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Abstract—It is the general assumption that in estimation and control
over wireless links, the receiver should drop any erroneous packets. While
this approach is appropriate for non real-time data-network applications,
it can result in instability and loss of performance in networked control
systems. In this technical note we consider estimation of a multiple-input
multiple-output dynamical system over a mobile fading communication
channel using a Kalman filter. We show that the communication protocols
suitable for other already-existing applications like data networks may not
be entirely applicable for estimation and control of a rapidly changing dy-
namical system. We then develop new design paradigms in terms of han-
dling noisy packets for such delay-sensitive applications. We reformulate
the estimation problem to include the impact of stochastic communication
noise in the erroneous packets. We prove that, in the absence of a perma-
nent cross-layer information path, packet drop should be designed to bal-
ance information loss and communication noise in order to optimize the
performance.

Index Terms—Estimation over wireless links, fading channels, net-
worked control systems.

I. INTRODUCTION

Recently there has been considerable interest in estimation and
control over wireless links. Advances in technology have resulted in
an abundance of cheap embedded units equipped with sensing, pro-
cessing, communication and actuation capabilities. This has resulted
in a wide range of sensor network applications from environmental
monitoring, emergency response, smart homes and factories to surveil-
lance, security and military [1]. Such applications bring together
different aspects of estimation, communication and control, necessi-
tating non-traditional and cross-disciplinary designs and approaches.

In this technical note, we are interested in mobile sensor networks
that are running real-time applications and are therefore delay-sensi-
tive. We consider a mobile sensor that is observing a dynamical system.
It transmits its observation over a wireless link to a remote node that
is in charge of estimation using a Kalman filter. This is a fundamental
problem that can arise in networked sensing, estimation and control.
Communication plays a key role in the overall performance of such
networks since both sensor measurements and control commands are
transmitted over wireless links. Considering the impact of communica-
tion channels on estimation and control is an emerging area of research
and has recently been cited as one of the major challenges of the con-
trol area [2]. Digital transmission over wireless links can experience bit
error rate due to multipath fading, shadowing, receiver thermal noise
and excessive distance between the transmitter and receiver. This is in
addition to the impact of quantization.
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While impact of quantization on estimation and control over com-
munication links has received considerable attention [3], the impact of
other channel unreliability such as fading, shadowing, receiver thermal
noise and mobility has not been studied extensively. For mobile appli-
cations, such channel unreliability will introduce a time-varying noise
in the received samples. The receiver can then decide to either keep the
received sample or drop it. The criteria for making this decision vary
depending on the application. Data networks, for example, are not as
sensitive to delays since the application is not real time. The receiver,
therefore, can afford to drop erroneous packets and wait for retransmis-
sion. Voice applications such as cellular networks, on the other hand,
are sensitive to delays. In every transmitted bit stream, there are key
bits embedded for synchronization and other crucial tasks. If these bits
get corrupted, the receiver drops the transmitted stream. However, once
these bits are received accurately, the rest of the bit error rate is either
corrected through channel coding or tolerated [4] since there is no time
for retransmission. Estimation and control of dynamical systems over
wireless links is an emerging application, for which new communica-
tion design paradigms should be developed. Control applications are
typically delay sensitive as we are racing against the dynamics of the
system. Therefore, the communication protocols and designs suitable
for other already-existing applications like data networks may not be
entirely applicable.

Current work in literature has assumed applying data network design
principles to networked control applications by considering a receiver
that only keeps noise-free packets. Along this line, impact of packet
drop on networked control applications has been studied. Micheli et al.
investigated impact of packet loss on estimation by considering random
sampling of a dynamical system [5]. This is followed by the work of
Sinopoli et al. which derived bounds for the maximum tolerable prob-
ability of packet loss to maintain stability [6]. Impact of the communi-
cation noise introduced by excessive distance between the transmitter
and receiver, fading, shadowing and mobility, however, has not been
studied extensively. Furthermore, an investigation of the appropriate
receiver design approach in terms of handling noisy samples is lacking.

In this technical note we are interested in studying the impact of the
unreliability introduced by multipath fading channels on estimation.
Instead of applying data network design principles to such delay-sen-
sitive applications, we are interested in finding new design paradigms.
Inspired by delay-sensitive voice applications, we take a fundamen-
tally different approach and formulation which will allow us to provide
the right abstraction for modeling the impact of stochastic communi-
cation noise in these systems. The main question this technical note
addresses is the following: “How should noisy packets be handled in
the receiver?” We answer this question both in terms of stability and
performance.

II. SYSTEM MODEL

Consider a mobile sensor observing a system with the following
linear dynamics:

��� � �� ������ � ����

���� ������ � ���� (1)

where ���� � � and ���� � � represent the state and observa-
tion respectively. ���� � � and ���� � � represent zero-mean
Gaussian process and observation noise vectors with covariances of
� � � and	 � � respectively. In this technical note, we take
 � �
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and� invertible to focus on the impact of communication noise. We are
interested in estimating unstable dynamics and therefore we consider
cases where matrix� has at least one eigenvalue outside the unit circle.
The sensor then transmits its observation over a wireless fading channel
to a remote node, which is in charge of estimation. Since estimation of
dynamical systems over mobile links has not been extensively studied
before, we keep our analysis general by considering mobile channels.

A. Physical Layer: Wireless Communication [7]

In this part we will summarize how to model the impact of a time-
varying fading wireless communication channel on the observation.
The sensor quantizes the observation, ����, transforms it into a packet
of bits and transmits it over a fading channel. The remote node will re-
ceive a noisy version of the transmitted data due to bit flip. Let ����� rep-
resent the received signal. ����� is what the second node assumes the ���

transmitted observation was. Let ���� represent the difference between
the transmitted observation and the received one: ���� � ���� � �����,
where ���� � ����� � �����. In this technical note, we refer to ����

as communication noise. It consists of two parts, link noise ����: noise
due to the quality of the communication link and quantization noise
����. For fading channels, the impact of link noise typically dominates
the impact of quantization noise [7]. However, while estimation/control
in the presence of quantization noise has received considerable atten-
tion, impact of fading on estimation and control has mainly remained
unexplored. Therefore, in this technical note we will mainly focus on
the impact of the link noise.

1) Multipath Fading Channel: One of the major performance
degradation factors of a mobile communication environment is multi-
path fading. “Multipath” is a term used to describe multiple paths that a
radio wave may follow between the transmitter and the receiver. Waves
that are received in phase reinforce each other producing a stronger
signal, while those that are received out of phase produce a weaker
signal. Small changes in the transmission paths, caused by movements
of the receiver or transmitter can change the phase relationship of the
two signals, introducing a rapidly time-varying fading channel. This is
in addition to the distance-dependent attenuation factor. Signal attenu-
ation and fading can result in bit error rate, i.e. some of the transmitted
bits will be flipped. This will result in an erroneous reception of the
transmitted packets, i.e. ����� �� �. Correlation characteristics of
fading channels depend on several parameters such as the transmission
environment, speed of the mobile unit, and frequency of operation. For
instance, for a mobile node that moves at 25 mph and communicates
at 1 GHz, channel will be uncorrelated after 13.5 ms using Jakes
model [7]. Therefore, as long as the time interval between consecutive
transmissions is larger than 13.5 ms in a networked control setup,
channel can be considered uncorrelated from one transmission to the
next. This time interval corresponds to observing a dynamical system
at 74 Hz. As the mobile speed or frequency of operation increases, the
channel gets uncorrelated even faster. Therefore, in this technical note
we take the channel to be uncorrelated from one transmission to the
next as it will be the case for several networked control applications.

2) Channel Signal to Noise Ratio: A fundamental parameter that
characterizes the performance of a communication channel is the re-
ceived Signal to Noise Ratio. Received Signal to Noise Ratio is defined
as the ratio of the received signal power divided by the receiver thermal
noise power. Let 	��� represent the instantaneous received Signal to
Noise Ratio at ��� transmission. 	��� determines how well the trans-
mitted bits of the ��� transmission can be retrieved. As the sensor
moves, the remote node will experience different channels and there-
fore different received Signal to Noise Ratios. In a given area, 	��� can

be considered a stationary stochastic process with	��� representing its
average. The distribution of 	��� is a function of the transmission en-
vironment and the level of mobility of the sensor. In this technical note
we do not make any assumption on the probability distribution of 	.
Only when we want to provide an example, we will take 	 to be ex-
ponentially distributed, which is a common model for outdoor fading
channels with no Line-of-Sight paths.

3) Communication Noise Variance: Let ��
���� represent the vari-

ance of ���� at ��� transmission. ��
���� is a function of 	���:

�
�
���� � �

�����	��� � 
 �	���� (2)

where 
 is a non-increasing function that depends on the transmitter
and receiver design principles, such as modulation and coding, as well
as the transmission environment. To keep our analysis general, in this
technical note we do not make any assumption on 
. It should be noted
that the communication noise has a time-varying variance.

4) Packet Drop Probability: Depending on the receiver design,
there can be a packet drop mechanism deployed in the receiver. Let
���� represent the probability that the receiver drops the ��� packet.
���� can also be represented as a function of 	��� � ���� � ��	����,
where function � is a non-increasing function. Functions 
 and �

provide the abstraction necessary to model the impact of the physical
layer in the higher application layer. Experimental results have shown
� to be well approximated as follows [8]:

���� �
� 	��� � 		

� else
(3)

This means that the receiver keeps those packets with the received in-
stantaneous Signal to Noise Ratio above a designated threshold 		 .

B. Application Layer: Estimation

The remote node estimates the state based on the received observa-
tion using a Kalman filter [9]. Let �	��� denote the estimate of 	��� at
the remote node. Then 
 ��� represents the corresponding estimation
error covariance matrix given 	�� � ���	�� � �� � � � �	���:


 ��� � �	��� � �	���� �	��� � �	����	
���
������
������������

�

(4)

This is different from the traditional form of Kalman filtering since

 ��� is a function of channel statistics through 	�� � ���	�� �

�� � � � �	���. For instance, to obtain �
 ����, 
 ��� should be aver-
aged over the joint distribution of 	�� � ���	�� � �� � � � �	���.

C. Cross-Layer Information Path

It is well known that data networks enjoy a layered protocol stack
that makes different layers opaque to one another. When estimating
over wireless links, the application layer will be in charge of estimation
whereas the knowledge of the quality of the communication link will
be available in the physical layer. A cross-layer information path in this
case refers to a path from the physical layer to the application layer that
carries information on the quality of the link (Signal to Noise Ratio
or communication noise variance). Since mobile fading channels can
decorrelate and change rapidly, there needs to be a constant cross-layer
information path to update the application layer of the link quality.
While the presence of such a path can play a key role in the overall
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performance, the receiver architecture may not support it. Therefore,
in this technical note we will consider scenarios where such a path is
not available in the receiver, i.e. the application layer does not have any
knowledge on the link quality.

D. Ideal Communication Noise

As discussed in Section I, current work in literature mainly applies
data network design principles to networked control applications by
assuming that the receiver drops packets that contain any amount of
error. Then those packets that are kept in the receiver are considered
noise-free. We refer to this assumption on the communication noise as
“ideal noise” throughout the technical note. Such an assumption trans-
lates to the following recursion for the estimation error covariance:

� �� � �� � �� ����� ��

��� �����
�� �� ����� � �� ������

��

�� ����� (5)

where

����� �
	 ���� � ��

� otherwise
(6)

Current work in literature mainly considers Kalman filtering over fixed
wireless channels by assuming that the probability of packet drop is
the same from one transmission to the next. For a fixed probability of
packet drop, �����, authors in [6] found the following condition for
stability:1

����� 	 

��

��� (7)

where 
��� represents spectral radius of matrix �.

III. RECEIVER DESIGN THEORIES

Estimation of a rapidly changing dynamical system is delay sen-
sitive. Dropping all the erroneous packets can result in loss of infor-
mation, can reduce the useful transmission rate and can lead to insta-
bility for such applications. Therefore, the receiver can not afford to
wait for receiving noise-free packets. In this section, we will consider
the impact of stochastic communication noise on the estimation of a
multiple-input multiple-output system and will derive a new receiver
design strategy in terms of handling the received information, which is
more suitable for real-time networked control applications. To keep the
analysis general, we will not make any assumption on the communica-
tion noise variance function or Signal to Noise Ratio distribution. To
ease mathematical derivation, we assume that the observation noise is
negligible compared to the communication noise. The estimation using
a Kalman filter will then be as follows:


��� � �� �
�
���� if ��� packet is dropped
�������� if ��� packet is kept.

(8)

The estimation error will be as follows using (1):

��� � ��� 
��� � ��

�
� ����� � 
����� � ��� if ��� packet is dropped
������������ if ��� packet is kept.

(9)

1Note that the original result of [6] is for a general� matrix and results in (7)
when � is invertible.

This will result in the following recursion for the estimation error co-
variance:

� �� � �� � �� ����� ��

�
�� ����� � ��� ���������

�������

�����
(10)

where ��� is the communication noise variance as defined in Section II
and

����� �
� ���� � ��

� otherwise.
(11)

As the mobile node moves in a given area, it will experience different
Signal to Noise Ratios. Averaging (10) over ���� will result in the fol-
lowing recursion for average estimation error covariance:

�� �� � ��� � ���	��� �� �� ������ ��

����
��	��� ����
�
������

� (12)

���	 and ���
��	 represent average probability of packet loss (spatial
averaging) and average communication noise variance that entered the
estimation process respectively:

���	��� � � ��� �

�

�

������ (13)

and

�
�

�
��	��� � �

�

�

�
�

���������� (14)

where � represents probability density function of �.
Lemma 1 (See [9]): Consider the following Lyapunov equation with

� Hermitian: � � �� � �. The following hold:
a) If  is a stable matrix (spectral radius less that one), � will be

unique and Hermitian and can be expressed as follows: � �
�

�	� 
���� ��,

b) if ������� is controllable and � � 	, then � will be Hermi-
tian, unique and positive-definite iff  is stable.

A. Stability

Definition 1: We consider the estimation process stable as long as
average estimation error covariance stays bounded.

Using Lemma 1b, it can be easily seen from (12) that the stability
condition will be as follows:

���	 	 

��

��� (15)

where 
��� represents the spectral radius of matrix �.
Remark 1: The stability condition is independent of the shape of the

communication noise variance, ���.
Remark 2: Define stability range as the range of all the � matrices

or average Signal to Noise Ratios, ���	, that would satisfy the sta-
bility condition of (15). It can be easily confirmed that decreasing ��

(keeping more packets) will increase the stability range.
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While keeping all the packets results in maximizing the stability
range, it will not minimize the estimation error covariance. Next we
show how to design the receiver to minimize the estimation error co-
variance.

B. Optimum Performance

Intuitively, there should be an optimum �� (optimum way of drop-
ping packets) that will minimize the asymptotic average estimation
error covariance. If �� is too low, the receiver will keep most of the
packets but the estimation will be too noisy. On the other hand, if ��

is too high, the receiver will be strict about the quality of the packets
that it will keep. This reduces the amount of communication noise that
enters the estimation process but will result in high packet loss rate and
therefore information loss rate. Then the optimum �� will be the one
that provides a balance between information loss and communication
noise. The asymptotic average estimation error covariance will be as
follows as long as the stability condition of (15) holds:

�� ���� � ������� �� �� ������ � ���������� ��

���������� �� �	
 ������� � � ������	 (16)

Let �� �	
� represent the optimum way of dropping packets which will
minimize the spectral norm of the asymptotic average estimation error
covariance matrix: �� �	
� � �
��� � �� ��
�� ���. Let �� �	
�

represent the optimum way of dropping packets which will minimize
the determinant of the asymptotic average estimation error covariance:
�� �	
� � �
��� ��� �� ��
�� ��. We will derive an analytical
expression that relates optimum way of dropping packets to the char-
acteristics of the communication channel and eigenvalues of matrix �.
For this derivation, we assume that � � ��� and � � �� , where ��
represents an � � � identity matrix. We furthermore take � � �,
where � is a symmetric matrix, i.e. � � ��

 . Later in this section
we will discuss cases where � is not symmetric.

Theorem 1 (Balance of Information Loss & Communication Noise):
Consider the system model described in Section II, with � � ��� ,
� � �� and � � �. Consider a receiver that is equipped with a
packet drop mechanism described by (3) and does not support a cross-
layer path. Then �� �	
� will be as follows:

�� �	
� �
��� ��� � �

� otherwise
(17)

where ��� is the unique solution to the following equation:

���� ��
�

� �

������	
��� ����

� �����	�� ���� �

������	
��� �����

�

��

�������� � � ���
� ������ (18)

where �����	�� refers to the normalized average communication
noise variance: �����	������ � � ���������

�

� ������� � ��� �, and
�� �	
� will be as follows:

�� �	
� �
��� ��� � �

� otherwise
(19)

where ��� is the unique solution to the following equation:

�

���

���
�� ������� ���

�

�

���

�

�����	�� ��� � ��

� ��� �

(20)

where ��
 ��
 � � � 
 �� represent the eigenvalues of matrix �, where
���� � ���� � � � � � ��� � and ���� � ����.

Proof of Theorem 1: Using Lemma 1a with � � ��� ,
� � �� and � � � will result in �� ���� �

������������� �
�

���
�������� ����

����� �

���
�������� ����

��.
We will have the following decomposition: � � ���� , where
� � �������
 ��
 � � � 
 ��� and ��� � �� . It can be confirmed that

�� �����

�� �����
��������

�
�������� �

������������ �

 � � � 


��������
�
�������� �

������������ �
���

(21)

where diag{ } denotes a diagonal matrix with the elements inside the
parenthesis representing the diagonal elements. This results in

� �� ����� �
 � �������

�
�������� �

�� ���������� �
	 (22)

Let ��� represent any solution to (18). It can be easily verified that
����� ��������� is only zero at ��� . Next we show that (18) has
a unique solution. Assume that (18) has two solutions: ��� and
��� � ��� . Since ��� is a non-increasing function of �, we will
have the following:

���� ��� ������	�� ��� �
��

�������� �����

� ���� ��� ������	�� ��� �
��

�������� �����

�
�

�

�������
�

�

����������

��� �����

��

��

�
�

��� �����

�
�

��� �����

�

�

������������

��

�
��

�����

�

��� �����

�
�

��� �����

��

��	 (23)

Therefore,2 ��� � ��� . Let ��
� be the critical stability threshold:

�� �����������
�
� � � �. We have ��� � ��

� . Consider those cases
where there exists a positive solution to (18). Then using the fact that
��� �� �� ��
�� �� 	 � shows that ��� corresponds to the
unique minimum of � �� ��
�� ���, i.e. �� �	
� � ��� . If process
noise is the dominant noise, compared to the communication noise,
there may be no positive solution to (18). It can be easily seen that, in
such cases, � �� ��
�� ��� will be an increasing function for �� �

�, resulting in �� �	
� � �.
Next we will find �� �	
�. We will have

��� �� ���� �

�

���

��� �
������������ � � 

�� ���������� �
	 (24)

2Note that �� ������ is taken to be zero only asymptotically.
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Fig. 1. Minimums of the curves indicating the optimum packet drop
mechanism.

It can be easily confirmed that

� ��� �� ����

���
	 ����

�
�����

������������ ��
�
� 
 ��

�
������ ���������� ��

�
�

	��

��	
�� ��	������� �

�
�

	��

������������� ��
�
	

������������� ���	 
 �
	 (25)

Therefore, � ���� �� �����
��� �� �� 	 � will result in (20).
In a similar manner, it can be easily confirmed that (20) has a unique
solution and that �� �
�� corresponds to the global minimum of the
determinant of the asymptotic average estimation error covariance.

Theorem 1 shows that the optimum way of dropping packets is the
one that provides a balance between information loss ������ and com-
munication noise ���������. Equation (18) [and (20)] may not have a
positive solution if process noise is the dominant noise compared to
the communication noise (the third term on the left hand side of (18),
for instance, will then get considerably high values). In such cases, the
receiver should keep all the packets as communication noise is not the
bottleneck. However, as long as process noise is not the dominant noise,
the optimum way of dropping packets is the one that provides a bal-
ance between information loss and communication noise as indicated
by (18) [and (20)].

Theorem 1 confirms that dropping all the erroneous packets will not

minimize the estimation error covariance and that the optimum receiver

would allow some amount of communication noise in the estimation

process in order to avoid high information loss rate. In general, mini-

mizing spectral norm and determinant could result in different optimum

packet drop thresholds depending on the eigenvalues of matrix �, as

can be seen from Theorem 1. If � has one dominant eigenvalue or all

the eigenvalues of � are the same, then �� �
�� 	 �� �
��. To see

this, note that (18) can be written as

����

�� ����������
�

� �
	

�

�����
���
�

� � 
 ��
� ���� ��

	 (26)

Therefore, if all the eigenvalues are the same, (18) and (20) will be the

same. On the other hand, if ��� is the dominant eigenvalue of �, we

will have

�

���

���
�� ���������

�

� �
� ����

�� ����������
�

� �

and

�

���

�

�����
���
�

� � 
 ��

� ���� ��

� �

�����
���
�

� � 
 ��
� ���� ��

(27)

which results in �� �
�� � �� �
��.
To see the impact of operating at the optimum �� , Fig. 1 shows

� �� ����� as a function of �� and for different levels of average
Signal to Noise Ratio, ����. For this example, Signal to Noise Ratio,
�, is taken to have an exponential distribution and the communication
noise variance is taken as follows: ������ 	 � 
  � �

�
��, where

��� 	 ��

�
���

�

�
��� ���� for an arbitrary �. This is the variance

of the communication noise for a binary modulation system that uti-
lizes gray coding [10]. The following parameters are chosen for this

example: � 	

� �	� �	��

�	� �	� �	�

�	� �	� �	��

, � 	 ���, � 	 ���, � 	 �	���,

� 	 �, � 	 �	�� � ���� and  	 ���	� (which corresponds to 10
bits per sample and quantization step size of 0.0391). It can be seen
from Fig. 1 that if �� is too low, estimation performance degrades
due to excessive communication noise. On the other hand, having ��

too high will result in loss of information, which will degrade the per-
formance. The optimum �� (as predicted by Theorem 1) provides
the necessary balance between loss of information and communica-
tion noise, reaching the minimums of the estimation error curves. As
�� increases, the estimation will approach the instability regions, pre-
dicted by (15) due to high information loss.

Remark 3: Equation (18) is derived for symmetric � matrices. Still,
the minimums of the curves in Fig. 1 (optimum �� ), which are plotted
for a non-symmetric �, satisfy (18). This suggests that a similar ex-
pression could be valid for the general case.

To see the impact of minimizing the determinant of the estimation
error covariance, Fig. 2 shows optimum packet drop threshold as a
function of average Signal to Noise Ratio, for both cases of minimizing
the norm and the determinant, and for the parameters of Fig. 1. In this
case, ����
���� 	 �	�, ����
���� 	 �	� for matrix �. It can be seen
that optimum points of operation are close. To see the effect of � on
the optimum packet drop threshold, Fig. 3 shows asymptotic norm of
the average estimation error covariance as a function of the threshold,
for different � and at ���� 	 �� ��. It can be seen that as the process
noise increases,���
�� decreases, as expected. For instance, at � 	 ��,
the receiver should keep all the packets as process noise is the domi-
nant noise.

Remark 4: In practice, (18) [or (20)] will be implemented in the
physical layer. This can be done by incrementally increasing or de-
creasing the current packet drop threshold. Physical layer can learn the
current packet loss rate statistically and can estimate the communica-
tion noise variance based on the estimate of received Signal to Noise
Ratio (see [10]). It also needs to know the parameters of the state under
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Fig. 2. Optimum packet drop threshold as a function of average Signal to Noise
Ratio (in dB) using two performance metrics: norm and determinant.

Fig. 3. Impact of � on the optimum packet drop criteria.

estimation, which are not time-varying and can therefore be passed on
to it from the application layer once at the beginning of the operation.
Then it increases or decreases the threshold periodically, based on the
new estimates of packet loss rate and communication noise variance,
in order to minimize the difference between the left-hand side and the
right-hand side of (18) [or (20)].

IV. CONCLUSION

In this technical note we considered estimation over mobile com-
munication channels using a Kalman filter where we presented a new
receiver design paradigm. We showed that dropping all the received
erroneous packets is not suitable for real-time networked control ap-
plications. We then derived the optimum packet drop mechanism and
proved it to be the one that balances information loss and communica-
tion noise. This means that some erroneous packets should be kept in
the receiver to minimize the information loss.

There are several possible extensions for this work. For instance, we
made the assumption that matrix � is invertible. Furthermore, in The-
orem 1 we assumed symmetric � matrices. We are currently working
on relaxing these assumptions. We considered one transmitter and one
receiver in this technical note. The analysis and results of this technical
note can be extended to scenarios with multiple sensors by replacing
Signal to Noise Ratio by Signal to Interference and Noise Ratio. In this
technical note we considered the impact of a wireless fading channel
on the performance of a Kalman filter. Intuitively, the derived design
strategy should be applicable when considering the performance of a
controller. Proving this analytically is among possible extensions of
this work.
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