value of the VRB can be
above or below the actual residual bandwidth depending on the level of conges-
tion on the link due to best-effort traffic. The algorithm uses the Max-Min Fair
Share Rate to evaluate the degree of congestion [38]. If the link is more (less)
congested with best-effort traffic than the other links on the network, VRB is
smaller (higher) than the actual residual bandwidth. When the link has a small
amount of best-effort flows, VRB will be high and the link will be interesting for
QoS flows. The paths for best-effort traffic are computed based on the Max-Min
Fair Rate for a new connection.

Shaikh et al. [74] present a hybrid approach to QoS routing that takes the
characteristics of flows into account to avoid instability. The resources in the
network are dynamically shared between short-lived (mice) and long-lived (ele-
phants) flows. The paths for long-lived flows are dynamically chosen, based on
the load level in the network, while the paths for short flows are statically pre-
computed. Since dynamic routing is only used for long-lived flows, the protocol
overhead is limited. At the same time, the duration of these flows avoids succes-
sive path computations which is beneficial for the stability. The path selection
algorithm computes widest-shortest paths that can accommodate the needs of
the flow in terms of bandwidth. This approach is similar to the one used by
Vutukury et al. described above.

While the above strategies are aimed at connection-oriented networks, the
algorithm Enhanced Bandwidth-inversion Shortest-Path [89] has been proposed
for hop-by-hop QoS routing in Differentiated Services networks. This proposal is
based on aWidest-Shortest Path algorithm that takes into account the hopcount.
The hopcount is included in the cost function in order to avoid oscillations due
to the increased number of flows sent over the widest-path. This approach is
similar to the one presented by Shaikh et al. [74] , but instead of making traffic
differentiation per flow, it uses class-based differentiation.

Hop-by-hop QoS routing strategy (UC-QoSR) was developed in [67] for net-
works where traffic differentiation is class-based. This strategy extends the OSPF



routing protocol to dynamically select paths adequate for each traffic class ac-
cording to a QoS metric that evaluates the impact of the degradation of delay
and loss at each router on application performance. The UC-QoSR strategy
comprises a set of mechanisms in order to avoid routing instability. Load bal-
ancing is embedded in the strategy, since the traffic of all classes is spread over
available paths. The link weights are smoothed by using a moving average of
its instantaneous values. The prioritizing of routing messages is used to avoid
instability due to stale routing information. Combined with these procedures,
the UC-QoSR strategy uses a mechanism named class-pinning, that controls the
path shifting frequency of all traffic classes. With this mechanism, a new path
is used only if significantly better than the path that is currently used by that
class [16].

7 Summary and Discussion

Once a suitable QoS routing protocol is available and each node in the network
has an up to date view of the network, the challenging task in QoS routing is
to find a path subject to multiple constraints. The algorithms proposed for the
multi-constrained (optimal) path problem are discussed and their performance
via simulations in the class of Waxman graphs with independent uniformly dis-
tributed link weights is evaluated. Table 1 displays the worst-case complexities
of the algorithms discussed in Section 2.

Algorithm Worst-case complexity
Jaffe’s algorithm O(N logN +mE)

Iwata’s algorithm O(mN logN +mE)

SAMCRA, TAMCRA O(kN log(kN) + k2mE)

EDSP, EBF O(x22 · · · x2mN2), O(x2 · · · xmNE)

Randomized algorithm O(mN logN +mE)

H_MCOP O(N logN +mE)

LPH O(k2NE)

A*Prune O(QN(m+N + log h))

Table 1. Worst-case complexities of QoS routing algorithms.

The simulation results show that the worst-case complexities of Table 1
should be interpreted with care. For instance, the actual execution time of
H_MCOP will always be longer than that of Jaffe’s algorithm under the same
conditions. In general, the simulation results indicate that TAMCRA-like algo-
rithms that use a k-shortest path algorithm and a nonlinear length function while
eliminating dominated paths and possibly applying other search-space reducing
techniques such as look-ahead perform best. The performance and complexity of
TAMCRA-like algorithms is easily adjusted by controlling the value of k. When



k is not restricted, TAMCRA-like algorithms as SAMCRA lead to exact solu-
tions. In the class of Waxman or random graphs with uniformly distributed link
weights, simulations suggest that the execution times of such exact algorithms
increase almost linearly with the number of nodes in G(N,E), contrary to the
expected exponential (NP) increase.
The study reveals that the exact algorithm SAMCRA (and likewise TAM-

CRA) can be extended with the look-ahead property. The combination of the
four powerful concepts (non-linear definition of length, k-shortest paths, domi-
nance and look-ahead) into one algorithm makes SAMCRAv2 the current most
efficient exact QoS routing algorithm.
The second part of this chapter discussed the dynamics of QoS routing,

mainly QoS routing without complete topology information and the stability of
QoS routing are addressed. A probabilistic approach is discussed to incorporate
the complex dynamic network processes. While the study of QoS routing algo-
rithms has received due attention, the routing dynamics and the behavior of the
QoS routing protocol deserve increased efforts because these complex processes
are insufficiently understood. As a result, a commonly accepted QoS routing
protocol is a still missing functionality in today’s communication networks.

List of Open Issues

— Determining for which graphs and link weight structures the MC(O)P is not
NP-complete.

— A detailed and fair comparison of the proposed dynamic aspects of QoS rout-
ing proposals. Usually, authors propose an idea and choose a few simulations
to show the superiority of their approach compared to other proposals.

— Designing efficient QoS routing protocols.
— Aiming for an optimized QoS routing protocol.
— The deployment of QoS routing for DiffServ.
— Combined approaches of QoS routing and QoS signaling.
— QoS multicast routing.
— QoS routing implications on layer 2 technologies.
— QoS routing in Adhoc networks.
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