Selecting Power-Optimal SBST Routines for On-Line Processor Testing

A. Merentitis', N. Kranitis', A. Paschalis', D. Gizopoulos?®

! Department of Informatics & Telecommunications, University of Athens, Greece
2 Department of Informatics, University of Piraeus, Greece
{amer, nkran, paschali}@di.uoa.gr, dgizop@unipi.gr

Abstract

Software-Based Self-Test (SBST) has emerged as an effective
strategy for on-line testing of processors integrated in non-safety
critical embedded system applications. Among the most popular
applications falling in this category are the various mobile devices.
However, in-field testing of processors integrated in mobile
devices has the extra requirement of minimum energy
consumption, since these devices are operating on battery.

In this paper initially we present the parameters contributing to
energy consumption in order to set the scope of the problem and
make a qualitative analysis about the efficiency of the SBST
routines from a low energy perspective. Then we propose a power
evaluation framework based on a combination of tools from the
testing and computer architecture technical areas. Utilizing this
framework we evaluate for the first time the most effective
structural SBST strategies in terms of energy consumption for three
representative processor configurations, showing the validity of our
analysis. Finally, the SBST strategies are combined and an
appropriate strategy for each processor component is selected, in
order to minimize overall energy consumption during on-line
testing up to an order of magnitude between the best and worst
case combination of test routines.

1. Introduction

New types of defects appearing in deep submicron technologies
require at-speed testing in order to achieve high test quality. In the
multimillion gate SoC era, design and test engineers also face
signal integrity problems and serious power consumption and
overheating concerns, especially when the circuit has to be placed
in special test modes [1]. The problem becomes even more
complicated for on-line testing, that aims at detecting and/or
correcting operational faults. Redundancy techniques (hardware
redundancy, information redundancy, time redundancy and
software redundancy) are either high cost solutions or impose
serious performance overhead [2]. Software-Based Self-Test
(SBST) has been proposed [3]-[10] as a low-cost solution for on-
line testing of processors integrated in non-safety critical
embedded system applications, that can effectively address all the
previous challenges. It is using existing processor resources for test
pattern generation and application, with no hardware or
performance overhead. Additionally, peak power consumption for
the test routine is lower than that caused by hardware DFT
approaches, since the processor is operating in normal mode.

However, energy consumption of the test routines is also critical,
especially for in-field testing of processors integrated in mobile
devices, in order to maximize battery life and to avoid long term
reliability problems.

SBST techniques which are functional in nature and use
random instruction sequences, operations and operands, have been
proposed in [3], [4]. Such techniques have low test development
cost due to their high abstraction level, but they also achieve
medium to high fault coverage with a large number of instruction
sequences. Thus, the derived test program is large and requires
excessive test-execution time. Additionally, long fault-simulation
time is required for fault grading. Therefore, functional-based
SBST techniques are unsuitable under strict energy constraints.

SBST techniques structural in nature, have been proposed [5]-
[9] as promising techniques for efficient testing of embedded
processors. Test patterns are generated targeting structural faults
for a specific fault model. After that, the test patterns are
transformed to self-test routines which are used to apply test
patterns to the inputs of the Circuit Under Test (CUT) and collect
test responses from the outputs of the CUT. All self-test routines
together constitute a test program. It is important to note that the
test program should comply with stringent requirements in code
size, data size, and execution time to be suitable for on-line testing.

The routines considered in this paper for low energy SBST are
following the two most effective structural test pattern generation
(TPG) strategies. The first TPG strategy is based on deterministic
automatic TPG (ATPG) and is usually applied to combinational
components, where instruction-imposed constraint ATPG is
feasible. The second TPG strategy is based on high-RTL
deterministic TPG that exploits inherent regularities of the most
critical to test processor components like ALUs, shifters,
multipliers, multiplexers and register files. This TPG strategy is
high-level, since the derived test patterns are independent of gate-
level implementation and constitute test sets of constant or linear
size. Although several structural SBST variations have been
compared in terms of test effectiveness in the past, low energy
consumption was only recently taken into consideration and an
evaluation from this perspective does not exist yet.

In this paper, for the first time we evaluate the previously
mentioned structural SBST strategies, targeting low energy testing
of embedded processor cores. Only routines that are proved in
terms of test efficiency are considered and from these only those
that comply with the requirements of on-line testing defined in [8]
are selected for the evaluation. Taking these routines as a basis,
five questions relevant to low power SBST are addressed:

IEE l-:

COMPUTER
SOCIETY

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007 IEEE

e Under which conditions is it efficient from an energy
perspective to deploy Multiple Input Signature Register
(MISR) test response compaction implemented as an
assembly routine and when is it preferable to use direct
comparison with the expected values instead?

e Assuming that high-RTL TPG is used as in [7], [8], [9] is it
preferable from an energy view point to use compact loops or
immediate coding style?

e Assuming that constrained ATPG is deployed and then the
patterns are mapped to processor instructions as in [6], [10],
is it preferable from an energy point of view to set the
operands using a coding style with immediate instructions or
a coding style that favors test data fetching?

e Are constrained ATPG or high-RTL deterministic patterns
preferable for low energy SBST and under which conditions?

e What is the impact of performance aiding mechanisms from
a strict energy efficiency testability point of view?

After addressing the previous questions, a qualitative analysis
regarding the efficiency of SBST routines from the low energy
point of view is presented. Additionally, an architectural-level
power evaluation framework is utilized in order to validate the
theoretical ~ analysis for three representative processor
configurations, which cover a wide range of embedded processors
and microprocessors. The first is typical of a basic MIPS-like CPU
and is ideal to study the energy consumption of each test strategy
in a barebones datapath. The second configuration is similar, but
also incorporates a simple branch predictor, as well as level-one
(L1) instruction and data caches and is typical of a MIPS-based
embedded processor. Finally, the last configuration has also a
unified second-level (L2) cache and a more sophisticated branch
predictor and is typical of a high performance microprocessor.
Moreover, the results of the architectural-level simulator for the
simple configuration are also validated using a commercial gate-
level power reporting tool. Experimental results show that the
energy savings achieved by selecting the most efficient
combination between those test routines that already comply with
the requirements of on-line testing can be as high as 90.3 %,
depending also from the processor configuration.

It should be noted at this point that a novel approach utilizing
instruction rescheduling in order to minimize power consumption
was introduced in [10]. However, the methodology was applied on
a simple MIPS-like processor without parallel multiplier or
pipeline logic, thus direct comparisons with the processor
configurations used in this paper are not feasible.

The rest of the paper is organized as follows. A theoretical
analysis of the parameters contributing to power consumption is
presented in section 2. Section 3 delineates the proposed power
evaluation framework. The structural test strategies evaluated in
this contribution are outlined in section 4. Results for total energy
consumption, validation of the correctness of theoretical analysis
and selection of the most energy efficient test routines
corresponding to the abovementioned strategies are provided in
Section 5. Finally, section 6 concludes the paper.

2. Theoretical Analysis

A brief theoretical analysis of the parameters contributing to
power consumption is necessary in order to set the scope of the
problem and identify the tradeoffs offered by each strategy. Power
consumption in CMOS circuits can be either static or dynamic.
Leakage current or other current drawn continuously from the
power supply causes static power dissipation. Dynamic dissipation

occurs during output switching due to the short-circuit current and
charging/discharging of load capacitance. The importance of static
power consumption increases as dimensions scale down, however
current CMOS technologies are dominated by dynamic power
consumption. For a single node the latter can be approximated by
the following mathematic formula:

2
P=C,-S-Vyfox

where C; is the equivalent load capacitance, Vas is the power
supply voltage, S is the number of node switches and f;x is the
operating frequency. Additionally, energy consumption for a
period T equals E = P,,-T and T = N-7, where P, is the average
power consumption over period a 7, N is the total number of
execution cycles and 7 is the clock period. It is apparent from the
previous formulas that, for a given circuit and a given CMOS
technology, energy consumption can be reduced if the test program
is executed in a small number of cycles and average power
consumption is low. However, these two factors cannot always be
optimized simultaneously. For example, it is known (e.g. [11]), that
as a general rule, in order to achieve low average power
consumption it is important to reduce the number of instructions
causing high switching activity and dominant among these are the
load and store instructions. In particular, [12] shows that every
cycle required for a load instruction is expected to cause higher
switching activity than a cycle of an immediate instruction,
resulting in increased average power consumption P, However, in
order to replace load and store instructions usually a number of
other instructions are required, which can result in increased
execution cycles.

Specifically, during SBST a common way to reduce memory
accesses is to utilize a test response compaction routine and store a
single signature. Assembly code snippets (the parts that are
repeated for every test response) for an effective compaction
scheme (software MISR) that can be used for this purpose as well
as the direct comparison alternative, are presented in Figure 1.

sll $24,$23,0x001f
sra $25,$24,0x001f 1w $15,0($21)
and $25,$25,$22 xor $10,$15,$517
xor $23,$23,$25 bnez $10,Error
srl $23,$23,0x0001
addu $23,$23,524
xor $23.823.817

74

Figure 1: Assembly for MISR and direct comparison

Each individual response is incorporated in a common signature
and at the end of the execution of the test routine the register
holding the signature ($23 in Figure 1) is compared with the
expected signature value. Alternatively to MISR compaction, direct
comparison with the expected values can be deployed.
Specifically, after a test response is generated the corresponding
expected value is loaded from a predefined memory position in a
register ($/5 in Figure 1) and a xor instruction having the two
values as inputs is used to examine if the generated result is
correct. Finally, a branch not equal zero (bmez) instruction
receiving the outcome of the xor is used to differentiate the correct
and erroneous conditions, by altering the flow of execution when
an error has occurred. Additionally to test response compaction, a
coding style using immediate commands to set the operands also
reduces memory accesses, at the cost of doubling the number of
instructions required for setting the operand.

IEE l-:

COMPUTER
SOCIETY

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007 IEEE

Taking into account performance aiding mechanisms like
caches and branch predictors further complicates the problem of
analytically deriving an optimal SBST strategy from energy
viewpoint, because it results in speculative execution of
instructions and the number of required stalls (i.e. for a load
instruction) becomes variable. The parameters that impact the
number of cycles required by the load instructions and thus define
whether load instruction should be avoided are the following:

e Cache size and associativity
e Cache replacement algorithm
e Cache load latency

e Memory load latency

In general, if in the specific processor ISA load instructions
require on average a number of cycles greater than the number of
cycles (less than ten in most architectures) required for executing
the entire MISR compaction routine, as can be the case for high-
end processors, the compaction is efficient from an energy
perspective, otherwise it is better to proceed in direct comparison
of the produced values with the expected results. Moreover, the use
of compact loops increases spatial and temporal locality, so it can
be induced that loop-based routines will be more efficient in
number of cycles as well as power consumption if caches are
available. Finally, branch prediction schemes will not affect
routines that do not use loops and are expected to further improve
the efficiency of loop-based test routines.

3. Power Evaluation Framework

The power evaluation framework utilized in this paper is
comprised by a combination of tools from the testing and computer
architecture technical areas. Specifically, the validation of the test
routines is based on a commercial fault simulator and the energy
metrics provided in the experimental section are generated by a
widely used power simulator, Wattch. The Wattch framework [13]
is an architectural-level simulator for estimating power
consumption. It can accurately model four main categories of
processor elements (array structures, memories, combinational
logic and wires, clock networks). According to its developers, it
operates three orders of magnitude faster than industrial layout-
level tools and yet experimental validation of the generated reports
for a wide range of applications (including commercial processors
like Alpha 21264 and MIPS R10000) shows that the estimated
power consumption is within 10-13% of the values reported by the
tools operating at the post layout netlist. Additionally, the Wattch
framework implements a MIPS-like ISA with a five stage pipeline,
so it has a core very similar to the processor we used for validating
the test routines. It is based on the SimpleScalar toolset, thus is
extendable and parameterizable, both essential requirements for a
comprehensive evaluation of SBST strategies in different processor
configurations. This last advantage, coupled with the fact that the
power models incorporated by Wattch are general as well as
accurate [15], meaning that the results are valid for a wide range of
processors, constitute the use of it ideal for evaluating the SBST
strategies from an energy point of view. Finally, the flexibility
offered by a configurable architectural-level simulator allows us to
further validate the results, using commercial gate-level power
reporting tools, when the gate-level netlist of a processor similar to
a configuration supported by Wattch is available.

In order to derive which test routines are more efficient from an
energy perspective for a specific processor, the processor
specification is utilized to select the appropriate high-RTL test
routines from an existing library of self-test routines and also to set
the basic parameters of the Wattch configuration (cache sizes,

cache and memory latency, etc). The gate-level netlist produced
from the synthesis tool is used by the constrained ATPG strategy to
generate patterns fine-tuned to the specific netlsist. The SBST
routines of either strategy (high-RTL TPG or constrained ATPG)
are also validated by fault simulation on this netlist. In case that
fault coverage is adequate, the routines are compiled by the
SimpleScalar GCC-port and the resulting executable is run by
Wattch to generate the power consumption reports. The framework
used for generating power results is presented in Figure 2.

—

Processor
Architecture

Synthesis

High-RTL
Gate-level SBST Strategy Wattch
Netlist Configuration
ATPG-based Parameters
SBST Strategy
\ 4
SBST : ;
; : Power Simulation
Fault Simulation |« Program o (Wattch)
/\

Energy
Calculation

Fault Coverage
Calculation

Figure 2: The power evaluation framework

In this paper three different configurations, covering a wide
range of processor benchmarks, from simple embedded processors
to high performance microprocessors are considered. Detailed
characteristics for the simulated processor configurations are
presented in Table 1.

Simple Moderate Advanced
Branch Miss Penalty 3 cycles 3 cycles 3 cycles
Decode Width 1 1 1
Issue Width 1 1 1
Memory Ports 2 2 2
L1 Data Cache none 32 KB 32 KB
L1 Instruction Cache none 32 KB 32 KB
L2 Unified Cache none none 256 KB
L1 D-Cache Latency - 1 cycle 2 cycles
L1 I-Cache Latency - 1 cycle 2 cycles
L2 Cache Latency - - 6 cycles
Memory Latency 2 cycles 8 cycles 18 cycles
Integer ALUs 1 1 1
Floating Point ALUs 1 1 1
L/S Queue Size 2 2 2
Register Unit Size 32 32 32

Table 1: Simulated Processor Configurations

The first configuration is typical of a basic MIPS-like CPU, with
an integer multiplier, an ALU and a register file consisting of 32
physical registers that are 32 bits wide. Some minor changes were
performed to the code of the simulator in order to support this very
basic configuration, since level one cache is normally included by
default. This simple configuration is ideal to study the energy
consumption of each test strategy in a barebones datapath.
Moreover, this configuration is similar (with the exception that it
incorporates FP ALU and FP multiplier) to the benchmark used for
validating the test routines. This similarity allows us to utilize it to
study the relative behaviour of the test routines using a commercial
gate-level power reporting tool in addition to the Wattch simulator

IEE l-:

COMPUTER
SOCIETY

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007 IEEE

and thus obtain a higher degree of confidence for our conclusions.
The second configuration also incorporates a simple branch
predictor, as well as separate level one instruction and data caches
and is typical of MIPS-based embedded processor. Finally, the
third configuration also supports unified L2 cache and a more
sophisticated branch predictor and is typical of a high performance
microprocessor. For all power measurements the most
comprehensive model supported by Wattch is used (cc3), which
assumes clock gating with linearly scaled power for each unit
according to port usage and 10% of the base power when the unit is
not accessed.

In order to strengthen our confidence for the accuracy of the
results provided by the power evaluation framework, we also used
a traditional commercial gate-level power reporting tool to
generate energy metrics. Only the simple processor configuration
was considered, which closely resembles the available processor
benchmark. The results are not directly comparable in absolute
values with those generated by Wattch, because the latter
incorporates some additional hardware (like FP ALU and FP
multiplier, etc) that does not exist in our processor benchmark.
Thus the target of this process is to verify the relative behavior of
the test routines and see if this behavior is in compliance with the
results provided by Wattch. The generated energy metrics for
direct comparison and MISR compaction are depicted in Table 2. It
is apparent that relative behaviour of the test routines for the
various alternative coding styles and pattern deployment
techniques matches the behaviour predicted by the Wattch
simulations.

Component Simple Configuration
& Test Direct MISR
Strategy comparison compaction
Reg. File Imm. v 2798 18,067
E ALU Loop v 3048 6,467
.g ALU Imm. 3,879 8,145
£ _MULT Loop 9,998 20,452
MULT Imm. 9.657 18.417
Reg. File Imm. 31,563 100,215
o ?_ ALU Imm. 3,553 7,372
8% MULT Imm. v 4,838 7,897
MULT Fetch 7,522 9,173

Table 2: Energy metrics obtained by a gate-level tool

4. SBST Strategies

Following the description of the methodology, a short outline of
the SBST strategies that are evaluated in this contribution is
necessary. It is already mentioned that both strategies are structural
and can guarantee high test coverage within a reasonable number
of cycles, thus a direct comparison is feasible. Moreover, it should
be noted that enhancing the test routines with code targeting
pipeline [9], [14], exception and control logic would increase total
fault coverage to the levels reported in [9], however this code was
developed using a purely high-RTL TPG while constrained ATPG
is not feasible, thus there is no point to include these test routines
in the evaluation.

The processor components considered for the evaluation of test
strategies from the low energy testing point of view are the parallel
multiplier, the register file and the ALU. These components usually
dominate the datapath area and are also characterized by the

highest switching activity, thus are the main sources of energy
consumption in the processor datapath.

The gate-level independent deterministic test set introduced in
[7] results in near complete stuck-at fault coverage for the entire
register file component with minimum patterns. As an alternative
to high-RTL based TPG, constraint-based ATPG can also be
deployed for testing the register file. However, the register file is a
sequential circuit that cannot be directly targeted by combinational
ATPG, so the modules that are actually targeted are the two n-to-1
multiplexers implementing the read ports (each of these
multiplexers is m bit wide, where m is the register size in bits). We
can easily derive that for a register file with 32 registers which are
32-bits wide the size of each test vector is 5 + 32-32 = 1029 bits,
where the five first bits are the selection signal of the multiplexer.
Moreover, setting the appropriate register values for each pattern
requires 32 /ui and 32 ori instructions. Application of these test
strategies results in almost complete test coverage of the register
file for both. However the number of cycles required for execution
of the test routine is much less for the high-RTL based TPG and
the difference increases when a more advanced processor model is
used.

The ALU is comprised by a number of arithmetic units and
logic arrays that are characterized by inherent regularity and can
thus be effectively tested by high-RTL TPG as described in [7].
Since it is a combinational circuit, constrained ATPG fine-tuned to
the gate-level can be applied alternatively to the abovementioned
high-RTL deterministic method. Application of either test strategy
results in almost complete test coverage of the ALU for both.

The parallel multiplier is a combinational unit and the
surrounding logic does not impose any architectural constraints, so
applying ATPG is straightforward process. The number of test
patterns generated by a commercial ATPG tool was 82, with high
effort compression active. Then these patterns were mapped to
proper processor instructions and were applied at the processor
level. Alternatively to ATPG, 256 patterns exploiting the inherent
regularity of multiplier units were generated, as described in [7].
This is a gate-level independent high-RTL method and has also the
benefit of being able to generate and deploy the patterns in an
algorithmic manner, by using compact loops. In order to evaluate
the efficiency of the loops from a minimum power consumption
point of view both the loop-based coding style and a coding style
deploying immediate instructions were utilized.

Test coverage results for a fully pipelined processor benchmark
[9] implementing the MIPS-I ISA are presented in Table 3 for
constrained ATPG and high-RTL TPG, using either direct
comparison with the expected values or MISR compaction and a
single comparison with the expected signature in the end. Gate-
count for the processor benchmark used for validating the test
routines is 26,432 and fault simulation reports 85,587 uncolapsed
stuck-at faults. Additionally, it should be noted that the results
would be similar for any MIPS-like processor benchmark, both in
regard to fault coverage but also in regard to the required number
of test patterns, as shown in [7], [9].

Direct Comparison MISR Compaction

Component const. high- const. high-

ATPG RTIi ATPG RTL
Register File 99.9 99.9 99.9 99.9
ALU 99.1 98.7 98.8 98.4
Multiplier 99.7 99.0 99.3 98.3
Processor 91.5 91.2 90.1 89.4

Table 3: Test coverage for structural SBST strategies

IEE I-'

COMPUTER
SOCIETY

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007 IEEE

5. Experimental results

In this section the SBST strategies outlined previously are
evaluated in terms of energy efficiency. It is important to underline
that, in all the cases where constrained ATPG is used, high effort
compression is activated, in order to reduce the number of test
patterns and the resulting number of cycles required for execution
of the self-test routine. The results reported by the simulator for the
simple processor configuration with direct comparison and MISR
compaction are depicted in Table 4 and 5, respectively. The first
column shows the targeted functional component and the SBST
strategy used. Specifically, the high-RTL strategy can utilize either
immediate instructions or, in the case of the ALU and multiplier,
also compact loops for test pattern generation and deployment. In a
similar way, constrained ATPG can use either immediate
instructions or data fetching in order to set the operands of the test
instructions. The second column is the number of cycles required
by the SBST routine and the third is total energy at processor level,
reported in nanojoules.

Component & Test Strategy Cycles Energy (nJ)
Register File Immediate 1,182 v 5,204
E ALU Loop 1,640 v 6,337
% TALU Immediate 1,594 6,536
2 MULT Loop 4,134 18,059
MULT Immediate 3,661 16,365
Register File Immediate 10,496 54,492
29 ALU Immediate 1,347 6,672
§ E MULT Immediate 1,825 v’ 8,631
MULT Fetch 3,541 14,536
Table 4: Simple configuration, direct comparison
Component & Test Strategy Cycles Energy (nJ)
Register File Immediate 6,806 25,607
E ALU Loop 2,680 9,866
& ALU Immediate 2,597 9,885
2 MULT Loop 8,229 31,007
MULT Immediate 7,484 29,112
Register File Immediate 26,872 131,110
‘g 8 ALU Immediate 2,643 11,023
S ':r_ MULT Immediate 2,870 11,779
MULT Fetch 3,946 17,596

Table 5: Simple configuration, MISR compaction

5.1 Selecting MISR compaction or direct comparison

In the case of simple processor model, experimental results
show that direct comparison is more efficient than MISR
compaction. Specifically, MISR compaction decreases the average
energy per cycle that can be calculated by dividing total energy
with number of cycles; however the increase in cycles introduced
by the compaction scheme outweighs that benefit. The fact that
MISR compaction is not energy efficient for the simple processor
configuration is in compliance with the theoretical analysis, since
even worst case load instructions require considerably fewer
cycles than those introduced by execution of the compaction
routine. In the case of moderate processor model, worst case load
instructions require up to eight cycles, causing the latency of the

load instructions to be on average around five to six cycles,
according also to cache utilization by other programs during the in-
field testing. This results in a marginal situation, since MISR
compaction requires seven cycles. Thus, most routines are again
better with direct comparison but there are a few exceptions to this
rule (Table 6). In the case of advanced processor model load
instructions have latency of at least two cycles and in some cases
six (from the L2 cache). However, the case of a complete miss
(load the expected value from memory) is infrequent for small
programs like the test routines considered in this paper, so on
average we can expect load latency a little greater than six cycles,
resulting again in a marginal situation.

5.2 Selecting coding style

Another important question is what coding style is preferable
from an energy perspective in combination with constrained
ATPG. In order to answer that question both coding styles are used
in the case of the parallel multiplier unit. It is interesting that in the
simple model constrained ATPG with a coding style using
immediate instructions for setting the operands is preferable;
however the moderate model is more efficiently tested by a coding
style that uses operand fetching. Again, this result is expected since
the stalls required for every load instruction (due to the absence of
caches) to fetch the data from the memory in the simple model
constitutes the immediate coding style preferable for it. In the
moderate model the existence of data cache reduces considerably
the frequency of stalls and changes the outcome in favour of the
coding style that uses load instructions for setting the operands.
Finally, in the advanced model the outcome changes again in
favour of the immediate coding style, due to the increased cache
and memory latency.

In case that a high-RTL strategy utilizing component
regularities is used, it is also important to determine the most
efficient coding style. Specifically, the question that needs to be
answered is whether it has any meaning to avoid using compact
loops for generation and application of the patterns, in order to
reduce the number of cycles and consequently the energy
consumption. The results provided in Table 4 and Table 5 for the
ALU and multiplier components show that this technique is
meaningful only for the multiplier in the simple configuration, if
the increase in the size of the test program is an acceptable
tradeoff. However, the corresponding results from Table 6 show
that avoiding the use of loops has no meaning for the moderate and
the advanced processor models, since not only the size of the test
program is increased but also energy consumption is significantly
higher. The previous observation can be justified if we consider
that compact loops result in increased spatial and temporal locality
and can better exploit the available caches. This effect is apparent
from the fact that although the code without loops has reduced
instructions, the required number of cycles is higher.

5.3 Selecting the most efficient test routines

Moreover, it is important to determine the best combination of
test routines from an energy efficiency point of view. It is obvious
that three separate cases need to be considered, one for each of the
three processor configurations. In every case, the best component
test strategy is highlighted on Tables 4, 5 and 6 with a tick symbol.
For the simple model the combination that achieves the lowest
energy consumption includes the high-RTL test routine for the
register file and the constrained ATPG test routine using immediate
coding style to set the operand values for the parallel multiplier.
The ALU can be tested by either the high-RTL or constrained

IEE |-:

COMPUTER
SOCIETY

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007 IEEE

Moderate Configuration Advanced Configuration

component Direct comparison MISR compaction Direct comparison MISR compaction
& Test Strategy Energy Energy Energy Energy

Cycles (nJ) Cycles (nJ) Cycles (nJ) Cycles (nJ)
Register File Immediate 8,538 /27,892 16,717 64,556 8,540 \/28,251 16,725 65,198
E ALU Loop 4,120 v'15,397 4,611 18,869 4,119 v15,604 4,587 19,721
& ALU Immediate 5,118 18,345 5,472 21,781 5,126 18,592 5,434 22,913
E’ MULT Loop 7,971 38,689 15,341 75,587 8,009 39,902 15,362 81,234
MULT Immediate 25,219 82,907 24,145 84,611 25,221 84,735 23,884 87,060
Register File Inmediate 91,257 301,676 186,461 627,304 91,259 305,822 185,647 632,497
Z; 2 ALU Immediate 9,371 31,992 9,468 34,372 9,373 32,849 9,510 34,650
9 'E MULT Immediate 11,817 40,182 10,734 38,414 11,819 40,976 10,744 v'38,582
MULT Fetch 4,681 22,506 4693 v'22419 10,872 41,027 10,931 40,805

Table 6: Test strategies for the Moderate & Advanced processor configurations

ATPG test routines, with the former being slightly better in terms
of energy consumption. Low energy testing of the parallel
multiplier in the moderate and advanced model also favors
constrained ATPG, utilizing data fetch operations for setting the
operands for the moderate configuration and an immediate coding
style for the advanced configuration. On the other hand, the
register file and the ALU can be tested more efficiently if high-
RTL test routines are used for both. Finally, in order to evaluate the
energy savings achieved by selecting the most efficient routines,
we created one program comprised by the best and another by the
worst test routines for each processor configuration. Simulation of
these two opposite cases shows that the energy savings can be as
high as 87.9 % for the simple, 90.3 % for the moderate and 89.5 %
for the advanced configuration.

6. Conclusions

In this paper we initially presented a qualitative analysis
regarding the efficiency of the SBST routines from a low energy
perspective. Moreover, for the first time we evaluated various
SBST approaches in terms of energy consumption, using a
framework based on the combination of commercial testing tools
with a widely accepted architectural-level simulator. Additionally,
we utilized that framework as well as commercial gate-level power
reporting tools to verify our theoretical analysis. The derived
conclusions are valid for a wide range of embedded processors,
because the power evaluation framework is based on a generic
micro-architectural simulator. Finally, we combined the available
SBST methodologies in order to choose an appropriate test strategy
for each processor component so as to minimize overall energy
consumption during in-field testing.

References

[1] M. Nicolaidis, Y. Zorian, “On-line Testing for VLSI — A
Compendium of approaches”, in Journal of Electronic
Testing: Theory and Applications (JETTA), Vol. 12, No. 1-2,
1998, pp 7-20.

H. Al-Assad, B. T. Murray, and J. P. Hayes, “Online BIST for
embedded systems,” IEEE Design & Test of Computers, vol.
15, no. 4, pp. 1724, Oct.—Dec. 1998.

K. Batcher, C. Papachristou, “Instruction randomization self
test for processor cores”, in Proc. Of the VLSI Test Symposium
(VTS) 1999, pp. 34-40.

P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS — A
Microprocessor Functional BIST Method”, in Proc. Of the
International Test Conference (ITC) 2002, pp. 590-598.

(2]

(3]

(4]

[5] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “Fully
Automatic Test Program Generation for Microprocessor
Cores”, in Proc. of the Design Automation & Test in Europe
(DATE) 2003, pp.1006-1011.

L. Chen, S. Ravi, A. Raghunathan, S. Dey, “A Scalable

Software-Based Self-Testing Methodology for Programmable

Processors”, in Proc. Of the Design Automation Conference

(DAC) 2003, pp. 548-553.

N. Kranitis, A. Paschalis, D. Gizopoulos, G. Xenoulis,

“Software-Based Self-Testing of Embedded Processors”,

IEEE Transactions on Computers, vol. 54, no. 4, pp. 461-

475, April 2005.

A. Paschalis, D. Gizopoulos, “Effective software-based self-

test strategies for on-line periodic testing of embedded

processors”, IEEE Transactions on CAD, Vol. 24, no.l, pp.

88 —99, Jan. 2005.

N. Kranitis, A. Merentitis, N. Laoutaris, G. Theodorou, A.

Paschalis, D. Gizopoulos, C. Halatsis, “Optimal periodic

testing of intermittent faults in embedded pipeline processor

applications”, in Proc. Of the Design, Automation and Test in

Europe (DATE), 2006, pp. 65-71.

[10] J. Zhou, H.-J. Wunderlich, “Software-Based Self-Test of
Processors under Power Constraints” in Proc. Of the Design,
Automation and Test in Europe (DATE), 2006, pp. 430-435.

[11] V. Tiwari, S. Malik, A. Wolf, “Compilation Techniques for
Low Energy: An Overview”, in Proc. Of IEEE Symposium on
Low Power Electronics (ISLPED), 1994

[12] J. T. Russell, M. F. Jacome, “Software Power Estimation and
Optimization for High Performance, 32-bit Embedded
Processors”, in Proc. of Computer Design: VLSI in Computers
and Processors (ICCD), 1998, pp. 328-333.

[13] D. Brooks, V. Tiwari, M. Martonosi, “Wattch: a framework
for architectural level power analysis and optimizations”, in
Proc. Of International Symposium on High-Performance
Computer Architecture (HPCA), 2000, pp. 83- 94.

[14] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A.
Ragjunathan, S. Ravi, “Systematic Software-Based Self-Test
for Pipelined Processors”, Design Automation Conference,
2006 (DAC), pp. 393-398.

[15] D. Brooks, P. Bose, M. Martonosi, “Power-performance
simulation: design and validation strategies”, in Proc. Of the
ACM SIGMETRICS, vol. 31, pp. 13-18, March 2004.

(7]

(8]

IEE I-'

COMPUTER
SOCIETY

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

