
Private Yet Abuse Resistant Open Publishing∗

(Position Paper)

George Danezis
K.U. Leuven, ESAT/COSIC,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium.

George.Danezis@esat.kuleuven.be

Ben Laurie
The Bunker Secure Hosting,

Shepherds Building, Rockley Road
London, W14 0DA, United Kingdom.

ben@links.org

ABSTRACT
We present the problem of abusive, off-topic or repetitive
postings on open publishing websites, and the difficulties
associated with filtering them out. We propose a scheme
that extracts enough information to allow for filtering, based
on users being embedded in a social network. Our system
maintains the privacy of the poster, and does not require
full identification to work well. We present a concrete re-
alization using constructions based on discrete logarithms,
and a sketch of how our scheme could be implemented in a
centralized fashion.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.4.6 [Operating Sys-
tems (C)]: Security and protection; H.3.5 [Information
Storage and Retrieval]: Online Information Services

General Terms
Security

Keywords
Open publishing, abuse resistance, spam, social network,
filtering

1. INTRODUCTION
A definite trend for news services using the World Wide

Web (WWW) has been a shift from web site editors provid-
ing information on their sites to allowing users to post com-
ments, ratings or full stories. This ability is often abused
through off-topic posts, postings that contravene editorial
policies, or plain spam (unsolicited, commercially motivated
communications). Methods for dealing with such behavior
can be based on the content posted. These require constant
monitoring of posts, which is quite labour intensive. An al-
ternative approach is to filter posts based on the poster’s
identity. It is believed that this provides better results since
only a minority of posters are persistent abusers. This ap-
proach has been difficult to implement due to the lack of
a reliable identification infrastructure on the Internet, and

∗This work is partly supported by a grant from the FWO.

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

the difficulty of creating ad-hoc ones. Furthermore freedom
from abuse, to maintain quality of content, must be consid-
ered in tandem with the privacy of the posters, who might be
discouraged from posting if they are to be fully identifiable.

In order to provide a privacy-preserving yet robust solu-
tion to the abuse problem we make some fresh, yet realistic
assumptions. We shall assume that users, wishing to con-
tribute to an online resource, are somehow introduced into
the system by an existing user. The security of our scheme
is based on the fact that it is costly to fool many real-world
honest users, forming an ‘introduction graph’ (first proposed
by Lesniewski-Laas and Kaashoek [14]). Therefore there is
a bound on the number of independent honest users an abu-
sive node can be connected to.

Our key intuition is that we can use the graph path to the
abusive node to extract persistent labels on which one can
filter out content coming from this user. There is no need
to actually get the real world identity or network address of
the abuser, or even the full or accurate path in the introduc-
tion graph – indeed we make sure that there always exists
some degree of plausible deniability [31] concerning the ac-
tual contributor. This ultimately guarantees the privacy of
the posters.

2. THE ABUSE FILTERING PROBLEM
Well before the advent of the Web, collaborative news,

reporting and discussion was taking place on-line through
mailing lists and Usenet newsgroups. We shall first present
how these systems coped with abuse.

2.1 In the beginning was email. . .
Mailing lists are in fact ‘broadcast’ email addresses which

expand a received message to all the list’s subscribers. Abuse
control is performed by list moderators that can filter mes-
sages based on their content or the identity of their sender.
A usual configuration is to only allow list members to di-
rectly post to the list, whilst moderating posts from non-
subscribed users (though some lists moderate all postings
while others allow anyone to post). Subscribers’ email ad-
dresses are often checked when they subscribe, using a sim-
ple challenge response mechanism (phone numbers or phys-
ical addresses may also be checked in the same way). If a
subscribed user becomes abusive (a judgment that is up to
the moderator) he can be unsubscribed without his consent.
The key assumption, that the originator of the messages can
be reliably recognized as a member or non-member of the
list, is fragile. There is no robust identification procedure for

email senders; email spoofing is both possible and common.
Many list managers also employ off-the-shelf spam filtering
software to rid the list of unsolicited messages. This provides
limited protection against adversaries that are targeting the
list for disruption, by resubscribing under different identi-
ties and spoofing messages. This phenomenon is a variant of
‘trolling’, i.e. making deliberately provocative statements in
order to start a ‘flame war’, and so far mostly social mech-
anisms have been employed to minimize its impact on an
on-line community [36].

Usenet newsgroups [25] provide on-line forums, grouped
under a certain number of categories. Originally there were
only eight root categories, and creating a group under any
of these was subject to a cumbersome process (voting, etc).
The alt.* category allows for a much easier newsgroup for-
mation, and has hosted many groups discussing controver-
sial subjects (sex, drugs and rock-and-roll being only some
of them). Usenet groups have been the subject of a lot of
spamming and specific technical measures have been fielded
to raise the quality of their contents. Only a minority of
them are moderated, in which case abuse prevention is done
as in mailing lists. The main mechanism for deleting posts is
issuing a ‘cancel message’ deleting a post. Originally every-
one was allowed to issue cancel messages, but this mecha-
nism was itself abused, leading to censorship, and nowadays
only server administrators and trusted third parties (that
perform spam filtering and cross-posting filtering) are al-
lowed to cancel messages. This is again ineffective against
persistent disruptors that can craft their messages to get
through the controls. Note that through services like De-
janews (which is now Google groups [3]), newsgroups are
available for reading and posting through a Web interface.

A handful of insights are already emerging from the de-
scription of the pre-web publishing systems. First of all
both access to publishing and abuse prevention have
to be considered as parts of an effective censorship
resistant system1. Limiting the ability to disseminate in-
formation can clearly be used for censorship, yet flooding
users with irrelevant or inaccurate information (purpose-
fully or not) both lowers the value of the overall news or
discussion feed and increases the cost of getting the valu-
able information. We see that the abuse of the publishing
medium can be an effective tool to prevent genuine stories
and views from being given the attention they deserve.

This issue is the subject of great controversy in on-line
communities that attempt to be inclusive: attempts by any
group of people to rid the forum from abusive material is
branded (often by the trolls themselves) as ‘censorship’. Yet
this debate provides us with a further interesting insight:
what constitutes abuse is subjective, yet there are
clusters of users whose views coincide on this matter.
Our solution therefore can be applied to satisfy at least one
such cluster, by allowing for the filtering of material that
does not interest them (since the material is not what they
expect from the on-line forum) 2.

Finally we observe that there are satisfactory solutions for
dealing with non-targeted abuse, such as spam. Therefore
we shall concentrate on disruption by adversaries
that target specific on-line communities and are deter-

1As first noted by Richard Clayton.
2Note the value-free language, that allows for minorities of
posters, or those who are commonly considered abusers, to
just create a separate feeds with posts that interest them

mined to lower the quality of the overall news feed or discus-
sion. This phenomenon is often recognized as ‘trolling’ [36],
but can also be an effective tool for information warfare (as
it is obvious by browsing forums dealing with controversial
issues).

2.2 . . . then came the Web.
The World Wide Web [20] as introduced in the early

nineties very much embodied a publisher/reader distinction.
Servers hosted the content of the publishers and clients were
accessing it to read it. Interactive services were implemented
early, often through the CGI [34] interface, to provide ser-
vices to allow queries on databases, but only infrequently to
change the actual content of the sites.

In the late nineties a new paradigm emerged, which has
been named ‘open publishing’. Web site would allow users
to contribute comments and stories. The most widely known
examples, and trend setters, are Slashdot [32] (a news forum
on technology and policy issues), Indymedia [1] (providing
alternative news feeds from 140 groups around the world),
and Wikipedia [2] (a collaborative encyclopedia project). In
its purest form ‘open publishing’ can be defined according
to Matthew Arnison [5] as:

“Open publishing means that the process of
creating news is transparent to the readers. They
can contribute a story and see it instantly appear
in the pool of stories publicly available. Those
stories are filtered as little as possible to help
the readers find the stories they want. Readers
can see editorial decisions being made by others.
They can see how to get involved and help make
editorial decisions. [. . .]”

Different websites implement this vision in different ways.
Slashdot allows comments and rating of articles, but does
not make its internal editorial process transparent. Indy-
media attempts to implement the full policy, but fails in
terms ease of access to editorial decisions, and filtering is
rather heavy to maintain quality. Wikipedia also attempts
to adhere to open publishing by making both content and
editorial decisions completely transparent. They all suffer
from trolling and abusive postings.

Aside from news and knowledge sites, contribution based
publishing has become the core of a couple of other web
paradigms: these are web logs (also called blogs) and wikis.
Weblogs are personal or communal diaries, often allowing
for comments from complete strangers. Wikis are free-form
pages that allow anyone to edit them, using a simplified
markup language.

A common difficulty that all open publishing systems en-
counter, when it comes to filtering abuse, is the lack of user
identification. The Internet only provides weak clues that
could be used to associate different posts with each other,
and possibly with an abusive poster. Often this is seen as
a good thing, since anonymity might be required when dis-
cussing or reporting on controversial topics.

Slashdot requires users to login and authenticate a pre-
registered account to contribute comments and ratings. This
is rather weak, since it is possible to register many accounts
which can be used as different identities. Wikipedia allows
non authenticated users to contribute material, but has a
policy of black listing particular IP network addresses which

are the source of abuse3. Indymedia refuses to ask for iden-
tification in order to contribute articles, standing firmly by
the principles of anonymous political speech.

As John Douceur described in his work on the sybil at-
tack [19] in peer-to-peer systems it is difficult to avoid an
adversary that masquerades under multiple identities, and
thus appears to be many different people. This difficulty
is at the core of performing identity based filtering in open
publishing systems. Different approaches have been used
to combat the sybil attack, two of which are subnet black
listing and CAPTCHAS. In the case of subnet blacklisting
it is assumed that the adversary can modulate their IP ad-
dress but only within a particular subsection of the IP space.
This belief cannot apply to a determined adversary that can
(for a small fee) buy time on one of the many available bot-
nets [21], spanning most of the IP space. CAPTCHAS [37,
6] are deformed strings of characters which are difficult to
parse automatically. They are presented to the user to make
sure upon registration that a real human is indeed perform-
ing the operation, and not an automaton. A typical attack
against them is to relay the challenges to other users, or to
simply pay others to solve them (i.e. relay them somewhere
where labour is cheap). These approaches are not suitable to
defend against abuse from a determined adversary. Further-
more, solutions based on Public Key Intrastructures [17] or
Single Sign On (such as Passport [?] and Liberty [8]) do not
seem to be widely deployed (although OpenID [4] is mak-
ing some progress). They are also overly privacy invasive
for the purpose of filtering abusive posts on open publishing
systems, and directly conflict with the anonymous speech
ethos that many such sites advocate.

As we will see below, when we describe our solution, fail-
ure to solve the abuse problem is related to the assumption
that the set of users has no structure at all. We shall assume
the pre-existence of a social network in which users are em-
bedded, and explore how we can reduce posting abuse based
on this.

3. OUR SOLUTION
At the heart of our solution to the abuse problem is lever-

aging the existing real-world or virtual social ties amongst
users, and building a loose labeling system based on them.
Assuming that there is a cost associated with creating local
social ties we will see that an adversary will also find it costly
to associate a completely different label to different posts.
We can use this insight to help filter abuse originating from
a small number of users.

The first stage of our protocol is the introduction. As-
sume that Alice wants to post to a certain service to which
her acquittance Bob is already introduced. She simply asks
Bob to introduce her to this service. The person who cre-
ated, or controls, the service is by default the first one to be
introduced, and we shall call them Root. Conceptually they
are at the root of the introduction graph representing users
introducing each other to this service.

Being introduced into the system automatically gives Al-
ice the right to introduce others. We will see that this is cru-
cial to allow plausible deniability of the identity of posters.
We assume (and shall provide a set of incentives to reinforce

3The fact that the Tor anononymizing network [18] ad-
dresses were included in this list was the initial staring point
of this work.

this) that it requires effort for an adversary to be introduced
to the system by multiple introducers. At the same time an
adversary, once connected to the introduction graph, can
introduce a large number of dishonest nodes. Furthermore
they can introduce themselves in such a way as to not arouse
suspicion.

Note in our simplest scheme there is little reason to cen-
tralize any information about the introduction graph. As
we will see there is a need to keep local information, relat-
ing to the person you are introduced to, and to those you
have introduced. In fact, Bob should be able to prove to
third parties that he has connected Alice. We stress that
there is no need for Alice’s real-world identities to be known
(Bob can actually ignore her real-world identity). Further
information disclosed as part of our protocols is explicitly
described later, when we present possible realisations of our
scheme.

The most common operation that Alice will perform is to
post messages to the web site. In order to do this she has
to prove a few things: She needs to prove that there is a
path connecting her to Root in the introduction graph, and
disclose the identity of the first node on the path from Root
to her. Then she should provide the message to be posted
and enough additional information to perform the ‘taking
responsibility’ steps, described below, if necessary. Alice’s
post is then published by Root.

A user, let’s say Charlie, has the ability to object to a
message posted. In line with the requirement for open-
ness, we require Charlie to provide in clear and in public his
objection and the full path in the introduction graph that
connects him to the Root. It is rather important to fully
identify those who initiate or perform editorial procedures
so that these are not themselves abused.

The asymmetry between posting and objecting is intended:
when objecting a user must reveal up front their full path
to Root, for anyone to judge the objection (posters only
have to prove they are connected through some path). One
could design a system in which only limited information is
provided when objecting, unless another user objects to the
objection. This could lead to infinite recursion. Instead of
objecting to the objection, one could also take responsibility
for the contraversial atricle. It would still be difficult to au-
tomate this: it is easier to filter out frivolous and persistant
objectors when presented with their full path to Root. It is
in line with the spirit of open publishing to provide a fully
transparent editorial process, therefore we opt for simply
requiring full identification when objecting.

We will call the main abuse control mechanism we pro-
pose taking responsibility. The aim is not to retrieve
the identity of the poster of abuse, but to associate a label
with the message that is related to this identity in such a
way that it is difficult for an abuser to frequently change it
completely.

Upon an objection to a post being registered there is a
public call for any user to take responsibility for it. The full
post and the full identity of the user that has objected to it
(his path to Root) is provided to allow users to make the de-
cision of taking responsibility or not. We explicitelly dissa-
low ‘blind’ tracing or taking responsibility (without seeing
the objection or the message). In practice taking responsi-
bility means that the user, let’s call her Denise, agress to
associate her full identity (path to Root) with this post. As
a result the controversial post is labeled with the identity

of Charlie, who objected to it, and Denise, who has taken
responsibility for it.

In the case that no user takes responsibility, the first user
on the path from Root to Alice is asked for the identity of
the user that connects them to Alice. If that user fails to
comply then they are automatically assumed to be taking
responsibility for the controversial post, and their full iden-
tity is associated with it. Thus users that connect Alice to
Root start revealing the path to Alice, unless they accept
responsibility for the post.

Note that users on the path to Alice are free to lie and
claim that a different link leads to the author of the message
(the ability to lie is limited to actual or ficticious links to
them, so that absolutely random users cannot be framed).
These mechanisms, along with the fact that ‘Alice’ could be
a pseudonym, guarantee that our protocol can never give
any strong evidence about the true originator of the post.
Yet it always provides a path to Root associated with the
controversial post. This path, along with the path of Charlie
to the Root, becomes the label associated with the post that
allows for filtering.

The ultimate purpose of our system is to allow users to
filter messages. The exact criteria of the filtering have to
be left to website administrators or, even more in the spirit
of open publishing, end users. Our key contribution is that,
when it comes to controversial articles, they are provided
with a label containing the full path of the objecting user
and the user that has ultimately taken responsibility. The
prefixes of these paths that are closer to Root should provide
a stable enough string (i.e. the adversary will find it diffi-
cult to manipulate and modulate it) to be a robust filtering
criterion against persistent abusers.

Our system also supports many variants of collaborative
filtering: users can publish their blacklists (containing pre-
fixes that usually generate abuse), for others to use. Social
choice mechanisms, such as elections, can also be applied,
but care has to be taken for sybils to not be able to ‘stuff the
ballot box’. One could use the path of the different users to
the Root as a mechanism to make sure that they are inde-
pendent and not related. Users with different path prefixes
to Root are less likely to be controled by a single adversary.
Guaranteeing that such elections are not manipulable, given
the sybil assumption, is an interesting but separate problem.

Users should, finally, have the ability to disconnect other
users they have introduced to the service. It is clear from
the mechanism described above that abuse originating from
introduced users, such as Alice, also associates the name
of the introducing user, say Bob, with the label of the po-
tentially abusive message. Unless some other user accepts
responsibility, Bob is also able to see the messages originat-
ing from Alice, and might also decide that their relationship
should not be maintained. In this case Bob can sever the
link with Alice, at which point she will need to find another
node to be re-introduced into the system. Alice can also
disconnect from Bob at any time.

4. DISCUSSION
First we need to discuss why this scheme provides resis-

tance to abuse. Our assumption has been that it is difficult
for the adversary to ‘fool’ many honest users in the introduc-
tion graph to connect to him. Therefore it will be expensive
to acquire a lot of differently prefixed paths to Root that
could be used to unlinkably abuse the publishing medium.

If the abuser connects a large number of sybils to a partic-
ular subtree of the introduction graph, then the prefix path
that connects it to Root can be used to consistently filter out
the posts. This means that rules can be made to, for exam-
ple, hide all posts (or discard objections) coming from that
subtree of the introduction graph. Given our assumption, it
takes an adversary an amount of effort linearly proportional
to the volume of abuse sent (with a large constant overhead
involving socially engineering new people), so the Sybil at-
tack is defeated: No matter how many sybils are connected
cheaply to the same subtrees, the amount of unfiltered abuse
should not increase much.

But what are the incentives for users to exercise care when
introducing others into the system? Our assumption that
users are embedded into a social network should be sup-
ported by the right set of incentives. As discussed in the
overview of our scheme if an introduced user misbehaves,
the label used to filter the message contains the identity un-
der which the introducer posts. Therefore, in order to avoid
their messages being filtered out, introducers have incentives
to connect the smallest possible number of abusers. Simi-
larly if they perceive that a subtree they are connecting to
the system is generating a lot of abuse and objections, they
have incentives to disconnect it.

Users trying to connect to the system to post also have in-
centives to get introduced by non-abusive nodes. As before
this decreases the likelihood their posts would be filtered
when objected to. Furthermore, we allow introducing nodes
to lie as to the exact sender of the message: therefore a ma-
licious introducer can blame particular abusive messages on
their downstream links. This provides even more incentive
for the user to have some degree of trust in the introducer.

A difficult question relates to accessibility rather than se-
curity: can we assume that all users wishing to post ma-
terial can find an introducer? First sociologists provide us
with an answer, since many studies show that social net-
works not only have a low diameter, but are also efficiently
navigable [35, 26]. Recent systems such as the blog commu-
nity livejournal [28], the social networking site Orkut [29]
and Google’s email service gmail [23] were originally acces-
sible by invitation only. All three managed to gain consid-
erable size without allowing for the public to register, but
instead requiring an introduction from an existing member.
Although this is a positive indication that invitation-only
systems will scale and be inclusive, a contributing factor
to their success is their generality. It might prove difficult
to build an ‘introduction only’ community based on a very
narrow interest group. Therefore it might prove valuable for
sites to federate and use the abuse control infrastructure in
common. We will discuss this briefly in section 6.

5. INTERACTIVE REALISATION
We show how to implement our proposed abuse resistant

publishing mechanism without the need for a central trusted
authority. Our construction will rely on El-Gamal encryp-
tion [22], the ability for anyone to re-encrypt El-Gamal ci-
phertexts without knowing any private keys [24], and simple
zero-knowledge proof of knowledge of discrete logarithms [9].
These proofs can also be used to construct signatures, or a
standard signature scheme based on discrete logarithms can
be used [33]. On the downside, we require the users linking
Alice to Root in the introduction graph to be on-line and
participate in the protocol for each post, even those that are

not objected to. Our construction should withstand passive
adversaries (also known as honest but curious).

We shall assume that all communications take place over
anonymous channels, and that the identities of the partici-
pants in all protocols are pseudonymous (i.e. not linked to a
real-world identity or any identity in another system). Fur-
thermore, communication between honest users takes place
over authenticated (using their pseudonymous identities) and
confidential channels. These encryption or authentication
mechanisms layered above do not provide non-repudiation,
meaning that it should not be possible for Bob to prove
that Alice sent a certain message, unless we explicitly use
signatures to provide this property. Most hybrid stream en-
cryption mechanisms, such as TLS [16], have this property.
Off-the-record communication channels [7] guarantee plau-
sible deniability and forward secrecy and would, therefore,
be a perfect choice.

El-Gamal encryption security relies on the difficulty of
computing discrete logarithms modulo a large prime. Bob,
the receiver of messages, chooses a secret key PrivB = x, and
computes a public key PubB = (g, gx), that he gives to Alice.
Alice encrypts a plaintext message M by choosing a random
nonce k and computing the ciphertext (gk, gxk · M). Note
that any party can re-encrypt the ciphertext, given only the
public key under which it is encrypted, by multiplying in
some factors: given a fresh nonce k′, the new ciphertext will

be (gk′

· gk, gxk′

· gxk · M). Universal re-encryption [24] can
also be used to do away with the need to know the public
key of the receiver to re-encrypt but it does not provide any
efficiency or security improvements for our scheme.

We implement the different phases of our scheme in the
following manner:

Introduction. Bob is introducing Alice into the system.
Alice and Bob perform a key exchange that leads to a
shared key kab that they use to protect the confiden-
tiality and integrity of all subsequent communications
between them. They also generate a ‘link certificate’
that can be used by either parties to prove that there
exists a link between them.

A ↔ B : SignatureAB(Link, A, B, H(k′

ab)) (1)

We assume there is a good binding between the names
of Alice and Bob and their respective public keys, oth-
erwise the latter should also be included in the sig-
nature. The hash H(k′

ab) ≡ H(H(Revoke, kab)) of a
derivative of the shared secret kab can be used to re-
voke links. If Alice or Bob make H(Revoke, kab) public
the link certificate is considered to be no longer valid.
Bob also provides to Alice all the ‘link certificates’ that
link him to Root.

Posting. Alice wishes to make a post on Root’s service.
She first generates a fresh public key (g, gy). Then
she gives Bob (over an authenticated and confidential
channel) an El-Gamal encryption of the fresh key en-
crypted under Root’s public key (g, gx):

A → B : (gk
, g

kx
g

y) ≡ cAB (2)

Bob will pass it on to Fiona4, who is connecting him
to Root after having re-encrypted the ciphertext with

4Note that if Bob is modifying messages he can confirm
that the ciphertext is the encryption of gy by dividing the

a fresh nonce k′:

B → F : (gk+k′

, g
(k+k′)x · gy) ≡ cBC (3)

Bob also stores in a table the following information:
h

A, F, H(cAB), H(cBC), (gk′

, g
xk′

)
i

(4)

Eventually Root will receive a ciphertext (g
P

ki , gx
P

kigy),
and use its secret x to decrypt it and recover the tem-
porary key (g, gy). The fact that the message arrived
is proof that there is a chain in the introduction graph
between the creator of this key and Root. Root stores
in a table the ciphertext, the key and the final node
that delivered the message.

Alice then sends her message anonymously (as always)
to Root:

A → Root : g
y
, M, Signaturey(M) (5)

Root posts the message on the service, and stores the
signature.

Object! Any user, lets call them Charlie, upon seeing the
message M published can object to it. They need to
provide Root with a signed objection containing their
full path in the introduction graph.

C → Root : SignatureC(Object!, M, ‘Intro. links to Root’)
(6)

Root makes the objection public, and asks if any user
would take responsibility. Users can do this by sending
their full path in the same way as Charlie did. In this
case their full address and the address of the objecting
user are associated with the message by Root, to allow
users to perform filtering.

Taking Responsibility. If no user has taken responsibility
for the post when the objection was broadcast, the pro-
cess of assigning responsibility starts. Alice asks the
user Fiona, that has provided her with the ciphertext
(g

P

ki , gx
P

kigy), for the next user down the chain. To
do this, Root has to prove that the public key associ-
ated with the signature on the offending message came
indeed from her ciphertext.

Given the offending key (α, β) = (g, gy) and the cipher-

text (γ, δ) = (g
P

ki , gx
P

kigy), and root’s key (α, ε) =
(g, gx). Root has to show in zero-knowledge that she
knows x such that:

α
x = ε ∧

δ

β
= γ

x (7)

This can be easily achieved using standard schemes [9]

by prooving that Root knows x such that g
P

ki , gx
P

ki

and (g, gx). At this stage Fiona is convinced that the
offending post M was indeed signed with the mes-
sage/key she transported.

plaintext out and multiplying in his own. Confirmation is
possible since Root simply publishes all received plaintexts
(and therefore acts as a decryption oracle). In order to pro-
tect against such (non-passive) adversaries we would need to
randomise further the plaintext before encrypting, so that
Bob cannot ‘guess’ the plaintext. Further modifications to
the proofs during the ‘taking responsibility’ phase would also
be needed.

Fiona has a few choices at this stage: she can fully
cooperate with Root, and provide her re-encryption
factors (gkF , gxkF) and previous user Bob. She also
has to prove that she is connected to Bob, by providing
their ‘link certificate’. Root would have to prove to
Bob that the complaint concerns a user linked by him,
and the process shall continue.

Alternatively she can construct two different re-encryption

factors (gk′

F , gxk′

F) and pretend that the message came
from another one of her links, or even a fictitious link.
Neither Root, nor anyone else should be able to find
cryptographic evidence to contradict Fiona.5

Queried nodes also have the option of stating that they
have never sent such message, or that they cannot re-
member it. That might well be true if a user closer
to the Root has lied about the origin of a message.
Queried users can also take responsibility for the post
(although they already had a chance when the objec-
tion was first raised).

In any case Root attaches the ‘link certificates’ of all
the users that have been queried to the post, so that
they can serve as labels for filtering. The finally pub-
lished article looks like:

ˆ

M, Labels : Object!C...Root, Resp....,B,F,Root

˜

(8)

Filtering Users, or Root itself, can construct rules based on
the labels of messages. Nodes that are closer to Root
are more likely not to be controlled by abusers, while
nodes down long chains are more likely to by Sybils.
In any case, sub-spaces of the introduction tree that
generate a lot of abuse can be identified, through their
common branch, and filtered. Since taking responsibil-
ity involves users on the introduction chain seeing the
message and objection, they may also decide to unlink
the part of the introduction tree that is generating too
much abuse.

6. DISTRIBUTING FUNCTIONALITY
We have been assuming throughout this work that the

‘introduction graph’ is a tree with user Root at its root.
Both of these assumption can be relaxed leading to more
flexible, and re-usable abuse resistant publishing systems.

First a single user Alice can be connected to the ‘intro-
duction graph’ at many points. The simplest extension to
our scheme is to allow the same user to be connected under
many distinct pseudonyms, and post under any of them.
Given our security assumption this assumes that the user
has spent the time necessary to convince independent con-
nected users to connect her. A slightly different approach
would be for Alice to connect to different points of the intro-
duction graph under the same identity, i.e. public key. This
may allow for ‘migration’, when Alice realizes that a user she
is connected to is misbehaving or is blaming her for abuse.

5It is trivial to extend this scheme to prevent Fiona blaming
one of her honest links. We could require each message in
the posting phase to be signed, and in the taking responsi-
bility phase a valid signature attached with the ciphertext
presented to Root. Fiona would then not be able to com-
pute a valid signature on behalf of an honest link, but could
still pretend the message came from a ficticious link. We
prefer to allow her to frame honest links to give incentives
to connect only to trusted users.

This scheme slightly complicates the routing of messages
in our El-Gamal based construction, since users connected
to Alice have multiple paths to root. One could envisage
systems with network or source routing of these messages.
Source routing might be more difficult since it assumes that
users know the full topology of the introduction graph.

It might not be feasible for each different web site to at-
tempt to maintain its own ‘introduction graph’, since the
overhead of introducing users might be considerable. There-
fore, there will most probably be a need to share introduc-
tion graphs amongst different sites, potentially not trusting
each other. A simple extension would be to allow many
Roots, where messages are ultimately sent. Each Root per-
forms the protocols as before, considering itself as the main
Root of the ‘introduction graph’. Network routing would
simply ‘bubble up’ messages towards Root.

Multiple Roots, or just destinations, introduce some in-
teresting problems. Routing of messages, in our interactive
Diffie-Hellman based construction, needs to be source routed
to ultimately end up at the required destination. It should
be possible to modify a traditional mix packet design [11, 12,
13] to provide this service. There is still a need for posters to
know the paths to all the destinations they might sent posts
to. From a trust point of view it is not clear that users
would be comfortable signing up other users for all sites on
which they have the ability to post. Yet it is not clear how
they could restrict the introduced users’ capabilities without
knowing where they are posting. The more control introduc-
ers want, the fewer the benefits of compounding introduc-
tion graphs together – distinct systems start becoming more
attractive.

Finally filtering policies might be better implemented by
end users rather than enforced centrally by whichever Root.
After all, each user is the expert when it comes to their
own preferences. Each post in our scheme can be tagged
with the objecter and someone who took responsibility for
it. Both tags establish a full path to Root, and can be
used by users to implement locally filtering policies. Things
change slightly if different Roots are present, since some of
them may be trusted while others may not (after all abusers
themselves could be creating sites, or even users with dras-
tically different preferences – it would be an advantage if
our scheme could support differing views in a unified ‘in-
troduction graph’). In this case it might be beneficial to
transform all paths to be relative to the user. This can be
done by appending the paths that connect the user to the
different Roots to any paths that may start there. Then one
can trivially simplify the paths, in case of a tree strucured
‘introduction graph’ (e.g. Alice is connected to a Root via
path [Root, C, B, A] and someone with path [D, E, F, Root]
takes responsibility for a post – the path, as far as Alice is
concerned becomes [D, E, F, Root, C, B, A]). Since all routes
are now relative to Alice she can apply a unified set of fil-
tering rules.

Each user specifying filtering rules on their own maxi-
mizes autonomy, yet it also duplicates work when many
users mostly agree about what constitutes abuse. Pooling
filtering rules themselves, such as blacklists of subtrees, can
benefit from the ‘introduction graph’ being used in the pro-
cess. Filtering rules can be associated with the full path of
their creator, and this can be used as a guide as to whether
different sets are in fact likely to be originating from the
same creator or their sybils.

7. FUTURE WORK
The study of filtering criteria that minimize the utility of

an attacker given a budget for acquiring friends in the ‘intro-
duction graph’ is left for further study. Different strategies
would blacklist different users or branches according to some
thresholds of abuse generated. If known, these rules could
be used by an adversary to post the maximal amount of
abuse before the controlled link into the introduction graph
becomes ‘tainted’ and useless. So optimal attack strategies
and filtering defenses are left for future work.

Our construction is very expensive in terms of commu-
nication and computation costs, since each post must in-
volve the full chain of users linking the poster to the Root.
Special, delegable or transferable, yet still unlinkable, cre-
dential mechanisms could be used to reduce these costs. A
poster would then only have to register once, possibly in-
volving their full path, and then should be able to post
without any further interactions (until there is an objec-
tion lodged). Stengthening the protocols against active and
malicious users who aim to identify posters before any ob-
jections is also left as future work.

In this work we have concentrated heavily on ‘introduction
graphs’ that are structured as trees, yet it would be conceiv-
able to use any directed graph, with multiple destinations.
The cryptographic protocols should then be modified to ac-
commodate routing information, and also to allow efficiently
finding routes.

Finally we present in Appendix A an centralized function-
ality that could be refined down to an ideal functionality to
be used to prove the correctness of our construction under
the UC model [10] or the Reactive Systems’ model [30]. Pro-
viding these proofs for our construction or a non-interactive
construction is beyond the scope of this paper and its au-
thors.

8. CONCLUSIONS
We propose a scheme that extracts fuzzy identification

information from a social network of posters. Although the
process can be made extremely distributed and does not rely
on strong trust assumption we argue it can be used to filter
persistent abusers from anonymous on-line forums.

Our solution should also be seen as a further step in the
tradition of Advogato [27], towards Sybil resistant DHTs [14]),
finding ways of protecting peer-to-peer systems, or generally
protecting systems that cannot rely on strong identification
infrastructures against the Sybil attack. Making use of a
distributed introduction system, where local trust links and
information can be used to reduce the impact of anti-social
behavior such as abuse and denial of service seems like a
hopeful avenue for further investigation. We can achieve
this without ultimately risking the anonymity of any partic-
ipant.

We argue that the assumption of the emergence or pre-
existence of a social network to form such an introduction
graph is realistic and can further be cultivated by structur-
ing the incentives of all participants correctly. Identity is
then not dependent on ‘who you are’, an ill-defined propo-
sition, but instead on ‘who you know’ – a thesis that is in
agreement with established wisdom in contemporary sociol-
ogy [38].

9. ACKNOWLEDGMENTS

George Danezis is supported by the FWO (Fund for Sci-
entific Research - Flanders).

10. REFERENCES
[1] Independent media center. On-line at

http://www.indymedia.org/.

[2] Wikipedia, the free encyclopedia. On-line at
http://en.wikipedia.org/wiki/Main_Page.

[3] Google groups (beta). Website:
http://groups.google.com/, November 2005.

[4] Openid: an actually distributed identity system.
On-line at http://openid.net/, July 2005.

[5] M. Arnison. Open publishing is the same as free
software. On-line at
http://www.cat.org.au/maffew/cat/openpub.html,
March 2001.

[6] H. S. Baird, A. L. Coates, and R. J. Fateman.
Pessimalprint: a reverse turing test. IJDAR,
5(2-3):158–163, 2003.

[7] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record
communications, or, why not to use pgp. In Workshop
on Privacy in Electronic Society, 2004.

[8] C. Buchholz. Liberty alliance project -
gemeinschaftliche identitätsverwaltung. Datenschutz
und Datensicherheit, 7(9), 2003.

[9] J. Camenisch and M. Stadler. Proof systems for
general statements about discrete logarithms.
Technical Report TR 260, 1997.

[10] R. Canetti. Security and composition of multiparty
cryptographic protocols. J. Cryptology, 13(1):143–202,
2000.

[11] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 4(2), February 1981.

[12] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: Design of a Type III Anonymous
Remailer Protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, May 2003.

[13] G. Danezis and B. Laurie. Minx: A simple and
efficient anonymous packet format. In Proceedings of
the Workshop on Privacy in the Electronic Society
(WPES 2004), Washington, DC, USA, October 2004.

[14] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson. Sybil-resistant dht routing. In
di Vimercati et al. [15], pages 305–318.

[15] S. D. C. di Vimercati, P. F. Syverson, and
D. Gollmann, editors. Computer Security - ESORICS
2005, 10th European Symposium on Research in
Computer Security, Milan, Italy, September 12-14,
2005, Proceedings, volume 3679 of Lecture Notes in
Computer Science. Springer, 2005.

[16] T. Dierks and C. Allen. The tls protocol. Request for
Comments 2246, Network Working Group, January
1999.

[17] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[18] R. Dingledine, N. Mathewson, and P. F. Syverson.
Tor: The second-generation onion router. In USENIX
Security Symposium, pages 303–320. USENIX, 2004.

[19] J. R. Douceur. The sybil attack. In P. Druschel, M. F.

Kaashoek, and A. I. T. Rowstron, editors, IPTPS,
volume 2429 of Lecture Notes in Computer Science,
pages 251–260. Springer, 2002.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol. Request for Comments 2616,
Network Working Group, June 1999.

[21] F. C. Freiling, T. Holz, and G. Wicherski. Botnet
tracking: Exploring a root-cause methodology to
prevent distributed denial-of-service attacks. In
di Vimercati et al. [15], pages 319–335.

[22] T. E. Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
CRYPTO, pages 10–18, 1984.

[23] GMail. On-line at http://gmail.google.com.

[24] P. Golle, M. Jakobsson, A. Juels, and P. F. Syverson.
Universal re-encryption for mixnets. In T. Okamoto,
editor, CT-RSA, volume 2964 of Lecture Notes in
Computer Science, pages 163–178. Springer, 2004.

[25] B. Kantor and P. Lapsley. Network news transfer
protocol. Request for Comments 977, Network
Working Group, February 1986.

[26] J. M. Kleinberg. The small-world phenomenon: an
algorithm perspective. In STOC, pages 163–170, 2000.

[27] R. L. Levien. Attack resistant trust metrics. PhD
thesis, University of California at Berkeley, 1995.
Draft Thesis.

[28] Livejournal. Wikipedia, the free encyclopedia at
http://en.wikipedia.org/wiki/LiveJournal#

Invite_system, January 2005.

[29] Orkut. On-line at http://orkut.com.

[30] B. Pfitzmann, M. Schunter, and M. Waidner.
Cryptographic security of reactive systems. Electr.
Notes Theor. Comput. Sci., 32, 2000.

[31] M. Roe. Cryptography and Evidence. PhD thesis,
University of Cambridge, Computer Laboratory, 1997.

[32] Slashdot: News for nerds, stuff that matters. On-line
at http://slashdot.org.

[33] F. I. P. Standards. Digital signature standard (dss).
Technical Report 186, FIPS, May 19 1994.

[34] N. H. D. Team. Common gateway interface. Technical
report, University of Illinois at Urbana - Champaign,
1998. On-line at http://hoohoo.ncsa.uiuc.edu/cgi/.

[35] J. Travers and S. Milgram. An experimental study of
the small world problem. Sociometry, 32(425), 1969.

[36] Internet troll. From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Internet_troll, 29
October 2005.

[37] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
Captcha: Using hard ai problems for security. In
E. Biham, editor, EUROCRYPT, volume 2656 of
Lecture Notes in Computer Science, pages 294–311.
Springer, 2003.

[38] S. Wasserman, K. Faust, D. Iacobucci, and
M. Granovetter. Social Network Analysis : Methods
and Applications (Structural Analysis in the Social
Sciences). Cambridge University Press, Cambridge,
UK, 1st edition, 1994.

APPENDIX

A. A CENTRALIZED IMPLEMENTATION
We sketch here how we would implement our abuse re-

sistant publishing mechanism using a trusted third party
(TTP). This could be refined down to an ‘ideal functionality’
to be used to prove cryptographic correctness in Canetti’s
model [10]. In this case one may show that concrete crypto-
graphic realisation of the scheme do not allow for any more
attacks than are possible in this ideal model. It is not out
of the question that moderators of websites could be consid-
ered trustworthy enough to act as the trusted third party, in
which case a centralized implementation could be of practi-
cal use.

We first describe the state that the TTP holds and the key
interactions with other principals. These are all illustrated
in figure 1. The TTP keeps track of established connections
between users, and assigns them an identification number
iid (e.g. [iid, Alice, Bob]). Upon a request for a connection
from Alice to Bob, the TTP simply asks Bob for approval.
Bob can at any time severe the connection by handing in
the iid. As a result the row indexed by iid is deleted.

The TTP keeps all messages posted in a table, indexed by
mid, and containing the path to Root of the sender (aPath),
and the message (e.g. [mid, Root, Message, aPath]). The
TTP also forwards posted messages to Root, and provides
them to anyone who requests them (note that the aPath is
never directly revealed).

Anyone can object to a post by presenting its mid. The
full path of the objector (cPath) is stored on a table, indexed
by oid (e.g. [oid, Charlie, cPath]). Given the objection num-
ber oid, anyone can inspect this table, which is made public
by the TTP.

Finally the TTP maintains a ‘responsibility’ table for each
objected post. The table stores the message and objection
identifiers (mid and oid) and the path of the user having
taken responsibility, or of the progress of the ‘taking re-
sponsibility’ protocol (rPath). The path rPath starts out
as only storing Root [mid, oid, rPath = {Root}]. The TTP
then asks the first user in the path to the sender for the
user after them (lets call them Fiona). There is some sub-
tlety in this request. The TTP provides the user, Fiona,
with the actual address of the next user. Fiona is of course
free to lie, and provide another user that she is connected
to. Furthermore the TTP lets Fiona know if someone has
previously lied or not (therefore framing her). Note that
there is no possibility for Fiona to prove to anyone else that
any lying has taken place. In any case the entry is aug-
mented by Fiona’s name, and the next node’s name (e.g.
[mid, oid, rPath = {Root, Fiona, . . .}]). The protocol con-
tinues recursivelly as the TTP asks the next node, until
someone clains final responsibility, or does not wish to trace
any further. The contents of this table are made public at
the end of the protocol.

Figure 1: Ideal Functionality for the proposed mechanism

