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Abstract -This paper presents several new properties of D
sequences that have applications to encryption and error coding.
It also considers the problem of joint encryption and error-
correction coding and proposes a solution using D sequences. The
encryption operation considered is equivalent to exponentiation,
which forms the basis of several public-key schemes. An applica-
tion of D sequences to generating events with specified proba-
bilities is also presented.

Index Terms -Cryptography, data security, D sequences, er-
ror coding, public-key systems, random sequences.

I. INTRODUCTION

T HIS paper is a study of several applications of D se-
quences to encryption and error coding. D sequences are

obtained in expansions of fractions or irrational numbers and
thus are "decimal" sequences to arbitrary bases. A standard
account of elementary properties of D sequences may be
found in the text by Hardy and Wright [1]. Some properties
ofD sequences that make them potentially useful for coding
and multiple access have been described recently [2], [3]. A
peculiar structural redundancy was pointed out in [4]. Blum
et al. [5] have shown that D sequences as pseudorandom
sequences are cryptographically insecure.
Two important problems that have been considered in this

paper are those of computing discrete logarithms and joint
encryption and error coding. The discrete logarithm problem
has been discussed recently by Hellman et al., Adleman, and
Coppersmith, [61-[9]. Since exponentiation is at the basis of
several modern cryptographic schemes, an efficient solution
to the discrete logarithm problem is of great significance. In
our paper we present a new approach to this problem which
is based on the use of the autocorrelation function method.
While our approach does not yield a computationally attrac-
tive solution, it opens up a new line of inquiry which may
prove fruitful.
The transmission of encrypted blocks of data over a noisy

channel requires an additional step of error-correction cod-
ing. We describe a method where the encrypted block digits
generate a sequence, and therefore, sending more digits than
the minimum necessary for uniquely defining the cipher
block provides a corresponding degree of redundancy that
can be used for error correction. The sequence digits are
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generated recursively, and therefore, the number of extra
digits needed for a specific noise situation can be adjusted
easily without having to change the error-correction codes
necessary otherwise.
We call our method joint encryption and error-correction

coding because both these operations are in the group of
digits modulo an appropriate number. This is in contrast to
separate error-correction coding where operations are usually
in GF(p'). It should be noted that our use ofD sequences for
encryption is not in the cryptographically insecure style of
Blum et al. [5].
We also present several new results on D sequences. These

include results on frequency characteristics of the sub-
sequences as well as on Hamming distance and auto-
correlation function characteristics. It has been shown how
the autocorrelation function for a binary D sequence can be
computed efficiently. A decoding procedure for error-
correcting codes using D sequences is also described.

Section II of the paper reviews some structural properties
of D sequences necessary as background and also presents
new results especially on characteristics of subsequences.
Section III describes an elementary relationship between a D
sequence and the finite exponential. Section IV presents new
results on Hamming distance and autocorrelation bounds for
D sequences. It has also been shown how the autocorrelation
method can be used for computing discrete logarithms.
Section V shows how, starting with a number chosen ran-
domly out of a residue set modulo a prime, events of arbitrary
probability can be generated. Sections VI and VII address the
problem of error coding and encryption.

II. STRUCTURAL PROPERTIES OF D SEQUENCES

We begin with the observation that the digits in the decimal
expansion of an irrational number satisfy most criteria of
randomness. This suggests that the randomness properties of
the decimal expansions of rational numbers might also be
good. Let us now take the rational number l/q and express
it as aD sequence in base r. It is known that this sequence will
repeat itself with a period v where v is the order of r mod q.
If q is a prime, and r is a primitive root of q, then the decimal
sequence is termed a maximum-length D sequence (MLDS)
in base r. An MLDS will often be represented merely by the
string of its first (q - 1) digits without showing the decimal
or as {1/q} or {l/q}r. We will now enumerate some basic
properties of MLDS's. The proofs of Properties 1-3 may be
found in [2]. Note that q is always a prime.
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Property 1: An MLDS {l/q}, when multiplied by p,
p < q, is a cyclic permutation of itself.

Example: Consider {1/7} in base 10. We see that 10 is a
primitive root of 7 because 106 1(mod 7) and 102'

l(mod 7), 103 1(mod 7). Therefore, this D sequence is of
maximum length. The D sequence is 1 4 2 8 5 7, which corre-
sponds to the remainder sequence 3 2 6 4 5 1 where these re-
mainders refer to the values obtained in the long division of
1 by 7. The remainder sequence has considerable structure.
Thus, 10, 102, 103, 104, 105, 106, all computed modulo 7, yield
the successive digits of the sequence. If x = {3/7} the re-
mainder sequence starts with 30 2(mod 7) and in fact is
now 2645 1 3, and therefore the decimal sequence for 3/7
is 42857 1.
Property 2: For an MLDS {l/q}= a1a2 ... k =

q - 1, in the base r,

ai + ai+k,2 = r- 1

This implies that maximum-length binary D sequences
(r = 2) will be skew-symmetric about their midpoint. Note
that all maximum-length sequences are of even length, and
therefore the latter (q - 1)/2 digits for a binary sequence
will be the complements of the first (q - 1)/2 digits.
The above property holds even for nonmaximum-length D

sequences, so long as the period is even.
Property 3: If the period k of the D sequence of l/q is

even in the base r,

ai + ai+k/2 = - 1

If the first k/2 digits of a decimal sequence of an even
period are represented by A and the remaining k/2 digits are
represented by B, one can prove that B divided by A yields
a quotient of q - 1 and a remainder of q - 2. To see this,
divide rkE2 by q, which yields the remainder of q - 1 and
quotient of A. Therefore, dividing rkI2 by A will yield the
remainder of q - 1 and quotient of q. Now, since by
Property 3 B = r 12 - A - 1, the result follows.

Let the ith remainder in the division of 1 by q be repre-
sented by mi where mo = 1,

mi = rmi- - qai = ri mod q. (1)

We can now easily establish the following:

mi+j= r+1mj_1 - qli(j + 1) (2)

where li(j + 1) = riai + r-'1ai+l + ... + rai+ 1 + ai+j
The sequence li(j + 1) is, therefore, a (j + 1) digit long
subsequence of { l/q} starting at its ith position.

Property 4: For a D sequence {1/q}r, if rm > q, then all
li(m) are different. In other words, for such a sequence, all
subsequences of length m are different.

This can be seen by considering

-qli(j + 1) = mi+j-r-+lmi-,.
Now, if li lk, then

Mi+j- r+'mi_ - mk+j- rj+Imk-I (3)

or

mi+j mod q =mkj mod q mod ri' (4)

However, if rj+' > q, we know that all the remainders must
be distinct. Hence, if rj+' > q, li(j + 1) l lk(i + 1),
i # k, or all subsequences of length m = j + 1, where
rm > q, are different.
As an example, consider {1/ 17}10. The remainder sequence

and the D sequence are shown in Table I. We note that
whenever mi mod 10 mk mod 10, the corresponding D
sequence digits are equal.

A. Frequency Characteristics of the Subsequences

Consider 1i (j), the subsequence of length j at the ith place,
forj such that ri < q. Our objective is to extend Property 4.
If j = [logr q], where [x] is the integer less than and closest
to x, congruence (3) implies that

mi+j--mk+j mod ri, (5)
and since ri is just smaller than q, Ii = Ik at most [qlrj] times.
Therefore, the number N(j) of identical subsequences of
length j = [logr q] is computed by

N(j) = [qlrj] or [qlri] + 1. (6)
In general, for j < [log, q], a similar argument implies the
following.

Property 5: Each subsequence of length j in an MLDS
occurs N(j) times where

N(j) = [qlrj] + C (7)

and C is 0 or 1.
The frequency of any subsequence of length j in a period

would therefore bef(j) = N(j)/(q - 1); or

f(j) = [q/ri]/(q - 1) + C/(q - 1),
and as q becomes large

f(j) -*> I/ri, (8)
which is the frequency one would expect in a random
sequence. This shows that one can use an MLDS as a pseudo-
random sequence. For the frequency characteristics of
reciprocals of integral powers of primes, see the paper by
Stoneham [10].

III. D SEQUENCES AND THE FINITE EXPONENTIAL

Since the ith remainder is mi = ri mod q, the relationship
between the D sequence {l/q}r and the finite exponential is
evident. Given any subsequence li(j) in the expansion of
1/q, the corresponding remainder mi can be obtained using
(2), which can be rewritten as

mi l+./rj = mi_- qli(j)/r'. (9)

Using the fact that mi-+j < q, we obtain the following
property.
Property 6:

li(j)q/rj < mi K{l<i(j) + l}q/rj. (10)
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TABLE I

index 1 2 3 4 5 67 8 9 10 11 12 13 14 15 16

remainder
sequence 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1

sequence 0 5 8 8 2 3 5 2 9 4{ 1 1 7 6 4 7

This implies that given enough digits of a subsequence the
corresponding remainder mi can be easily determined.

For the digits ai of a D sequence (aja2 * ), the Fermat
result [1] holds in the following form:

{[(airJ 1 + .;.*.. + ai+j-.)q] + l 1 mod q

This shows again how the remainders and the D sequence
digits can be considered on an equal basis.

IV. HAMMING DISTANCE AND AUTOCORRELATION BOUNDS
AND COMPUTING DISCRETE LOGARITHMS

Property 7: For a binary MLDS {1/q}2: a1a2... ak,
k = q - 1,

ai = (2i mod q) mod 2. (11)

Proof: For 21 < q, ai 0O. The i for which 2' is larger
than q for the first time, when 2' mod q is even, would
naturally yield an ai which is 1. Thereafter, each time
2' mod q is odd it implies that the quotient in the division of
1 by q is 1, and when 2' mod q is even the quotient is 0. The
following results also hold.

Property 8: The minimum Hamming distance dj between
the maximum-length binary sequence {I1/q}2 and its cyclic
shifts equals the integer closest to q/3 or [2q/3] - [q/3].

Property 9: The Hamming distance between {1/q}2 and
{ulq}2 iS given by:

a) odd numbers in (1, q2-') + even numbers in
(q 2-t, q 2-t1) + odd numbers in
(q-t+l, q2-t+2) + . *

when u = 2 < q,
b) [2q/u] - [q/u] + [4q/u] - [3q/u]

+ *. + [(u -l)q/u] - [(u - 2)q/u],
when u is an odd number,

c) odd numbers in (1, q/u) + even numbers in
(q/u, 2q/u) + odd numbers in (2q/u, 3q/u) + * ,

otherwise.
Proof: We wish to determine the smallest value of the

distance between {l/q} and {u/q}, u < q, u # 1.

{1/q}:aja2 ak

{u/q}:b1b2 .. *bk.
Then

{(u - 1)/q}:(b1 - a,)(b2 - a2) . (bk- ak)
where the (bi- a,)'s are 0, + 1, or -1. The Hamming dis-

tance between {u/q} and {l/q} would therefore equal the
number of nonzero (bi- a'). Now, by (11),

ai = (2' mod q) mod 2

bi = (u2' mod q) mod 2.

Since the autocorrelation function, as also the Hamming
distance, should be symmetric for j = 0, (q - 1), there-
fore d. = dq-j-i. In terms of u, since u = 21(mod q) (see
Property 1), therefore one needs to consider Hamming dis-
tances only for u = 2J(j < (q - 1)/2). If u = 2 and if
2' mod q is even and less than q/2, u2' mod q is less than q,
and therefore ai and bi are both even and (bi- ai) is 0. If
2' mod q is odd and less than q/2, u2' mod q is less than q
and even, and therefore (bi - ai) is -1. If q/2 c 2' mod
q . q - 1 and ai is even, then bi is odd and (bi- ai) is 1.
Hence, the Hamming distance for u = 2 (which clearly cor-
responds to j = 1) is

odd numbers in (1, q/2) + even numbers in (q/2, (q - 1))

q - I-1
2

q + 1
2

if (q - 1) is divisible by 4

if (q - 1) is divisible by 2.

If u = 2' < q, then one can use an argument similar to that
for u = 2. The Hamming distance would now be

odd numbers in (1, q2-) + even numbers in (q2-', q2-t+)
+ odd numbers in (q2-'+1, q2-t+2) + . . . . (12)

Clearly, this distance would be approximately equal to
(q - 1)/2.

Let us now take u to be an odd number. If 2' mod q <
q/u, u2' mod q is less than q, and therefore ai and bi are both
even or odd and (bi - ai) is 0. For q/u . 2' mod q < 2q/u,
ai and bi would now be even or odd or vice versa, leading to
(bi - a,), which is +1 or -1. Over 2q/u ' 2' mod
q < 3q/u, (bi - ai) is again 0 and so on. The value of the
Hamming distance is therefore equal to

[2q/u] - [q/u] + [4q/u] - [3q/u]
+ + [(u -)q/u] - [(u - 2)q/u], (13)

which represents a part of the total interval of (q - 1). The
smallest value of this expression is clearly defined for u = 3,
which divides up the interval most favorably, giving

dj= [2q13] - [q/3]. (14)

In words, this is the integer closest to q/3, or equivalently
it is (q - 1)/3 or (q + 1)/3, whichever is an integer.
The next smallest value of the Hamming distance is

likewise

[2q15] - [q/5] + [4q15] - [3q15],
which will be attained for u = 5. This is approximately 1.2
times greater than (14).
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When u is 2 times an odd number the expression for the
Hamming distance is likewise

odd numbers in (1, q/u) + even numbers in (q/u, 2q/u)
+ odd numbers in (2q/u, 3q/u) + * * . (15)

which can never be smaller than (14), which is attained
for u = 3 = 2a(mod q) and the corresponding u' =

2q-1-a(mod q).
Corollary: The autocorrelation function C(j) for a binary

MLDS, in the symmetric (1, -1) form, is -

C(j) . 1/3,
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Remarks: The above result follows on substituting the
Hamming distance lower bound. However, since dj itself
varies considerably from its minimum value to a maximum of
q - 1 (for j = (q - 1)/2), therefore the actual value of
C(j) would be distributed correspondingly.
The autocorrelation function of {l/q}, in the symmetric

form, is 1 for] = 0 and -1 for j = (q - 1)/2. For
j even, it is generally small and close to 0. The auto-
correlation function is symmetric about both j = 0 and
j = (q - 1)/2 and is spiky elsewhere. The magnitude of
these spikes is between (- 1/V'q, 1/V) for most values of
the argument, and therefore the sequences appear more ran-
dom as they become longer. The Fourier transform of the D
sequence or its autocorrelation function is a crude approxi-
mation of the constant function where alternate points are 0.
Therefore, the autocorrelation properties ofD sequences are
not as good as those of maximum-length shift register se-
quences, but their performance improves as their periods
become longer. Fig. 1 is a plot of the autocorrelation function
of the D sequence {1/379}2 in the (+ 1, -1) form, which is
typical for all binary MLDS. Figs. 2 and 3 give the auto-
correlation function and the Fourier transform of two D se-
quences in base 10. The autocorrelation function plots of
Figs. 1 and 2 have similarities even though the bases are
different. The Fourier transform plot of Fig. 3 shows up the
frequency structure of the D sequence in base 10.
The results of (12), (13), and (15) provide, in theory, a

method of taking discrete logarithms mod q, in base 2. For
the given r = 2' mod q, one can compute the Hamming dis-
tance between {1/q} and {r/q} using the above-mentioned
equations. If a plot of the Hamming distances or, equiva-
lently, the autocorrelation function of {l/q} were available,
one could read off the index i. In practice, this method will
be infeasible when q is large. This suggests that more re-
search needs to be done to understand the properties of the
autocorrelation function to determine if this approach could
prove worthwhile.

It appears that an, approach that is partly statistical may
have some usefulness, even if basic new results on the auto-
correlation function are not obtained. For example, if the
position of the local peaks of the autocorrelation function
could be determined, a priori, even if these values were
determined only probabilistically, this information could be
exploited to determine some characteristics of the index.
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Fig. 2. Autocorrelation function of the sequence {1/433} in the symmetric
form in base 10.
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V. GENERATING EVENTS WITH DIFFERENT PROBABILITIES

Our proof of Property 9 allows us to make a useful asser-

tion about the integers less than a prime. Since the binary
MLDS can be taken to be the sequence of even/odd parity of
the remainders (1 through q - 1 in the order given by
2' mod q), the Hamming distance between a residue set and
that obtained by multiplying each element by u is precisely
the number of positions where the parity of the corresponding
elements from the two sets is different. The expressions (12),
(13), and (15) give the number of integers that when multi-
plied by u give a result with a different parity, which we

define to be the event xu.
As an example, the number of times t < q, when multi-

plied by 3, yields a 3t mod q with parity different from that
of t is precisely [2q/3] [q/3]. This means that if a number
t is randomly chosen the probability of finding the parity of
3t different from it is

Prob(x3) = 1/(q - 1) {[2q/3] - [q/3]} -1/3.

Some other probabilities of interest are

Prob(xq 1)= 1

Prob(x2) 0.5.

Similarly, from (13), for odd u,

Prob(x) -(u - 1)/2u.

Using appropriate xt 's, more than once if necessary, events of
any arbitrary probability can be designed.

It is necessary to ensure that the number t is selected ran-

domly for the above probability values to be valid. This is
because given the number t one can calculate what the parity
of ut will be. To illustrate this, if u = 3, the parity of 1

through [q/3] and their negatives does not change, and those
of all others do.
To select t randomly, one needs to use a cryptographically

secure random number generator whose output has been cer-

tified. In the casino setting a player would add his chosen
number to the number produced for that play by the certified
random number generator.

VI. ERROR-CORRECTION CODING

The fact that there exists a minimum Hamming distance
between an MLDS and its cyclic shifts, generated by multi-
plication by integers (Property 2), suggests that the set could
be used as error-correcting codewords. One can also use

nonmaximum-length sequences for the same purpose.

Definition: A D code for a message expressed as integer
u is defined as

x = {u/q}

where u ' q - 1.
When {1/q} is a maximum-length binary sequence, we

obtain a binary maximum-length D (MLD) code, which is a

cyclic code. The codewords in a binary code have equal
numbers of 0's and l's. It is quite clear that for a binary code

the lower bound on errors detected is (d - 1) and the lower
bound on errors corrected is [(d - 1)/2], d = [2q/3] -
[q/3]. Since d is often larger than its minimum value, the ac-
tual error-detection and -correction capability will be higher.
Example: Let q = 11. The information word to the code-

word mapping in the MLD code is

0001 -* 0001011 1101

0010-* 001011 1010

0011 -* 0100010111

etc.

One observes that the codewords are linear in terms of
ordinary addition, but nonlinear in terms of modulo 2
addition.
An MLD code can also be viewed as a product code

u(2q-- 1)/q because {1/q} = (2q-l- 1)/q.
The code corresponding to a nonmaximum-length D

sequence will be called an NMLD code, which for r = 2 is
a product code u(2k- 1 )/q where k is the order of 2(mod q),
u <q.
Example: Let q = 23, k = 11. The NMLD code is the

product code 89u. Some of the codewords for this case are

00001> 00001011001

00111 > 01001101111

etc.

All the remaining codewords are the cyclic shifts of the
above two codewords.
One may also use a shortenedD code. By Property 4, only

m digits are required to fix u (where rm > q) in a radix r
representation. Therefore, if one does not need the full error
detection/correction provided by a complete D code, the
extra number of codeword digits can be deleted. The re-
mainder, and thereby the message, can then be constructed by
the use of Property 6. Several properties of arithmetic codes
are reviewed by Clark and Liang [11].

A. A Decoding Procedure

We sketch a decoding algorithm for an MLD code; a simi-
lar algorithm will apply forNMLD codes. Let the code length
be m + p where [rm/q] = 0. We construct a table for all
possible li(j) for j = m, m - 1 1. Using the
relationship

[li(j)q/rj] < mi-I < [{li(j) + l}q/rj]

we construct a sequence of possible mi 's for eachj, and check
which ones are consistent with the relationship mi =
rmi_1 mod q. For a given j, we determine the index values i
where two different possible remainder sequences meet. The
code digit is changed for this i, and the remainder sequence is
again checked for consistency. If it checks out, the ith bit was
in error. If it does not, the procedure is repeated for j - 1.
We illustrate our algorithm by means of an example of a
single error.
Example: Consider {1/13}2. Let the message sequence be
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TABLE II

i = 0 1 2 3 4 5 6 7

1(4) 13 11 7 14

m (4) 11 9 6 12

i(3) 6 5 3 7 6

mn(3) f10 9 5 12 10

11 10 6 11

1i(2) 3 2 1 3 3 2

mi(2) 10 7 4 10 10 7

11 8 5 11 11 8

12 9 6 12 12 9

Q(1) 1 1 0 1 1 1 0

m(1) 7 to 7 to 1to 7 to 7 to 7 to 7 to
12 12 6 12 12 12 12

1000, which is transformed by the D code (p = 3) into the
codeword 100 1110. Let the received codeword be
11 0 111 0, which is in error at the second location. We take
the received word and construct a table (Table II) of 1i(j)'s
and mi's for various values of i's and j's.
We start with an examination of 1i (4) and mi (4). 11, 9 and

6, 12 are possible remainder sequences, but since they do not
meet at an i, we take up 1i(3) and mi(3). The sequences 11,

9, 5 and 6, 12, 11 meet at i = 2. The second bit is changed
from 0 to 1, and mi (3) and mi (4) are checked to show that they
are consistent. Hence, the second bit was in error.

Had examination of mi(3) not resolved the matter, we
would have checked m (2). Again, sequences 11, 9, 5 and 6,
12, 11, 9 meet at i = 2, which indicates that the bit at the
second place might be in error.

The computational effort required for low bit error rate
situations (which is a realistic assumption for cryptographic
applications) is not excessive, and therefore this procedure
can be used in practice.

VII. JoINT ENCRYPTION AND ERROR CODING

The transmission of encrypted blocks of data over a noisy
channel requires an additional step of error-correction cod-
ing. We describe a method where the cipher block generates
a continuing D sequence, and therefore, sending more digits
than the minimum necessary for uniquely defining the cipher
block provides a corresponding degree of redundancy that
can be used for error correction. The sequence digits are

generated recursively, which makes it easy to adjust the num-
ber of extra digits needed for a specific noise situation. In
contrast to sequential encryption and error correction this
does not require a change of the coder itself.
We consider the Diffie-Hellman key distribution scheme

[12] to form the basis of our cryptographic system. In this
system one assumes that all users, as also the cryptanalyst,
have access to a large prime q and one of its primitive roots
r. When A and B wish to communicate, they first generate
random numbers kI and k2, respectively. A transmits to B the
number rkl mod q, and B transmits to A the number
r 2 mod q. Both A and B can now generate the key

rk1k2 mod q to use as the secret key to exchange messages.
In the Diffie-Hellman method it is important that the trans-

mission of the r1 mod q numbers be error free. This requires
error-correction coding. In order to eliminate this step of
error correction we propose sending, instead of r1 mod q,
j digits in base q, where ri > q, in the following fashion.
Step 1: Generate rk mod q.
Step 2: Find the firstj digits of the expansion

rk mod q Lin base r .
q

Let the digits be represented by aklak2 ... akj.
These j digits uniquely identify rk mod q.

Step 3: Transmit aklak2 ... akj-
If the sequence of digits in the D sequence expansion of

l/q in base r is represented by a1a2 , then =ak+
ak2 = ak+2, etc. This means that the transformation rk mod q
is equivalent to sending j digits of the expansion of I/q in
base r starting at the (k + 1) position. When j is greater than
m where m makes rm just greater than q, each extra digit
provides redundancy against errors in transmission. Since the
protection provided is equivalent to that in D code, the per-
formance can be easily evaluated.
The reason why we call our method joint encryption and

error coding is because both the operations are performed
mod q, which is not the case for most standard techniques of
error-correction coding. Our method also shows a connection
between "decimal" expansions and encryption.

The digits of the expansion of (r" mod q)/q in (16) can
also be expressed in any other base b. Again, at least j digits
are required where b1> q. The expansion does not admit the
elegant interpretation of being the D sequence of 1 /q any-
more. It can still be used for error correction so long as j is
larger than m where [bm/q] = 0.

For other exponentiation transformations like the RSA
[13], (16) can again be used for error correction where the
digits are expressed to some appropriate base. As an exam-
ple, Me mod n, for a message M, would be substituted by
(Me mod n/n) in base b.

This method can also be applied for error-correction cod-
ing when the finite exponential is used as a one-way trans-
formation for user authentication. Further, it can be used to
exchange messages secretly by employing the Shamir-
Rivest-Adleman (SRA) protocol for mental poker [14]. In
the SRA and RSA methods, however, use of D sequences
amounts merely to a coding technique, and does not admit the
elegant interpretation possible for the modification of the
Diffie-Hellman method via the D sequence.

VIII. CONCLUDING REMARKS

We have shown that D sequences can have significant
applications in error coding and data security. The
Diffie-Hellman scheme of key distribution has already been
implemented, and therefore its variant, the joint encryption
and error coding scheme proposed in this paper, can have
immediate applications. Some directions in which further
research needs to be done are

808



KAK: ENCRYPTION AND ERROR-CORRECTION CODING

1) a deeper study of the autocorrelation function of a D
sequence and its use for computing discrete logarithms;

2) more efficient decoding algorithms for D codes;
3) implementation protocols for joint encryption and error

coding;
4) study of the performance of D codes when they are

shortened; and
5) implementing D codes for password protection and for

the RSA algorithm.
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