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Performance Optimization of Interference-Limited
Multihop Networks

Ahmed Bader and Eylem Ekici, Member, IEEE

Abstract—The performance of a multihop wireless network
is typically affected by the interference caused by transmissions
in the same network. In a statistical fading environment, the
interference effects become harder to predict. Information sources
in a multihop wireless network can improve throughput and delay
performance of data streams by implementing interference-aware
packet injection mechanisms. Forcing packets to wait at the head
of queues and coordinating packet injections among different
sources enable effective control of copacket interference. In this
paper, throughput and delay performance in interference-limited
multihop networks is analyzed. Using nonlinear probabilistic
hopping models, waiting times which jointly optimize throughput
and delay performances are derived. Optimal coordinated injec-
tion strategies are also investigated as functions of the number of
information sources and their separations. The resulting analysis
demonstrates the interaction of performance constraints and
achievable capacity in a wireless multihop network.

Index Terms—Hopping dynamics, interference-limited, mul-
tihop networks, performance optimization, Rayleigh fading.

I. INTRODUCTION

I N MULTIHOP wireless networks where all transmitters
share the same radio channel, a packet propagating through

the network suffers from harmful interference generated by
peer packets in the network. The wireless link quality is de-
termined by interference, which in turn determines the longest
distance a packet can correctly be received at. As the level
of mutual interference increases, packets experience shorter
hopping distances and slower propagation speeds across the
network. Therefore, the network performance is a function of
the internally-generated interference. In this work, we aim to
analyze the performance of an interference-limited multihop
wireless network in terms of information transfer from sources
to sinks. The following two performance metrics are considered
for this purpose:

1) Throughput (THR): The rate at which packets cross a mea-
surement boundary that cuts each flow only once.

2) Head-of-Queue Delay (HQD): The sum of the time a
packet spends at the head of the source queue and the
multihop transmission time towards its destination.

These two metrics are closely related to the transport rate metric
which is the product of the throughput and the distance travelled
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by packets over a single hop [1]. However, transport rate on
its own does not capture the end-to-end packet delivery latency
as will be shown in Section V-C. This observation motivates
our choice to introduce HQD as an additional and necessary
performance metric. Given a finite set of source-sink pairs, we
are interested in distinct packet flows traversing the network and
not necessarily how many packets may coexist in the network.

The interference a packet suffers from can be classified as
intra-flow and inter-flow. Interference from packets injected
from the same source is referred to as intra-flow interference,
whereas interference from packets belonging to other flows is
referred to as inter-flow interference. The interdependence of
THR and HQD in such networks leads to important observa-
tions. An increased packet injection rate of information sources
(THR) leads to increased numbers of packets propagating in the
network, which increases the mutual interference levels. Con-
sequently, the progress of packets is slowed down and HQD is
adversely affected. Hence, there is an inherent tradeoff between
the achievable THR and HQD. This tradeoff can be controlled
by managing packet injection processes at the sources, which
constitutes the main objective of this study. Information sources
can achieve desired tradeoff levels by introducing appropriate
waiting times between injection of packets. Forcing packets
to wait at the head of the source queue creates a controlled
interference environment for the leading packets in the same
flow. Moreover, information sources must coordinate their
injection processes such that the adverse effects of inter-flow
interference are minimized.

The analysis presented in this paper is performed for net-
works with unlimited node density. We are interested in under-
standing the statistical packet flow characteristics which opti-
mize the network performance. For this purpose, we first in-
troduce nonlinear models describing 1-D and 2-D packet flow
dynamics under a probabilistic communication model. We then
jointly consider THR and HQD in a multi-objective optimiza-
tion problem, where we use nonlinear recursive methods to de-
rive the optimal waiting times. We then devise local search tech-
niques to derive the optimal number of flows and the optimal co-
ordination for multiple-flow packet injection. Obtained results
show the interactions between THR and HQD and achievable
performance levels with respect to one metric when the other is
used as a constraint.

II. RELATED WORK

In the literature, limitations of interference on the perfor-
mance of multihop networks have been analyzed in a number
of studies. In [1] and [2], asymptotic bounds on the achiev-
able throughput and transport capacities under a deterministic
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interference model are presented. It is shown that the achievable
transport capacity per node vanishes as the number of nodes ap-
proaches infinity. The authors in [3] utilize a generalized fading
channel model integrated with the use of channel state infor-
mation (CSI). In [4], the achievable aggregate and per node
throughput for three different classes of ad hoc multihop net-
works is studied. Routing-oriented capacity limits are also pre-
sented in [5].

Limitations imposed by internal interference on performance
is also discussed in the literature in terms of packet recep-
tion probability. In [6], a probabilistic model for successful
packet reception is developed. Based on a path-loss exponent
model and Poisson node deployment, the authors investigate
the problem of finding optimum transmission ranges. The
limitations of using a deterministic radio propagation model
are addressed in [7]. A generalized mathematical model is
developed which describes the probability of successful packet
reception under Rayleigh fading.

Graph-theoretical approaches are also available in literature.
In [8], interfering links are modeled using a conflict graph to es-
timate the throughput of the network. An undirected geometric
random graph is presented in [9] to analyze the connectivity
of a multihop ad hoc network under lognormal shadowing. In
[10], effects of interference on performance are studied for colli-
sion-based multihop networks. In [11], strategies and algorithms
to construct optimum interference graphs in a TDMA-based net-
work are presented.

In this study, we treat achievable performance from a macro
perspective: We perceive packet flows as directional quantities
and aim to deliver packets to their respective destinations while
achieving desired performance levels. Therefore, the objective
of the analysis presented in this paper is distinguishable from
that of [1], which derives throughput and transport capacity
bounds as functions of the number of nodes. In order to en-
compass the latency in communicating information between
sources and destinations, we introduce the HQD metric. In this
study, THR and the HQD are jointly considered as criteria for
deriving optimal packet injection mechanisms.

The link model presented in [7] is utilized as the basic tool
for our analysis. We show that this model is valid for different
time-selectivity scales of the fading channel. Thus, two inter-
pretations are given for the model in terms of link outage and
link reliability criteria. We also provide an equivalent upper-
bound representation of the model that is useful when there is
no knowledge about the locations of interferers. We introduce
nonlinear models describing 1-D and 2-D packet hopping dy-
namics under the developed communication model. Moreover,
we present simple optimization techniques that are specifically
tailored to optimize this highly nonlinear problem.

III. COMMUNICATION MODEL

A. Channel Model

In this study, a narrowband multipath wireless channel with
a coherence time longer than bit transmission time is assumed.
This channel is modeled as a multiplicative frequency nons-
elective Rayleigh fading channel with a large-scale path-loss

Fig. 1. Block diagram of the channel model.

exponent [12]. An omnidirectional antenna pattern is as-
sumed for all nodes, which emits at the same power . For a
certain packet transmission, the desired signal at the receiver is
corrupted by interference signals and a zero-mean additive
white Gaussian noise (AWGN) signal of variance as shown
in Fig. 1. Each transmitted signal goes over an independent
Rayleigh fading channel. and are independent
random fading coefficients with Rayleigh-distributed mag-
nitudes and uniform phases. The desired signal strength is
denoted by and the signal strength of the th interferer
by . Furthermore, the distance between
the transmitter and the receiving node is denoted by . The
distance between the th interferer and the receiver is denoted
by , where . The mean power content in the
channel over which the desired signal is transmitted equals the
large-scale path loss, i.e., , where is
the wavelength. Similarly, the mean power content in the th
interferer’s channel is given by . Under
the Rayleigh fading channel model, and are exponen-
tially distributed with means and

, respectively, where .
The signal-to-interference-and-noise ratio (SINR), denoted by

, is given by

(1)

Furthermore, we denote the ratio between the mean desired
signal and the noise power by and the ratio of the mean
desired signal power to the mean interference power from the

th interferer by , where

(2)

The cumulative density function (cdf) of the SINR is [7]

(3)

B. Link Model

The quality of the wireless link may be tracked by observing
the instantaneous bit error rate (BER). However, the analysis
involving the BER must assume a certain modulation class and
usually involves complicated mathematical functions. A more
general way to capture the quality of a wireless link is through
its outage probability, which is defined as the probability that the
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instantaneous SINR falls below a certain specified threshold
[13].
The effects of multiplicative fading on the SINR may be pro-

jected on two different time scales: the bit duration and the
packet transmission time. In case the coherence time is greater
than the packet transmission time, the probability of outage is
time-invariant for a given packet transmission. A packet is suc-
cessfully received if . Using (3), the probability of correct
packet reception is given as

(4)

This case is also referred to as a quasi-static or block fading
channel. A common design strategy is to condition the wireless
link against a desired minimum reliability [14]–[16]. For a de-
sired link reliability of where , the link condition
is expressed as .

We also consider the more general case where the fading
channel is only slow with respect to the bit duration but not to the
packet transmission time, i.e., the coherence time is much less
than the packet duration. In this case, the probability of incorrect
bit reception is . The conditions for successful packet
reception are highly dependent on the decoding scheme. This
often requires determining the frequency of occurrence and the
average duration of deep fades during the transmission of one
packet. This can be obtained by performing a threshold-crossing
analysis [17], [18]. However, for the the sake of simplicity, we
assume that the fading process is fast enough to produce ap-
proximately uncorrelated channel gains every time a bit is trans-
mitted. Uncorrelated bit decisions can also be achieved using
proper bit interleaving. Moreover, we assume that a packet is
successfully decoded if the number of incorrect bits is less than
a certain fraction , which can be viewed as a measure of toler-
ance to link outage. Given the average ratio of incorrect bits to
the total packet length , the condition for successful
packet reception can be written as

(5)

which is the same link condition specified for the case of a block
fading channel. Within this context, the block fading channel
is a special case of the general time-selective fading model. In
the subsequent analysis, we will assume a general time-selective
fading model.

Since the fading coefficients are assumed to be independently
distributed (Section III-A), the events of successful packet re-
ception at locations that are sufficiently apart are independent.
It follows that the events of successfully receiving a packet every
time it hops are also independent. Furthermore, we note that the
link condition is specified in this manner to avoid retransmis-
sions, i.e., first-time delivery is sought. It is also important to
note that the choice of and is affected by the hardware, mod-
ulation, and error-correction schemes [19] which may largely
vary from one application to another. Consistent with [15, The-
orem 1], the left-hand side of the link condition in (5) can be

factorized into two parts: the contribution of the noise and that
of the interference. Furthermore, the contribution of each inter-
ferer can be explicitly identified from the link condition.

The link condition in (5) may also be expressed in terms of the
packet transmission distance and the interference distances

. Incorporating (2) into (5) yields

(6)

where . For a given network setting, we are interested
in finding the maximum distance a packet can hop and the
corresponding values of such that the link condition is
just satisfied. On the other hand, in the absence of interference

, the link condition reduces to .
The packet hop distance in this case is denoted by and is
upper bounded by .

C. Monotonicity of the Hopping Distance

It can be shown that the hopping distance of a packet is an
increasing monotone in the summation of the interference dis-
tances . From (6), it is apparent that is monotonically
increasing in any of the interference distances . Since

, then this implies that is also monotonically in-
creasing in . This result, although simple, is important
and will be used in subsequent discussions.

D. Bounded Representation of the Link Condition

In the absence of information about the relative locations of
the packet transmitters, it is still possible to calculate the hop
distances. Using in (6), we obtain

(7)

For small values of is approximated by the
first three terms of its McLaurin series

(8)

If the summation of the average interference powers (denoted by
) is known, the probability of reception may be simplified in

terms of its upper bound. We denote the second- and third-order
summation of the average interference powers by and , re-
spectively, such that we have
and . Since all summations run over positive
terms, we have and . Furthermore, using
Jensen’s inequality, we get . Using these relation-
ships, and under the reasonable assumption that ,
the link condition is expressed as

(9)

From (9), we obtain a lower bound on the achievable hop dis-
tance of a certain packet given that the averages of the interfer-
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Fig. 2. Hopping along a linear network. (a) Network with two packets. (b) Net-
work with three packets. (c) Network with � packets.

ence signals are available. Knowledge of the locations of peer
packets is not required in this case.

IV. PACKET-HOPPING DYNAMICS IN A LINEAR NETWORK

Here, the hopping behavior of packets under the communica-
tion model described in Section III is investigated. We study first
a linear network as a stepping stone towards developing hopping
models for the 2-D case.

A. Assumptions

The following assumptions are made for the analysis of
packet-hopping dynamics.

1) Integer time scale: Synchronous transmissions of fixed-
length packets are assumed. Hence, time is represented
with integer values.

2) Unlimited node density: Packets are delivered to the far-
thest point possible towards their destination.

3) Packet uniqueness: There are no duplicates of the same
packet in the network. Gains of cooperative relaying strate-
gies [20] are acknowledged. However, we are interested in
studying the effect of interference on the number of dis-
tinct packets a multihop network may handle.

4) Infinite source queue length: We assume that all packets
are available at the source at injection time.

5) Packet hop distances: Packets hop the maximum distance
possible under the link condition in (6).

6) Path-Loss Coefficient : Without loss of generality, a path-
loss coefficient of is assumed.

We note that the unlimited node density assumption may serve
as a good direct approximation of dense networks such as dense
sensor networks. However, as we will show in subsequent sec-
tions, the optimal operation of the network can be sustained with
finite node densities. Furthermore, this approach also allows us
to concentrate on the achievable capacity of a multihop wire-
less network subject to other performance constraints. Finally,
we assume that the intermediate nodes do not buffer packets and
relay to the next hops as soon as they are received. This allows
us to control the packet scheduling through the scheduling at
source nodes alone.

Fig. 3. IIR hopping system representation. (a) IIR representation of a two-
packet hopping system. (b) IIR representation of a three-packet hopping system.

B. IIR Modeling of Hopping Dynamics

The hopping dynamics of packets in a linear network are best
modeled by an infinite impulse response (IIR) system. We next
consider simple cases which justify this choice.

1) Two-Packet Hopping System: Fig. 2(a) shows a
two-packet linear network where the transmitters are sepa-
rated by a distance . The packet numbering plan follows the
order of the packets at the source queue. Time is denoted by

. The hopping distance of the first packet at time is
and that of the second packet is . At , the packets
are separated by . Packets will be able to start hopping
only if . The system is governed by the following link
conditions:

(10)

where and . Given , packet hop
distances are found by solving for , which just satisfies
the link condition in (10). Every time the packets hop, the next
inter-packet separation distance is found using the update equa-
tion . Therefore, it is very
convenient to describe the hopping behavior of the network with
an IIR system, which is initially excited by . The represen-
tation of a two-packet IIR system is shown in Fig. 3(a). It is
assumed that such that .

2) Three-Packet Hopping System: The network in Fig. 2(b)
is initially excited by and . We assume that

such that
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TABLE I
PARAMETERS USED TO OBTAIN NUMERICAL RESULTS

. The update equations for this system are:
. The link

conditions and are given by

(11)

where is the distance from the th interferer to the re-
ceiver of the th packet. The corresponding IIR system repre-
sentation is shown in Fig. 3(b). As the order of the IIR system
increases, it is only possible to find the hop distances numer-
ically. The hop distance of the th packet is found by gradu-
ally increasing in (11) until the link condition is just
met. Higher order hopping system models are built in a similar
manner. However, we utilize at most the three-packet hopping
system as it suffices for the analysis.

C. Fundamental Properties

Here, we present some properties of the hopping behavior of
packets along a linear network. These properties are used by
information sources when deriving the optimal packet injection
mechanisms (Sections V and VI). Numerical results in the rest
of the analysis are obtained using the values in Table I.

1) Upper Bound on the Packet Hop Distance: From (10),
the inter-packet distance at time may be expressed ex-
plicitly in terms of the hop distance , which has a posi-
tive first derivative, i.e., is monotone in , and hence the
converse is true. Moreover, taking the limit in the
link condition of (10) gives the interference-free hop distance:

. As a result, the hop dis-
tance is concave and upper-bounded in terms of the inter-packet
separation as shown in Fig. 4(a).

2) Increasing Gap: The network settings in Fig. 2 show
that the receiver of the leading packet (first packet) al-
ways suffers from the least interference. Thus, the hop-
ping distance of the first packet is always larger than
those of the other packets. Therefore, the gap between the
leading packet and the trailing packets widens with time.
For instance, in the two-packet system this corresponds to

. It will be shown next
that this property applies to linear network with an arbitrary
number of packets, i.e., the gap between any two successive
packets widens with time. This can formally be demonstrated
by considering Fig. 2(c). The interference distance from the
th packet to the th packet is denoted by , i.e., the distance

between the receiver of the th packet and the transmitter of the
th packet. The proof of this property follows two steps.

Fig. 4. Properties of two- and three-packet hopping systems. (a) Hop distance
versus inter-packet separation (two-packet system). (b) Inter-Packet separation
versus time (two-packet system). (c) Packet decoupling property: inter-packet
separations versus time (three-packet system). (d) Self-adjusting property
(three-packet system).

Step 1) Show that the gap between the first and second
packets grows with time.

Step 2) Extend the result to subsequent packets in the linear
network.

Step 1: With reference to Fig. 2(c), and
. Using the monotonicity

result of Section III-C, must hold. Since

must hold . As

holds .
This shows that the gap between the first and second packets

grows with time. This is also true for the gap between subse-
quent successive packets, although the gap may initially shorten
for a limited period of time. Step 2 of the proof demonstrates
this. Consider Fig. 2(c) for the second step.

Step 2: Using the monotonicity property of Section III-C,
iff . These terms can

be rearranged to obtain .
From this, we also obtain , and therefore

. As long as and
implies . However,

, also implies such that
. Therefore, we conclude that

, .
This shows that the gap between the second and third packets

may initially reduce but will regain its growing behavior. This
is what we refer to as the “self-adjusting property”. Fig. 4(d)
illustrates this property by tracking the inter-packet separation
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with time. The same two-step proof can also be applied
to show the increasing gap property for all packets.

3) Time Evolution of the Inter-Packet Separation: The in-
creasing gap property takes longer periods to observe for small
values of link outage tolerance . To demonstrate this, we plot
the inter-packet separation in a two-packet system versus
time for various values of . The larger is, the more relaxed
the link condition becomes. Therefore, the growth in the inter-
packet separation over time is slower for smaller , as shown
in Fig. 4(b). For more reliable communication, it is desirable to
have as small as possible, even in noisy environments. Under
such circumstances, it may be assumed that the inter-packet sep-
aration stays constant in the vicinity of the source. This corre-
sponds to the lowest curve in Fig. 4(b). In other
words, both packets cover almost equal hop distances. The sit-
uation where is required to be small in the existence of high
noise level will be referred to as “strict network conditions.” It
can be also shown that the hop distances of both packets increase
very slowly under strict network conditions, and they appear to
hop at the same constant speed.

4) Packet Decoupling Property: The constant inter-packet
separation between two packets under strict network conditions
holds only until a third packet is injected. Injecting a third packet
will impose more interference on the second packet than the
first, and therefore it will “decelerate” the second packet such
that the first packet will be able to “break free” from the group.
This is illustrated in Fig. 4(c). Similarly, when a fourth packet
is injected into the network, it will have a decelerating effect on
the third packet such that the second packet will be able to speed
up its pace. Consequently, a packet ready to be injected at the
head of the source queue will suffer from interference mainly
from the two packets ahead, i.e., the st and nd
packets. This property is utilized to study the optimization of
the packet injection process.

V. OPTIMAL PACKET INJECTION IN LINEAR NETWORKS

Here, we first show that maximizing throughput on its own
saturates the network and deteriorates the HQD performance.
Then, we propose to optimize the packet injection mechanism
by jointly considering HQD and THR. Using the linear hop-
ping properties presented in Section IV-C, we calculate optimal
waiting times, which are shown to converge.

A. THR and HQD in Linear Networks

Throughput at any point along the network is defined as the
rate at which packets cross a measurement boundary. If the
boundary is chosen at the information source, then the mea-
sured rate represents the source throughput, THR. The definition
of throughput implies that it is a time-varying quantity which
is sensitive to the location of the measurement boundary. We
will show here that moving the measurement boundary along
an infinitely-long linear network produces a throughput which
asymptotically converges to zero. This claim can be verified by
utilizing the asymptotic results given in Section IV-C2. We con-
sider a packet which is hopping along an infinitely-long linear
network parallel to the positive -axis. Its hop distance at time

at distance from the source is denoted by . Simi-
larly, its separation from the leading packet is denoted

Fig. 5. Diminishing first hop distance for a unit inter-packet waiting time.

by . As the packet progresses along the network, the
following limits hold true:

(12)

(13)

This indicates that it takes a longer time to observe two sub-
sequent packets crossing an observation point as the observa-
tion point is moved along the -axis. As a result, throughput is
a decreasing function of the distance from the source. Further-
more, it follows from (13) that throughput asymptotically falls
to zero as a function of . This result does not contradict with
the principle of flow conservation since none of the packets is
buffered or lost at the intermediate forwarding nodes. It is only
that packets stretch apart from each other as they progress to-
wards the destination. In practice, network lengths are limited.
Under strict network conditions where the time evolution of the
network dynamics is slow, it is very difficult to observe such a
result.

In most cases, it is desirable to maximize the source
throughput (THR). This corresponds to minimizing the
inter-packet waiting time. Based on the assumption of unlim-
ited node density in Section IV-A, injecting a packet every time
unit becomes feasible. With unlimited density, packets may
hop arbitrarily small distances as long as the link conditions for
all packets are satisfied. Therefore, there are no restrictions on
injecting a packet every unit time. In this case, the maximum
bit-throughput is just equal to the wireless link bandwidth.
However, whenever a new packet is injected from the source
queue, its first hop inside the network will be shorter than the
first hop of the preceding packet, as illustrated in Fig. 5. This is
intuitive and can be verified as follows.

1) From (5), it can be shown that for any packet just injected
from the source queue, the following strict lower bound on

must be attained for successful packet reception:

(14)

It follows from (14) that , i.e.,
the initial hop distance of a packet is always less than the
separation from the next leading packet.

2) Since packets are injected at rate-1, it follows that at time
and with , we have , where is

the initial hop distance of the st packet made at time
.
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TABLE II
OPTIMAL HQD PROBLEM NOTATION

3) Consequently, , where the inequality is strict.
Therefore, we obtain the following limit:

(15)

As the source queue is drained out, the initial hop distance of an
injected packet diminishes. As a result, source throughput on its
own does not constitute a useful performance criterion since it is
indifferent to the packet delivery delay requirements. Injecting
packets at rate-1 results in a progress which asymptotically falls
to zero as . At the other extreme, waiting too long may
allow the packet at the head of the queue to hop at the noise-
only upper bound . However, this can only be achieved if all
preceding packets reach the destination node, which can incur
very high delays. Therefore, the goal is to find optimal waiting
times to achieve a tradeoff between HQD and THR. We first find
optimal waiting times by only considering the HQD criterion.
The analysis in this case is shown to be readily usable to jointly
consider both criteria.

B. Minimization of HQD in Strictly Conditioned Linear
Networks

As discussed in Section IV-C3, under strict network condi-
tions, hop distances of packets in the vicinity of the source are al-
most equal and grow by insignificant amounts with time. The in-
jection of packets are considered in a recursive manner starting
from the first packet. For each packet, the waiting time which
minimizes the HQD is computed. The injection of one packet
provides the necessary information for the calculation of the
optimal waiting time for the next packet in the source queue.
Packets are numbered according to their order in the source
queue. The notation is detailed in Table II.

1) First and Second Packets: The first packet is injected in an
interference-free environment. Therefore, its initial hop distance
is . The injection of the second packet inevitably slows down
the first packet. After the second packet is injected, both packets
take approximately equal-length hops. Hence, the inter-packet
separation is given by , where is the waiting time of the
second packet. The link condition for the second packet at the
instant it is injected is expressed as

(16)

The HQD for the second packet is given as ,
where is the length of the network. The relationship between

Fig. 6. Convexity of HQD in terms of waiting time of the second packet.

and under (16) may be approximated with great accuracy
as

(17)

where is a fitting coefficient that is network-dependent. From
(17), waiting too long, yields an interference-free
hop distance. The HQD function can be expressed in terms of

as

(18)

Since the second derivative is convex in as
shown in Fig. 6. Therefore, there exists an optimal waiting time

which minimizes . Solving for in yields the
waiting time at which the curve is minimum as

(19)

Since time only assumes integer values, the actual optimal
waiting time is the integer value at which the absolute value of
the slope of the curve is smallest. Therefore, the optimal
waiting time is calculated as

(20)

2) Third Packet: Assuming that the first and second packets
propagate at a constant rate of meters/unit time, the inter-
packet separation between the second and third packets just after
the third packet is injected is given by , where
is the waiting time of the third packet, as shown in Fig. 7(a).
The HQD for the third packet is: . The link
condition for the third packet is given as

(21)
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Fig. 7. Recursive optimization of waiting times. (a) Network setting just after
the third packet’s injection. (b) Network setting just after the �th packet’s injec-
tion.

To investigate the convexity of in terms of , it is neces-
sary to study the relationship between and under the
link condition. We note that the condition can be written as

, such that and
, where and are constants. For both functions

and , the waiting time may be expressed explicitly in terms
of . It can be shown that is convex in under and

is linear in under . A nonnegative weighted sum of two
convex functions is also convex [21]. Furthermore, utilizing the
fact that , we conclude that is concave

and is also upper bounded in terms of , i.e., .

Consequently, we may express , where
is again a fitting coefficient that is network-dependent. The

value of is greater than that of , since the interference the
third packet suffers from at injection is less than that in the case
of the second packet. As a result, the optimal waiting time
for the third packet is obtained by applying the same tools used
to derive .

3) Fourth and Subsequent Packets: Based on the packet de-
coupling property of Section IV-C4, it is reasonable to assume
that the first packet has outpaced the rest of the packets when
the fourth packet is to be injected. Therefore, it is sufficient to
consider only the second and third packets. The assumption of
constant inter-packet separation distances at the vicinity of the
source edge still holds. This argument may be generalized for
all subsequent packets. Fig. 7(b) depicts the network setting just
after the th packet is injected. The only running variable in this
setting is the waiting time of the th packet. Since only two
leading packets are considered, the analysis is identical to the
one concerning the injection of the third packet. With the HQD
function expressed as

(22)

the optimal waiting time is calculated by replacing index
2 in (20) by .

4) On the Convergence of the Optimal Waiting Time: Here,
we provide nontrivial upper and lower bounds for the optimal
waiting time and also show that it cannot diverge. We begin by
establishing a relationship between the optimal waiting time and
the number of leading packets (interferers) as follows.

From Sections V-B2 and V-B3, the noninteger optimal
waiting time for packet is expressed as

Taking the first derivative of and , we obtain and

. Since holds.

We also have and . Hence

(23)

In other words, the optimal waiting time is monotonically in-
creasing in the sum of interference distances. There exists an
upper bound on this time based on the following facts.

• The gap between two successive packets features a
growing behavior as shown in Section IV-C2.

• For a finite-length network, the number of interferers along
a finite linear network is also finite.

Using the result of (23), we are also able to find a lower bound
on the optimal waiting time. Since the second packet experi-
ences the least interference, its optimal waiting time is
the largest and is the lower bound for the optimal waiting times
for all packets. On the other hand, if we hypothetically assume
that the optimal waiting time diverges, then a direct consequence
will be: , and . How-
ever, this cannot be true based on the fact of finite number of
interferers in the network as we have shown above.

For the specific network parameter values of Table I, the op-
timal waiting time is observed to converge as shown in Fig. 8.
This value (denoted by ) is mainly affected by the tolerance
for outage , the SNR, and the network length. The fluctuations
that exist in some of the plots of Fig. 8 are due to the fact that the
network length is finite. Therefore, the total number of packets
might occasionally drop by one, reducing the overall level of
interference temporarily. It is clear from Fig. 8 that, the the net-
work conditions are more relaxed, convergence is faster and the
optimal value is lower.

5) On the Optimality of the Waiting Time: In optimizing
the waiting time, we expressed the HQD in terms of the hop-
ping parameters obtained right after the packet is injected. In
Section IV-C, it is shown that, in the long run, the hop distance
of a packet increases every new hop. Therefore, it is possible that
a packet reaches its destination faster than the calculated HQD.
In other words, achieved HQD can be better than the calculated
one. For relatively short linear networks, the increase in the hop
distance is small such that the actual HQD is not much smaller
than the one used in calculating the optimal waiting time.

C. Transport Rate

We will demonstrate now the insufficiency of the transport
rate on its own as a metric to characterize the performance of
the network. For the th packet ready to be injected at the head
of the source’s queue, it was shown in Section V-B3 that HQD
and THR are, respectively, expressed as

(24)
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Fig. 8. Convergence of optimal waiting time for different network scenarios.
(a) Various transmit powers � . (b) Various SINR thresholds � . (c) Various
values of link outage tolerance � . (d) Various noise powers � .

The transport rate when measured at the source corresponds to
the product of the packet injection rate and the distance a
packet covers on its initial hop . Therefore, the transport rate
denoted by , is expressed as

(25)

The first derivative of the transport rate in terms of the waiting
time is given as

(26)

Using the inequality , it can be shown that
the transport rate is a monotonously decreasing quantity. How-
ever, it was demonstrated in Sections V-B1–V-B3 that HQD is
a convex quantity with a global minimum. Consequently, it can
be concluded that there must be a compromise in the maximum
achievable transport rate if an adequate HQD performance is
desired. Since THR is also a monotonously decreasing quantity
and is a factor of the transport rate, we chose THR in addition
to HQD to jointly reflect the performance of the network.

D. Multi-Objective Optimization in Linear Networks

As discussed in Section V-A, the maximization of source
throughput (THR) and the minimization of packet HQD are two
conflicting objectives. Thus, their joint optimization has a Pareto
optimal solution1: the compromise is handled using various ap-
proaches, two of which are discussed next.

1A feasible point x is Pareto optimal (or efficient) if � ��� is a minimal ele-
ment of the set of achievable values � [21].

1) Weighted Objectives Method: Objectives are positively
weighted and their sum is optimized. Using this method, the
problem of finding the optimal waiting time for the th packet is
formulated as follows:

(27)

subject to and . The formulation in
(27) simplifies to the following:

(28)

which is the same formulation used previously to minimize the
HQD. The only difference here is the factor which
has the effect of virtually reducing the length of the network.
Therefore, the same procedures outlined in Section V-B are used
to derive the integer optimal waiting times.

2) Tradeoff Method: The tradeoff method requires the op-
timization of one objective given the second is bounded. For
instance, the problem of maximizing throughput while keeping
the HQD below a certain upper bound is formulated as follows:

where is some desired upper bound.

VI. OPTIMAL PACKET INJECTION IN MULTIPLE-FLOW

MULTIHOP NETWORKS

Here, we consider multiple information sources aligned along
one edge and destinations along the opposite edge of a rectan-
gular network. This corresponds to data transfer across a wire-
less network segment. Throughput (THR) for this scenario is
defined as total packet injection rate of information sources.
The definition of HQD is similar to that given for the 1-D case.
Our objective in this section is to maximize the total source THR
while maintaining HQD for all packets below a certain level. It
is shown that this is achieved by:

1) optimally coordinating the packet injection process among
information sources;

2) using an optimal combination of the waiting time and the
number of flows.

A. Why Parallel and Equally Spaced Flows?

In our analysis, we assume that the number of packet sources
equals the number of available packet sinks (destination nodes).
We consider equally spaced linear packet flows, i.e., packets
progress along parallel linear path trajectories. As a result,
packets from one information source are all delivered to the
same destination. This combination of parallel and equally
spaced flows is selected as it provides minimal inter-flow
interference. It was shown in Section III-C that interference
experienced by a packet and consequently its hop distance is
captured by the sum of interference distances. Given parallel
flows, then inter-flow interference is reflected by ,
where is the number of flows and is the distance be-
tween the th and th flows. In order to achieve a multiple
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Fig. 9. Finding point of maximum SIR.

parallel flow network with minimal inter-flow interference,
we must solve for the set of inter-flow separation distances
satisfying optimization problems. Each of these problems
has the following general form:

(29)

A careful inspection will show that these problem have con-
flicting objectives. A Pareto optimal solution is to have equal
inter-flow separation distances.

On the other hand, hopping along equally spaced par-
allel paths maximizes the SIR. Considering Fig. 9, the SIR
at any receiving point in terms of mean signal strengths is
given by: , where from geometry

, and ,
i.e., . For any hop distance , the
maximum SIR occurs when at . Consequently,
it is concluded that the chosen network setting (parallel equidis-
tant flows) provides highly favorable operational conditions.

B. Packet Hopping in Multiple-Flow Networks

The dynamics of packet hopping under intra-flow interfer-
ence were studied in Section IV. In multiple-flow networks,
inter-flow interference must be considered, as well. The effects
of inter-flow interference can be understood by considering a
network with sources separated by meters. Let us consider
the case where each source injects one packet only, forming a
packet wavefront. The progress of a packet towards its destina-
tion can be tracked by evaluating the hop distance every time
unit. The hop distance of the the th source’s packet at time is
found from the link condition

(30)

where

such that and are the distances covered till time
by the th and th packets respectively. It can numerically be

verified that, except for the outermost flows, packets preserve
their relative locations as the whole packet wavefront progresses
towards the destination edge. This is true regardless of the rel-
ative packet injection times. Fig. 10 tracks the progress of the
wavefront in time step for arbitrarily selected initial injection lo-
cations. This result suggests a trend of uniformity among inner
packet flows. In our analysis, we assume that packet flows show

Fig. 10. Progress of a single synchronous 15-packet wavefront in 20 time units.

Fig. 11. Network setting for the multiple-flow problem.

similar hopping behaviors. This assumption is most accurate for
flows furthest from network edges.

C. Joint Optimization of THR and HQD in Planar Networks

As in the 1-D case, the network is assumed to have very slow
dynamics in the vicinity of the source edge. Identical hopping
behavior is assumed for all flows. The error introduced by this
assumption is negligible as the number of flows increases. As a
result, flows are only shifted versions of each other. The waiting
time is the same for all packets injected into the network sepa-
rated by an offset. For a network with flows, length and a
waiting time of , THR and HQD are expressed respectively
as follows:

(31)

The network setting considered in this problem is shown in
Fig. 11. For convenience, packets closest to the source edge are
indexed with zero. The problem parameters are given as follows:

• Waiting time: (integer time scale).
• Relative flow displacements: .
• Hopping distances: .
• Inter-packet separations: .
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The waiting window span is defined as the maximum dis-
tance a packet can hop inside the network before the next packet
in the flow is injected, such that . The set of all op-
timization parameters is . Under the assump-
tion of uniform flows, and are identical for all flows.

1) Problem Constraints: The joint optimization of THR and
HQD in a multiple-flow network is subject to a number of con-
straints.

• , which is also equal to the distance span of
the waiting window denoted by .

• . This represents the search span for
the relative flow displacements. However, the span actually
considered is due to the periodical behavior in
the other half of the interval.

• , i.e., we require that
packets exist in each flow.

• We assume that and
.

• There are link conditions. For the th packet in the
th flow, the link condition is

(32)

• .
2) Testing for Convexity: A convex optimization problem

is characterized by having convex objective functions and
constraints such that a global optimal is guaranteed. Since for
any the sublevel sets and superlevel sets

are convex, then is quasi-linear [21]. The THR
function belongs to the general class of Quasi-Linear Fractional
Functions. On the other hand, the HQD function is convex in
terms of and as it has a positive semidefinite Hessian.2

As for the link condition, it is not possible to make a judgement
about its convexity in its current form. Using ,
(32) can be expressed as , where is
the vector of optimization parameters, and are parameter
selection vectors and is constant. Depending on the values of

and , (32) might be convex, concave, or neither.
3) Approach: Information sources can create a controlled in-

terference environment by controlling the packet waiting times
and by coordinating the relative timings of the packet injec-
tion. Moreover, the number of flows in a fixed network can
be optimally chosen such that optimal network performance is
achieved. In other words, we are interested in finding:

1) the optimal mechanism to schedule packet injections into
different flows;

2) the optimal number of flows in a network.
A solution for the joint THR-HQD optimization problem can be
found by performing a brute force search. This means searching
the whole parameters space point by point. However, the di-

2A function � with a positive semidefinite Hessian has � ���� � � [21].

mension of the search vector is . This is large
enough to render such an approach very inefficient, especially
since some of the search parameters are continuous. However,
finding the optimal scheduling pattern and the optimal number
of flows does not require a full search. It is actually possible to
solve this problem by conducting ad hoc local searches on much
smaller subsets of , as we will show next.

4) Optimal Schedule: The scheduling problem is completely
described by the relative flow displacements . Moreover,
does not have an effect on THR. Therefore, the problem of
finding an optimal packet injection pattern is addressed by con-
sidering the minimization of HQD over . HQD is minimized
when the zeroth wavefront hop distances are maximized for a
given waiting window span. This directly corresponds to the
minimization of inter-flow interference effects. However, im-
proving one hop distance necessarily deteriorates the others, so
we adopt the weighted objectives optimization method. More-
over, we will consider three packet wavefronts. An intra-flow
depth of 3 is sufficiently representative of the intra-flow inter-
ference effect argued in Section IV-C4. Increasing the depth will
only increase the problem’s dimension. The problem of finding
the scheduling mechanism which optimizes the HQD reduces to

(33)

subject to the link conditions. The additional subscript
in refers to the flow number. is computed by iter-
atively searching over the relative flow displacements while
varying the inter-flow separation . The search is done by
first discretizing using a low sampling
rate. Then, we search over all possible combinations of the
discretized for the maximum value of . For each
combination, the value of is found by calculating
the individual hop distances using (32). The
relative flow displacements that have yielded the maximum
value are recorded. In the next iteration, we increase the rate at
which is sampled. The search for a maximum is done again.
The search range is reduced to include only the vicinity of the
optimal relative displacements from the previous iteration. This
continues until the change in the calculated maximum from
one iteration to the next falls within a certain range. Numerical
results show that the optimal relative flow displacements occur
when flows are alternately shifted half-way the waiting window
span as shown in Fig. 12. This is true for inter-flow separations
as small as 10% of the waiting window span. We conclude that
sources must alternately schedule their packet injections so that
the shown HQD-minimizing pattern is attained. For smaller
values of , the optimal relative displacements feature larger
disparity to accommodate the vanishing inter-flow separation
distance of successive flows.

5) Optimal Number of Flows: Under a tradeoff approach,
we wish to maximize THR subject to HQD , where is a
desired delay upper bound. We also use here three packet wave-
fronts, i.e., . We take for simplicity. This
will impose only a marginal amount of error but will largely
reduce the computational burden. Moreover, the optimal sched-
uling pattern found in Section VI-C4 is used. Under the assump-
tion of slow hopping dynamics, is approximately constant
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Fig. 12. Optimal packet transmitter pattern for� � � flows and � � ���� .

inside the waiting window . Therefore, THR and HQD are
evaluated respectively as

(34)

There are three control variables in (34): , and . How-
ever, if and are given, all hop distances including can
be found from the link conditions in (32). In order to find the
optimal combination of and , their values are varied and
the corresponding HQD and THR are evaluated. This is done by
first evaluating the hop distances in (32).

We perform calculation for a sample network of 500 500
m. The results are presented in terms of the contour and sur-
face plots shown in Fig. 13. Under the tradeoff optimization ap-
proach, there exists a set of optimal operating points which de-
pend on the upper bound . For a certain value of , the max-
imum achievable THR is given by the contour level, which
is tangent to the contour level . The optimal number
of flows and waiting window span are given by the tangency
point. Hence, and are found by solving the equation

.

D. Numerical Examples

Assuming 100-byte long packets and a data rate of 1 Mbps,
one time unit is 0.8 ms. The transmit power is 10 dBm. In the
first example, we consider time units. The maximum
network THR corresponding to this value may be numerically
found by sweeping through the level contours of in the
ascending direction of its gradient until the tangency point is
reached. This is shown in Fig. 14(a). A maximum THR of 231
kbps is achieved. The optimal parameters are
m and . However, the actual operational point is

flows and m. This keeps the
HQD at the maximum level of 250 but reduces the achievable
throughput to slightly below 231 kbps. The optimal inter-flow
separation is m and the corresponding initial packet
hop distance is 2.192 m. As a result, the optimal integer waiting
time equals 22 time units (17.6 ms). In other words, a packet
must wait 17.6 ms at the head of the source queue before being
injected. The transfer delay to the destination is at most 200 ms.

Another illustrative example is the 1-THR case, i.e.,
Mbps. As shown in Fig. 14(b), we fix the con-

tour level corresponding to packet/unit time, and we

Fig. 13. Surface and contour plots for the multiple flow optimization problem.
(a) THR versus window size � and number of flows � . (b) HOD versus
window size� and number of flows� . (c) Level contours: THR (dashed line)
and HQD (solid line).

Fig. 14. Multiple-flow optimization examples with tradeoff approach. (a) Ex-
ample 1: Max THR for��� � �	�. (b) Example 2: 1-THR case. (c) Effect of
SINR threshold � on Performance.

sweep through contours of the HQD function until the tangency
point is reached, which happens to lie on the HQD contour
curve time units (972 ms). The optimal point is

m and . The actual operating
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TABLE III
TWO EXAMPLES UNDER TRADEOFF OPTIMIZATION METHOD

TABLE IV
COMPARISON OF MAXIMUM ACHIEVABLE THR UNDER DIFFERENT SINR

THRESHOLDS, WITH ��� � ���

point is flows and m which
lies on the contour level and gives a THR almost
equal to 1 Mbps. This corresponds to an optimal inter-flow
separation of 21.74 m, an initial packet hop distance of 42 cm
and an optimal waiting time of 25 time units. The results of
both examples are summarized in Table III.

The above two examples strongly convey the shortcoming of
considering the transport rate as the only performance metric.
This is illustrated by considering the transport rates obtained
for the networks in both examples. In the first example, the
transport rate is 506 kb m/s and in the second example it
is 420 kb m/s. While the transport rates in both cases are
comparable, the high contrast in the values of THR and HQD is
evident. The HQD and THR in the second example are almost
five times those in the first. Apparently, the transport rate does
not fully capture the actual behavior of the network. Therefore,
judging the network performance solely based on the transport
rate is insufficient.

It is also interesting to investigate the effect of the SINR de-
codability threshold on the performance of the multihop net-
work. The results of the first example in Section VI-D were
evaluated using dB. Assuming that a better decoding
scheme is able to provide a 3 dB decoding gain, i.e., can be
lowered to 7 dB, then we expect to similarly obtain a gain in
performance. To verify this, we fixed the maximum allowable
HQD at , and reran the calculations performed for the
first example in Section VI-D but with dB. The results
are shown in Fig. 14(c). As expected, the maximum achievable
throughput for the case of dB was improved. THR in-
creased by almost a factor of 2 as shown in Fig. 14(c). Results
also show that the decreased decodability threshold allows for a
larger number of flows to be packed in the network, hence im-
proving THR. On the other hand, this also comes at the expense
of the node density required to maintain the desired performance
in the mean sense. It can be shown that the grid size in the case

dB is approximately 1.54 times that when dB.
The results of this example are summarized in Table IV.

VII. CONCLUSION

In this paper, we analyze packet streaming in interference-
limited multihop networks. We consider throughput (THR) and
head-of-queue delay (HQD) as performance criteria. We express
both criteria in terms of the packet flows rather than the indi-
vidual packet transmissions. The analysis is carried out for a
Rayleigh fading environment. It is shown that the probabilistic
link model given in [7] is suitable to use in block fading (quasi-
static) as well as fast (time-selective) fading scenarios. A com-
munication model is built accordingly and used to develop a
framework of packet hopping models.

The optimal network performance is achieved in a controlled
environment. The packet injection process is subject to tem-
poral and spatial constraints such that the desired performance
balance is obtained. It is shown that waiting times must be in-
troduced between the injections of subsequent packets. For a
fixed-size network, the number of flows must also be considered
in the optimization problem. In the 1-D case, recursive optimiza-
tion is performed and the optimal waiting time is derived. In the
2-D case, it is shown that the total search space may be reduced
into smaller subspaces. This is achieved by decoupling the ef-
fects of optimization parameters and solving sub-problems se-
quentially. With this approach, we have investigated the achiev-
able performance bounds in THR (HQD), when HQD (THR) is
used as a performance constraint.

In our future work, we will consider random node positions
in finite-density networks. We will treat packet flows as vector
quantities, and develop the analysis accordingly. Moreover, we
will consider non-integer continuous time steps, where packet
transmissions need not be synchronized. We will then con-
sider the relationship between routing strategies and inter-flow
interference.
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