State Machine Replication with Byzantine Faults

Christian Cachin

IBM Zurich Research Laboratory
CH-8803 Riischlikon, Switzerland
cachin@acm.org

26% May, 2008

Abstract

This paper gives an introduction to state machine replication in groups subject to arbitrary or
“Byzantine” faults. It explains the principles of such protocols and covers the following topics:
broadcast primitives, distributed cryptosystems, randomized Byzantine agreement protocols, and
atomic broadcast protocols.

1 Introduction

Coordinating a group of replicas to deliver a service, while some of them are actively trying to prevent
the coordination effort, is a fascinating topic. It stands at the heart of Pease et al.’s classic paper [PSL80]
on reaching agreement in the presence of faults, which ignited an impressive flow of papers elaborating
on this problem over the last 30 years.

In this paper, we survey the principles of atomic broadcast protocols in asynchronous networks for
a group of n parties, of which up to ¢ are subject to so-called “Byzantine” faults. No assumptions about
the behavior of the faulty parties are made; they may deviate arbitrarily form the protocol, as if corrupted
by a malicious adversary. Atomic broadcast guarantees that every correct party in the group receives the
same sequence of broadcast requests. It is the key step for replicating a deterministic service among the
group [Lam78, Sch90]. This approach allows to build highly resilient and intrusion-tolerant services on
the Internet.

The model considered here is motivated by practice. The parties are connected pairwise by reliable
authenticated channels. Protocols may use cryptographic methods, such as public-key encryption and
digital signatures. A trusted entity takes care of initially generating and distributing private keys, public
keys, and certificates, such that every party can verify signatures by all other parties, for example. The
system is asynchronous: there are no bounds on the delivery time of messages and no synchronized
clocks. This is an important aspect because systems whose correctness relies on timing assumptions are
vulnerable to attackers that simply slow down the correct parties or delay the messages sent between
them.

The paper is organized as follows. We first introduce some building blocks for atomic broadcast;
they consist of two broadcast primitives, distributed cryptosystems, and randomized Byzantine agree-
ment protocols. Then we present the structure of some recent atomic broadcast protocols. Finally, we
illustrate some issues with service replication that arise specifically in the presence of Byzantine faults.

2 Building Blocks

2.1 Broadcast Primitives

We present two broadcast primitives, which are found in one way or other in all agreement and atomic
broadcast protocols tolerating Byzantine faults. Such protocols invoke multiple instances of a broadcast
primitive. All instances are thus parameterized by a tag ID, which is contained implicitly in every
message and must be included in all signatures.

These broadcast instances have a distinguished sender, which broadcasts a request m to the group
at the start of the protocol. All parties should later deliver m, though termination is not guaranteed with
a faulty sender. To simplify the notation, we assume that all requests are unique.

We first present consistent broadcast for a group of n parties, called Pi,..., P,. A designated
sender P; starts the protocol by executing c-broadcast with a request m. All parties terminate the
protocol by executing c-deliver and output a request m. Consistent broadcast ensures only that the
delivered request is the same for all receivers. In particular, termination is not guaranteed with a faulty
sender.

The following definition is formulated using conditions that generalize the corresponding notions
for systems with crash failures [HT93].

Definition 1 (Consistent broadcast). A protocol for consistent broadcast satisfies:

Validity: If a correct sender Py c-broadcasts m, then all correct parties eventually c-deliver m.
Consistency: If a correct party c-delivers m and another correct party c-delivers m/, then m = m/.

Integrity: For any request m, every correct party c-delivers m at most once. Moreover, if the sender
P is correct, then m was previously c-broadcast by P.

Algorithm 1 (Echo broadcast [Tou84]). All parties use secure digital signatures.

upon c-broadcast(m): /1 only P
send message (send, m) to all

upon receiving a message (send, m) from Ps:
compute signature o on (echo, s, m)
send message (echo,m, o) to P

2L messages (echo,m, o;) with valid o;: / only Ps

upon receiving |
let X be the list of all received signatures o;
send message (final,m,X) to all

upon receiving a message (£inal, m,) from Py with ["] valid

signatures in 3

c-deliver(m)
Theorem 2. Algorithm 1 implements consistent broadcast for n > 3t.

Proof. Validity and integrity are straightforward to verify. Consistency follows from the observation
that the request m in any £inal message with [%t“] valid signatures in ¥ is unique. To see this,
consider the set of parties that issued the [%t“} signatures: because there are only n distinct parties,
every two sets of signers overlap in at least one correct party. Such sets are also called Byzantine
quorums [MR98b].]

The message complexity of echo broadcast is O(n) and its communication complexity is O(n?(k +
|m|)), where k denotes the length of a digital signature. Using a non-interactive threshold signature
scheme, the communication complexity can be reduced to O(n(k + |m|)) [CKPSO1].

The second broadcast primitive is reliable broadcast. 1t is characterized by a r-broadcast event
and a r-deliver event in the same way as consistent broadcast. Reliable broadcast additionally ensures
agreement on the delivery of the request in the sense that either all correct parties deliver it or none
delivers it. In the literature consistency and totality are often combined into a single condition called
agreement. This primitive is also known as the “Byzantine generals problem.”

Definition 2 (Reliable broadcast). A protocol for reliable broadcast is a consistent broadcast protocol
that satisfies also:

Totality: If some correct party r-delivers a request, then all correct parties eventually r-deliver a re-
quest.

Algorithm 3 (Bracha broadcast [Bra87]).

upon r-broadcast(m): / only P;
send message (send, m) to all
upon receiving a message (send, m) from Ps:

send message (echo,m) to all

n+§+1 W

upon receiving | msgs. (echo, m) and not having sent a ready-msg.:

send message (ready,m) to all

upon receiving t + 1 msgs. (ready, m) and not having sent a ready-msg.:
send message (ready,m) to all

upon receiving 2t + 1 messages (ready, m):

r-deliver(m)
Theorem 4. Algorithm 3 implements reliable broadcast for n > 3t.

Proof. Consistency follows from the same argument as in Theorem 2, since the request m in any ready
message of a correct party is unique. Totality is implied by the “amplification” of ready messages from
t+1 to 2t +1 with the fourth upon clause of the algorithm. Specifically, if a correct party has r-delivered
m, it has received a ready message with m from 2¢ + 1 distinct parties. Therefore, at least ¢ + 1 correct
parties have sent a ready message with m, which will be received by all correct parties and cause them
to send a ready message as well. Because n —t > 2t + 1, all correct parties eventually receive enough
ready messages to terminate. O

The message complexity of Bracha broadcast is O(n?) and its communication complexity is O(n?|m)|).
Unlike consistent broadcast, it does not need digital signatures, which are usually computationally ex-
pensive operations.

Several complex agreement and atomic broadcast protocols use either the consistent or the reliable
broadcast primitive, and one can often substitute either primitive for the other one in these protocols,
with appropriate modifications. Selecting one of these primitives involves a trade-off between computa-
tion time and message complexity. It is an interesting question to determine the experimental conditions
under which either primitive is more suitable; Moniz et al. [MNCVO06] present some initial answers.

2.2 Distributed Cryptography

Distributed cryptography spreads the operation of a cryptosystem among a group of parties in a fault-
tolerant way [Des94]; such schemes are also called threshold cryptosystems. They are based on secret
sharing methods and distributed implementations are typically known only for public-key cryptosystems
because of their algebraic properties.

2.2.1 Secret sharing.

In a (t + 1)-out-of-n secret sharing scheme, a secret s, element of a finite field F with ¢ elements, is
shared among n parties such that the cooperation of at least ¢ + 1 parties is needed to recover s. Any
group of ¢ or fewer parties should not get any information about s.

Algorithm 5 (Polynomial secret sharing [Sha79]). To share s € F,, a dealer Py ¢ {P1,...,P,}
chooses uniformly at random a polynomial f(X) € [F,[X] of degree ¢ subject to f(0) = s, generates
shares s; = f(i), and sends s; to P; fori = 1,...,n. To recover s among a group of ¢ + 1 parties with
indices S, every party reveals its share and all parties together recover the secret by computing

s=f(0) =Y A58,

1€S

s J
)\O,i == H S Z
jesgi?

are the (easy-to-compute) Lagrange coefficients.

where

Theorem 6. The secret sharing scheme has perfect security, i.e., the shares held by every group of t or
fewer parties are statistically independent of s.

We refer to the literature for definitions and a proof of the theorem. Secret sharing schemes do not
directly give fault-tolerant replicated implementations of cryptosystems; if the secret key were recon-
structed for performing a cryptographic operation, all security would be lost because the key is exposed
to the faulty parties. So-called threshold cryptosystems perform these operations securely; as an ex-
ample, threshold public-key encryption based on the ElGamal system is presented next (details can be
found in textbooks on modern cryptography [Sma03]).

2.2.2 Discrete logarithm-based cryptosystems.

Let G be a group of prime order ¢ such that g is a generator of G. The discrete logarithm problem (DLP)
means, for a random y € G, to compute = € Z, such that y = g*. The Diffie-Hellman problem (DHP)
is to compute ¢g*1*? from random y; = ¢** and y3 = g*2.

It is conjectured that there exist groups in which solving the DLP and the DHP is hard, for example,
the multiplicative subgroup G C Z, of order g, for some prime p = mgq + 1 (recall that g is prime). For
example, this choice with |p| = 2048 and |g| = 256 is considered secure today and used widely on the
Internet.

A public-key cryptosystem consists of three algorithms, K, E, and D. The key generation algorithm K
outputs a pair of keys (pk, sk). The encryption and decryption algorithms, E and D, have the property
that for all (pk, sk) generated by K and for any plaintext message m, it holds D(sk, E(pk,m)) = m.

A public-key cryptosystem is semantically secure if no efficient adversary A can find two mes-
sages such that A can distinguish their encryptions. Semantic security provides security against passive
attacks, but not against active attacks.

2.2.3 Threshold public-key encryption.

The ElGamal cryptosystem is based on the DHP: K selects a random secret key « € Z, and computes
the public key as y = ¢g”. The encryption of m € {0, 1}* under public-key y is the tuple (A4, B) =
(g",m @ H(y")), computed using a randomly chosen r € Z, and a hash function H : G — {0, 1}*.
The decryption of a ciphertext (A, B) is i = H(A”) @ B. One can easily verify that /i = m because
A* = g™ = g™ = y", and therefore, the argument to H is the same in encryption and decryption. The
cryptosystem is semantically secure under the assumption that the DHP is hard.

4

Algorithm 7 (Threshold ElGamal encryption). Let the secret key = be shared among P, ..., P,
using a polynomial f of degree ¢ over Z, such that P; holds a share z; = f(i). The public key y = ¢*
is known to all parties. Encryption is the same as in standard ElGamal above. For decryption, a client
sends a decryption request containing a ciphertext (A, B) to all parties. Upon receiving a decryption
request, party P; computes a decryption share d; = A% and sends it to the client. Upon receiving
decryption shares from a set of ¢ + 1 parties with indices S, the client recovers the plaintext as

- H(Hdi’\g«i) @ B.

1€S

Theorem 8. Algorithm 7 implements a (t + 1)-out-of-n threshold EIGamal cryptosystem that tolerates
the passive corruption of t < n/2 parties.

Proof. The decryption is correct because

[- LA = AZeemat —

1€S i€S

from the properties of secret sharing. The system is secure because the decryption shares (d; = A%) do
not reveal anything useful about the shares of the secret key (z;).]

This is a non-interactive threshold cryptosystem, as no interaction among the parties is needed. It
can also be made robust such that it is secure against active attacks [SG02]. Non-interactive threshold
cryptosystems can easily be integrated in asynchronous protocols, but many threshold cryptosystems
require synchronous networks with broadcast.

2.3 Byzantine Agreement

One step up from the broadcast primitives is a protocol to reach agreement despite Byzantine faults. It is
a prerequisite for implementing atomic broadcast. All atomic broadcast protocols, at least in the model
with static groups considered here, either explicitly invoke an agreement primitive or implicitly contain
one.

The Byzantine agreement problem is characterized by two events propose and decide; every party
executes propose(v) to start the protocol and decide(v) to terminate it for a value v. In binary agreement,
the values are bits.

Definition 3 (Byzantine agreement). A protocol for binary Byzantine Agreement satisfies:

Validity: If all correct parties propose v, then some correct party eventually decides v.
Agreement: If some correct party decides v and another correct party decides v/, then v = v/.

Termination: Every correct party eventually decides.

The result of Fischer, Lynch, and Paterson [FLP85] implies that every protocol solving Byzantine
agreement has executions that do not terminate. State machine replication is also subject to this limita-
tion. Roughly at the same time, however, randomized protocols to circumvent this impossibility have
been developed. They make the probability of non-terminating executions arbitrarily small [Rab83,
Ben83, Tou84]. More precisely, given a logical time measure 7', such as the number of steps performed
by all correct parties, define termination with probability 1 as

Tlim Pr[some correct party has not decided after time 7] = 0.
— 00

Algorithm 9 (Binray Randomized Byzantine Agreement [Tou84]). Suppose a trusted dealer has
shared a sequence s, s, . .. of random bits, called coins, among the parties, using (n — t)-out-of-n
secret sharing. A party can access the coin s, using a recover(r) operation, which involves a protocol
that exchanges some messages, and gives the same coin value to every party. The two upon clauses of
the algorithm below are executed concurrently.

Every party maintains a value v, called its vote, and the protocol proceeds in global asynchronous
rounds. Every global round consists of two rounds of message exchanges. In the first round, the parties
exchange their votes, and every party determines the majority vote. In the second round, every party
relays the majority to all others, this time using reliable broadcast and accompanied by a set II that
serves as a proof for justifying the choice of the majority. After receiving reliable broadcasts from n — ¢
parties, every party determines the majority of this second vote and adopts its outcome as its vote v if
the vote is unanimous; otherwise, a party sets v to the shared coin for the round. If the coin equals the
outcome of the second vote, then the party decides.

upon propose(v):
r«—0
loop
send the signed message (1-vote,r,v) to all
receive properly signed (1-vote,r,v’) messages from n — ¢ distinct parties
II < set of received 1-vote messages including the signatures
v «+ value v’ that is contained most often in IT
r-broadcast the message (2-vote, r, v, 1)
wait for r-delivery of (2—vote,r, v, I1) messages from n — t distinct senders
with valid signatures in IT and correctly computed v’
b < value v’ that is contained most often among the r-delivered 2—vote msgs.
¢ « number of r-delivered 2—vote messages with v/ = b
Sy « recover(r)
if c =n — ¢ then
vb
else
vV — Sy
if b = s, then
send the message (decide,v) to all // note that v = s, = b
rr+1

upon receiving t + 1 messages (decide, b):
if not decided then

send the message (decide,b) to all
decide(b)

Lemma 10. If all correct parties start some round r with vote vy, then all correct parties terminate
round r with vote vy.

Proof. Tt is impossible to create a valid 11 for a 2-vote message with a vote v # vy because v must be
set to the majority value in n — ¢ received 1-vote messages and n — ¢t > 2t. U

Lemma 11. In round r > 0, the following holds:

a) If a correct party sends a decide message for vy at the end of round r, then all correct parties
terminate round r with vote vy.

b) With probability at least L, all correct parties terminate round r with the same vote.

Proof. Consider the assignment of b and ¢ in round r. If some correct party obtains ¢ = n — ¢t and
b = v, then no correct party can obtain a majority of 2—vote messages for a value different from
vg (there are only n 2—vote messages and they satisfy the consistency of reliable broadcast). Those
correct parties with ¢ = n — t set vote v to vg; every other correct party sets v to s,.. Hence, if s, = vy,
all correct parties terminate round r with vote vyg.

Claim a) now follows upon noticing that a correct party only sends a decide message for vy when
v = b=s,.

Claim b) follows because the first correct party to assign b and c does so before anything about s, is
known (to the adversary). Thus, s, and vy are independent and s,, = vy with probability % O

Theorem 12. Algorithm 9 implements binary Byzantine agreement for n > 3t, where termination holds
with probability 1.

The theorem follows easily from the preceding lemmas. Since the protocol reaches agreement with
probability at least % in every round, the expected number of rounds is 2, and the expected number of
messages is O(n?3).

2.3.1 Using cryptographic randomness.

The problem with Algorithm 9 is that every round in the execution uses up one shared coin in the
sequence Sg, S1, As coins cannot be reused, this is a problem in practice. A solution for this is to
obtain the shared coins from a threshold cryptographic function. More precisely, let the coin value s,
be the output of a distributed pseudorandom function (PRF), evaluated on the round number r and the
protocol instance identifier ID.

A PREF is parameterized by a secret key and maps every input-string to an output-string that looks
random to anyone who does not have the secret key. A practical PRF construction is a block cipher with
a secret key; distributed implementations, however, are only known for functions based on public-key
cryptosystems. Cachin et al. [CKSO05] describe a suitable distributed PRF based on the Diffie-Hellman
problem. With their implementation of the shared coin, Algorithm 9 is practical and has expected
message complexity O(n?). This can further be reduced to O(n?) expected messages [CKS05].

3 Atomic Broadcast Protocols

Atomic broadcast delivers multiple requests in the same order to all parties. Whereas instances of
reliable broadcast may be independent of each other, the total order of atomic broadcast links these
together and requires more complex implementations. The details of the protocols in this section are
therefore omitted.

Analogously to reliable broadcast, atomic broadcast is characterized by an a-broadcast event, exe-
cuted by the sender of a request, and an a-deliver event. Every party may a-broadcast multiple requests;
also a-deliver generally occurs multiple times.

Definition 4 (Atomic broadcast). A protocol for atomic broadcast is a reliable broadcast protocol that
satisfies also:

Total order: [f two correct parties P; and P;j both a-deliver two requests m and m/, then P; a-delivers
m before m/ if and only if P; a-delivers m before m/.

Early atomic broadcast protocols [RB94, MR98a, PMMSO01] used dynamic groups with a member-
ship service that might evict faulty parties from the group, even if they only appear to be slow. When
an attacker manages to exploit network delays accordingly, this may lead to the problematic situation
where the correct parties are in a minority, and the protocol violates safety.

The more recent protocols, on which we focus here, never violate safety because of network instabil-
ity. We distinguish between two kinds of atomic broadcast protocols: agreement-based and leader-based
ones. We next review the principles of these protocols, starting with the historically older protocols
based on agreement. A third option is to combine leader- and agreement-based protocols into hybrid
atomic broadcast protocols.

3.1 Agreement-based Atomic Broadcast

The canonical implemention of atomic broadcast uses an agreement primitive to determine the next
request that should be a-delivered. Such a protocol proceeds in asynchronous rounds and uses one
instance of (multi-valued) Byzantine agreement in every round to agree on a set of requests, which
are then delivered in a fixed order at the end of the round. The same approach has been used in the
crash-failure model [HT93].

Incoming requests are buffered and proposed for delivery in the next available round. The validity
notion of Byzantine agreement, however, must be amended for this to work: the standard validity condi-
tion only guarantees that a particular decision is reached when all parties make the same proposal. This
will rarely be the case in practice, where every party receives different requests to a-broadcast.

A suitable notion of validity for multi-valued Byzantine agreement has been proposed by Cachin
et al. [CKPSO01]; it defines a test for determining if a proposed value is acceptable and externalizes
it. A corresponding protocol implements multi-valued agreement and uses a binary agreement primi-
tive [CKPSO01]; this protocol incurs a communication overhead of O(n?) messages over the primitive
for binary agreement.

With multi-valued randomized Byzantine agreement, asynchronous atomic broadcast protocols can
easily be implemented; they satisfy the relaxation of Definition 4 to termination with probability 1 in the
validity condition. These protocols have been prototyped in several practical systems [CP02, MNCVO06,
RSS07].

3.2 Leader-based Atomic Broadcast

Agreement-based protocols send all requests through Byzantine agreement to determine their order;
but agreement is a rather expensive protocol. A more efficient approach is taken by the BFT proto-
col [CLO2], which relies on a single party, called the leader, to determine the request order. Because the
leader may be faulty, its actions must be checked by the other parties in a distributed protocol. BFT is
actually a Byzantine-fault-tolerant version of the Paxos protocol [Lam98, LamOla, LamO1b].

The BFT protocol proceeds in epochs, where an epoch consists of a normal-operation phase and
recovery phase (also called view change). During every epoch, a designated party acts as the leader
for the normal-operation phase, determines the delivery order of requests, and commits every request
through reliable broadcast with Bracha’s protocol (Algorithm 3). Because the leader runs the reliable
broadcasts in a sequence, this guarantees that all correct parties receive and a-deliver the requests in the
same order. This approach ensures safety even when the leader is faulty, but may violate liveness when
the leader stops r-broadcasting requests.

When the leader appears faulty in the eyes of enough other parties, the protocol switches to the
recovery phase. This step is based on timeouts that must occur on at least ¢ 4+ 1 parties. Once enough
parties have switched to the recovery phase, the protocol aborts the still ongoing reliable broadcasts, and
the recovery phase eventually starts at all correct parties. The goal of the recovery phase is to agree on
a new leader for the next epoch and on the a-delivery of the requests that the previous leader may have
left in an inconclusive state.

Progress during the recovery phase and in the subsequent epoch requires the timely cooperation
of the new leader, since the protocol is deterministic and therefore subject to the FLP impossibility
result [FLP85]. It is possible that no requests are delivered before the epoch ends again, and the protocol
loses liveness. However, it is assumed that this occurs extremely rarely in practice.

Despite its inherent complexity, the recovery phase is still more efficient than one round in the
agreement-based atomic broadcast protocols. The BFT protocol has message complexity O(n?), always
ensures safety, and liveness during periods where the network is stable enough; it is considered practical
by many system implementors.

3.3 Hybrid Atomic Broadcast

Combining the efficiency of the leader-based approach during normal operation with the strong guar-
antees of the agreement-based approach for recovery, protocols have been proposed that take the best
features from both approaches.

The protocol of Kursawe and Shoup [KS05] is divided into epochs and uses reliable broadcast during
the normal-operation phase, like the BFT protocol. For recovery, however, it employs randomized
Byzantine agreement and ensures that some requests are a-delivered in any case. It therefore guarantees
safety and liveness and has the same efficiency as the BFT protocol during stable periods.

Ramasamy and Cachin [RCO06] replace the reliable broadcast primitive in the Kursawe-Shoup pro-
tocol by consistent broadcast. The resulting protocol is attractive for its low message complexity, only
O(n) expected messages per request, amortized over protocol executions with long periods of stability,
compared to O(n?) for all other atomic broadcast protocols in the Byzantine fault model. The improve-
ment comes at the cost of adding complexity to the recovery phase and, more importantly, by using
expensive public-key operations during the normal-operation phase.

4 Service Replication

A fault-tolerant service implemented using replication should present the same interface to its clients as
when implemented using a single server. Sending requests to the replicated (deterministic) service via
atomic broadcast enables the replicas to process the same sequence of requests and to maintain the same
state [Sch90]. If failures are limited to benign crashes, the client may obtain the correct service response
from any replica.

When the replicas are subject to Byzantine faults, additional concerns arise: First, services involving
cryptographic operations and secret keys must remain secure despite the leakage of keys from corrupted
replicas; second, clients must not rely on the response message from any single replica because the
replica may be faulty and give a wrong answer; and third, faulty replicas may violate the causality
between requests sent to the replicated service. We review methods to address each of these concerns
next.

4.1 Replicating Cryptographic Services

The service may involve cryptographic operations with keys that should be protected, for example, when
the service receives requests that are encrypted with a service-specific key, or when it signs responses
using digital signatures. In this case, a break-in to single replica will leak all secrets to the adversary.
To protect against this attack, the cryptographic operations of the service should be implemented using
threshold cryptography. This leaves the service interface for clients unchanged and hides the distributed
implementation of the service. An important example of such a service is a certification authority (CA),
which binds public keys to names and asserts this with its digital signature. Since CAs often serve as
the root of trust for large systems, implementing them in an intrusion-tolerant way is a good method to
protect them. This principle has been demonstrated in prototype systems [ZSvR02, CS04].

4.2 Handling Responses Securely

As the response from any single replica may be forged, clients must generally receive at least ¢ + 1
responses and infer the service response from them. If all ¢ + 1 responses are equal, then at least one

of them was sent by a correct party, which ensures that the response is correct. Collecting responses
and deciding for a correct one involves a modification of the client-side service interface. Usually
this modification is simple and can be hidden in a library. But if no such modification is possible,
there is an alternative for services that rely on cryptographically protected responses: use threshold
cryptography to authenticate the response, for example, with a digital signature. Then it is sufficient that
the client verifies the authenticity of the response once because it carries the approval of at least ¢ + 1
parties that executed the request [RB94]. In this context, it is interesting to mention the result of Yin et
al. [YMADO3] that only 2¢ + 1 parties need to maintain the state of the service instead of all n parties.

4.3 Preserving Causality of Requests

When a client atomically broadcasts a request to the replicated service, the faulty replicas may be able
to create a derived request that is a-delivered and executed before the client’s request. This violates the
safety of the service, more precisely, the causal order among requests. For example, consider a service
that registers names in a directory on a first-come, first-served basis. When a faulty party peeks inside
the the atomic broadcast protocol and observes that an interesting name is being registered, it may try to
quickly register the name for one of its friends.

One can ensure a causal order among the requests to the service with the following protocol [RB94].
To a-broadcast a request, the client first encrypts it with a (¢ 4+ 1)-out-of-n threshold public-key cryp-
tosystem under the public key of the service. Then, it a-broadcasts the resulting ciphertext. Upon
a-delivery of a ciphertext, a replica first computes a decryption share for the ciphertext, using its share
of the corresponding decryption key, and sends the decryption share to all replicas. Then it waits for
t + 1 decryption shares to arrive, recovers the original request, and a-delivers it.

This protocol can be seen as an atomic broadcast protocol that respects causal order in the Byzantine-
fault model [CKPSO1].

5 Conclusion

In the recent years, we have seen a revival of the research on protocols for Byzantine agreement and
atomic broadcast subject to Byzantine faults. This is because such protocols appear to be much more
practical nowadays and because there is demand for realizing intrusion-tolerant services on the Internet.
This paper has presented the building blocks for such protocols, some 25 years old, and some very
recent, and shown how they fit together for securing distributed on-line services.

References

[Ben83] M. Ben-Or, Another advantage of free choice: Completely asynchronous agreement proto-
cols, Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODC), 1983,
pp. 27-30.

[Bra87] G. Bracha, Asynchronous Byzantine agreement protocols, Information and Computation

75 (1987), 130-143.

[CKPSO01] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, Secure and efficient asynchronous broad-
cast protocols (extended abstract), Proc. CRYPTO 2001 (J. Kilian, ed.), Lecture Notes in
Computer Science, vol. 2139, Springer, 2001, pp. 524-541.

[CKSO05] C. Cachin, K. Kursawe, and V. Shoup, Random oracles in Constantinople: Practical asyn-
chronous Byzantine agreement using cryptography, Journal of Cryptology 18 (2005), no. 3,
219-246.

10

[CLO2]

[CPO2]

[CS04]

[Des94]

[FLP85]

[HT93]

[KS05]

[Lam78]

[Lam98]

[LamO1a]

[LamO1b]

[MNCVO06]

[MRO98a]

[MRO8b]

[PMMSO1]

[PSL8O]

[Rab8&3]

[RB94]

M. Castro and B. Liskov, Practical Byzantine fault tolerance and proactive recovery, ACM
Transactions on Computer Systems 20 (2002), no. 4, 398-461.

C. Cachin and J. A. Poritz, Secure intrusion-tolerant replication on the Internet, Proc.
International Conference on Dependable Systems and Networks (DSN-2002), June 2002,
pp. 167-176.

C. Cachin and A. Samar, Secure distributed DNS, Proc. International Conference on De-
pendable Systems and Networks (DSN-2004), June 2004, pp. 423-432.

Y. Desmedt, Threshold cryptography, European Transactions on Telecommunications 5
(1994), no. 4, 449-457.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus with
one faulty process, Journal of the ACM 32 (1985), no. 2, 374-382.

V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems, Distributed
Systems (S. J. Mullender, ed.), ACM Press & Addison-Wesley, 1993.

K. Kursawe and V. Shoup, Optimistic asynchronous atomic broadcast, Proc. 32nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in
Computer Science, vol. 3580, 2005, pp. 204-215.

L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communica-
tions of the ACM 21 (1978), no. 7, 558-565.

, The part-time parliament, ACM Transactions on Computer Systems 16 (1998),
no. 2, 133-169.

_, Paxos made simple (Distributed Computing Column), SIGACT News 32 (2001),
no. 4, 51-58.

B. Lampson, The ABCD’s of Paxos, Proc. 20th ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2001.

H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, Randomized intrusion-tolerant asyn-
chronous services, Proc. International Conference on Dependable Systems and Networks
(DSN-2006), 2006, pp. 568-577.

D. Malkhi and M. Reiter, Secure and scalable replication in phalanx, Proc. 17th IEEE
Symposium on Reliable Distributed Systems, 1998.

D. Malkhi and M. K. Reiter, Byzantine quorum systems, Distributed Computing 11 (1998),
no. 4, 203-213.

K. Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, The SecureRing group commu-
nication system, ACM Transactions on Information and System Security 4 (2001), no. 4,
371-406.

M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of faults, Jour-
nal of the ACM 27 (1980), no. 2, 228-234.

M. O. Rabin, Randomized Byzantine generals, Proc. 24th IEEE Symposium on Founda-
tions of Computer Science (FOCS), 1983, pp. 403—409.

M. K. Reiter and K. P. Birman, How to securely replicate services, ACM Transactions on
Programming Languages and Systems 16 (1994), no. 3, 986-1009.

11

[RCO6]

[RSS07]

[Sch90]

[SGO02]

[Sha79]

[Sma03]

[Tou84]

[YMADO3]

[ZSvR02]

H. V. Ramasamy and C. Cachin, Parsimonious asynchronous Byzantine-fault-tolerant
atomic broadcast, Proc. OPODIS 2005 — 9th Intl. Conference on Principles of Distributed
Systems (J. H. Anderson, G. Prencipe, and R. Wattenhofer, eds.), Lecture Notes in Com-
puter Science, no. 3974, Springer, December 2006, pp. 88—102.

H. V. Ramasamy, M. Seri, and W. H. Sanders, Brief announcement: The CoBFIT toolkit,
Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC), 2007,
pp- 350-351.

F. B. Schneider, Implementing fault-tolerant services using the state machine approach: A
tutorial, ACM Computing Surveys 22 (1990), no. 4, 299-319.

V. Shoup and R. Gennaro, Securing threshold cryptosystems against chosen ciphertext
attack, Journal of Cryptology 15 (2002), no. 2, 75-96.

A. Shamir, How to share a secret, Communications of the ACM 22 (1979), no. 11, 612-
613.

N. Smart, Cryptography — an introduction, McGraw-Hill, London, 2003.

S. Toueg, Randomized Byzantine agreements, Proc. 3rd ACM Symposium on Principles of
Distributed Computing (PODC), 1984, pp. 163-178.

J. Yin, J.-P. Martin, A. V. L. Alvisi, and M. Dahlin, Separating agreement from execution
in Byzantine fault-tolerant services, Proc. 19th ACM Symposium on Operating System
Principles (SOSP), 2003, pp. 253-268.

L. Zhou, F. B. Schneider, and R. van Renesse, COCA: A secure distributed online certifi-
cation authority, ACM Transactions on Computer Systems 20 (2002), no. 4, 329-368.

12

