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Vertex-Based Diffusion for
3-D Mesh Denoising

Ying Zhang and A. Ben Hamza

Abstract—We present a vertex-based diffusion for 3-D mesh de-
noising by solving a nonlinear discrete partial differential equation.
The core idea behind our proposed technique is to use geometric in-
sight in helping construct an efficient and fast 3-D mesh smoothing
strategy to fully preserve the geometric structure of the data. Illus-
trating experimental results demonstrate a much improved per-
formance of the proposed approach in comparison with existing
methods currently used in 3-D mesh smoothing.

Index Terms—3-D mesh smoothing, partial differential equa-
tions.

I. INTRODUCTION

THE great challenge in image processing and computer
graphics is to devise computationally efficient and optimal

algorithms for recovering images and 3-D models contaminated
by noise and preserving their geometrical structure. With the
increasing use of scanners to create 3-D models, which are
usually represented as triangle meshes in computer graphics
and geometric-aided design, there is a rising need for robust and
efficient 3-D mesh denoising techniques to remove undesirable
noise from the data.

In recent years, various partial differential equations (PDE)-
based methods have been proposed to tackle the problem of
2-D image denoising with a good preservation of features
[1]–[10]. Much of the appeal of PDE-based methods lies in the
availability of a vast arsenal of mathematical tools which, at the
very least, act as a key guide in achieving numerical accuracy,
as well as stability. Partial differential equations or gradient
descent flows are generally a result of variational problems
[11]. The 3-D mesh denoising problem, however, has received
much less attention [12]–[16]. The most commonly used mesh
smoothing method is Laplacian flow, which repeatedly and
simultaneously adjusts the location of each mesh vertex to the
geometric center of its neighboring vertices [12]. Although
the Laplacian smoothing flow is simple and fast, it produces,
however, the shrinking effect and an oversmoothing result.
The most recent mesh denoising techniques include the mean,
median, and bilateral filters [17]–[19], which are all adopted

Manuscript received June 15, 2006; revised November 8, 2006. This work
was supported in part by Natural Sciences and Engineering Research Council of
Canada under Discovery Grant N00929. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Philippe
Salembier.

The authors are with the Concordia Institute for Information Systems Engi-
neering Concordia University, Montréal, QC H3G 1M8 Canada.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2007.891787

from image processing literature. Also, a number of anisotropic
diffusion methods for triangle meshes and implicit surfaces
have been proposed recently. Desbrun et al. [20], [21] introduce
a weighted Laplacian smoothing technique by choosing new
edge weights based on curvature flow operators. This denoising
method avoids the undesirable edge equalization from Lapla-
cian flow and helps to preserve curvature for constant curvature
areas. However, recomputing new edge weights after each iter-
ation results in more expensive computational cost. Clarenz et
al. [22] propose a multiscale surface smoothing method based
on the anisotropic curvature evolution problem. By discretizing
nonlinear partial differential equations, this method aims to
detect and preserve sharp edges by two user defined parameters
which are a regularization parameter for filtering out high
frequency noisy and a threshold for edge detection. This multi-
scale method was also extended to the texture mapped surfaces
[23] in order to enhance edge type features of the texture
maps. Different regularization parameters and edge detection
threshold values, however, need to be defined by users onto
noisy surfaces and textures respectively before the smoothing
process. Bajaj et al. [24] present a unified anisotropic diffusion
for 3-D mesh smoothing by treating discrete surface data
as a discretized version of a 2-D Riemannian manifold and
establishing a PDE diffusion model for such a manifold. This
method helps enhancing sharp features while filtering out noise
by considering three-ring neighbors of each vertex to achieve
nonlinear approach of smoothing process. Tasdizen et al.
[25], [26] introduce a two-step surface smoothing method
by solving a set of coupled second-order PDEs on level set
surface models. Instead of filtering the positions of points on
a mesh, this method operates on the normal map of a surface
and manipulates the surface to fit the processed normals. All
the surfaces normals are processed by solving second-order
equations using implicit surfaces. In [27], Hildebrandt et al.
present a mesh smoothing method by using a prescribed mean
curvature flow for simplicial surfaces. This method develops an
improved anisotropic diffusion algorithm by defining a discrete
shape operator and principal curvatures of simplicial surfaces.

Motivated by the outperformance, in tackling the 2-D image
denoising problem, of Laplacian smoothing by anisotropic dif-
fusion [1], [2], [5], we propose in this paper a vertex-based non-
linear flow for 3-D mesh smoothing by solving a discrete partial
differential equation [28]. The core idea behind our proposed
technique is to use geometric insight in helping construct an ef-
ficient and fast 3-D mesh smoothing strategy to fully preserve
the geometric structure of the data.

The rest of this paper is organized as follows. In the next sec-
tion, we briefly recall some basic concepts of 3-D mesh data,
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Fig. 1. (a) Vertex neighborhood vvv ; (b) triangle neighborhood ttt .

and we introduce the vertex differential operators, then a gen-
eral formulation of 3-D mesh smoothing problem is stated. In
Section III, we briefly review some recent 3-D mesh denoising
techniques that are closely related to our proposed approach.
In Section IV, a vertex-based nonlinear diffusion for 3-D mesh
smoothing is introduced. In Section V, we provide experimental
results to demonstrate a much improved performance of the pro-
posed method in 3-D mesh smoothing. Finally, some conclu-
sions are included in Section VI.

II. PROBLEM FORMULATION

In computer graphics and geometric-aided design, 3-D ob-
jects are usually represented as polygonal or triangle meshes.
A triangle mesh is a triple , where

is the set of vertices, is the set of
edges with cardinality , and is the set of
triangles. Each edge connects a pair of vertices

. Two distinct vertices are adjacent (written
) if they are connected by an edge . The neigh-

borhood (also referred to as a ring) of a vertex is the set
. The degree of a vertex is simply

the cardinality of . We denote by the set of triangles of
the ring , and by the set of all triangles sharing a vertex
or an edge with a triangle of a mesh .
Fig. 1(a) depicts an example of a neighborhood , where the
degree of the vertex is , and the number of triangles of
the set is also equal to 6. An illustration of is provided
in Fig. 1(b).

Given a triangle , we denote by and the
area and the unit normal of , respectively. The normal at a
vertex is obtained by averaging the normals of its neighboring
triangles and is given by

(1)

The mean edge length of the mesh is given by

(2)

where if , and otherwise.

A. Laplacian Matrix of a Triangle Mesh

The Laplacian matrix of a triangle mesh is
given by , where is the adjacency matrix
between the vertices, that is and if ,

Fig. 2. (a) Three-dimensional triangle mesh and (b) its Laplacian matrix.

and is an diagonal matrix whose entry is [29].
The normalized Laplacian matrix is given by [29]

and may be viewed as an operator defined on the space of func-
tions as follows:

Fig. 2 illustrates an example of a 3-D triangle mesh and its
Laplacian matrix.

B. Vertex Differential Operators

Given a triangle mesh , we define the vertex
gradient operator as

We also define the vertex Laplace operator as

where is the divergence operator. Note the analogy be-
tween the vertex Laplace operator and the normalized Laplacian
matrix defined as an operator.

C. Mesh Smoothing Model

In all real applications, measurements are perturbed by noise.
In the course of acquiring, transmitting, or processing a 3-D
model for example, the noise-induced degradation often yields
a resulting vertex observation model, and the most commonly
used is the additive one

(3)

where the observed vertex includes the original vertex , and
the random noise process which is usually assumed to be
Gaussian with zero mean and standard deviation .

Mesh smoothing refers to the process of recovering a 3-D
model contaminated by noise. The challenge of the problem of
interest lies in recovering the vertex from the observed vertex
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Fig. 3. Illustration of the mesh mean filter algorithm.

, and furthering the estimation by making use of any prior
knowledge/assumptions about the noise process .

The PDE-based smoothing approach is commonly formu-
lated in a continuous domain which enjoys a large arsenal of
analytical tools and, hence, offers a greater flexibility. Lapla-
cian smoothing is the most commonly used mesh smoothing
method which repeatedly and simultaneously adjusts the loca-
tion of each mesh vertex to the geometric center of its neigh-
boring vertices using the following update rule

(4)

It is worth pointing out that the Laplacian flow given by (4) is
the discrete form of the isotropic heat equation applied
to each vertex of the triangle mesh, where we assume that all
vertices have the same degree.

Although the Laplacian smoothing flow is simple and
fast, it tends, however, to produce a shrinking effect and an
oversmoothing result. Motivated the good performance of
anisotropic diffusion, we propose in Section IV a vertex-based
flow defined by a nonlinear partial differential equation.

III. RELATED WORK

In this section, we will review some representative methods
for 3-D mesh smoothing that are closely related to our proposed
approach, and we briefly show their mathematical foundations
and algorithmic methodologies as well as their limitations.

A. Mean Filter for Averaging Face Normals

The mean filter procedure is depicted in Fig. 3 and is applied
in three successive steps [17].

Step 1) Compute the area weighted average face normal
for each mesh triangle

(5)

Step 2) Normalize the averaged normal

Fig. 4. Illustration of the mesh median filter algorithm.

Step 3) Update each vertex in the mesh as follows:

where , and is the
vector from vertex to the centroid of the triangle . Note
that by definition of the inner product, the vector is the
projection of the vector onto the direction of the normal .

B. Angle Median Filtering for Face Normals

For each triangle , denote by
the set of angles be-

tween and , where is the normal of and
is the normal of . As illustrated in Fig. 4, instead of

computing the average face normal in Step 1) of the mean filter,
in the angle median filtering method [17], we first compute the
median angle where is
the triangle where the median angle is achieved, and then we
replace the weighted average normal by .

The mean and median filtering methods show better perfor-
mance than the Laplacian flow. These two methods, however,
require a large number of iterations to reach stable results.

C. Weighted Laplacian Filter

Instead of using unit edge costs, the weighted Laplacian
smoothing method [20] chooses edge weights based on the
approximation to the curvature normal. The edge weights
are given by , where and are the
angles and depicted in Fig. 5. Then, the
update rule of the weighted Laplacian smoothing procedure is
given by

(6)

The improved edge weights are used to compensate for the ir-
regularities of the triangle mesh and to help avoid the edge
equalization.
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Fig. 5. Illustration of the angles � and � .

D. Anisotropic Geometric Diffusion

Motivated by the good performance of anisotropic diffusion
in image processing, Clarenz et al. [22] proposed an anisotropic
geometric diffusion for 3-D mesh processing using a diffusion
tensor defined from the principal directions and principal cur-
vatures of the deformed surface. The performance of the geo-
metric diffusion is, however, heavily dependent of two user-de-
fined parameters, and also sensitive to the estimation of higher
order derivatives.

E. Bilateral Mesh Denoising

Similar to the mean and angle median filters, the bilateral 3-D
mesh denoising method [18] was also adopted from the bilateral
filtering technique used in image denoising. This algorithm fil-
ters each vertex of the mesh in the normal direction using
local neighborhoods according the following update rule:

where is the vertex normal, is the standard Gaussian
filter with parameter , and is
feature-preserving weight function
with parameter . Bilateral mesh denoising algorithm is pa-
rameter-dependent and requires the user to assign the two pa-
rameters and interactively. The lack of object information,
however, might affect the smoothing result.

IV. PROPOSED METHOD

The proposed vertex-based method for 3-D mesh smoothing
is motivated by the good performance of anisotropic diffusion
in 2-D image denoising, and it is defined by the following non-
linear vertex-based partial differential equation:

(7)

where is Cauchy weight function (see Fig. 6) given by

(8)

and is a constant tuning parameter that needs to be estimated.
Intuitively, the smoothing effect of the proposed flow may be

explained as follows: in flat regions of a 3-D mesh where the
vertex gradient magnitudes are relatively small, (7) is reduced to
the heat equation which tends to smooth more but the smoothing
effect is unnoticeable. And around the sharp features of the 3-D
mesh where the vertex gradient magnitudes are large, the diffu-
sion flow given by (7) tends to smooth less and, hence, leads to

Fig. 6. Cauchy weight function with c = 2:3849.

Fig. 7. Illustration of two neighboring rings.

a much better preservation of the mesh geometric structures. It
can be shown (see [31]) that the 95% asymptotic efficiency on
the standard Gaussian distribution is obtained with the tuning
constant . This tuning value is used in all the exper-
imental results of Section V.

In discrete form, it is easy to show that the proposed vertex-
based flow is reduced to the following update rule:

(9)
where the gradient magnitudes are given by

(10)

and

(11)

Note that the update rule of the proposed method requires the
use of two neighboring rings as depicted in Fig. 7.

V. EXPERIMENTAL RESULTS

This section presents simulation results where the mean
filtering [17], angle median filtering [17], weighted Laplacian
[20], [21], geometric diffusion [22], bilateral filtering [18], and
the proposed method are applied to noisy 3-D models obtained
by adding Gaussian noise to the original three models shown
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Fig. 8. Graphical user Interface for 3-D mesh denoising.

Fig. 9. Original 3-D models used for experimentation: (a) cow, (b) foot bones,
(c) rocker arm, and (d) moai statue.

Fig. 10. Three-dimensional mesh smoothing results. (a) Noisy 3-D cow model
with 92 864 triangles, (b) smoothed by weighted Laplacian flow, (c) smoothed
by mean filtering, (d) smoothed by angle median filtering, (e) smoothed by the
geometric diffusion, (f) smoothed by bilateral mesh flow, and (g) smoothed by
the proposed approach. The number of iteration times is 18 for each case.

in Fig. 9(a)–(c) (courtesy Stanford University, Avalon, and
Cyberware). The standard deviation of the noise was set to 2%
of the mean edge length, that is , where is given by
(2). We also test the performance of these denoising techniques

Fig. 11. Three-dimensional mesh smoothing results after zooming on the head
of the 3-D cow model. (a) Smoothed by the geometric diffusion, (b) smoothed
by bilateral mesh flow, (c) smoothed by the proposed approach. (d) Original
model.

Fig. 12. Three-dimensional mesh smoothing results. (a) Noisy 3-D rocker
arm model with 80,354 triangles, (b) smoothed by weighted Laplacian flow,
(c) smoothed by mean filtering, (d) smoothed by angle median filtering,
(e) smoothed by the geometric diffusion, (f) smoothed by bilateral mesh flow,
and (g) smoothed by the proposed approach. The number of iteration times is
12 for each case.

on an original noisy laser-scanned 3-D model (moai statue)
shown in Fig. 9(d) (courtesy Max-Planck Institute).

A. Qualitative Evaluation of the Proposed Method

For ease of visualization, we designed a user-friendly Graph-
ical User Interface (GUI) to test the performance of the pro-
posed technique with different 3-D models, and to also per-
form a comparison with the most prevalent methods used in 3-D
mesh smoothing. Fig. 10(a) depicts a noisy 3-D cow model, and
Fig. 10(b)–(g) shows the denoising results using the weighted
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Fig. 13. Three-dimensional mesh smoothing results after zooming on the head
of the 3-D rockerarm model. (a) Smoothed by geometric diffusion, (b) smoothed
by bilateral mesh flow, and (c) smoothed by the proposed approach. (d) Original
model.

Laplacian flow, mean filtering, angle median filtering, geometric
diffusion with parameters , and ,
bilateral filtering, and the proposed method, respectively. These
results clearly show that our method outperforms all the mesh
filtering techniques used for comparison. Moreover, the pro-
posed method is simple and easy to implement. One main ad-
vantage of the proposed algorithm is that it requires only few
iterations to smooth out the noise, whereas the geometric dif-
fusion, the mean and the angle median filters require substan-
tial computational time. On the other hand, the bilateral filtering
technique is also computationally fast, but has a poor smoothing
performance in comparison with the proposed method as illus-
trated in Fig. 11, where we use the zoom tool to enlarge the view
of the 3-D cow model’s head in order to clearly show the better
performance of our proposed algorithm. In particular, the geo-
metric structures and the fine details around the eye and the ear
of the 3-D cow model are very well preserved by our method.
Note that the bilateral filter produces pointy horns, whereas the
proposed method preserves the structure of the original horns
pretty well. Also, note that the geometric diffusion produces
slightly better results that the weighted Laplacian method, but
also tends to smooth out some geometric features. More exper-
imental results showing the better performance of the proposed
algorithm are presented in Figs. 12–15.

In all the experiments, we observe that the proposed tech-
nique is able to suppress noise while preserving important geo-
metric structure of the 3-D models in a very fast and efficient
way. This better performance is in fact consistent with a large
number of 3-D models used for experimentation.

B. Quantitative Evaluation of the Proposed Method

Let and be the original model
and the smoothing result model with vertices and

, edges and , and trian-
gles and respectively. To quantify

Fig. 14. Three-dimensional mesh smoothing results. (a) Noisy 3-D foot
bones model with 4 204 triangles, (b) smoothed by weighted Laplacian flow,
(c) smoothed by mean filtering, (d) smoothed by angle median filtering,
(e) smoothed by the geometric diffusion, (f) smoothed by bilateral mesh flow,
and (g) smoothed by the proposed approach. The number of iteration times is
3 for each case.

the better performance of the proposed approach in comparison
with the mean, angle median, weighted Laplacian, geometric
diffusion, and bilateral filters, we computed the vertex-posi-
tion and the face-normal error metrics [17].
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Fig. 15. Three-dimensional mesh smoothing results. (a) Noisy 3-D moai
statue model with 19 985 triangles, (b) smoothed by weighted Laplacian
flow, (c) smoothed by mean filtering, (d) smoothed by angle median filtering,
(e) smoothed by the geometric diffusion, (f) smoothed by bilateral mesh flow,
and (g) smoothed by the proposed approach. The number of iteration times is
5 for each case.

Fig. 16. Visual errors for the 3-D cow model.

The vertex-position error metric [17] is given by

where , , and

is the distance between and a triangle of closest
to .

The face-normal error metric [17] is given by

Fig. 17. Visual errors for the 3-D rocker arm model.

Fig. 18. Visual errors for the 3-D foot bones model.

Fig. 19. Visual errors for the 3-D moai statue model.

where and are the unit normals of and respec-
tively, and is the area of .

We also computed a visual error metric [30] given by

(12)
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Fig. 20. L vertex-position errors for the 3-D cow model.

Fig. 21. L vertex-position errors for the 3-D rocker arm model.

Fig. 22. L vertex-position errors for the 3-D foot bones model.

where is the geometric Laplacian operator defined as

Fig. 23. L vertex-position errors for the 3-D moai statue model.

Fig. 24. L face-normal errors for the 3-D cow model.

Fig. 25. L face-normal errors for the 3-D rocker arm model.

The values of visual error metric for all the experiments are
depicted in Figs. 16–27, which clearly show that the proposed
method gives the best results indicating the consistency with the
subjective comparison.
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Fig. 26. L face-normal errors for the 3-D foot bones model.

Fig. 27. L face-normal errors for the 3-D moai statue model.

VI. CONCLUSION

In this paper, we introduced a vertex-based anisotropic dif-
fusion for 3-D mesh denoising by solving a nonlinear discrete
partial differential equation. The core idea behind our proposed
technique is to use geometric insight in helping construct an ef-
ficient and fast 3-D mesh smoothing strategy to fully preserve
the geometric structure of the 3-D mesh data. The experimental
results clearly showed a much improved performance of the pro-
posed approach in comparison with the current methods used in
3-D mesh smoothing. For future work, we plan to incorporate
the curvature information, as well as additional regularization
terms into the proposed model.
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