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ABSTRACT
Open MPI’s point-to-point communications abstractions, described in this paper, handle

several different communications scenarios, with a portable, high-performance design and
implementation. These abstractions support two types of low-level communication protocols
– general purpose point-to-point communications, like the OpenIB interface, and MPI-like
interfaces, such as Myricom’s MX library. Support for the first type of protocols makes use
of all communications resources available to a given application run, with optional support
for communications error recovery. The latter provides a interface layer, relying on the
communications library to guarantee correct MPI message ordering and matching. This
paper describes the three point-to-point communications protocols currently supported in
the Open MPI implementation, supported with performance data. This includes comparisons
with other MPI implementations using the OpenIB, MX, and GM communications libraries.

1. Introduction

The high-performance computing arena is currently experiencing several trends
that significantly impact the design of message-passing systems. These include a
drive towards large process count peta-scale class computing systems, a surge in the
number of smaller multi-core clusters being deployed, and the emergence of high
performance heterogeneous systems. Developing a message-passing system capable
of providing high performance point-to-point communications for this broad range
of applications is a challenging task. It requires an ability to efficiently scale with
the number of processors, deal with fault scenarios that impact applications running
on systems with large component counts, and minimize the impact of supporting
heterogeneous environments.
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The Open MPI project [3] has developed a flexible abstraction, providing the ba-
sis for dealing effectively with a broad set of point-to-point communications scenarios.
There have been three methodologies developed code-named OB1 [12] (i.e. OB1 is
not short-hand notation for a longer name), DR (Data Reliability), and CM (i.e. CM
is not short-hand notation for a longer name). Each of these is an instance of the
Point-To-Point Messaging Layer (PML) abstraction. This paper describes these instan-
tiations, provides some performance data obtained with these methods, comparing the
performance obtained with different PMLs over the same interconnect, and with other
MPI implementations.

A number of implementations of the MPI-1 [8] and MPI-2 [4] standards currently
exist. These include LAM/MPI [1], FT-MPI [2], PACX-MPI [7], LA-MPI [5], MPICH
[6], MPICH2 [9], the Quadrics version of MPICH [11], Sun’s MPI [14], and the Virtual
Machine Interface MPI (VMI-MPI) 2.0 from NCSA [10]. Each of these implementations
provides its own methodology for point-to-point communications, resulting in a wide
range of performance characteristics and capabilities:

• LA-MPI is designed to stripe a single message across identical NICs, different
messages across different NIC types, and allows for optional recovery from lost
data.

• LAM/MPI’s “Component Architecture” enables the user to select from several
different point-to-point methodologies at run-time.

• Sun’s and Quadrics’ MPIs can stripe a single message across multiple available
similar Network Interface Cards (NICs).

• MPICH2 has a design intended to scale to very large numbers of processors.

• VMI-MPI is designed to stripe a single message across heterogeneous NICs, giving
it the ability to transparently survive the loss of network resources with out any
application modification.

• FT-MPI is designed to allow MPI to recover from processor loss with minimal
overhead.

The abstractions presented in this paper represent a step forward in the ability of a
single MPI implementation to effectively and efficiently handle a broad set of point-to-
point communications run-time scenarios, while focusing on high performance. They
represent an evolution of ideas first explored in the LA-MPI implementation, then the
TEG abstraction [16,15] of Open MPI, and incorporates ideas from LAM/MPI and FT-
MPI. The resulting implementation provides a broad and enhanced set of features that
include: (a) fault tolerant message passing in the event of transient network faults —
in the form of either dropped or corrupt packets — and NIC failures; (b) concurrent
support for multiple network types (e.g., Myrinet, InfiniBand, GigE); (c) single message
fragmentation and delivery utilizing multiple NICs, including different NIC types, such
as Myrinet and InfiniBand; (d) heterogeneous platform support within a single job,
including different OS types, different addressing modes (32 vs 64 bit mode), and
different endianess; and (e) support for network stacks that provide MPI like semantics
with message matching.
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The remainder of this paper describes the PML abstraction, and the OB1 DR, and
CM implementations of this abstraction. Benchmark results are also presented.

2. Point-To-Point Design

A layered designed is used to implement Open MPI’s support for point-to-point com-
munications. The upper layer, accessed directly by the MPI layer is the Point-to-point
Messaging Layer (PML). The PML, a Modular Component Architecture (MCA) [13]
component, implements all logic for point-to-point MPI semantics such as standard,
buffered, ready, and synchronous communication modes, synchronous and asynchronous
communications, and the like. MPI message transfers are scheduled by the PML. There
are currently three PMLs in active use in the Open MPI code base - OB1, DR, and CM.
The TEG PML [16] has been superseded by OB1. These PMLs can be grouped into
two categories based on the component architecture used to implement these PMLs,
with OB1 and DR forming one group, and CM in a group by itself. The following
subsections describes these PMLs, as well as the lower level abstractions developed to
support these.

2.1. OB1 and Data Reliability (DR) Point-To-Point Management Layer Compo-
nents (PMLs)

Figure 1 provides a graphical image of Open MPI’s Layered architecture. As this
figure shows, the OB1 and DR PML design is based multiple MCA frameworks. These
PMLs differ in the design features of the PML component itself, and share the lower level
Byte Transfer Layer (BTL), BTL Management Layer (BML), Memory Pool (MPool),
and the Registration Cache (Rcache) frameworks. While these are illustrated and defined
as layers, critical send/receive paths bypass the BML, as it is used primarily during
initialization and BTL selection. These components are briefly described below.

MPI

PML - OB1/DR

BML - R2
BTL - 
GM

MPool-
GM

Rcache

BTL -
OpenIB 

MPool-
  OpenIB

Rcache

PML - CM

MTL- MX
(Myrinet)

MTL- PSM
(QLogic)

MTL- 
Portals

Figure 1: Open MPI’s Layered Architecture

The policies these two PMLs implement incorporate BTL specific attributes, such as
message fragmentation parameters and nominal network latency and bandwidth param-
eters, for scheduling MPI messages. These PMLs are designed to provide concurrent
support for efficient use of all the networking resources available to a given application
run. Short and long message protocols are implemented within the PML, as well as mes-
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sage fragmentation and re-assembly. All control messages (ACK/NACK/MATCH) are
also managed by the PML. The benefit of this structure is a separation of the high-level
(e.g., MPI) transport protocol from the underlying transport of data across a given in-
terconnect. This significantly reduces both code complexity and code redundancy while
enhancing maintainability, and provides a means of building other communications pro-
tocols on top of these components.

While the OB1 and DR PMLs share a many common features, they differ in the sort
of communications they support. The OB1 PML is designed for low-latency, high band-
width communications, and assumes that all communications will succeed, or directly
inform the calling layer of failure. The only way communication failure is detected is
via error code propagation from low-level communications libraries. This component
possesses a limited to a simple set of corrective actions for these failures, such as
attempts to re-establish network connectivity, or else it just terminates communications.
The OB1 PML is designed to deliver scalable, high-performance communications. It
does not add overhead needed to support general fault recovery, such as watch-dog
timer maintenance.

The DR PML is aimed to provide high performance scalable point-to-point commu-
nications in the context of potential network failures. This includes transient network
failures, such as data corruption, dropped packets, and temporary network disconnects.
More catastrophic network failures, such as partial loss of network connectivity between
two given end-points, may also be handled, if alternative network paths exist between
these two end-points. These network failures are dealt with at the PML level, without
the need for the application to change. A later paper will describe this PML in detail.

The common MCA frameworks used in support of the OB1 and DR PMLs are
described briefly below.

MPool The memory pool provides memory allocation/deallocation and registration /
de-registration services. For example, InfiniBand requires memory to be registered
(physical pages present and pinned) before send/receive or RDMA operations
can use the memory as a source or target. Separating this functionality from
other components allows the MPool to be shared among various layers. For
example, MPI ALLOC MEM uses these MPools to register memory with available
interconnects.

Rcache The registration cache allows memory pools to cache registered memory for later
operations. When initialized, MPI message buffers are registered with the Mpool
and cached via the Rcache. For example, during an MPI SEND the source buffer
is registered with the memory pool and this registration may be then be cached,
depending on the protocol in use. During subsequent MPI SEND operations the
source buffer is checked against the Rcache, and if the registration exists the PML
may RDMA the entire buffer in a single operation without incurring the high cost
of registration.

BTL The BTL modules expose the underlying semantics of the network interconnect
in a consistent form. BTLs expose a set of communication primitives appropri-
ate for both send/receive and RDMA interfaces. The BTL is not aware of any
MPI semantics; it simply moves a sequence of bytes (potentially non-contiguous)



Parallel Processing Letters

across the underlying transport. This simplicity enables early adoption of novel
network devices and encourages vendor support. There are several BTL mod-
ules currently available; including TCP, Myrinet/GM, Myrinet/MX, Cray Portals,
Shared Memory (SM), Mellanox VAPI, and OpenIB VAPI.

BML The BML acts as a thin multiplexing layer, allowing the BTLs to be shared among
multiple upper layers. Discovery of peer resources is coordinated by the BML and
cached for multiple consumers of the BTLs. After resource discovery, the BML
layer may be safely bypassed by upper layers for performance. The current BML
component is named R2.

This class of PMLs makes use of some well-designed primitive MCA components
to build very portable and extensible communications protocols. In particular, imple-
mentation of a single set of components for a given communications stack is all that
is needed to implement this class of PML communications protocols - OB1 and DR, in
the current implementation.

2.2. CM Point-To-Point Management Layer Component (PML)

The CM PML is designed to provide an MPI interface directly utilizing APIs that
expose matching send/receive semantics capable of supporing MPI communication pro-
tocols. As the matching logic is implemented in the underlying network library, the CM
component is much smaller than the OB1 or DR components. CM handles memory
management for requests and buffer management for MPI’s buffered sends. The other
aspects of MPI’s point-to-point semantics are implemented by the Matching Transport
Layer (MTL) framework, which provides an interface between the CM PML and un-
derlying network library. Currently there are three implementations of the MTL, for
Myricom’s MX library, QLogic’s InfiniPath library, and the Cray Portals communication
stack.

The CM PML pushes the MPI matching logic as close to the network hardware as
possible, providing the opprotunity for Open MPI to provide latency and bandwidth al-
most identical to the native network interface. Unlike the OB1 and DR components, CM
allows message matching and transfer to occur asynchronously, without the application
entering the MPI layer and without progress threads in the MPI layer.

The CM component, however, is unable to provide MPI-level message striping or
use different interconnects for different endpoints. It is assumed that interfaces that
provide high-level matching logic implement shared memory optimizations within the
lower-level library. Further, due to an issue with the Open MPI datatype engine and
any-source receives, the CM PML does not support heterogeneous environments. In
many situations, however, the possibility of better performance and the asynchronous
progress of CM outweigh its disavantages.

3. Results

A simple ping-pong benchmark has been used to gather bandwidth and latency
performance data. Open MPI performance data is collected for the OB1, DR, and CM
PMLs, and compared, as appropriate, with the same performance data collected with
Myricom’s MPICH MX and MPICH-GM, MVAPICH MPI, and QLogic’s InfiniPath MPI.
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3.1. Experimental Setup

Results for Myrinet/MX, Myrinet/GM, and OpenIB were generated on a small
Opteron cluster, with two 2.0 GHz dual core Opteron processors and 4 GB of memory
per node. Each machine contains two Mellanox InfiniHost III EX InfiniBand HCAs on
dedicated 16x PCI Express busses and a Myrinet PCI-X D NIC in a 133 MHz PCI-X
slot. The Mellanox InfiniBand HCAs are connected via a SilverStorm 9120 DDR switch
and the Myrinet NICs are connected via a Myrinet 2000 switch, with all nodes used in
testing connected to the same line card. Results for the InfiniPath InfiniBand adapter
were obtained using Qlogic’s CBC test cluster. Each machine has the Iwill DK8-HTX
motherboard with two 2.6 GHz Opteron processors. The InfiniPath adapter is connected
to the motherboard via the Hyper Transport 1.0 interface.

3.2. Latency

The latency results are reported in Table 1, and are the half round trip time to
transfer one byte of MPI data between two processes. One byte was used, rather than
zero bytes, as at zero byte one of the implementations we compared against exhibited
anomalously high latencies.

MPI Implementation PML MTL BTL Average 1 Byte
Latency

Open MPI CM MX 3.26
MPICH MX 2.97

Open MPI OB1 OpenIB 2.99
Open MPI DR OpenIB 6.21
MVAPICH MPI 2.84

Open MPI OB1 GM 7.59
Open MPI DR GM 12.10
MPICH GM 7.54

Open MPI CM PSM 1.45
InfiniPath MPI 1.29

Table 1: Two node Ping-Pong latency in µ-sec (one-way).

The OB1 latencies were measured for the OpenIB and GM BTLs. The OpenIB la-
tency was measured at 2.99 µ-sec, slightly above the MVAPICH MPI latency which was
measured at 2.84 µ-sec, and the GM latency was measured at 7.59 µ-sec, very slightly
above the 7.54 µ-sec measured with Myricom’s MPICH-GM. Open MPI’s OB1 laten-
cies are comparable to those of both MVAPICH and MPICH-GM MPI implementations
which are tailored to their respective communication protocols. This data indicates
that Open MPI’s general purpose design meets the objective of providing low-latency
communications.

The DR latencies were measured for the OpenIB and GM BTLs. The OpenIB latency
was measured at 6.21 µ-sec, an increase of about 3 µ-sec, or about 107%, above the
OB1 latency. The GM latency was measured at 12.10 µ-sec, about 4.5 µ-sec, or 60%,
above that measured with the GM OB1 PML is expected, as the reliability protocol
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adds acknowledgments to ensure correct data delivery, as well as optional end-to-end
data integrity checks to detect data corruption. We are unaware of any other MPI
implementation that provides such capability using os-bypass capabilities.

Finally, the CM latencies were measured for QLogic’s InfiniPath MTL, and Myricom’s
MX MTL. The InfiniPath MTL gave a latency of 1.45 µ-sec compared with a latency
of 1.29 µ-sec with InfiniPath MPI. The MX MTL came in with a latency of 3.26 µ-sec,
which is slightly higher than that produced by MPICH MX. Again, Open MPI’s CM
latencies are comparable to those of these two MPI implementations which are tailored
to their respective communication protocols.

3.3. Bandwidth

The bandwidths measured with the OB1 and the CM components are displayed in
Figures 2 and 3, respectively. As these figures indicate, the Open MPI implementation
nearly saturates available network bandwidth at large message sizes, and over the entire
range of message sizes measured, performs as well as, and in some instances better than,
the other MPI implementations. However, the OB1 implementation, will aggregate data
across multiple network connections, when present, thus greatly increasing the measured
ping-pong bandwidth.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  10  100  1000  10000  100000  1e+06  1e+07

Ba
nd

wi
dt

h 
(M

By
te

s/
Se

c)

Message Size (KBytes)

Open MPI PML OB1 Ping Pong Bandwidth (Comparison)

Open MPI - BTL OpenIB
MVAPICH

Open MPI - BTL GM
MPICH-GM

Figure 2: OB1 Ping-Pong Bandwidth (MB/Sec)

Bandwidths measured with the DR OpenIB and GM BTLs are displayed in Figure 4.
At small message sizes, where the network transmission time dominates the overall
communications time, the bandwidths measured with the DR components are similar
to those measured with the OB1 components. At larger message sizes, where the time
to traverse the data and generate a checksum at both the sender and the receiver
gets large, these costs start to take a large portion of the overall transmission time,
significantly reducing the measured bandwidth. With the OpenIB component, which
uses the Network Interface Card’s RDMA capabilities, this translates to a reduction
of about 30% in measured peak bandwidth. With the GM network stack, DR and
OB1 obtain similar bandwidth profiles. This is not surprising, given that the OB1
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Figure 3: CM Ping-Pong Bandwidth (MB/Sec)

GM BTL uses a memory copy to transfer data into registered GM buffers, and the
checksum used to protect the data is relatively inexpensive, and pipelined with the
memory copies. When one uses a similar copy-in/copy-out protocol with the OpenIB
BTL, similar performance characteristics are also observed.
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4. Summary

This paper discusses the point-to-point design used in Open MPI to handle, within
a single library build, a wide range of network stacks. In addition the ability to recover
transparently from several types of network errors is implemented, thus providing a
means to increase applications mean time to failure. As the latency and bandwidth
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measurements show, the performance obtained with this library is very good. Future
point-to-point work will involve further latency and bandwidth optimizations, with most
of the effort aimed at honing the DR component and overall thread safety.
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