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Abstract—Networks cannot be managed without communi-
cation among geographically distributed network devices and
control agents. Unfortunately, computer networks today lack
an autonomic mechanism that enables such communications,
and the stopgap solutions used in practice are seriously flawed.
To address the problem, this paper presents the design and
implementation of the Meta-Management System (MMS), a
network-layer subsystem that provides robust and universal
support for management plane communications. The MMS is
autonomic, able to self-configure, self-heal, self-optimize, and self-
protect. Furthermore, it is efficient, scalable, and evolvable. We
demonstrate the practicality of the MMS via a fully functional
implementation that runs on commodity hardware. The MMS
software is freely available.

Index Terms—Autonomic communication, network manage-
ment, security, performance, system design and implementation.

I. I NTRODUCTION

Modern computer networks have many functions. Besides
providing basic packet delivery services, they play a critical
role in securing computing resources (e.g. blocking unautho-
rized traffic, detecting attacks), in ensuring application perfor-
mance (e.g. balancing network and server load, differentiating
service for different applications), in enhancing application
reliability (e.g. transparently allowing a backup server to
take over), in enabling utility computing services (e.g. virtual
private networking, data center virtualization) and more.

The industry and the academic community have both rec-
ognized the importance of autonomic management for these
increasingly complex functions [1][2][3]. Numerous architec-
tures for autonomic network management have been proposed
in the literature (e.g. [4], [5], [6], [7], [8], [9], [10], [11],
[12]). While they generally differ in terms of system organi-
zation (e.g. centralized agent, hierarchical agents, peer-to-peer
agents) and control mechanisms (e.g. policy-based and bio-
inspired adaptation), they all aim at forming the autonomic
control loop between network devices and control agents.

Forming the autonomic control loop fundamentally requires
communications among network devices and control agents.
Surprisingly, we have not yet come across any architectural
proposal that studies the mechanism for this communication.
Perhaps there is a mis-perception that a suitable mechanism

This research was sponsored by the NSF under grant numbers ANI-
0331653, ANI-520187, CNS-0520280, CNS-0721990, CNS-033162, and by
Microsoft Corporation. Views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of NSF, Microsoft Corporation, or the
U.S. government.

which is itself autonomic is already widely available. Unfor-
tunately, the reality is that computer networks today lack such
an autonomic mechanism and the stopgap solutions used in
practice vary widely. Many commercial networks still rely on
dial-up modems to access the serial console ports of routers for
control; this method has poor performance and is clearly not
self-healing nor self-optimizing. Alternatively, many networks
rely on an orthogonal Ethernet network to access the special
management Ethernet ports of routers for control; however,
Ethernet is insecure, not self-protecting, nor self-optimizing.
Other networks even rely on in-band connectivity to control
routers (i.e. control communication is mixed with user data
communication and relies on the very same IP routing tables);
this method is dangerous as it risks losing remote access with
no recourse if the router is accidentally misconfigured.

From a system design point of view, we argue that a
fundamental architectural element missing from autonomic
network management isa subsystem, which is itself autonomic,
that provides robust and universal support for management
plane communications. Such a subsystem is a necessity for
the collection and exchange of environmental observations
that drive the autonomic control loops and for the conveyance
and negotiation of autonomic control decisions. More broadly
speaking, beyond autonomic control, such a subsystem is also
a necessity for the access and storage of management data that
reside in the network, and for the recovery from management
system failures. For example:

• Many current management systems adopt an external
control model where network switches communicate their
environmental observations to an external intelligent con-
troller(s), the controller(s) reacts to the observations and
communicates control decisions to the network switches.
This external control model critically depends on robust,
secure, and low-latency management-plane communica-
tions. Examples of such systems include:

1) AT&T’s Intelligent Route Service Control Point [13]
which can flexibly direct where and how global
traffic flows in a backbone ISP;

2) Commercial products such as HP’s OpenView and
IBM’s Tivoli management solutions which are in-
creasingly network-aware, able to manage network
configuration changes, interact with network devices
via SNMP, monitor network conditions and direct
computing systems to self-optimize accordingly;

3) Experimental systems such as Tesseract [14],
Ethane [15], and OpenFlow Switch [16] that have
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provided experimental platforms for sophisticated
network control such as policy-driven network ac-
cess control and integrated routing and firewalling.

• Another example of management-plane communications
is the access to bulk data, such as software update images,
located at network attached storage servers. The update
of the software running on a network’s routers is an
intricate multi-step process that must be carefully planned
and executed. An autonomic controller could orchestrate
the process by systematically controlling and routing
customer traffic around the switches to be updated, and by
mediating the download and installation of the updates.
This type of bulk data access communication especially
requires high bandwidth.

• The management communication subsystem could also
play a critical role if the autonomic management system
fails. Because the management communication subsystem
is decoupled from the rest of the management system,
through it the network operator could regain control over
the controller(s) and the switches. Appropriate actions
such as killing and re-starting processes, patching vul-
nerable software, re-booting devices etc. could then be
performed. In this case, it is critical for the management
communication subsystem itself to be self-configuring
and allow no chance for human error.

To provide this missing architectural element, this pa-
per takes a system design and implementation approach.
We present a solution called the Meta-Management System
(MMS) – a self-configuring, self-healing, self-optimizing, and
self-protecting network-layer module designed to provide a
high performance, dependable communication service for the
management plane.

Besides providing self-* capabilities, the design of the MMS
addresses the real-world constraints imposed by the network
environment in which it must operate. For example, in practice,
the MMS may run along side other complex software in a
network device. The danger of run-time resource starvation
threatening the liveness of the MMS is real and must be
addressed. Furthermore, it is prudent to design the MMS to
have built-in support for updates so that evolving the MMS is
seamless. The MMS must also streamline its memory footprint
so that it may be deployed on as wide a range of network
devices as possible. We show that the MMS has met these
criteria via a fully functional implementation that runs on
commodity hardware. The MMS software is freely available
at http://100x100.jot.com/mms .

In the next section, we review the techniques used in other
problem domains and explain how they fall short of meeting
the needs of autonomic management plane communication.
In Section III, we present the design and implementation of
the MMS. In Section IV, we evaluate MMS’s performance
and robustness. In Section V, we present two case studies.
First, we show how the MMS can self-optimize for variations
in link quality in wireless mesh networks. Second, we show
how the MMS can enable remote recovery when a network
device’s control plane is overloaded. Finally, we conclude in
Section VI.

II. T ECHNIQUES FROMOTHER DOMAINS

There is a large body of available routing techniques for
different problem domains. With the exception of static rout-
ing, essentially all routing techniques are self-healing in that
they respond to link or node failures and re-route. However,
not all routing techniques are self-configuring. Many widely
used commercial routing techniques such as OSPF [17], IS-
IS [18], and RIP [19] are not self-configuring. Take OSPF as
an example: it requires a large amount of information to be
configured such as OSPF area specifications, message timers,
link metrics, interface types, authentication keys, etc. Any mis-
configuration of these parameters could render the network
inoperable.

Among commercial solutions, Ethernet [20] is the most no-
table self-configuring and self-healing system. Unfortunately
Ethernet does not self-protect nor self-optimize. Any host on
an Ethernet can launch a denial of service attack by flooding
the entire network. Ethernet’s spanning tree protocol is also
insecure and cannot survive a compromise. A malicious host
can inject fake protocol messages and manipulate the spanning
tree topology. The use of a spanning tree topology also makes
Ethernet highly inefficient because redundant links in the net-
work cannot be used to forward traffic. Many research propos-
als that could serve as more efficient replacements for Ethernet
also lack self-protection and self-optimization capabilities (e.g.
SEATTLE [21], ROFL [22], UIP [23], Ethane spanning tree
routing [15], Tesseract path explorer routing [14]).

There are numerous self-configuring and self-healing rout-
ing techniques proposed in the context of ad hoc mobile net-
works [24]. Some of the routing techniques in ad hoc mobile
networks emphasize adaptation to node mobility and mini-
mizing packet transmission energy consumption. Therefore,
the techniques they employ may sacrifice routing efficiency in
favor of these other concerns [25][26][27][28]. In this paper,
we are interested in management in service provider networks
and thus mobility and energy consumption are not likely to be
the primary concerns.

Many techniques in the ad hoc mobile network environment
are designed to route traffic between potentially all pairs of
mobile nodes (e.g. [29], [30]). Instead, management plane
communications are mainly between network switches and
management entities (e.g. controllers, storage servers) rather
than all possible pairs of nodes. The solution could therefore
exploit this characteristic.

A large number of secure routing techniques have been
proposed in the contexts of wired networks and ad hoc mobile
networks. The general lesson we can learn from these tech-
niques is that there is a large toolbox of available primitives.
Which primitive is optimal for solving a problem however
depends on the problem domain.

Routing techniques that are fixed on forwarding data via
the shortest paths (e.g. OSPF, IS-IS, RIP) give too much
power to any compromised node that happens to lie on the
shortest path. A self-protecting technique will need to have
more flexible control over routing. Some solutions rely on
flooding redundant copies of a packet to ensure packet delivery
despite a network compromise [31]; however, this technique
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has a rather high performance penalty.
Many techniques also turn to cryptographic primitives to

provide security. One class of techniques use asymmetric pub-
lic key cryptography to authenticate messages [32][33][34].
However, asymmetric cryptography is computationally very
expensive. Protocols that use asymmetric cryptography heavily
are vulnerable to attacks. For example, an attacker can cause
a victim node to verify a large number of forged signatures to
exhaust the victim’s computation cycles. To avoid asymmetric
cryptography, some techniques simply use a single shared se-
cret key among all nodes [35]. Unfortunately, these techniques
cannot survive even a single node compromise. Alternatively,
some techniques require that nodes have pre-configured pair-
wise shared secrets [36]; however, such techniques are no
longer self-configuring as the number of configured keys
required scales quadratically with the number of nodes. There
are also hash chain techniques for authentication [37][38][39].
Hash chain techniques are most effective for broadcast traffic
authentication but cannot provide secrecy. In the problem
domain of this paper where communications are point-to-point
and may need to be secret, hash chain techniques do not out-
perform pair-wise shared secret techniques.

To meet the needs of autonomic management plane com-
munications, the solution should strike a balance between
computation overhead, complexity and security by automat-
ically establishing shared secret keys and by using efficient
symmetric cryptography for packet handling.

III. MMS D ESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of the Meta-Management System (MMS). The MMS module
runs on network elements (NE), by which we mean routers,
switches, firewalls and other devices that are being managed.
The MMS also runs on management stations (MS), by which
we mean the network-connected hosts used to control, manage
and configure the network, as well as those that store man-
agement data.

A. MMS Features Overview

We begin by providing an overview of the features of
the MMS and point out which feature contributes to which
autonomic objectives – i.e. self-configuring (C), self-healing
(H), self-optimizing (O), and self-protecting (P).

Automatic creation of management channels (Self-C) -
When a MS with a valid security certificate is attached to
a network, the MMS automatically establishes secure end-to-
end management communication channels between the MS
and the NEs in the network. Likewise, when a NE with a
valid security certificate is attached to a network, the MMS
automatically establishes secure end-to-end management com-
munication channels between it and the MSs.

The MMS transports management communication over
MMS network links. MMS network links can either be logical
partitions (with performance guaranteed by priority queuing,
for instance) of data traffic links or dedicated management
traffic links. The MMS thus logically separates management

communication from user data communication so that they no
longer share the same fate.

There is no manual configuration beyond exchanging se-
curity certificates at device installation time.1 The MMS
integrates, and thereby enforces, best practices. Once the MMS
solution is installed, the rest is automatic.

The MMS exposes a familiar datagram service to appli-
cations, so existing management applications can access the
MMS management channels via standard socket API.

Integrated security assurance (Self-P) - The MMS
assumes a hostile environment in which malicious end hosts
attached to the network may launch a DoS attack at the MMS
or try to compromise NEs. The MMS is robust to such attacks
and NE compromise. First, regular end hosts have no way to
address MSs in the network, thus launching a DoS attack at
the MSs is not possible. The MMS management channels have
priority over data traffic and thus DoS attack against NEs in
the data plane cannot disrupt management traffic. If a NE is
compromised, it can drop MMS traffic or generate spurious
messages in a DoS attack. However, due to the MMS’s use
of onion-encrypted source routing, such NEs can easily be
detected. The MMS can quarantine such NEs by issuing new
source routes that by-pass the quarantined NE. Finally, the
MMS provides a mechanism to revoke a MS certificate and
replace it with a new one, which is useful, for example, when
a MS laptop computer storing the certificate is lost.

Integrated liveness assurance (Self-H, Self-O, Self-P) -
MMS maintains the liveness of the management channels in
an integrated fashion. It can dynamically re-route when a loss
of network connectivity occurs. Furthermore, the MMS can
take link performance (e.g. loss rate) into account and flexibly
optimize communication performance by choosing new source
routes. It is designed to protect itself against CPU resource
starvation. Moreover, due to the use of source routing, MMS
does not require NEs to maintain forwarding tables that grow
with the network size. All the memory MMS needs can be
statically allocated at boot time, thereby defending against
memory starvation. Furthermore, the MMS provides remote
process management and packet filtering APIs to ensure the
liveness of critical higher layer management software tools.

Handles large networks and a wide range of devices -
The protocols used in the MMS are specifically designed so
that the amount of memory and CPU computation required
of network elements is small and independent of the size of
the network. This means that the MMS can run on a wide
range of devices, and the network can grow without forcing
the upgrade of all NEs. Instead, the computation and memory
requirements are placed on the MSs. The MSs can target their
resources at reaching the specific NEs they wish to configure.
Furthermore, since MSs are just end hosts and comparatively
few in number, they are easy to upgrade.

Management stations can be connected to the network at
any port, so service technicians in the field and operators in
the network operation center can all access network elements
using the MMS. There is no need to travel to special “network

1Major vendors today already install security certificates onto their network
elements before shipping them to customers.
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management ports” to connect. After a MS is plugged into a
network, in about 30 seconds it can establish MMS secure
channels to one thousand core devices. Note that many large
enterprises and ISPs have roughly this size [40].

Evolvable after deployment - The MMS can be used
to manage and evolve the MMS itself with zero down time.
The design of MMS enables multiple parallel instances of the
MMS to operate over the same network at the same time.
This allows a new MMS instance to be brought up in order to
manage or replace the old instance. Specifically, a new version
of the MMS can be installed and brought up through the
management channels provided by the old working version.
The new version can be tested thoroughly before the old
version is removed.

B. Partitioning Data Links for MMS Communication

The MMS can run on links dedicated to management or the
same links that carry user data. If the MMS leverages the same
physical links used for regular data packet transmissions, the
link-layer must logically partition the link so that the logical
link used by the MMS has a guaranteed minimum throughput.
This prevents regular data traffic from interfering with the
delivery or processing of MMS frames. This abstraction can be
realized on all common links, though by different mechanisms.
For example, SONET links can use the supervisory channel
to carry MMS frames. In a datagram network, weighted fair
queuing or priority queuing can be used.

In our implementation, the network consists of point-to-
point Ethernet links, and MMS frames are sent to a reserved
multicast address and tagged with a specific protocol type.
When the MMS module is activated, it configures the OS
to hand it any MMS-tagged frames going to this multicast
address. To prevent user traffic (e.g., DoS attacks) from inter-
fering with management communication, we use the simple
priority queuing system provided by the interface driver. MMS
frames are put into the highest priority queue and thus served
first by the scheduler.

C. Automatic Construction of Secure Channels

One of the MMS’s most important and basic features is
constructing a set of secure channels for management in-
formation to flow between a MS connected to the network
and the NEs that make up the network. These channels must
be authenticated, must survive DoS attacks and local link
or NE failures, and must be able to recover from a NE
compromise. This section explains our design for establishing
and maintaining these management channels.

1) Threat Model: The MMS is designed to withstand the
following threats:
• Operator error - Mistakes made while altering the

configuration of network elements.
• Attack from an end-host - Hosts connected to the

network may attempt to DoS or inject false commands
into the management channel.

• Compromise of a NE -Attackers may compromise any
NE in the system, learn its secrets, sniff frames traversing

it, and use it as a platform for launching DoS attacks
against the MSs and NEs.

2) Minimizing State Held by Network Elements:The first
step in constructing a secure channel is defining and authen-
ticating the endpoints of the channel.

Estimates show that configuration errors are responsible for
60 to 70 percent of network outages today [41][42]. Since the
MMS must provide an always-available management channel,
configuration errors that prevent communication between the
MS and the NEs are intolerable. We argue the best approach
to eliminate configuration errors is to reduce the configuration
state to the bare minimum needed.

In our design, each NE is configured with the following
critical pieces of information prior to deployment. The first is
a network certificateidentifying the public key with ultimate
authority over the network. NEs will accept commands only
from MSs who have aMS certificatesigned by the network
certificate’s private key. The second is a private/public key pair
that uniquely identifies the NE. The NE’s public key must be
made available to the MSs before the MSs can communicate
with the NE. The network certificate and the private/public
key pair should be preserved in non-volatile storage on the
NE.

This basic configuration provides the toehold from which
the MS will be able to authenticate and communicate securely
with each NE. In addition to the basic configuration, each NE
stores the following dynamically generated soft-state for each
MS with which it communicates: (a) a secret key shared only
between the NE and the MS, (b) one or more onion-encrypted
source routes by which the NE can communicate with the MS,
(c) the version number of the MS’s certificate, and (d) the time
at which this per-MS state was last used. The exact definition
of these fields and the means by which they are created will
be explained next.

3) Secure Routing:The MMS is completely decoupled
from the regular IP data plane services and therefore has its
own routing subsystem. The forwarding of messages in MMS
is controlled byonion-encrypted source routes[43]. These are
strict source routes placed in the headers of the MMS frames
that list the series of NEs through which the frames must pass.
A source route is built like an onion, with the list of hops
remaining in the route encrypted in the secret key of the NE
making the next forwarding operation. A NE without a valid
onion-encrypted source route can only transmit MMS frames
to its immediate neighbors. Since the MS knows the secret
keys of all NEs, it can construct an onion-encrypted source
route between any two NEs. As a frame is forwarded, each
hop re-encrypts the portion of the route over which the frame
has already traveled.

We use onion-routing for two main reasons. First, it creates
in each MMS frame a secure log of the frame’s traversed
path which only the MS can fully decrypt. As described in
Section III-C5 this property will be used to detect and evict
misbehaving NEs. Second, source routing ensures that the
MMS on each NE does not need to maintain a dynamic routing
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Fig. 1. Recursive MMS Authentication.

table that grows with the network size. Thus, the MMS on a
NE only needs a small static amount of memory and will not
run into memory allocation failures.

To establish the MMS onion-encrypted source routes, a
MS first recursively authenticates and establishes secret keys
with the NEs in the network. During this process, the MS
computes an onion-encrypted source route for each NE to
use to communicate with the MS, and the MS installs this
route on the NE. Subsequently, the MS learns changes in the
topology of the network by collecting encrypted link state
advertisements (LSAs) from NEs. The MS reacts to topology
changes by recomputing and pushing out new onion-encrypted
source routes as needed. There can be multiple MSs in the
network, but each MS performs these tasks independently. The
details of the authentication process are explained next.

Recursive authentication - The MS is responsible for
authenticating the NEs and sending them encrypted source
routes that can be used to communicate with the MS. A
NE proves its identity to the MS using a challenge-response
protocol, and the MS proves its own identity to a NE by
sending it a verifiable signed source route.

Figure 1 gives an overview of the process by which a MS
establishes communication channels to the NEs in the network.
The MS initiates and drives this process, enabling it to limit
the set of NEs it contacts to the ones of interest. This will be
important in very large networks with many edge NEs. The
MS begins by initiating the authentication process with the
directly connected NEs (e.g.,A).

The MS authenticates a NE by sending it a challenge via
an onion-encrypted source route. For a NE directly connected
to the MS, this source route is trivial. This challenge contains
several things. The first is a 128-bit session key that serves
as a shared secret between the MS and that NE. The shared
secret is encrypted by the NE’s public key and signed by the
private key from the MS certificate. The second is the public
key from the MS certificate signed by the private key from the
network certificate. This signed public key is pre-configured
on a MS by the administrator. It is important to note that a
MS does not know the private key of the network certificate.
Thus, even if a MS is compromised, the network certificate is
still safe. The third component is an onion-encrypted source

route from the NE to the MS signed by the private key from
the MS certificate.

By verifying the certificates and decrypting the session key,
the NE proves its identity, verifies it is communicating with
a valid MS, and obtains an onion-encrypted source route it
can use to communicate with the MS (since it can decrypt
the first layer of the route using the session key). The NE
then encrypts its current LSA by the session key, and sends
it to the MS using the onion-encrypted source route. If the
LSA informs the MS of new NEs it should communicate
with, the MS recursively authenticates those NEs (e.g.B)
by sending them challenges via onion-encrypted source routes
over authenticated NEs.

A MS certificate contains a version number, and NEs will
only accept a MS certificate with the highest version number
they have seen. This means if a MS certificate is compromised,
it can be cheaply “revoked” by creating a new MS certificate
with a higher version number and using it to authenticate all
the NEs.

Authentication in large networks - Since the MS drives
the recursive authentication process, it can target the authenti-
cation towards the NEs it wants to control. This is important
in large networks, e.g., one with millions of edge NEs. As
a simple example, the MS can authenticate with all the core
NEs (as identified by an inventory database), obtaining LSAs
that list the edge NEs and their attachment points. Even the
largest networks have no more than a few thousands of core
NEs, which the MMS can easily handle (see Section IV).
Subsequently, the MS can initiate authentication with only the
desired edge NEs.

LSA creation - The MMS implements a simple HELLO
protocol by which each NE discovers the identities of its
neighbors. Also, as part of this HELLO protocol, neighbors
exchange lists of the MSs that they have authenticated with.
These lists need not be verified by a NE, it is advisory only.
From this information, a NE creates an encrypted LSA and
sends it to a MS it has authenticated with. In each LSA, for
each neighbor, a bit is used to indicate whether that neighbor
claims to have authenticated with that MS.

When the link state changes, the NE detecting the change
sends new LSAs to the MSs it has authenticated with. Each NE
limits the rate at which it sends LSAs so that a compromised
NE attempting to attack the MMS by flooding LSAs can only
flood its immediate neighbors (which is unavoidable), but not
the rest of the network.

New LSAs are retransmitted periodically until acknowl-
edged by the MS (our implementation uses a period of 500
ms). If a new LSA is generated, it replaces the one currently
being sent. To make the system as simple as possible, an LSA
is acknowledged by the MS by sending a hash of the LSA
back to the NE. There is no need to use sequence numbers
as there can be only one outstanding LSA at a time, and the
hash provides protection against bit-corruption in the LSA.

4) Resilience to Failures:If the connectivity between NEs
changes, new LSAs are sent to the MS and the MS re-
calculates onion-encrypted source routes for affected NEs and
sends the new routes to the NEs. Should a NE reboot or
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otherwise lose its soft-state for a MS, LSAs sent by this NE’s
neighbors will show that this NE is unauthenticated to the MS,
and the MS can re-authenticate the NE if needed. Should a
MS fail, all NEs will eventually purge their soft-state for it.

The MMS is designed to survive even simultaneous failures
of multiple links. In addition to the experimental results
presented in Section IV, we are able to prove this formally.

Convergence Property:If each NE knows the shortest path
to a MS and the MS has the initial network topology, the above
LSA propagation scheme ensures that the MS will eventually
re-discover the shortest paths to all NEs in its network partition
after any period of link failure events followed by a period
without failures.

Proof: Let GMS be the network topology, including the
MS itself, perceived by the MS,Greal be the topology after
the link failure event(s),p(x) be the shortest path inGMS

from any NE x to the MS,S be the set of NEs who have
different link state inGMS andGreal. We define a pathp(x)
as aworking pathif it is a path in bothGreal andGMS .

After the failure event(s), at least one NE inS has aworking
path to the MS. This follows since there is always at least one
NE a ∈ S such thatp(a) is the shortest. Since no other NE
in S is betweena and the MS, there is no failed link along
p(a). It follows that the LSA from at least one NE inS can
reach the MS, and that NE will continue to send that LSA
until is is acknowledged. After the MS receives and processes
the LSA, GMS andp are updated anda is removed fromS.
The MS repeats the above procedure untilS is empty. When
S is empty,GMS is identical toGreal. Thus, it takes at most
|S| steps to makeS empty and at which point the network
has converged.

Therefore, as long as the MS assigns each NE the shortest
onion-encrypted source route, the network is guaranteed to
converge even when multiple failures occur simultaneously.
In addition to the shortest route, the MS can optionally give
a NE apreferredroute which is not necessarily the shortest.
A NE can use the preferred route to send management traffic
to the MS and use the shortest route only to send LSAs. The
flexibility of assigning preferred routes allows more advanced
features to be implemented on the MS.

5) Resilience to Attacks:Under this security framework,
only authenticated NEs can communicate with MSs via the
MMS. When used with traffic isolation techniques (see Sec-
tion III-B), data plane DoS attacks cannot disrupt management
communication. Even if a NE is compromised, the attacker
cannot modify the MMS frames in transit because they are
all encrypted with the secret key of another NE. The compro-
mised NE also cannot announce bogus connectivity to non-
compromised NEs in order to attract traffic to it because the
MS can detect the inconsistency in the LSAs.

A compromised NE can attempt to launch a DoS attack on
the MMS by dropping frames in transit or by sending useless
frames to the MS. The use of onion-encrypted source routes,
however, offers both a mechanism to identify the origin of the
DoS and a mechanism to isolate the offender once identified.

If the compromised NE is dropping frames, the MS detects
it by stealthy measuring the packet loss rate along the prefixes
of the lossy path using Stealth Probing [44] and then computes
a new source route that avoids the compromised NE. A simple
attacker that sends useless frames to the MS using its own
source route would be trivially caught, since the source route
identifies the sender. A sophisticated attacker could attempt
to hide its identity by reusing a source route extracted from a
frame it has forwarded, thereby making its attack traffic appear
to come from the origin of the source route.2

Fortunately, using onion encrypted routes gives us strong
assurance that any malicious packet received by the MS
must have been sent by a NE listed in the packet’s source
route. The techniques of Zhang et al. [45] are then used to
identify the malicious NE. Assume that a MS determines it
is receiving malicious packets if they are sent at a rate above
some detection threshold. Over time, the MS orders NEs to
change the source routes they use. This allows identification of
the attacker by forcing it to move its malicious traffic among
different source routes, and the attacking node will eventually
be the only node in common among the source routes along
which malicious traffic arrived. The attacker’s only strategy is
to limit the number of malicious packets it sends to stay below
the detection threshold, but this bounds the impact of its DoS
attack. If an attacker is identified, the MS issues new onion
routes that avoid it.

D. Assuring Liveness

To achieve liveness, beyond the ability to react to link or
NE failures as explained in Section III-C4, there are additional
challenges.

1) Protecting Against CPU Starvation:A common issue
on NEs is CPU starvation caused by a run-away process or
a data-plane DoS attack. However the MMS must maintain
management communication channels during these events so
that management agents or human operators can remotely
diagnose and fix the problem.

The MMS relies on the NE’s kernel scheduler to remain
sufficiently live so that the MMS can send and receive frames.3

To minimize the CPU cycles needed to run the MMS on NEs,
the MMS is designed so that the most compute intensive work,
i.e. route computation, is carried out on the MS.

However, even when the core kernel services of a NE
remain live, it is possible for a process running on the NE
(e.g., the OSPF or the BGP process) to consume so many
CPU cycles that critical processes (e.g., the command shell)
become unresponsive. For instance, this could happen when
a misconfiguration causes hundreds of thousands of inter-
domain routes to be mistakenly injected into an intra-domain
routing process. If the command shell remains unresponsive,
neither autonomic management agents nor human operators
can remotely resolve the problem.

2Including nonces or timestamps in the source route could prevent this
replay attack, but would require NEs share keys with all downstream NEs,
rather than just the MS. We rejected that approach for scalability reasons.

3The problem of surviving arbitrary failures of the NE’s kernel or operating
system is intractable.
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To enable recovery from this type of situation, the MMS
provides a process management API and a packet filtering API.
Using these APIs, a MS can command the MMS to return a
list of the processes running on a NE, kill a particular process,
change a process’ priority, install an IP data plane packet filter,
or reboot the NE. We elaborate on the features of these APIs
in Section III-F1.

Together, these mechanisms allow an operator to remotely
restore liveness to a NE’s command shell via the MMS,
investigate the cause of the problem and reconfigure the NE as
needed to prevent a recurrence of the problem. In the extreme
case an operator can remotely reboot a NE via the MMS.

2) Protecting Against Memory Outages:The MMS is de-
signed to avoid “out of memory” errors by using static rather
than dynamic memory allocation. In this way, as long as
the MMS is successfully loaded at system startup time, it
is unlikely to be impaired by memory allocation problems
caused by misbehaving processes. This design requires the
MMS to limit runtime state. In particular, this led to our
use of source routing in the MMS, assuring that only MSs
need to build the complete network topology, which requires
memory proportional to the network size. The state stored
by each NE scales only with the number of ports on the
NE, which is known at boot time, and with the number of
simultaneously active MSs communicating with the NE. In our
implementation, the soft state maintained by a NE for each MS
takes approximately 500 bytes of memory, so a small static
array can support many simultaneously active MSs.

E. Evolving the MMS after Deployment

Networks are constantly evolving in ways difficult to an-
ticipate. No matter how well the MMS has been designed
and engineered, one cannot rule out the need for updating
the MMS running in the field. Thus, the MMS must provide
a robust means by which the MMS itself can be remotely
managed and evolved.

Our approach to robustly evolving the MMS is to allow
multiple versions of the system to operate over the same
network at the same time. This allows the new version to
be brought up and thoroughly tested before the old version
is removed. Each version of the MMS operates independently
and in parallel. Copies of all MMS frames are delivered to
each version. A MMS frame contains a version number in
the header, and a MMS version skips over frames marked for
other versions.

In our design, management applications can specify which
version of the MMS should carry its traffic through the use of a
socket option. Packets sent by applications that do not specify
a MMS version are handed to every version of the MMS
running on that MS or that NE. Each copy is independently
routed by its respective version of the MMS to the destination.
Management applications therefore need not be aware of the
old and new MMS versions and will continue to receive
service even if the new version turns out to be faulty.

Management applications built on top of TCP will not see
duplicated packets, as they will be discarded by TCP. For non-
TCP applications, we leave it up to the application itself to

ensure that these duplicated packets do not cause a problem.
Robust UDP- and ICMP-based applications already cope with
duplicated packets, and in our experiments, we did not find
duplicated packets to be a problem. We choose this design so
that management applications would work unmodified over
the MMS without additional configuration, and we accept
the performance cost of handling duplicated packets as a
reasonable trade-off.

F. MMS Interfaces for Communication and Recovery

The MMS provides two key APIs: one for remote recovery
to address liveness issues, and another to support existing
network management applications that use TCP/IP protocols
for communication.4

1) MMS API for Remote Recovery:We design the process
management and packet filtering APIs based on the char-
acteristics of common configuration mistakes, attacks, and
management failure scenarios. They strike a balance between
simplicity and the wide range of possible capabilities. These
two APIs make it possible to recover from many situations
where remote NEs are overloaded and unresponsive.

Through the process management API, a MS can command
the MMS to return a list of the processes running on a NE,
kill a particular process, change a process priority, start a
process, or reboot the NE. When the process management
API is invoked on a MS for a NE, a special MMS frame
that carries the parameterized process management command
is sent to the NE and interpreted by the MMS running on
that NE. For example, when the destination NE receives a
kill command with a process id parameter, the MMS kernel
module running on the destination NE iterates through the
kernel process table and sends a kill signal to the intended
process. While extremely simple, in practice these capabilities
are the primitives that operators and IT staff commonly use to
mitigate problems and restore service.

The MMS packet filtering API allows IP data plane packet
filters to be installed directly via the MMS without first
obtaining a shell to run a user space application (in contrast
to iptables [46] invocation, for example). When the packet
filtering API is remotely invoked, a packet filter rule is sent
from a MS to a NE. The MMS on the target NE directly
communicates the rule to the packet filtering kernel module,
for examplenetfilter [46], without competing with any
user space applications for resources.

The security provisions of the MMS ensure these APIs can
only be invoked by a valid MS, and the MS software itself
can validate that the MS operators have the rights to perform
the tasks.

In Section V, we demonstrate the use of these APIs to
restore liveness under resource exhaustion conditions.

4Our MMS prototype provides two additional APIs: (a) domain-name
resolution and dynamic registration, and (b) an overlay service running on
MSs that enables management applications on NEs to communicate with each
other and with external networks. These APIs further enhance the utility of
the MMS.
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Fig. 2. High-level overview of the MMS implementation.

2) MMS API for Communication:There are a large number
of existing network management tools that use the Internet
Protocol for communication, such as SNMP pollers (e.g.,
MRTG, Cricket), remote scripting tools (e.g., rancid, expect),
and PlanetLab administration tools. To maximize backward
compatibility with existing management tools, the MMS pro-
vides a “virtual management LAN” abstraction. Specifically,
when a MS is plugged into a network, the MMS presents
a virtual management LAN that includes the MS and all
authenticated NEs. Each node in the virtual management
LAN is assigned a unique MMS management address. We
intentionally make the management address the same length
(32 bits) as an IPv4 address so that existing management
applications can send messages to and receive messages from
a management address as if using an IP address.

Inside the kernel, the MMS intercepts any packets sent over
the virtual management LAN, encapsulates these packets into
MMS frames, and transports the packets via MMS source
routes.

G. MMS Implementation

Our MMS implementation is a Linux loadable kernel mod-
ule, and it is introduced into the kernel network stack of
the MS and NEs as shown in Figure 2. The MMS traffic is
captured by a trap in the network stack and by-passes layer-
3 IP processing completely. On the MS, traffic sent by a
management application is injected into the MMS; the traffic is
forwarded by the MMS on intermediate NEs, and is delivered
via the MMS to the application running on the receiver NE.

The system consists of 21K lines of C code. Almost 17K
lines of code are from the GNU MultiPrecision (GMP) library
used to support cryptographic mechanisms. With additional
engineering work, we could strip out the many unneeded
functions from the library and reduce the code size.

IV. PERFORMANCEEVALUATION

In this section, we evaluate the delay and throughput
overhead introduced by the secure forwarding mechanisms in
MMS, the convergence speed of MMS routing in response to
failures, and the speed of the recursive authentication mecha-
nism used to authenticate NEs during initial network bootstrap.
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The results show that the MMS has excellent performance, and
it is practical to deploy the system.

Low forwarding overhead - We first measure the end-to-
end delay and throughput overhead introduced by the MMS.

To measure the delay overhead, we connect nodes with
1 Gbps Ethernet links to form a linear chain topology. The
sender and receiver exchange ICMP packets. We vary the hop
count between the sender and receiver and compare round
trip delays for ICMP packets carried by the MMS and by the
regular IP data channel. Figure 3 shows that the round trip
delays increase linearly with hop count, and the latency added
by the MMS is less than 0.1 milliseconds per hop.

We measure the throughput overhead of MMS using a
three-node chain topology, with a MS as the sender, one NE
as the forwarder, and a second NE as the receiver. We use
iperf [47] to measure the TCP throughput between the MS
and the receiver. Using Emulab’s configuration ability, we
vary the bandwidth of the links connecting the three nodes.
Figure 4 shows that the throughput difference between the
MMS and the regular IP data channel becomes noticeable only
after link bandwidth increases to 400 Mbps, and the best TCP
throughput the MMS achieves is 800 Mbps.

Investigating further, the performance degradation is due to
the encryption and decryption operations involved in using
onion-encrypted source routes5. Nevertheless, the overhead

5Our implementation uses the “twofish” cipher with 128-bit keys.
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Fig. 5. Topology of the resiliency experiment. In (a), R1 simultaneously
loses two links, and its initial LSAs to the MS are lost; MS detects failure
of the link to R1 and it informs R1 to re-route through R2; LSA from R1
gets through allowing MS to re-compute and push a new route to R3. In (b),
three links fail at the same time. The MS restores R1’s route, receives LSA
from R1, restores R3’s route, receives LSA from R3, and finally restores R5’s
route.

Time line Event
0 ms R1 detects link failure & sends LSA to MS

via route R1-MS, but LSA is lost
2 ms MS detects the failure of link R1-MS, re-

computes paths, and instructs R1 to use
route R1-R2-MS

500 ms R1 re-sends its LSA using the new route
R1-R2-MS

505 ms MS ACKs R1’s LSA, re-computes paths,
and instructs R3 to use route R3-R4-R2-MS

TABLE I
TIME LINE OF EVENTS TRIGGERED BY CONCURRENT LINK FAILURES IN

FIGURE 5(A).

imposed by the encryption is not large, and the security
assurances made possible by onion-encrypted source routes
outweigh the overhead.

Resilient routing - During network failures, NEs send
LSAs to MSs and MSs re-compute and push out updated
onion-encrypted source routes to NEs. When multiple failures
occur simultaneously, some LSAs might fail to reach the MS.
To address this issue, the MMS requires NEs to keep sending
LSAs until an acknowledgment from the MS is received or the
MS’s soft-state is timed out. To evaluate the MMS’s ability to
maintain working communications in the presence of network
failures, we construct the scenario as shown in Figure 5(a). In
this scenario, two links fail at the same time and the failure
of link R1-R3 cannot be immediately propagated to the MS
as neither end of the failed link has a working route to the
MS. Table I shows a timeline of the steps taken during re-
convergence. The MS first detects the failure of link R1-MS
and commands R1 to re-route using R2. When R1’s LSA
reaches the MS and notifies it of the failure of link R1-R3,
the MS obtains an accurate view of the network and repairs
R3’s route.

In this case, one LSA retransmission is needed to update
the MS with an accurate view of the network. Since the LSA
retransmission timeout is 500 ms, it takes about 500 ms for
the MMS routes to re-converge. We can recursively construct
scenarios where more LSA retransmissions are needed. For

MS

d = 1

d = 2

s(d)

…

…

H

d = D

…
…

Fig. 6. Model for computing secure channels setup time. NEs are grouped
by their hop-count distances from the MS.d stands for the hop-count distance
of a group,H is hop latency,s(d) is the number of NEs in the groupd hops
away from the MS.
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setup times for real topologies (plotted as crosses).

example, two rounds of retransmissions are needed for the
scenario in Figure 5(b) to re-converge. Recall that in Sec-
tion III-C4, we proved that the MMS eventually re-converges
even after multiple failures.

Fast secure-channel setup -When a new MS is brought up,
it first authenticates its direct neighbors and then recursively
authenticates the network as described in Section III-C3. To
estimate how long this process will take in networks of differ-
ent sizes, we first develop a simple model of the authentication
process and validate the model using experimental data. We
then use our model to predict the time required to establish
secure channels in large networks.

Consider Figure 6. Given a network ofn nodes, we divide
the nodes into groups based on their hop-count distance to the
MS. We define the nodes in groupd to be the nodesd hops
away from the MS and the number of nodes in this group
to be s(d). We defineD as the maximumd; H as the hop
latency;Cnode as the time for a node to answer a challenge
from the MS; andCMS is the time for the MS to verify an
answer. In our model, nodes in groupd are challenged after
all nodes in groupd− 1 have been verified, and the time cost
for authenticating nodes in groupd includes the MS sending
challenges to the nodes, the nodes answering the challenges,
and the MS verifying the answers. Let the time when the MS
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is brought up be time 0 andt(d) be the time when nodes in
groupd have been verified, we have

t(d) = t(d− 1) + d×H + Cnode + d×H + s(d)× CMS

Solving for t(D)

t(D) = D × (D + 1)×H + D × Cnode + n× CMS

The importance of this equation is that it highlights that
nodes with the same hop-count distance to the MS can
compute in parallel, resulting in the termD × Cnode and
implying that the time to authenticate will not be significantly
affected even if network elements have slower CPUs than the
MS andCnode >> CMS . As shown in the equation,t(D),
the time the MS finishes authenticating and establishing secure
channels to all nodes, is dominated by the termn×CMS which
grows linearly with the number of network nodes owing to the
fact that the single MS has to verify answers from all nodes.
And t(D) is subjected to an offset bounded by the network
diameter and average round-trip delay.

We conduct experiments to measure MMS channel setup
time using three different types of topologies. The first is
the Abilene backbone topology [48]; the second is an ISP
backbone topology (AS 3967) derived from Rocketfuel [49]
data; the third is a set of production enterprise network
topologies used in [40]. Our measurements show that on the
3 GHz PC acting as the MS,CMS is 27 milliseconds, and on
the 800 MHz PCs serving as NEs,Cnode is 45 milliseconds.
Figure 7 plots the predicted and measured channel setup time
for each topology. As shown, the measured times fit our
analytical result.

According to the equation we deduced and experimentally
validated, a new MS plugged into a network with one thousand
NEs will take only about 30 seconds to build secure channels
to all NEs.

V. CASE STUDIES

To demonstrate the effectiveness of the MMS mechanisms,
we give examples of how the MMS solves concrete problems
that arise in network management. We implement these sce-
narios on Emulab [50] to illustrate these examples.

A. Self-Optimization in Wireless Mesh Networks

Wireless links can be asymmetric and links can have un-
predictable packet loss rate. To show the MMS’s effectiveness
in wireless mesh networks, we experiment with an emulated
network.

Figure 8 shows an emulation of a wireless mesh network
using Emulab. The MS and the NEs run on PCs with a
3GHz CPU, running the Linux 2.6.12 kernel. They are richly
connected to each other to emulate a mesh topology. The
Emulab traffic-shaping nodes are employed to induce 40
percent packet loss between NE-1↔NE-4 and an asymmetric
simplex-link is setup between MS←NE-3.

When the MS and the NEs are first brought up, the MS
detects its immediate neighbor NE-3 and tries to authenticate
it using the asymmetric link but fails. Meanwhile the surround-
ing nodes of NE-3 get authenticated to the MS, and provide
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Fig. 8. An emulated wireless mesh network. The experiment shows MMS
operating over lossy and asymmetric links that are common in wireless mesh
networks.

alternate paths that the MS can use to reach and authenticate
NE-3. Once all the NEs are authenticated, the MS has the full
topology of the network and computes a source-route for NE-
3 that avoids the asymmetric link. It takes 300ms to install a
route on NE-3 that avoids the asymmetric link.

MMS handles lossy links in a similar way. It uses link
quality estimates to detect the links with high packet loss. In
our experiment, the link between NE-1 and NE-4 is induced
with a 40 percent packet loss. When the MS and the NEs
are brought up, the MS may authenticate NE-4 via the lossy
link or through its other neighbors. Meanwhile the NEs use
periodic HELLO messages to track the packet loss between
their neighbors by measuring the time-gap between individual
HELLO messages. Once all the NEs have been authenticated
to the MS, the NEs start reporting the packet loss estimates
to the MS via the LSAs. The MS uses these estimates as link
weights in its network topology. When the MS receives the
LSAs from NE-1 and NE-4, it detects the poor quality of the
NE-1↔NE-4 link and re-computes source routes for NE-4 to
avoid using the lossy link. In the experiment, it takes 500ms
to detect the lossy link and route around it.

B. Recovery from Control and Management Plane Overload

A router’s control and management planes run a variety
of applications: routing daemons, traffic monitors, intrusion
detection/prevention systems, and SNMP agents. Software
bugs, network operation errors and network attacks (e.g.,
DoS, worms) can cause applications to consume excessive
computing resources and can even render a router unreachable
or unable to respond to remote management commands. For
example during the breakout of the Slammer worm [51], many
routers and switches became unresponsive. This was because
the Slammer worm generated an enormous amount of packets
with class D IP multicast addresses, and many routers and
switches processed such multicast packets using their control
plane CPUs [52]. As a result, routers’ CPUs and memories
were overwhelmed, forcing operators to physically visit the
affected devices to install packet filters to block the worm
traffic. This dramatically increased the time required to get
the network back under control.
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In situations where the control and management planes
are threatened by resource starvation, the MMS mitigates the
threat through its packet filtering and process management
APIs.

Using packet filtering API - Typically an operator installs
packet filters by changing router configuration files or issuing
shell commands such asiptables [46]. Ironically, under
situations when the control/management planes are overloaded
due to abnormal traffic and the deployment of packet filters is
most desperately needed, it can be difficult to secure enough
computing resources to change and commit the configuration
or to launch the shell commands. The MMS APIs, however,
provide a solution.

We demonstrate the benefits of the MMS using a real-world
example based onSnort . Snort is an open source network
intrusion detection/prevention system widely used in enterprise
networks. When run in the inline mode, it holds packets in
a user space queue and inspects them to make accept/drop
decisions based on a set of rules. Unfortunately, whenSnort
(run in the inline debug mode) encounters bursty UDP packets,
Snort can consume an excessive amount of resources and
starve other applications6. We conduct an Emulab experiment
to measure the impact of such starvation. We create a network
as shown in Figure 9, where we runSnort version 2.4.3 on
the Victim node with a 600 MHz CPU and the Linux 2.6.12
kernel and we send UDP packets from the Attacker node to
the Victim node at increasing rate. Figure 10 shows the time
it takes tossh login to the Victim from the MS. We can see

6The problem exists on Linux kernels older than version 2.6.14.

that without the MMS,ssh login becomes impossible when
the UDP packet rate is merely above 350 pps becausessh
is starved and times out. In contrast, with the MMS,Snort
barely impactsssh login. This is because the MMS provides
a live communication channel, through which the MMS packet
filtering API can be remotely invoked to block UDP packets,
and then assh login via the MMS channel can be successfully
completed. In such critical situations, the MMS can mean
the difference between maintaining remote manageability or
losing it completely.

Using process management API - Even when there
is no malicious traffic, application software bugs can cause
resource exhaustion. Anecdotally, it is known that certain
bugs in the SNMP agents running on a tier-one provider’s
Alcatel 1630 switches had caused severe CPU overload on
the switches when they received bursty SNMP queries. The
problem persisted for minutes and the switches eventually
shutdown. The consequence was that thousands of customers
lost their local telephone services for half an hour and the
provider had to report the incident to the Federal Communi-
cations Commission.

We conduct an experiment to emulate the scenario in the
above example. We use the same network topology as in
the previous experiment (Figure 9). We inject a bug into a
SNMP agent (snmpd) so that it enters an infinite loop when
it receives a certain SNMP query. We run this buggy SNMP
agent with a high priority on the Victim node. When the SNMP
bug is triggered, we find thatssh login to the PC from the
MS becomes impossible because it times out.

The MMS process management API solves this problem.
Through the live MMS communication channel, the MMS
process management API can be remotely invoked to lower the
priority of the mis-behavingsnmpd process, and assh login
can then be completed normally within one second. Again,
in this situation, the MMS can mean the difference between
maintaining remote manageability or losing it completely.

VI. CONCLUSIONS

Robust autonomic network management starts with robust
support for management plane communications. We have
argued for an autonomic network-layer foundation for manage-
ment plane communications. Through designing, implement-
ing and experimenting with the MMS, we have demonstrated
the feasibility of such an autonomic network-layer foundation.
We find that the strong security features in our fully functional
implementation do not significantly hurt performance, even
when run on commodity hardware. The latency and throughput
performance will meet the requirements of many demand-
ing management applications. We have also realized that in
practice, a management communication subsystem can be
under threats of compute and memory resource starvation. The
MMS includes special recovery APIs that can be extremely
useful in practice. The MMS software is freely available at
http://100x100.jot.com/mms , and it readily supports
higher-layer autonomic management systems.
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