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Abstract

Verrall (1996) and England & Verrall (2001) first considered the use of smoothing
methods in the context of claims reserving. They applied two smoothing procedures
in a likelihood-based way, namely the locally weighted regression smoother (‘loess’)
and the cubic smoothing spline smoother. Using the statistical methodology of
semiparametric regression and its connection with mixed models (see e.g. Ruppert
et al., 2003), this paper revisits smoothing models for loss reserving and credibil-
ity. Apart from the flexibility inherent to all semiparametric methods, advantages
of the semiparametric approach developed here are threefold. Firstly, a Bayesian
implementation of these smoothing models is relatively straightforward and allows
simulation from the full predictive distribution of quantities of interest. Since the
main interest of actuaries lies in prediction, this is a major advantage. Secondly,
because the constructed models have an interpretation as (generalized) linear mixed
models ((G)LMMs), standard statistical theory and software for (G)LMMs can be
used. Thirdly, more complicated data sets, dealing for example with quarterly de-
velopment in a reserving context, heavy-tails, semicontinuous data, or extensive
longitudinal data, can be modelled within this framework. Throughout this article,
data examples illustrate these different aspects. Several comments are included re-
garding model specification, estimation and selection.
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1 Introduction

Claims originating in a particular year often can not be finalized in the same year. Many

causes for delay of the payment process are possible, for example long-lasting juridical

procedures are the rule with liability insurance. For these claims, provisions will be held

to meet future obligations of the insurer towards its policy holders.

A broad literature is available concerning deterministic and stochastic models used

for loss reserving. We refer to England & Verrall (2002) for an overview. The methods

discussed by these authors are framed within the context of a run-off triangle like the one

in Table 1. Its design is typical for a claims reserving problem.

Arrival Development Year

Year 1 2 . . . j . . . n− 1 n

1 Y11 Y12 . . . Y1j . . . Y1,n−1 Y1n

2 Y21 Y22 . . . Y2j . . . Y2,n−1

... . . . . . . . . . . . . . . .

i Yi1 . . . . . . Yij

... . . . . . . . . .

n Yn1

Table 1: Random variables in a run-off triangle.

The random variable Yij (for i, j = 1, . . . , n) denotes the claim figure for year of

origin (arrival or incurral year) i and development year j. It represents for instance

claim counts, incremental or cumulative payments or loss ratios, aggregated per (i, j)

combination. Random variables on the (i, j) diagonal correspond with payments made

in the same calendar year, namely calendar year i + j − 1. The purpose of loss reserving

techniques is to complete this run-off triangle to a square or a rectangle. To achieve this,

stochastic reserving techniques will be used. Current state-of-the-art models are loglinear

location-scale (Doray, 1994), lognormal or generalized linear models with the mean or

predictor for Yij (say, ηij, for i, j = 1, . . . , n) specified in a parametric way. Well-known

and widely used specifications are

ηij = αi + βj (‘chain-ladder’); (1)

ηij = αi +

j−1∑

k=1

βk +

i+j−2∑
t=1

γt (‘probabilistic trend family’); (2)

ηij = αi + βi log (j) + γij (‘Hoerl curve’). (3)

Continuing the earlier work by Verrall (1996) and England & Verrall (2001), the first

part of this paper revisits the use of semiparametric regression models in a claims reserving
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exercise. In a semiparametric regression model, parametric as well as nonparametric

functional relationships are allowed, where the latter have the advantage that they are

able to model flexible relationships between a response and a covariate.

In the specific context of claims reserving, we explore the use of semiparametric mod-

els to capture the main trends in the data in the direction of arrival, development and

calendar years (abbreviated in the sequel with ‘AY’, ‘DY’ and ‘CY’). A widely used al-

ternative is the specification of appropriate categorical variables to model such trends.

However, the specification of the linear predictor in a lognormal or a generalized linear

model often turns out to be a very difficult and time-consuming exercise, see for instance

the discussion in Kaas et al. (2001, Chapter 9) or the quest for an appropriate trend model

(structure (2)) (De Vylder & Goovaerts, 1979). The intention of this paper is to reduce

the amount of work involved in the specification of the predictor by relying on semipara-

metric regression models. The benefits of a semiparametric approach in reserving become

even more obvious when more extensive data are considered, such as the ‘triangles’ with

quarterly development described in Example 1.1.3.

In the above mentioned papers by P. England and R. Verrall, cubic smoothing splines

and locally weighted regression smoothers (‘loess’) were applied in a frequentist way, using

the gam() function in SPlus 1. The semiparametric models in this paper are implemented

via the concept of penalized regression splines (also called P-splines or pseudo-splines) and

their connection with mixed models (as discussed for example in Ruppert et al., 2003).

This (generalized) linear mixed model formulation of the smoothers opens many doors.

Not only can we rely on software for GLMMs (like Proc Mixed and Proc Glimmix in SAS
2), also a Bayesian implementation of the models and, consequently, simulation from the

predictive distribution of quantities of interest is relatively straightforward. In this way,

we extend the work of England and Verrall to include predictive distributions.

The merits of Bayesian actuarial statistics have been discussed by many authors (see

e.g. Verrall, 2005, page 149, for a recent opinion). Also in the statistical literature on

semiparametric regression, ‘going Bayesian’ is becoming very popular (see for instance

Ruppert et al., 2003, page xiv). In the specific problems discussed in this contribution,

the use of Bayesian statistics and MCMC simulations allows us to obtain the predictive

distribution of the reserves (in claims reserving) or future payments (in credibility). For

the situation of claims reserving, this enables us to deal with more sophisticated statistical

models, which for example include a stochastic discounting process (see Section 3.1.2),

combine data on paid losses and claim counts (see Section 3.2), or model semicontinuous

data consisting of exact zeros and strictly positive payments (see Section 3.4). In the

likelihood-based approach in England and Verrall (2001), only a ‘standard’ run-off triangle

could be considered. Moreover, using P-splines and their Bayesian implementation, it

1SPlus is a commercial statistical software package; see http://www.insightful.com
2SAS is a commercial software package; see http://www.sas.com
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is illustrated in Section 3.3 how semiparametric Burr reserving models (and loglinear

location-scale models) can be constructed. This extends the parametric approach in

Doray (1994) and Beirlant et al. (1998).

Using penalized splines and their connection with mixed models, longitudinal and

cross-sectional data can be modelled semiparametrically in the same framework. From an

actuarial point of view, this feature is very appealing since it offers a natural machinery

to deal with both claims reserving and credibility problems. A quote taken from the

discussion of the seminal paper by England & Verrall (2002, page 529) puts further light

on this issue: “If you look within the general insurance part of the actuarial profession,

there is a body of thinking that has grown up around premium rating and a body of thinking

that has grown up around reserving. Are we getting ‘over-siloed’?” Indeed, extensive data

sets from reserving problems, where for instance data on individual claims – instead of

data aggregated in cells as in Table 1 – with quarterly development could be available,

can be modelled by combining the ideas from Example 1.1.3 and Example 1.1.5.

The rest of the paper is organized as follows. In Section 1.1, the data are introduced

that will be analyzed later on. Section 2 provides background on smoothing using penal-

ized regression splines and the mixed model connection. An analysis of the presented data

sets is given in Section 3 and Section 4 concludes. The reader should be familiar with

basic concepts of (generalized) linear (mixed) models ((G)L(M)Ms). McCulloch & Searle

(2001) offer a general overview and Antonio & Beirlant (2005) discuss applications of

GLMMs in actuarial statistics. Ruppert et al. (2003) provide more details on smoothing

with mixed models.

1.1 Description of the data sets

1.1.1 Aggregate data on claim intensities

In Table 2 a data set previously analyzed in England & Verrall (2001) is shown. It contains

aggregate data on claim intensities, given as a classical run-off triangle with paid losses.

Reserves obtained with the deterministic chain-ladder technique, as well as the chain-

ladder development factors, are given in Table 2 as benchmark results. For actuaries, the

chain-ladder is a simple, yet widely used, technique to construct reserve estimates. Its

development factors are calculated in the following way (for the case that Yij represents

incremental payments)

λ̂j =

∑n−j+1
i=1 Dij∑n−j+1

i=1 Di,j−1

,

where Dij =

j∑

k=1

Yik (the ‘cumulative claims’), (4)
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and the predictions for future values of the cumulative claims are then obtained via

D̂i,n−i+2 = Di,n−i+1λ̂n−i+2,

D̂i,k = D̂i,k−1λ̂k, k = n− i + 3, . . . , n. (5)

The reserves in the last column of Table 2 are from the smooth over-dispersed Poisson

model in England & Verrall (2001). They will also serve as benchmark results. Hereby

the additive predictor consists of a smooth function of the logarithm of the development

years, together with a parameter for each accident year. Calculations were done with the

SPlus function gam().

Claim Payments Reserves Reserves

Ch. Ladd. Smooth o-P

45,630 23,350 2,924 1,798 2,007 1,204 1,298 563 777 621 0 0

53,025 26,466 2,829 1,748 732 1,424 399 537 340 683 622

67,318 42,333 1,854 3,178 3,045 3,281 2,909 2,613 1,846 1,998

93,489 37,473 7,431 6,648 4,207 5,762 1,890 4,336 4,470

80,517 33,061 6,863 4,328 4,003 2,350 5,616 5,940

68,690 33,931 5,645 6,178 3,479 8,151 8,106

63,091 32,198 8,938 6,879 10,841 11,106

64,430 32,491 8,414 15,102 15,112

68,548 35,366 21,587 21,293

76,013 60,828 60,377

Dev. Fact. 1.491 1.052 1.042 1.027 1.025 1.015 1.013 1.007 1.008

Table 2: Run-off triangle with claim intensities, taken from England & Verrall (2001).

The last two columns in the table display the reserves obtained with the deterministic

chain-ladder (‘Ch. Ladd.’) and a smooth over-dispersed Poisson model (‘Smooth o-P’),

respectively.

In Section 3.1, the data in Table 2 will be analyzed by fitting a generalized additive

model (GAM), using penalized regression splines and their connection with mixed models.

Categorical variables in the direction of arrival years and smoothing over the development

years will be used. We will also consider the modelling of trends in the direction of cal-

endar years, together with a Bayesian implementation of the constructed semiparametric

regression model. Recall that the approach in England & Verrall (2001) did not include

predictive distributions and relied on heavy analytical calculations to obtain prediction er-

ror estimates. The inclusion of a stochastic discounting process in this statistical model is

illustrated in Section 3.1.2, an easy to obtain by-product of the Bayesian implementation.

1.1.2 Aggregate data on claim intensities and claim counts

With this example we want to illustrate how information on claim counts and claim

amounts can be combined in a semiparametric regression model. Using a Bayesian imple-

mentation of the smoothers used in this article, the data considered in de Alba (2002) are
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reanalyzed. Ntzoufras and Dellaportas (2002) discuss a similar problem in a parametric

way. The data are displayed in Table 3 and 4 and illustrated in Figure 1. A generalized

additive model will be constructed that combines data on claim numbers and claim in-

tensities. We illustrate that, by using Bayesian statistics, simulation from the predictive

distributions in this more complicated model is possible without many additional efforts.

Claim Payments Reserves

Ch. Ladd.

357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948 0

352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046 94,634

290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405 469,511

310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286 709,638

443,160 693,190 991,983 769,488 504,851 470,639 984,889

396,132 937,085 847,498 805,037 705,960 1,419,460

440,832 847,631 1,131,398 1,063,296 2,177,641

359,480 1,061,648 1,443,370 3,920,301

376,686 986,608 4,278,972

344,014 4,625,811

Dev. Fact. 3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

Table 3: Run-off triangle with claim intensities, taken from de Alba (2002). The last

column in the table contains the reserves obtained with the deterministic chain-ladder

(‘Ch. Ladd.’).

Claim Numbers Reserves

Ch. Ladd.

40 124 157 93 141 22 14 10 3 2 0

37 186 130 239 61 26 23 6 6 2

35 158 243 153 48 26 14 5 7

41 155 218 100 67 17 6 13

30 187 166 120 55 13 25

33 121 204 87 37 39

32 115 146 103 89

43 111 83 155

17 92 239

22 333

Dev. Fact. 5.055 1.930 1.350 1.134 1.035 1.023 1.011 1.007 1.003

Table 4: Run-off triangle with claim numbers, taken from de Alba (2002). The last

column in the table contains the reserves obtained with the deterministic chain-ladder

(‘Ch. Ladd.’).

1.1.3 Incremental claims with quarterly development

The benefits of smoothing techniques become more obvious when extensive run-off tri-

angles are considered. Assume that the development of aggregate data is followed per
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Figure 1: Scatter plots of log-transformed data versus development year (DY); data from

Table 3 (left) and Table 4 (right).

quarter, instead of per year. Thus, the Yij, with i = 1, . . . , nyears and j = 1, . . . , nquarters,

denote claim figures corresponding to arrival year i and development quarter j. To illus-

trate this, first, a real data set with quarterly development from an insurance company

is considered. For reasons of confidentiality, the run-off data can not be displayed. A

histogram is shown in Figure 2 (right), together with a plot of the claim payments versus

their development quarter (left).

Quarterly Data, Real Data Set
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Figure 2: (Left) Trend in the direction of development quarter. (Right) Histogram of

claim payments, quarterly real data from an insurance company.

Secondly, a similar extended triangle is simulated from a Burr distribution where

Yij ∼ Burr(βij, λ, τ)

βij = exp (τµij), i = 1, . . . , nyears, j = 1, . . . , nquarters, (6)

(λ = 1, τ = 3, for our simulated data). Recall that the Burr distribution is heavy-tailed,

with extreme value index 1
λτ

> 0 (see Beirlant et al., 2004). The development pattern

constructed for this example is illustrated in Figure 3 (left). A histogram of the simulated

data is in Figure 3 (right).
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The above examples illustrate two important issues. On the one hand, specifying one of

the state-of-the-art predictor structures (like those in (1)-(3)) and reducing the number of

parameters through hypothesis testing will become a cumbersome job for these extensive

data. Smoothing techniques then provide an elegant alternative. On the other hand,

through our Bayesian approach, we are not restricted to the class of generalized linear

models, but can deal for instance with heavy-tailed semiparametric regression models

(as in (6)). The loglinear location-scale regression models from Doray (1994) constitute

another class for which a Bayeisan semiparametric approach could be considered, using

the approach discussed in this article.

Burr Data, Quarterly Development
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Figure 3: (Left) Scatter plot of µij versus development quarter. (Right) Histogram of data

simulated from a Burr model.

1.1.4 A two-part semiparametric model for semicontinuous data

The run-off triangle in Table 5 consists of strictly positive payments and exact zeros.

The modelling of such semicontinuous 3 data (with a hump at zero) requires specific

attention. A two-part generalized additive mixed model is presented for these data.

Hereby, a regression model with semiparametric predictor is fitted to the binary data

set which represents the occurrence of a payment. Given that a payment has occurred, its

severity is modelled again with a GAM, but now in a different distributional framework

(for example lognormal or gamma). Using a Bayesian analysis, the predictive distribution

of the different reserves is obtained in this two-part model. Again, when more extensive

data become available (which often goes together with more zeros), the use of smoothing

techniques is an obvious alternative for the (awkward) specification of categorical variables

(for both the binary and the positive part of the data).

3‘A semicontinuous random variable combines a continuous distribution with point masses at one or
more locations.’ (Olsen & Schafer, 2001, page 730)
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Claim Payments Reserves

Ch. Ladd.

2,216 744 10 5 0 0 0 0 0 0 0 0 0 0

2,713 0 75 3 4 0 0 0 0 0 0 0 0

2,383 874 0 89 37 7 8 19 6 0 0 0

3,173 0 136 15 0 27 13 33 21 1 0

3,079 1,898 137 66 0 3 6 0 0 0.41

14,286 2,898 0 202 75 58 0 0 28

8,379 3,890 440 95 31 7 8 40

9,401 0 336 188 164 127 39

11,197 5,452 398 89 60 134

16,527 0 233 239 217

14,172 4,871 435 464

13,300 0 594

16,142 4,170

Dev. Fact. 1.205 1.020 1.011 1.005 1.004 1 1.001 1.002 1 1 1 1

Table 5: Run-off triangle with claim payments (exact zeros and strictly positive payments),

data obtained from Belgian insurance company. The last column in the table contains the

reserves obtained with the deterministic chain-ladder (‘Ch. Ladd.’).

1.1.5 An example from credibility

To illustrate the use of semiparametric regression (through mixed models) in a credibility

context, the data from Frees & Wang (2005) are revisited. Automobile bodily injury

liability claims from a sample of n = 29 Massachusetts towns are considered. Yearly

data over a period of 6 years (1993-1998) are available. Whereas our previous examples

were cross-sectional, these data are longitudinal. The response variable is average claims

(‘AC’), which is the total claim amount divided by a certain amount of exposure, for

each town and each year. Two explanatory variables are available, namely the per capita

income (‘PCI’) and population per square mile (‘PPSM’). More details can be found in

Frees & Wang (2005). These authors analyzed the data using a gamma generalized linear

model with canonical link, such that θit = β0 + β1PCIit + β2PPSMit, for each town i and

year t, with θit the canonical parameter in the generalized linear model. In our analysis,

we will investigate whether nonlinear effects of PCI and PPSM are suitable.

2 Generalized additive mixed models

This section describes generalized additive models (GAMs) for cross-sectional data and

generalized additive mixed models (GAMMs) for longitudinal data, together with their

specification using penalized regression splines. In this way, the GA(M)Ms can be rewrit-

ten as generalized linear mixed models (GLMMs). Likelihood-based and Bayesian infer-

ence for the smoothing models are described.
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2.1 Observation model

Numerous illustrations of the use of generalized linear models (GLMs) in typical problems

from actuarial statistics are available; see Haberman & Renshaw (1996) for an overview.

Similar to a GLM, a GAM consists of three components: a random component, a sys-

tematic component and a link function. For the random component, let Y1, . . . , Yn be

independent random variables with a density f(.) from the exponential family, namely

f(y) = exp

(
yθ − ψ(θ)

φ
+ c(y, φ)

)
, (7)

where ψ(.) and c(.) are known functions, θ is the natural parameter and φ the scale

parameter. Distributions from this class are – for example – the normal, Bernoulli, gamma

and Poisson distribution. The main difference between a GAM and a GLM lies in the

specification of the systematic component. The linear predictor η = Xβ from a GLM is

in a GAM replaced by an additive predictor,

ηi =
l∑

h=1

fh(xih),

and µi = g(ηi), i = 1, . . . , n, (8)

where E[Yi] = µi and g(.) is the link function. Hereby the functions fh (h = 1, . . . , l) are

‘smooth’ functions of covariates xh (h = 1, . . . , l). Instead of being fully nonparametric,

the additive predictor in (8) possibly is a combination of parametric (like fh(xih) = xihβh)

and nonparametric components. To estimate a GAM, some kind of smoother is used for

the unknown functions fh(.). Possible smoothers are cubic smoothing splines, locally

weighted regression (loess) or kernel smoothers, of which the first two were considered by

Verrall (1996) and England & Verrall (2001) in the context of a claims reserving exercise.

For the interested reader, Hastie & Tibshirani (1990) provide full details on the different

aspects of GAMs. Instead of using the so-called local scoring algorithm for GAMs, we will

rely on the inferential techniques developed for generalized linear mixed models (GLMMs),

as discussed in Sections 2.2 and 2.3 below.

Concerning the observation model for the longitudinal data in Section 1.1.5, let Yij

denote the jth observation for subject i, where j = 1, . . . , ni and i = 1, . . . , N . Thus, there

are N subjects in the data set and ni is the number of observations available for subject i.

Similar to a GLMM (like in Antonio & Beirlant, 2005), conditional on the random effects

bi (q × 1) for subject i, Yi1, . . . , Yini
are assumed to be independent with a distribution

from the exponential family in (7), thus

f(yij|bi) = exp

(
yijθij − ψ(θij)

φ
+ c(yij, φ)

)
. (9)

The predictor, ηij, in a GAMM is then specified as

g(µij) = ηij =
l∑

h=1

fh(xijh) + z
′
ijbi, (10)
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where µij = E[Yij|bi] and some of the functions fh(.) can simply be parametric. To

complete the specification, the bi (i = 1, . . . , N) are assumed to be multivariate normally

distributed with mean 0 and covariance matrix D. In (10) the nonparametric functions

fh(.) apply on the population-level. This can be generalized further to subject-specific

semiparametric functions.

In the sequel of this section, only the use of penalized regression splines to fit GA(M)Ms

is considered. For the use of other types of smoothers, we refer to the literature. Following

Ruppert et al. (2003), we first describe the GLMM specification of the models discussed

in this paper.

2.2 Penalized splines and GLMM formulation

The idea behind regression penalized splines is to estimate the unknown nonparametric

effect of a covariate, say x, on the response as a linear combination of some basis functions.

To obtain a smooth fit, constraints are put on some of the coefficients used in this linear

combination; they are penalized.

In order to clarify this approach for unfamiliar readers, let us start from the simple

example of scatterplot smoothing: data (xi, yi) (i = 1, . . . , n) are given and the model

Yi = f(xi) + εi (i = 1, . . . , n) is fitted. To estimate the unknown function f(.), a linear

combination of some basis functions is used. Possible basis functions are truncated power

basis functions, B-splines or radial basis functions, among others. For truncated power

basis functions of degree p with K knots κ1, . . . , κK
4, define the design matrix B as

B =




1 x1 x2
1 . . . xp

1 (x1 − κ1)
p
+ . . . (x1 − κK)p

+
...

...
...

...
...

...
...

...

1 xn x2
n . . . xp

n (xn − κ1)
p
+ . . . (xn − κK)p

+


 . (11)

The unknown function f(.) is then estimated as f̂(x) = B(x)β̂ where B(x) is a row

vector, similar to a row from B, and β̂ is the solution of the least-squares problem

minβ

∑n
i=1(yi −B(xi)β)2, subject to a constraint

∑K
k=1 β2

pk < C to obtain a smooth fit.

Hereby, β = (β0, β1, . . . , βp, βp1, . . . , βpK)
′
and thus the penalized coefficients correspond

with the truncated power functions. Using a Lagrange multiplier argument, this opti-

mization problem is rewritten as

min
β

n∑
i=1

(yi −B(xi)β)2 + αβ
′
Pβ, (12)

4The truncated line (x − κk)+ is zero, when x < κk and equals x − κk elsewhere. (x − κk)p
+ has to

be interpreted as {(x− κk)+}p. The basis functions {1, x, x2, . . . , xp, (x− κ1)
p
+, . . . , (x− κK)p

+} span the
vector space of piecewise functions of degree p with knots at κ1, . . . , κK .
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where α is the so-called smoothing parameter and P a penalty matrix given by

P =

[
0p+1×p+1 0p+1×K

0K×p+1 IK×K

]
. (13)

Ruppert et al. (2003) (among others) rewrite the argument of the optimization problem

in (12), after dividing by σ2
ε , as

1

σ2
ε

‖y −Xβ −Zu‖2 +
1

σ2
u

‖u‖2, (14)

where σ2
u = σ2

ε /α, y = (y1, . . . , yn)
′
, β = (β0, β1, . . . , βp)

′
(i.e. the regression parameters

for the basis functions 1, x, x2, . . . , xp), u = (βp1, . . . , βpK)
′
,

X =




1 x1 x2
1 . . . xp

1
...

...
...

...
...

1 xn x2
n . . . xp

n


 and Z =




(x1 − κ1)
p
+ . . . (x1 − κK)p

+
...

...
...

(xn − κ1)
p
+ . . . (xn − κK)p

+


 . (15)

By considering u as random effects with u ∼ N(0, σ2
uIK×K), (14) reduces to minus two

times the log-likelihood of (Y ,u) in the linear mixed model Y = Xβ + Zu + ε, under

the assumptions Y |u ∼ N(Xβ + Zu, σ2
ε I), u ∼ N(0, σ2

uI) and ε ∼ N(0, σ2
ε I).

A similar reasoning leads to the penalized splines formulation of the GAM specified

by (7) and (8). Construct the design matrix X as

X =




1 x11 x2
11 . . . xp

11 . . . x1l x2
1l . . . xp

1l
...

...
...

...
...

...
...

...
...

...

1 xn1 x2
n1 . . . xp

n1 . . . xnl x2
nl

... xp
nl


 . (16)

In the above specification the l blocks specify the unpenalized basis functions for estima-

tion of the unknown functions f1(.), . . . , fl(.). As in the scatterplot smoothing example,

a smooth fit results by putting constraints on the coefficients of the truncated basis func-

tions. This is done by treating them as random effects in a mixed model formulation.

Define

Zpen =




(x11 − κ1
1)

p
+ . . . (x11 − κ1

K1
)p
+ . . . (x1l − κl

1)
p
+ . . . (x1l − κl

Kl
)p
+

...
. . .

...
...

...
. . .

...

(xn1 − κ1
1)

p
+ . . . (xn1 − κ1

K1
)p
+ . . . (xnl − κl

1)
p
+ . . . (xnl − κl

Kl
)p
+


 , (17)

where Ki denotes the number of knots to estimate fi(.) (i = 1, . . . , l). In case of a GAM,

the log-likelihood is considered as a function of the additive predictor η from (8) and,

using penalized regression splines, η̂ = Xβ̂ + Zû is obtained as the solution of the

following penalized log-likelihood

max
β,u

{y′(Xβ + Zu)− 1
′
ψ(Xβ + Zu)} − 1

2

l∑
j=1

αju
′
juj, (18)

11



where – for ease of notation – a canonical link is assumed. β is the column vector with

the parameters for the unpenalized basis functions in (16) (one parameter per column of

X). uj = (uj1, . . . , ujKj
)
′
(j = 1, . . . , l), αj (j = 1, . . . , l) is the smoothing parameter for

function fj(.) and say u = (u
′
1, . . . , u

′
l)
′
. The optimization problem in (18) is equivalent to

the penalized quasi-likelihood optimization problem in a generalized linear mixed model

(see Breslow & Clayton, 1993) with the GLMM specified as

f(y|u) = exp (y
′
(Xβ + Zu)− 1

′
ψ(Xβ + Zu) + 1

′
c(y)),

u ∼ N(0,Λ),

and Λ =




σ2
1IK1×K1 0 . . . 0

...
...

. . .
...

0 0 . . . σ2
l IKl×Kl


 , (19)

where σ2
j = 1/αj (j = 1, . . . , l) and – again – a canonical link is used in (19) for ease of

notation. Both (18) and (19) are easily generalized to the case of a non-canonical link. In

that situation, the relation g{ψ′
(θ)} = η (using the notation from (7) and (8)) is used.

In line with the previous specifications, the GAMM for longitudinal data, specified in

(9) and (10), can be rewritten as a GLMM as well. Specify the design matrices X i and

Zi for subject i (i = 1, . . . , N) as

X i =




1 xi11 x2
i11 . . . xp

i11 . . . xi1l x2
i1l . . . xp

i1l
...

...
...

...
...

...
...

...
...

...

1 xini1 x2
ini1

. . . xp
ini1

. . . xinil x2
inil

... xp
inil


 , (20)

and

Zpen
i =




(xi11 − κ1
1)

p
+ . . . (xi11 − κ1

K1
)p
+ . . . (xi1l − κl

1)
p
+ . . . (xi1l − κl

Kl
)p
+

...
. . .

...
...

...
. . .

...

(xini1 − κ1
1)

p
+ . . . (xini1 − κ1

K1
)p
+ . . . (xinil − κl

1)
p
+ . . . (xinil − κl

Kl
)p
+


 .(21)

Together with the ‘classical’ design matrix for the random effects for bi (i = 1, . . . , N),

Zran
i =




zi11 . . . zi1q

...
. . .

...

zini1 . . . ziniq


 and Zi = [Zpen

i |Zran
i ], (22)

the contribution of subject i to the GLMM specification of the GAMM from (9) and (10)

is given by

f(yi|ri) = exp (y
′
i(X iβ + Ziri)− 1

′
ψ(X iβ + Ziri) + 1

′
c(yi)),

ri = (u
′
, b

′
i)
′ ∼ N(0,Λi),

and Λi =




σ2
1IK1×K1 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . σ2
l IKl×Kl

0

0 0 . . . 0 D




. (23)
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The assumption of independence among subjects completes the specification of the GLMM

representation of the GAMM from (9) and (10).

2.3 Likelihood-based and Bayesian inference

In a likelihood-based context, penalized quasi-likelihood (PQL) is used to estimate the

GLMMs, constructed for the above GA(M)Ms. Then, (restricted) maximum likelihood

((RE)ML) estimation of the variance components in (19) and (23) leads to an automatic

choice of the smoothing parameters, namely α̂j = 1/σ̂2
j (j = 1, . . . , l). Note that, in the

likelihood-based approach, all estimates for variance components reported in this paper

are obtained with REML. Other inferential tools developed for GLMMs, such as a hy-

pothesis test for the need of a random effect or the construction of confidence bands, can

also be applied in the context of smoothing models. For a Gaussian response and nor-

mally distributed random effects, analytical expressions are available for the maximum

likelihood estimators (MLEs) for the fixed effects parameters and the best linear unbiased

predictors (BLUPs) for the random effects. In case of a non-Gaussian response the esti-

mation in GLMMs is hindered by the presence of intractable multivariate integrals. To

overcome this, Proc Nlmixed in SAS relies on the Gauss-Hermite quadrature formula for

numerical integration, but can only deal with a limited number of random effects. Proc

Glimmix relies on the Laplace approximation of the involved integrals and thus solves

an approximate problem. Apart from these limitations of the likelihood approach, also

note that they all rely on ‘plugging-in’ the estimated variance components in formulas

that are derived conditional on, or given the variance components. For more details, we

refer to Ruppert et al. (2003) and Antonio & Beirlant (2005), for illustrations in actuarial

statistics.

In the context of claims reserving or credibility, a Bayesian implementation of the

GLMMs in (19) and (23) is especially useful, since this allows simulation from the full

predictive distribution of the reserves or future payments. By specifying a prior dis-

tribution for the variance components, the Bayesian inferential tools take all sources of

uncertainty into account. Prior specifications for the unknown parameters are discussed

in Section 3. In the rest of this article, MCMC simulations are performed using the

WinBUGS package.
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3 An investigation in the context of claims reserving

and credibility

3.1 Aggregate data on claim severities in a run-off triangle

3.1.1 A semiparametric Poisson model for claims reserving

In line with the analysis in England & Verrall (2001), an (overdispersed) Poisson model

is used for the data in Table 2. Trends in the direction of development year and – at a

second stage – calendar year are modelled using penalized splines. The results obtained

in this way are compared to those reported earlier in the literature. These state-of-the-art

results were displayed in Table 2. In the example discussed in Section 3.2, some comments

are included regarding the choice of the error distribution for Bayesian claims reserving.

However, for this example we solely rely on the distribution suggested in England &

Verrall (2001).

Denote by Yij (i, j = 1, . . . , n and n = 10 in Table 2) the random variable correspond-

ing to the amount paid out in arrival year i and development year j. Now start with the

following model specification

Yij

φ
∼ Poisson

(
µij

φ

)
,

where log (µij) = α1I(i = 1) + . . . + α10I(i = 10) + f(j). (24)

Thus, Yij follows an over-dispersed Poisson distribution, with E[Yij] = µij and Var[Yij] =

φµij. f(.) is a smooth function over the development years. In a first stage of the analysis,

we modelled f(.) using truncated lines and K = 4 user-specified knots, namely κ1 = 2,

κ2 = 3, κ2 = 5 and κ3 = 7. Columns 5-7 in Table 6 summarize the posterior distribution

for the arrival year and total reserves. To enable comparison with a standard specification

of the linear predictor in a generalized linear model, the predictive distributions of the

reserves obtained with chain-ladder structure (as in (1)) are reported as well. Both spec-

ifications lead to very similar posterior distributions. The same observation holds when

the means of the predictive distributions are compared with the estimates given in Table

2.

The first two models in Table 6 are empirically Bayesian in the sense that the overdis-

persion factor, φ, is estimated beforehand, using the SAS procedure (Proc Glimmix) for

likelihood-based estimation in a generalized linear mixed model. For the semiparametric

model and a rescaled response (namely ‘Claim Payments / 500’), φ̂ = 1.0635, and for the

model with chain-ladder structure, φ̂ = 1.16. A fully Bayesian implementation of model

(24) leads to the reserves reported in the last three columns of Table 6. Hereby a gamma

distribution with mean φ̂ and variance 0.01 is used as the prior for the overdispersion

factor (see Skollnik, 2006). Model complexity and fit of the Bayesian regression model are
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summarized by the number of equivalent parameters pD and the DIC (see Spiegelhalter

et al., 2002), displayed in Table 9.

Emp. Bayes. Emp. Bayes. Full Bayes.

Ch. Ladd. o-P. Smooth o-P. Smooth o-P.

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

AY 2 0 578 2,890 0 532 2,127 0 0 2,663

AY 3 0 1,734 5,780 0 1,595 5,318 0 1,574 6,109

AY 4 1,156 4,046 9,826 1,064 4,254 9,572 710 3,937 10,460

AY 5 1,734 5,202 10,982 2,127 5,849 11,167 1,523 5,613 12,130

AY 6 3,468 8,092 13,872 3,722 7,976 13,294 2,876 7,713 14,760

AY 7 5,202 10,404 17,340 5,849 10,635 17,016 4,758 10,570 18,420

AY 8 8,670 15,028 22,542 8,508 14,889 22,334 7,776 14,720 23,710

AY 9 13,872 21,386 30,634 14,357 21,802 30,310 12,920 21,680 32,630

AY 10 45,084 60,690 78,608 45,731 60,088 78,167 42,730 60,410 81,300

Total 100,572 127,738 164,730 101,564 128,152 162,184 97,090 128,100 169,300

Table 6: Predictive distributions for various reserves: overdispersed Poisson model with

chain-ladder structure for the linear predictor versus semiparametric specification of pre-

dictor.

As illustrated by the residual plot in Figure 4, the model with chain-ladder structure

for the linear predictor does not seem to be able to remove all trends in the direction of

calendar years. A similar observation holds for the semiparametric model. We therefore

consider a refinement of the previous models and include calendar year effects:

log (µij) = α1I(i = 1) + . . . + α9I(i = 9) + f(j) + g(i + j − 1). (25)

f(.) is modelled by truncated line basis functions with 4 knots, namely κDY,1 = 2, κDY,2 =

3, κDY,3 = 5 and κDY,4 = 7. For g(.) truncated line basis functions are used as well, with

4 knots at positions κCY,1 = 3, κCY,2 = 5, κCY,3 = 7 and κCY,4 = 9.

To obtain the predictive distribution of the reserves, a Bayesian implementation of

(25) is considered. For the over-dispersion factor φ again the estimate obtained with a

likelihood-based implementation is used. Priors for the remaining parameters are

αi ∼ N(0, 105) with i = 1, . . . , 10,

β, γ ∼ N(0, 105),

σ2
b ∼ Inv-Gamma(a, b),

σ2
γ ∼ Inv-Gamma(a, b). (26)

Table 7 contains the parameter estimates obtained with a likelihood-based as well as

with a Bayesian analysis of the over-dispersed Poisson model with predictor structure (25)
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Figure 4: Pearson-type residuals against calendar year: Poisson model with chain-ladder

type structure for the mean, likelihood-based implementation.

((a, b) = (0.01, 0.01) in the prior specifications). Following the specification in Section 2,

β and γ are ‘fixed effects’ parameters and σ2
b and σ2

γ denote the variance of the random

effects used in the GLMM specification. pD and DIC for this model are added in Table

9. Because the semiparametric model in (24) leads to a lower DIC and does not require

extrapolation (as models with calendar year effects do), this model is preferred above

the one in (25). However, a simplification of model (25), where σ2
γ is put equal to zero

(as suggested for instance by the crude variance component test reported by SAS Proc

Glimmix) and with γ significantly different from zero, leads to predictive distributions

which are very similar to those reported in Table 6.

Parameter Mean (St. Err.) Mean St. Dev. 2.5% 50% 97.5%

Lik. Bayes. Bayes. Bayes. Bayes. Bayes.

α1 5.554 (0.499) 5.556 0.536 4.458 5.574 6.562

α3 4.816 (0.319) 4.816 0.341 4.121 4.826 5.461

α7 2.143 (0.163) 2.138 0.175 1.795 2.137 2.488

β -3.44 (0.138) -3.445 0.15 -3.735 -3.446 -3.148

γ 1.47 (0.268) 1.474 0.291 0.881 1.483 2.025

σ2
β 4.716 (3.49) 9.383 23.08 1.518 5.526 39.41

σ2
γ 0.056 (0.061) 0.127 0.37 0.01 0.064 0.6

Table 7: Parameter estimates obtained with likelihood-based analysis (second column) and

Bayesian analysis. 700,000 simulations used, after a burn-in of 50,000 simulations.

To investigate the sensitivity of the results on the prior specification for the variance
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component, Table 8 shows the posterior distributions for the fixed regression parameters

and the total reserve, obtained via smoothing with truncated line basis functions and with

various prior specifications for the variance component, σ2
β, in our preferred model 5:

σ2
b ∼ Inv-Gamma(a, b) with a, b = 0.1 or 0.001,

σb ∼ folded Cauchy with s = 12 or 25,

σb ∼ Uniform(0, 50). (27)

Prior Mean St. Dev. 2.5% 50% 97.5%

Inv-Gamma(a, b) α1 2.301 0.162 1.994 2.299 2.626

(a, b = 0.1) β -1.803 0.13 -2.048 -1.806 -1.54

Total 128,985 15,296 101,564 128,152 161,120

Inv-Gamma(a, b) α1 2.309 0.166 1.973 2.309 2.627

(a = b = 0.001) β -1.795 0.133 -2.067 -1.795 -1.542

Total 129,112 15,322 101,564 128,152 161,652

folded Cauchy α1 2.338 0.164 2.016 2.337 2.659

s = 12 β -1.77 0.13 -2.025 -1.772 -1.517

Total 129,461 15,356 101,564 128,684 162,184

Uniform α1 2.332 0.162 2.014 2.334 2.641

(0, 50) β -1.775 0.129 -2.034 -1.774 -1.535

Total 129,446 15,352 102,096 128,634 162,184

Table 8: Investigation of sensitivity with respect to the prior distribution of the variance

component in (25): posterior distributions for selection of parameters obtained with var-

ious choices of priors for σ2
b or σb. 700,000 simulations used, after a burn-in of 50,000

simulations.

Ch. Ladd. Smooth DY Smooth DY+CY

pD DIC pD DIC pD DIC

18.753 313.629 14.92 314.589 16.868 341.675

Table 9: Model complexity and fit, as summarized by pD and DIC: over-dispersed Poisson

model with chain-ladder structure (columns 1-2), model (24) (columns 3-4) and model

(25) (columns 5-6).

5folded Cauchy: σ ∝ (σ2 + s2)−1
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3.1.2 Building in a stochastic discounting process

To further illustrate the flexibility of a Bayesian smoothing model, we build a stochastic

discounting process into model (24). Assume that the reserve will be invested such that

an amount of 1 at time t− 1 becomes eZt at time t. The discount factor for a payment of

1 at time t is then given by e−(Z1+...+Zt) := e−Z(t). Here we use the classical model

Z(t) =

(
µ− δ2

2

)
t + δB(t), (28)

where B(t) is the standard Brownian motion. The total discounted reserve – say R –

reflects the time value of money and is then specified as

R :=
n∑

i=2

n∑
j=n+2−i

Yije
−Z(i+j−n−1)

=
n∑

i=2

n∑
j=n+2−i

Yij exp {−(µ− δ2/2)(i + j − n− 1)− δB(i + j − n− 1)}, (29)

where the future payments Yij are modelled using an over-dispersed Poisson model as in

(24). In any realistic model for the return process, R will be a sum of strongly dependent

random variables. Because one can not rely on traditional risk theory, it becomes hard or

even impossible to compute the cumulative distribution function (‘cdf’) of R analytically,

though this cdf – and the calculation of different risk measures from it – is of interest

in a decision making process. For a parametric claims reserving model, Antonio et al.

(2005) illustrated how the predictive distribution of the discounted reserve can be obtained

in a Bayesian way. Using Bayesian statistics and the implementation of the smoothing

models in Section 2, simulations from the posterior predictive distribution of R, in case

of a semiparametric model for the payments, can be obtained. With µ = 0.08 and

δ = 0.11 the results in Table 10 follow. Figure 5 illustrates the mixing and convergence of

the generated Markov chains for some fixed effects parameters and the total discounted

reserve.

3.2 Combining data on claim intensities and claim counts

Denote by Yij the aggregate payment for cell (i, j), as shown in Table 3, and let Nij be

the corresponding number of claims, as displayed in Table 4. Thus, Yij =
∑Nij

k=1 Yijk,

with Yijk the payments composing the aggregate claim Yij. Following de Alba (2002), a

model is considered which combines information on the number of claims registered and

the total amount paid out for these claims, per arrival/development year combination.
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Mean St.Dev. 2.5% 50% 97.5%

Bayes. Bayes. Bayes. Bayes. Bayes.

AY 2 547 622 0 472 2,134

AY 3 1,777 1,278 0 1,539 4,878

AY 4 3,820 1,970 865 3,537 8,465

AY 5 5,117 2,096 1,746 4,867 9,918

AY 6 6,782 2,372 2,884 6,530 12,120

AY 7 9,066 2,771 4,457 8,782 15,280

AY 8 12,350 3,366 6,733 12,030 19,860

AY 9 17,870 4,365 10,560 17,460 27,570

AY 10 52,680 9,649 35,960 51,930 73,700

Total 110,015 19,166 77,421 108,275 152,415

Table 10: Over-dispersed Poisson model with discounting process included. Bayesian

results for arrival year and total reserves. 700,000 simulations used, after a burn-in

of 50,000 simulations.
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Figure 5: Density and trace plots of the generated chains for α1, β and the total discounted

reserve, over-dispersed Poisson model.

Let Zij := Yij/Nij be the average payment for cell (i, j) and specify

Zij ∼ Γ(ν, µAv
ij /ν),

where log (µAv
ij ) = α1 ∗ I(i = 1) + . . . + α10 ∗ I(i = 10) + fAv(j)

and
Nij

φ
∼ Poisson

(
µNum

ij

φ

)
,

where log (µNum
ij ) = α1 ∗ I(i = 1) + . . . + α10 ∗ I(i = 10) + fNum(j). (30)
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Furthermore, the Zij’s and Nij’s are assumed to be independent. Thus, in contrast with

de Alba (2002), a semiparametric regression model is fitted, which models the additive

predictor for the average payments and the number of claims as a sum of smooth functions

over the development years, together with categorical variables in the direction of arrival

years. The plots in Figure 1 illustrate that appropriate modelling of the trends over the

development period is necessary.

The various reserves are then obtained by appropriately summing up the fitted values

Ẑij × N̂ij, or the simulated values from the predictive distribution of Zij ×Nij.

In an initial stage of the analysis, we also experimented with trends in the direction of

calendar years. However, the specification in (30) is to be preferred. This is in line with

Antonio et al. (2005), where a trend model for these data is used which does not contain

parameters in the direction of calendar years either. Truncated line and quadratic basis

functions, as well as radial basis functions, are used to model fAv(.) and fNum(.) 6. 4

knots in the direction of development years, with positions (2, 3, 5, 7) (for claim counts

and average payments), are used, though similar results were obtained with other choices

for the number and positions of the knots. The resulting fits for fNum(j), as obtained

with the different types of basis functions, are illustrated in Figure 6.

Priors for the Bayesian analysis (with similar notations as in Section 3.1.1) are given

by

βAv, βNum ∼ dunif(−10, 10)

αAv
i , αNum

i (i = 1, . . . , 10) ∼ dunif(−10, 10)

ν ∼ dunif(0, 100)

σ2
b,Av ∼ Inv-Gamma(0.01, 0.01)

σ2
b,Num ∼ Inv-Gamma(0.01, 0.01). (31)

βAv and βNum are the fixed effects used when fitting the smooth functions. αAv
i and

αNum
i are parameters in the direction of arrival years. σ2

β,Av and σ2
β,Num are the variance

components used for the smooth functions fAv(.) and fNum(.), respectively.

95% credible intervals for some of the parameters used in (30) are given in Table 11.

The reserves obtained with this model are summarized in Table 12 (claim counts) and

Table 13 (total payments, obtained by multiplying claim numbers and average payments).

In Table 12 the results obtained with a regular as well as an over-dispersed Poisson model

are shown, both with additive predictor (30). Note that the former are close to the results

from a deterministic chain-ladder, as shown in Table 4. Regarding the choice of the error

distribution for Zij, Table 14 reports pD and DIC for both a gamma and a lognormal

model. Both specifications lead to very similar results.

6Truncated basis functions of degree p: α1 ∗ I(i = 1) + . . . + α10 ∗ I(i = 10) + β1 ∗ j + . . . + βp ∗ jp +∑K
i=1 bk(j−κk)p

+ and radial basis functions: α1 ∗I(i = 1)+ . . .+α10 ∗I(i = 10)+β1 ∗j+
∑k

i=1 bi∗|j−κi|3
and (b1, . . . , bk)t ∼ N(0, σ2

b (Ω−1/2)(Ω−1/2)t) where Ω =
[
|κk − κl|31≤k,l≤K

]
.
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Figure 6: Trend over development period for the claim numbers. Truncated line, truncated

quadratic and radial basis functions with 4 knots, over-dispersed Poisson model. Fitted

functions, together with pointwise 95% confidende intervals for fNum(j).

3.3 Incremental claims with quarterly development

The merits of smoothing techniques for claims reserving become more obvious when data

with extensive development periods are available. For the Belgian insurance data in Figure

2, both a normal and a Student-t regression model were considered with mean

µij = α1 ∗ I(i = 1) + . . . + α10 ∗ I(i = 10) + α11 ∗ I(i = 11) + f(j). (32)

We use Bayesian truncated line basis and radial basis functions for the trend in the

direction of development quarters. Results included here are obtained with 11 knots,

namely κ1 = 2, κ2 = 3, κ3 = 5, κ4 = 9, κ5 = 14, κ6 = 16, κ7 = 18, κ8 = 22, κ9 = 26,

κ10 = 30 and κ11 = 32, though similar results follow for a different number and positioning

of the knots. A uniform discrete prior was specified for the degrees of freedom parameter

(ν) in the Student-t model. Possible values for ν were 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15,

20, 30 and 50, with equal probability. This resulted in the posterior distribution shown

in Figure 9 (upper-left corner).

To estimate the Burr regression model in (6), observe that Zij = log (Yij) follows a
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Mean St.Dev. 2.5% 50% 97.5%

Bayes. Bayes. Bayes. Bayes. Bayes.

αNum
1 7.685 0.405 6.889 7.684 8.48

αNum
3 7.818 0.402 7.033 7.817 8.608

βNum 1.344 0.1739 1.009 1.342 1.69

σ2
b,Num 1.177 2.587 0.188 0.696 4.905

αAv
1 7.615 0.4719 6.636 7.631 8.494

αAv
3 7.892 0.477 6.91 7.908 8.771

βAv -0.403 0.181 -0.782 -0.393 -0.077

σ2
b,Av 0.258 0.621 0.028 0.139 1.176

ν 0.218 0.049 0.142 0.212 0.331

Table 11: 95% credible intervals for parameters in model (30): results from a Bayesian

analysis with truncated line basis functions, using a smooth function over the development

years (for both claim counts and average payments). A burn-in of 50,000 simulations was

used, followed by another 450,000 simulations to which a thinning factor of 10 was applied.

generalized logistic distribution with density given by

fZij
(zij) =

λτ exp (τ(zij − µij))

[1 + exp (τ(zij − µij))]
(λ+1)

. (33)

For trends in the location parameter, a specification equal to (32) is considered. Again

a Bayesian implementation with truncated line basis functions as well as radial basis

functions is used (with 7 knots, namely κ1 = 3, κ2 = 6, κ3 = 9, κ4 = 15, κ5 = 18, κ6 = 20,

κ7 = 28). Priors are the same as in Section 3.1.1, together with

λ ∼ Gamma(0.01, 0.01)

τ ∼ Unif(0, 5) for τ, λ in (33). (34)

This results in estimated development trends (α̂1 + f̂(j)) as displayed in Figure 7 (upper:

real insurance data and lower: Burr model; left: truncated line basis functions and right:

radial basis functions). Posterior distributions for a selection of parameters from the Burr

regression model are shown in Figure 8.

The fit of these regression models can be assessed using residual plots. Figure 9 shows

qqplots for the Belgian insurance data (Student-t and normal model). The Studen-t model

is slightly better than the normal regression model, though deviations in the tail are still

present. For the residuals, the mean of the posterior distribution of (Yij − µij)/σ is used.

For the Burr regression model, the residuals Rij = log (Yij)− µij have a distribution

FRij
(rij) = 1− 1

[1 + exp (τrij)]λ
. (35)
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Mean Mean St.Dev. 5% 50% 97.5%

Poisson o-Poisson Bayes. Bayes. Bayes. Bayes.

AY 2 2 2 4.36 0 0 17

AY 3 7 5 7.424 0 0 25

AY 4 13 9 10.372 0 8 34

AY 5 22 19 14.418 0 17 51

AY 6 41 40 21.06 8 34 85

AY 7 97 96 33.702 34 93 169

AY 8 149 147 47.275 68 144 246

AY 9 240 240 84.071 102 229 432

AY 10 332 322 215.339 42 279 855

Total 902 879 248.871 500 847 1,465

Table 12: Predictive distribution for the number of claims: results from a Bayesian anal-

ysis with truncated line basis functions for smooth function over development years. A

burn-in of 50,000 simulations was used, followed by another 450,000 simulations to which

a thinning factor of 10 was applied.

Figure 9 shows the residual quantile plot that corresponds with (35). For the residuals,

the mean of the posterior distribution of log (Yij)− µij is used. The straight line pattern

in this plot indicates a good fit.

3.4 A two-part semiparametric model for semicontinuous data

Actuaries often have to deal with data sets containing an inflated number of zeros, in case

of claim counts, or semicontinuous data. The latter combine a continuous distribution

with point masses at one or more locations. For an example, consider the data in Table 5

which consist of a mixture of zeros and strictly positive values. Following (among others)

Olsen & Schafer (2001) and Kunkler (2004), for the specific context of a run-off triangle,

two extra random variables are introduced to describe such data, namely

δij =





0 if Yij = 0

1 if Yij > 0,
and Y ?

ij =





irrelevant if Yij = 0

Yij if Yij > 0,
(36)

where Yij represents the aggregate amount paid out for cell (i, j) in the run-off triangle. For

the data example in Section 1.1.4, for instance, the δij variables (i, j = 1, . . . , 13) denote

whether at least one claim for cell (i, j) has occurred. Given that a claim has occurred, Y ?
ij

records the total severity for cell (i, j). Whereas the construction of the linear predictor in

Kunkler (2004) was not explained in detail, we consider here a semiparametric approach
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Mean St.Dev. 2.5% 50% 97.5%

Bayes. Bayes. Bayes. Bayes. Bayes.

AY 2 169,508 480,862 0 0 1,502,417

AY 3 378,139 724,771 0 0 2,346,970

AY 4 610,770 867,159 0 342,363 2,914,468

AY 5 1,041,495 1,081,350 0 749,758 3,851,428

AY 6 1,555,307 1,232,978 153,324 1,256,105 4,706,811

AY 7 2,461,469 1,553,093 558,292 2,118,104 6,337,255

AY 8 3,802,244 2,265,758 1,011,863 3,304,696 9,419,485

AY 9 5,539,692 3,460,206 1,433,985 4,733,528 14,410,460

AY 10 5,974,638 5,647,918 601,500 4,351,736 20,846,550

Total 21,533,260 8,682,724 9,883,250 19,883,880 42,867,290

Table 13: Predictive distribution of the reserves obtained with model (30): results from a

Bayesian analysis with truncated line basis functions for smooth functions over develop-

ment. A burn-in of 50,000 simulations was used, followed by another 450,000 simulations

to which a thinning factor of 10 was applied.

for the specification of the additive predictor in each part of the two-part model in (36).

As mentioned before, this is an easy to implement and very flexible way of working.

In the sequel of this analysis, both parts of the two-part specification are modelled

using a smooth function over the development period. Firstly, the GAM for the binary

data set is described. For every cell (i, j),

δij ∼ Binomial(1, πij),

where logit(πij) = fBin(j), (37)

and fBin(.) is a smooth function over the development years. Secondly, for the random

variables Y ?
ij , a lognormal model (as in (38) below) is fitted. Let us assume for instance

that the effect of arrival years can be described using categorical variables and that a

smooth function over development years applies. Thus,

log (Y ?
ij) = aSev + α2 ∗ I(i = 2) + . . . + α9 ∗ I(i = 9) + α10 ∗ I(i ≥ 10) + fSev(j) + εij,

where εij ∼ N(0, σ2
ε ). (38)

Denote by βBin the fixed effects and let bBin be the vector with the random effects that

are used to model fBin(.). The corresponding variance parameter is σ2
b,Bin. Similarly,

βSev are fixed effects parameters in the direction of development years. bSev then denotes

the random effects used for this smooth function, with corresponding variance parameter

σ2
b,Sev. Independence between bBin and bSev is assumed.
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Gamma Lognormal

(smooth) (smooth)

pD DIC pD DIC

Count 14.488 276.156 14.533 276.217

Severity 14.107 1110.58 15.1 1112.42

Table 14: Model complexity and fit, as summarized by pD and DIC: over-dispersed Poisson

for claim counts, gamma and lognormal model for average payments, smoothing over

development years.
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Figure 7: Posterior mean of α1+f(j), together with 95% pointwise credible bands. 300,000

simulations used, to which a thinning factor of 5 is applied, after a burn-in of 50,000 sim-

ulations. Upper: Real Data Set, the real observed data for arrival year 1 are added. Lower:

Burr regression model, the simulated values for µ1j are added. Left: semiparametric re-

gression with truncated line basis functions. Right: semiparametric regression with radial

basis functions.

The likelihood for this two-part model is

L(βBin,βSev, σε, σb,Bin, σb,Sev|yij, i = 1, . . . , n, j = 1, . . . , n− i + 1)

=
∏
i,j

∫
f(yij|βBin,βSev, bBin, bSev, σε)

× f(bBin, bSev|σb,Bin, σb,Sev)dbbindbSev

=

∫ ∏
Z

(1− πij)
∏
NZ

πijf(y?
ij|βSev, bSev, σε)

× f(bBin, bSev|σb,Bin, σb,Sev)dbbindbSev

=

∫
exp

( ∑
NZ,Z

lδij

)
exp

(∑
NZ

lY ?
ij

)
f(bBin, bSev|σb,Bin, σb,Sev)dbbindbSev
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Figure 8: Posterior densities and trace plots for parameters used in the Burr regression

(from left to right: α1, β and λ). 100,000 simulations, after a burn-in of 20,000 iterations.
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Figure 9: (Real Data Set) Posterior distribution of degrees of freedom parameter in

Student-t regression model. Residual quantile plot, standard Student-t with 8 dof and

standard normal distribution. (Burr data) Residual quantile plot, Burr regression.

=

∫
exp

( ∑
NZ,Z

lδij

)
f(bBin|σb,Bin)dbBin

∫
exp

(∑
NZ

lY ?
ij

)
f(bSev|σb,Sev)dbSev. (39)

Here,
∑

NZ (NZ: Non-Zero) denotes summation over all yij > 0 and
∑

Z (Z: Zero) sum-
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mation over all yij = 0. lY ?
ij

is the part of the log-likelihood related to a strict positive

claim, conditional on the random effects bSev. lδij
= δijlogit(πij) + log (1− πij), condi-

tional on the random effects bBin. The last equation in (39) illustrates that both parts of

the likelihood have to be maximized separately when maximizing the complete two-part

likelihood.

In a Bayesian approach using Gibbs sampling, two separate sampling schemes are set

up; one for the binary model and one for the lognormal model. To obtain simulated

values from the posterior predictive distribution of the Yij, both are combined via Yij =

δijY
?
ij + (1− δij) ∗ 0. Table 15 contains 95% credible intervals for the parameters used in

the models specified by (37) and (38). In this table, aBin is the intercept used to model

fBin(.). Figure 10 shows the fitted additive predictors, obtained with truncated line basis

functions. The predictive distributions of the various reserves are summarized in Table

16.

Mean St.Dev. 2.5% 50% 97.5%

Bayes. Bayes. Bayes. Bayes. Bayes.

aBin 0.764 0.778 -0.8989 0.8236 1.993

βBin -0.3909 0.2471 -0.8931 -0.3786 0.03485

σ2
b,Bin 0.0512 0.2129 0.0028 0.0153 0.3084

aSev 1.391 1.131 -0.799 1.382 3.64

αSev
3 1.556 0.489 0.6 1.556 2.516

βSev -1.374 0.3042 -1.967 -1.376 -0.7716

σ2
b,Sev 1.811 3.647 0.1844 1.005 8.173

σ2
ε 0.5637 0.1242 0.3716 0.5469 0.8546

Table 15: 95% credible intervals for parameters used in models (37) and (38): results

from a Bayesian analysis with truncated line basis functions. 300,000 simulations used,

to which a thinning factor of 5 is applied, after a burn-in of 50,000 simulations.

3.5 A semiparametric model for longitudinal credibility data

Credibility ratemaking is a technique for predicting future expected claims of a risk class,

given past claims of the given and related risk classes. Recently, the use of (generalized)

linear mixed models as a statistical tool for credibility ratemaking has been discussed in

Frees et al. (1999, 2001) and Antonio & Beirlant (2005).

To illustrate the use of semiparametric regression models for credibility, the data

introduced in Section 1.1.5, originally from Frees & Wang (2005), are analyzed. Since

the data are longitudinal, the dependencies over time between observations on the same

town should be taken into account appropriately. Whereas Frees & Wang (2005) used a
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Figure 10: Fitted additive predictors for models (37) and (38): results from a Bayesian

analysis with truncated line basis functions. Posterior mean of fBin(j) and fSev(j), to-

gether with 95% pointwise credible bands. 300,000 simulations used, to which a thinning

factor of 5 is applied, after a burn-in of 50,000 simulations.

t-copula to achieve this, typical concepts of mixed models, namely the inclusion of random

effects or the use of a special structure for the covariance matrix of the residual terms

(in a linear mixed model), are considered here. The effects of the available explanatory

variables, ‘PCI’ and ‘PPSM’, are modelled semiparametrically.

Firstly, the marginal effects of both explanatory variables on the response variable,

‘AC’, are illustrated. The lognormal distribution is used for the distribution of average

claims (‘AC’). Frees & Wang (2005, page 36) already indicated that this is a reasonable

choice. Ignoring the longitudinal structure of the data, we fit (with n the total number

of observations)

log (AC)i = f(PCIi) + εi, i = 1, . . . , n, (40)

log (AC)i = g(PPSMi) + εi i = 1, . . . , n. (41)

Both f(.) and g(.) are estimated using mixed models, for instance with truncated line basis

functions. We used 15 knots for both functions, which were automatically chosen with

the procedure from Ruppert et al. (2003, page 125). Following Frees & Wang (2005),

a rescaled version of ‘PCI’ is used, namely ‘PCI/1000’, together with the logarithm of

‘PPSM’. The observations for year 1998 are reserved as the ‘hold-out’ sample, to validate

predictions in a later stage of the analysis. Parameter estimates are in Table 17.

Secondly, a lognormal mixed model is fitted to the data, in which nonlinear effects of

both ‘PCI’ and ‘PPSM’ are allowed. To take the dependencies over time into account,

two strategies are considered: the inclusion of a random intercept per town on the one

hand and the specification of a special structure for the covariance matrix of the residual
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Mean St.Dev. 2.5% 50% 97.5%

Bayes. Bayes. Bayes. Bayes. Bayes.

AY 2 0.28 1.965 0 0.041 1.843

AY 3 1.191 13.66 0.003 0.17 7.75

AY 4 3.272 8.32 0.111 1.367 18.01

AY 5 2.036 11.29 0.018 0.4817 12.93

AY 6 69.6 105 8.984 46.04 269

AY 7 58 51 11.86 44.53 183

AY 8 43.7 89.87 0 7.71 271

AY 9 38.45 60.38 0 19.66 186.9

AY 10 86.14 106.8 0.2163 55.78 356.4

AY 11 153.5 151.4 12.43 112.3 538

AY 12 385 411 58,87 280 1,407

AY 13 5,302 5,151 339.6 4,012 18,210

Total 6,132 5,193 976.7 4,848 19,100

Table 16: Two-part model for semicontinuous data: results from a Bayesian analysis with

truncated line basis functions. 300,000 simulations used, to which a thinning factor of 5

is applied, after a burn-in of 50,000 simulations.
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Figure 11: Marginal effect of PCI (left) and PPSM (right) on log(AC), together with 95%

pointwise confidence intervals for f(PCIi) and g(PPSMi); truncated line basis functions

with 15 knots. Results obtained with Proc Mixed in SAS.

terms on the other hand. Thus, in its most general specification, models of the form

log (ACit) = f(PCIit) + g(PPSMit) + bi + εit, i = 1, . . . , N and j = 1, . . . , ni,

bi ∼ N(0, σ2
b )

εi ∼ N(0,Σi), where εi = (εi1, . . . , εini
)
′

(42)

are considered. Modeling nonlinear effects of ‘PCI’ and ‘PPSM’, the combination of
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Marginal Effect β0 β1 σ2
b σ2

ε

PCI 5.8497 (1.2641) -0.04946 (0.07916) 0.0056 0.05225

PPSM 1.4537 (2.6472) 0.6075 (0.5429) 0.4373 0.04864

Table 17: Scatterplot smoothing of log (AC) versus PCI and PPSM, respectively. Results

obtained with Proc Mixed in SAS.

random intercepts and a non-diagonal Σi did not lead to convergence of Proc Mixed in

SAS. Models with nonlinear effects of ‘PCI’ and ‘PPSM’, together with a non-diagonal Σi,

did not lead to convergence of the procedure either. The results for different – convergent

– model specifications are summarized in Table 18.

Parameter Model I Model II Model III Model IV

Intercept 4.1913 4.2301 4.334 4.3729

βPCI -0.02852 -0.02844 -0.03216 -0.03198

βPPSM 0.1998 0.1928 0.1869 0.1816

σ2
b,PCI 0 / / /

σ2
b,PPSM 0.0001 / / /

σ2
b 0.0208 0.0209 / /

σ2
ε 0.022 0.022 0.03874 0.04107

AR(1) / / / 0.4335

Toep(2) / / 0.01056 /

Toep(3) / / 0.01618 /

Table 18: Model 1: nonlinear effects of PCI and PPSM, together with random intercepts

and Toep(1) structure for covariance of residual terms. Model II: linear effects of PCI

and PPSM, together with random intercepts. Model III: linear effects of PCI and PPSM,

Toep(3) structure for covariance of residual terms. Model IV: linear effects of PCI and

PPSM, AR(1) structure for covariance of residual terms.

For prediction purposes, Models II, III and IV were considered. Apart from these, a

fifth model is also considered which has the same specifications as Model II, but assumes a

gamma distribution for the data (cfr. the qqplots in Frees & Wang, 2005). The predicted

values for the hold-out sample our calculated for the different models. As in Frees & Wang

(2005), the sum of squared prediction errors (SSPE) is used to compare the predictive

performance of the different models. The SSPE is tabulated in Table 19. The SSPE for

full credibility (thus, ŷi,ni+1 = ȳi = 1
ni

∑ni

t=1 yit) is 15,701 and for the Bühlmann model

(thus, ŷi,ni+1,B = ζȳi +(1− ζ)ȳ where ζ is the credibility factor and ȳ the overall mean) is
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14,916. Except for Model III, all the reported SSPE are lower than those in Frees & Wang

(2005). Although a visual inspection of the plots in Figure 11 might suggest nonlinear

effects of PCI and PPSM, an analysis using mixed models (both in a lognormal and a

gamma framework) revealed that – as in Frees & Wang (2005) – linear effects of PCI and

PPSM are sufficient.

Model II Model III Model IV Model V

SSPE 14,244 15,436 13,775 14,117

Table 19: Comparisons of Sum of Squared Prediction Error.

As mentioned in the introduction, this example is included just to illustrate that within

the framework of smoothing with mixed models the statistical approaches for reserving

and credibility can be unified. When dealing with extensive data in a claims reserving

exercise (think of quarterly development of individual claims), this feature is appealing.

4 Conclusions

This paper revisits the use of semiparametric regression models in the context of claims

reserving and credibility. Penalized splines and their connection with mixed models are

used, both in a likelihood-based and in a Bayesian way. Important characteristics and

advantages of our approach are summarized below:

• Trends in run-off triangles for claims reserving are modelled in a semiparametric way.

This is especially useful in more extensive ‘triangles’ where for instance quarterly

development is reported.

• Cross-sectional as well as longitudinal data are analyzed in the same framework.

This helps further unifying the actuarial ‘reserving’ and ‘ratemaking’ methodology.

Moreover, in a reserving exercise, the same techniques will allow to consider indi-

vidual development instead of data aggregated in cells.

• Both a likelihood-based and a Bayesian implementation of the models are illustrated.

• More complicated data structures are considered. It is illustrated how to incorporate

a stochastic discounting factor, combine data on claim counts and severities and

model semicontinuous data.

• Apart from the class of generalized linear models, an example with a heavy-tailed

regression model is also included.
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