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Abstract

With the arrival of partial reconfiguration technology, modern
FPGAs support swapping tasks in or out individually at run-time
without interrupting other tasks running on the same FPGA. Al-
though, implementing this feature achieves much better flexibility
and device utilization, the challenge remains to quickly and effi-
ciently place tasks arriving at run-time on such partially reconfig-
urable systems. In this paper, we propose an algorithm to handle
this on-line, run-time task placement problem. By adding logical
constraints on the FPGA and introducing our resources manage-
ment solution, the simulation results show our algorithm has better
overall performances compared with previous reported methods in
terms of task rejection number, placement quality 1 and execution
time.

1 Introduction

Most current FPGA-based systems treat FPGAs as slave-
components. When needed, the system configures the FPGA with
required logic to offload the main processor. Usually, an applica-
tion running on such a system configures the whole FPGA when it
starts and the configuration remains active and unchanged during
the lifetime of the application. In this case, there is no requirement
for a dynamic task placement algorithm. The reconfigurability
makes these systems easily adaptive to different application do-
mains. The reconfiguration process of the complete FPGA, how-
ever, introduces long reconfiguration time and increased power
consumption. In recent years, with the development of the par-
tially reconfigurable FPGAs, this problem can be addressed by us-
ing the partial reconfiguration support to reconfigure only the nec-
essary part of the FPGA when required. Various hardware tasks
can be reconfigured on such a FPGA individually without interfer-
ing with other tasks already running on the same FPGA. For recon-
figurable systems based on such FPGAs, an application normally
has a set of hardware tasks to be run on the FPGA in different
stages. Such partially reconfigurable systems [13][9] increase the
flexibility and resource utilization significantly, but also introduce
the problem of how to manage the FPGA resources for complex
multi-task situations.

There are off-line and on-line algorithms used to solve this
problem. In an off-line solution, the configuration order and lo-
cation of tasks are optimized when the application is compiled. In
an on-line solution, all tasks are unknown until they arrive. So,

1We built a new model to measure the placement quality, which is de-
tailed in section 4.2

when a hardware task is to be configured on the FPGA, the sys-
tem searches available resources for the new task at run-time. The
on-line solution provides more adaptivity to various applications
and avoids the application profile step, which is time-consuming.
But, because of the lack of overall information about tasks and
the expectation of short allocation response times, the on-line al-
gorithms have more strict requirements for resource management,
free space searching time, and resource fragmentation. In this pa-
per, we propose a novel algorithm for on-line task placement. The
main contributions of this paper are:

• a new mechanism to dynamically manage the available
FPGA resources;

• development of a self-adaptive on-line placement algorithm
based on this novel FPGA resource utilization solution;

• a new model to measure placement quality and the mapping
of the placement quality onto the complex plane;

• better overall performance in terms of rejection number,
placement quality and algorithm execution time compared
to other state of the art approaches.

In section 2 we present related approaches. Thereafter, section 3
details our on-line “IF” algorithm. Next, in section 4, we present
the simulation results and evaluate performance of our and four
previously proposed algorithms. Finally, we discuss future work
in section 5.

2 Related Work

Of the state of the art algorithms for on-line task placement,
the fixed pre-partitioned FPGA models and flexibly partitioned
FPGA models are the most popular solutions. In the fixed pre-
partitioned model, the FPGA is logically partitioned into fixed
size areas. The arrival task only needs to be assigned to a pre-
partitioned area. This kind of partitioning makes task placement
simpler, but the large resource fragmentation brought by such a
partition is a serious problem. In the flexibly partitioned model,
the actual size of tasks is taken into account when searching in the
free FPGA resources for a fit location. This kind of partitioning
normally uses the FPGA resources more efficiently, but location
search time is much longer compared to that of pre-partitioned
models. Another disadvantage for the flexibly partitioned model is
the quickly increased fragmentation on the FPGA in relation to the
number of placed tasks. In the following we will describe several
well known on-line task placement algorithms. Although these al-
gorithms have achieved good performance shown in experimental
results in related papers, they can not eliminate the disadvantage
brought by using one of the FPGA partitioning models.



In 1999, Bazargan et al. [5] considered the problem of task
placement on the FPGA as the well-studied 2D bin-packing prob-
lem. They used some classical algorithms, e.g. first fit and best
fit, for both on-line and off-line solutions. In addition, they used
efficient tree data structure to manage FPGA resources. Walder
et al. [15] improved Bazargan’s on-line algorithm by delaying the
decision about split heuristic until a new task arrives. In addition,
a hash matrix was proposed to store the available free FPGA re-
sources to guarantee a constant search time. Tabero et al. [12]
used vertex-lists for the same functionality, where each vertex is
a possible location for an input task. A new arrival task is placed
by selecting a vertex corresponding to appropriate size from the
list. In [4], Ahmadinia et al. logically partitioned the FPGA in
some full height slots of varying width. Tasks with close ending
times are assigned in the same slot. Steiger et al. [11] described
an enhanced version of Bazargan’s placement algorithm consider-
ing both scheduling and placement for an on-line solution. In [3],
Ahmadinia et al. proposed a new way to manage the FPGA free
resources by storing the information about used space. Also, the
authors considered connectivity between tasks when placing ar-
rival tasks. In [8], Koester et al. introduced an algorithm consid-
ering restrictions of fixed location resources (e.g. BRAM). They
introduced the occupancy possibility weight of different area and
used it to place an input task in the area with least possibility of
being occupied by further tasks. The authors implemented this
algorithm on Virtex II FPGA. In [6][10][7], inter-task communi-
cation channels using fixed hardware logic were proposed for the
1D FPGA resource partitioning. In [14], Walder et al. investigated
placement and transformation of non-rectangular tasks.

Given the above analysis and description, we aim to develop
an on-line task placement algorithm performing not only efficient
resource usage but also fast task allocation time.

During our study of the on-line placement, we also noticed that
in these previously proposed task online placement algorithms, the
resource wastage and (or) task rejection number are calculated in-
dividually to measure the placement quality. However, these con-
siderations can not reflect the overall situation of placement qual-
ity (also referred to as the efficiency of using FPGA) during the
application execution because of the lack of the rejected task de-
tails. In this paper, we build a novel model for placement quality
measurement when these two FPGA partitioning models are used.
The model consists of resource wastage from both placed task side
and rejected task side as well as the information of task rejection
rate and task life time. This model will be detailed in section 4.2.

3 Immediate Fit

The algorithm proposed in this paper is named ”Immediate
Fit”(IF). The current version of our IF algorithm supports non-
preemptive tasks. The IF algorithm is characterized by fast alloca-
tion of available FPGA area and highly efficient use of the FPGA
resources. In this section we first discuss the motivation and goal
of proposing our IF algorithm. Thereafter, we present definitions
needed in the following discussion. Next, the current constraints
adding on the IF are described. Finally, the ”IF” algorithm opera-
tion processing and resource management are detailed.

3.1 Motivation and goal

As mentioned in section 2, the algorithms based on the fixed pre-
partitioned FPGA models usually have faster free space allocation

time compared to the algorithms based on the flexibly partitioned
FPGA models, because only limit pre-partitioned FPGA areas are
searched to find a fit location. However, the latter algorithms have
higher FPGA resource usage than the former algorithms because
an arrival task is just located to the area it needs. The IF algo-
rithm proposed in this paper aims at keeping the advantages of
the algorithms using the two FPGA models, as well as eliminating
their disadvantages. In order to fulfill this goal, the IF algorithm 1)
initially partitions the FPGA surface into blocks to bring the fast
allocation feature of the pre-partitioned FPGA model; 2) imple-
ments a set of resource redistribution operations on these initially
partitioned blocks to make highly efficient use of the FPGA re-
sources (the operations also implement defragmentation function
to avoid quickly increased fragmentation in relation to the number
of placed tasks).

3.2 Definitions

Initial partitioning of the FPGA:
Initially, the FPGA is logically partitioned into three different size
blocks: the small size, the medium size and the large size. For the
remainder of this paper, in order to make the explanation of our
IF algorithm simple, we will assume that in the initial FPGA parti-
tioning three blocks for each size are available and they are located
in the same slot, as shown in Figure 1 (A). The small blocks are
located in the middle and all blocks have the same width in order
to make more efficient resource usage as described in the ”Block
repartition mechanism” part. Given the minimum partial reconfig-
uration frame of the Virtex 4 FPGA 2 and constraints of current de-
sign flows for partially reconfigurable systems, these logical con-
straints on the FPGA are reasonable and practical. The number
and size of blocks can be adjusted in advance according to an ap-
plication’s specification.
Block repartition mechanism:
In order to use the FPGA resources more efficiently, the IF algo-
rithm employs a split, merge and recover mechanism. Block split
and merge happens when blocks with required size are all occu-
pied. New blocks with the required size can be created via the
split and merge process if enough free space is available in other
different size blocks. When these new blocks are freed later, the
recovery process provides area defragmentation function by re-
assembling these freed blocks back to the original blocks. The
IF algorithm always tries to maintain the initial partitioning which
guarantees all blocks can be repartitioned later via split and merge
process when required. There are three types of split and merge
processes: split only, merge only, and split-merge. They corre-
spond to (B), (C), and (D) in Figure 1 respectively. A split only
process splits a large size block into smaller size blocks. The re-
verse is merge. For example, in Figure 1(B), all A-size blocks
(blocks with size equal to A) are occupied, when a new A-size
task arrives. A 2A-size block is split into two A-size blocks which
can be used by the new arrival task. conversely, in Figure 1(C),
A new 3A-size block is generated via merge process. The merge-
split process will be described in section 3.4.
Linked lists used for resource management:
Fast space allocation requires an efficient way to represent the al-
locatable space. Therefore, in our algorithm, we use linked lists to
represent the resource availability on the FPGA. We defined two
different linked list: free space linked list (FSLL) and used space

2For the Virtex 4 FPGAs[2], the minimum reconfiguration frame is a
portion of the full height frame which is used by previous FPGAs.
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Figure 1. Operations on the blocks

linked list (USLL). The FSLL stores available free blocks and the
USLL stores the occupied blocks. In the IF algorithm, blocks with
same size are represented by a specific FSLL and a specific USLL
together, e.g. in the initial FPGA partitioning used in this paper
shown in Figure 1 (A), the small blocks in slot A (h = A) can be
represented as:

Initial FSLL:
{slot A FSLL} → {slot A block1} → {slot A block2} →
{slot A block3} → {NULL}
Initial USLL:
{slot A USLL} → {NULL}

With this linked list data structure, updating the information about
the FPGA resource utilization becomes much simpler. An update
only requires the insertion or removal of the related nodes when
blocks are assigned or freed, information stored in other nodes in
the linked list does not have to be modified.

3.3 Current constraints of the IF algo-
rithm

The current implementation of the IF algorithm has the follow-
ing constraints that apply: (i) the IF algorithm only supports split
and merge in the vertical dimension, as described in section 3.2
and 3.4; (ii) the current IF algorithm considers the FPGA as a ho-
mogeneous architecture; (iii) all input tasks used in our simulation
are assumed to have a rectangular shape and must fit the shape of
the pre-partitioned blocks (see section 4); (iv) each input task can
only be placed in the block with corresponding size. This means an
input task with small size can not be directly placed in a medium
or large size block. The only way to use these resources is via the
block repartition mechanism described in section 3.2; (v) consid-
ering the lower number of biggest blocks (even with the potential
biggest blocks via merge process) compared to the number of other
size blocks, we set a higher priority to the largest size block. In the
current IF algorithm, this means the tasks in the smallest size range
can not use the resources initially assigned to the largest blocks.

3.4 Algorithm process and resources man-
agement

When a task arrives, the FSLL representing the best fit blocks is
chosen based on the size (S) of the arrival task. Thereafter, if there
are nodes existing in the FSLL at that moment, the available free
block represented by the first node is assigned to the new arrival
task, otherwise the split and merge process is initiated as shown
in the IF algorithm in the Figure 2. To reflect the current resource

1. /* for each arrival task */

3. /* output: position of suitable locaiton

5. {

8.     {

11.    }

13.    {

15.         return block_c;
16.     }
17.     return reject;

10.        return block_c;

2. /* input parameters: task_size, task_exe_time */

4. search_location(task_size, task_exe_time)

12.    else if((block_c = do_merge_split(task_size)) != NULL) 

IF Algorithm :

18.  }
19. end IF;

9.          update_related_linked_lists(block_c, task_exe_time);

14.         update_related_linked_lists(block_c, task_exe_time);

20. update_related_linked_lists(block, time)
21. {

24.  }
25. end update; 

23.     assing the "block" with "time" and add "block" into the USLL 

6.     block_list_x * = search_which_block_list(task_size);
7.     if((block_c = block_list_x −> next_block) != NULL) //Normal search

22.     remove the "block" from the FSLL respresenting block_list_x;

Figure 2. IF algorithm

usage, the FSLL and USLL are updated when a block is occupied
or freed, e.g. when the first block of slot A is occupied, as shown
in Figure 1 (B), the initial FSLL and USLL will be updated as
follows:

{slot A FSLL} → {slot A block2} → {slot A block3} →
{NULL}
{slot A USLL} → {slot A block1} → {NULL}

After the new task is assigned to the chosen block, the node rep-
resenting the block is removed from the FSLL and added into the
USLL. So, the first node in the FSLL always represents an avail-
able block if the FSLL is not empty. Hence the input task can
immediately be allocated to the block represented by the first node
without accessing other nodes in the FSLL. That is why we call
this algorithm “Immediate Fit”. It is different from the classical
“First Fit” (FF) approach, because the FF usually keep searching
the complete available resource until it finds an appropriate one.
In the worst case, it will access all available resources. The IF,
instead, exactly knows the only one position (the first node in the
chosen FSLL) it should access. If there is no available block in
the FSLL, the split and merge process is called. As shown in Fig-
ure 1(D), a 2A-size task arrives when all 2A-size blocks have been
occupied, the IF splits an available 3A-size block into one 2A-
size block and one A-size block. The two new blocks are named
twin blocks in this paper. The twin blocks store the pointers to
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their twin brother and original block (3A-size block for this case).
These pointers are used to recover the original block from the twin
blocks. This recovery process is initiated during the resource up-
date process if the twin blocks are all freed.

After the split process, the new arrival 2A-size task is allocated
into the 2A-size twin block. The A-size twin block can be added
into the FSLL representing the A-size block, the corresponding
linked lists update is shown in Figure 3. The A-size twin block
can also be merged with another A-size block to a new 2A-size
block, if the initially partitioned A-size block above is available,
e.g. the A-size twin block (Ss) and the above A-size block (So)
are merged into a new 2A-size block as shown in the right side of
Figure 1 (D).

When an occupied block is freed, its corresponding node will
be removed from the USLL and added back to the FSLL. If the
block is a pre-partitioned block, it will be added back to the first
position in the corresponding FSLL; if the block is created by split
and merge processing, this block will be added to the end of the
corresponding FSLL. The current IF algorithm does not support
the reallocation of placed tasks, so by adding the freed created
block to the end of the FSLL, the created block has the lowest
possibility to be used by the coming tasks. When the update pro-
cess initializes, the created block will be recovered back to the
pre-partitioned block if it is free.

Using the split and merge process, the resources on the FPGA
can be dynamically redistributed according to arrival tasks. And
during the update stage, if freed redistributed blocks are found,
the recovery process will be initialized to re-assemble these blocks
into the original pre-partitioned blocks which can be reused by all
different size tasks arriving in the future. In section 4.4 we will
present related simulation results about how many time the “split
and merge” and recovery process are initialized during application
execution.

4 Experimental evaluation

We compared the IF algorithm with fixed 1D, fixed 2D,
Bazargan’s first fit (BFF) and best fit (BBF) in terms of rejection
number, placement quality and execution time. All algorithms are
programmed using C, and executed under Linux 2.6 with Intel(R)
Pentium(R) 4 CPU 3.00GHz.

Each input task used in the simulation has two parameters (S,
T). S is the size of an input task and T is the computation time for
a task running on the FPGA. For BFF and BBF, the height (H) and
width (W) of tasks are also provided, which are used in the SSEG
(Shorter Segment) segmentation heuristic [5]. According to the
results shown in [5], the SSEG heuristic has the best performance
on a similar size FPGA as used in this paper, compared to other

Table 1. Size of frequently used IP cores
Reconfigurable IP core Size[CUs]

UART 50

100-tap FIR Filter 250

Floating Point Divider 435

DCT 600

JPEG Encoder 700

256 Point Complex FFT 850

Ethernet-MAC 1050

MPEG-2 Video Decoder 1300

heuristics. Simulations of all algorithms related to this paper are
implemented on the same size FPGA with an array of 96 × 96
configurable units (CUs).

We have generated four task types of various size ranges: T500,
T1000, T1500 and T[500, 1500]. The size of tasks in T500 are
in the range [10, 512]CUs, tasks in T1000 are in the range [513,
1024], [1025, 1536] for T1500 and T[500, 1500] is the mixed size
set. These sizes correspond to frequently used tasks as shown in
Table 1, collected from [11][1]. The tasks used in our simulations
have a rectangular shape and are randomly chosen from related
size ranges. Because the pre-partitioned block size used in the
IF algorithm is set in A, 2A and 3A in this paper, we require all
tasks used for IF, 2D, BFF and BBF to fit in these blocks, so we
can compare these algorithms. Although this constraint has neg-
ative effect on other algorithms when the tasks have large(small)
aspect ratio, we believe this constraint is reasonable and practi-
cal because real hardware modules are normally designed into a
rectangular shape with aspect ratio around 1 to achieve better per-
formance. Because the pre-partitioning example used in this paper
is set for the frequently used IP cores, so the IF algorithm does
not support block size more than 3A, however, when required, the
IF can also be set to support various size requirements. For each
task, the computation time is randomly chosen from the range [5,
100] time units. The task arrival time is randomly generated in
the range [5, 25]. One time unit is assumed to be 50ms, so the
computation time for tasks is from 250ms to 5000ms [11]. The
same task sets are used in the simulation of all 4 algorithms. For
the IF algorithm, the initial partitioning is three slots as shown in
Figure 1 (A), A = 16 and the width of the block is 32. These
blocks can fit all of the frequently used IP cores listed in Table 1.
Also, as mentioned earlier, according to the requirements of vari-



ous applications, the number and size of blocks can be adjusted in
advance to optimize performance. For the 2D algorithm, the fixed
partitioning is the same as the initial partitioning of IF algorithm;
for the 1D algorithm, six full height slots are set with a width of
16, as shown in figure 4. Each slot is suitable for the largest task

Block
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Block

h = 2A

Block

h = A

Block

h = 3A

S = 2A

S = 3A

S = A

(A) Fixed 1D

FPGA

Figure 4. Fixed 1D and 2D model

size used in the simulation. All tasks used for the 1D algorithm
simulation are constrained within the partitioned slot, which is the
rectangle of 96 × 16 CUs.

4.1 Rejection number

For each task type, 100 sets were tested in our simulation. Each
set has 1000 tasks. The rejection number is defined as the number
of rejected tasks in one set. In our current algorithm, only non-
preemptive tasks are supported. If a task is accepted, it will operate
on the FPGA for the period of its computation time T. If there is
no suitable location for the arrival task, this task will be rejected
and it can only run on the main processor as a software module.
The average value of the rejection numbers for each set is given.
In Figure 5, the rejection number for 1D is the same irrespective
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the task sizes, which is around 70. A similar situation holds for
2D for the first three task types, however the rejection number is
much higher, i.e. around 400. This is because the number of pre-
partitioned blocks used in 1D and 2D is fixed. For each task type
of T500, T1000 and T1500, 1D can provide 6 blocks, while 2D
can only give 3 blocks. The IF shows a lower rejection number,
which is on the average 23. The BFF and BBF outperform all other
algorithm in simulating with T500. However, The performance of

BFF and BBF decreases when the task size increases. The reason
is that the area becomes more and more fragmented which will
result in a higher rejection number. This phenomenon is more
obvious for large size input tasks as shown in T1000 and T1500.
The rejection number of IF is around 3.7 times and 2.3 times lower
than that of BFF and BBF in T1000 and T1500 respectively. The
IF algorithm, with split and merge process, can provide as many
required size blocks as possible. For the mixed size tasks, the
IF also achieves the best performance, the rejection numbers are
3, 3.5, 2.7 and 1.7 times lower compared with 1D, 2D, BFF and
BBF respectively. Overall, the IF algorithm has lower rejection
numbers compared to other algorithms except for BFF and BBF
in smallest task sizes.

4.2 Placement quality

In this subsection, we will describe the proposed new model
for measuring placement quality. Firstly, some definitions used in
the following discussion are given; then the mathematical expres-
sions of the model are explained; finally, the simulation results of
the model is presented and analyzed.
Waste rectangle: in the flexibly partitioned FPGA area model,
the waste rectangle is defined as the rectangular area smaller than
the minimum task size in the currently running application, e.g. in
figure 6 (a) the area A is smaller than the size of any task in the
application, so this area A is a waste rectangle which can not fit
any task in the application.
Real resource wastage: in the pre-partitioned FPGA area model,
the real resource wastage is defined as the area unoccupied by the
placed task in its assigned pre-partitioned block as shown in figure
6 (b), which is referred to as mismatch area; in the flexibly parti-
tioned FPGA area model, the real resource wastage is the sum of
the area of the waste rectangles. In previous task placement algo-
rithms, only this real resource wastage is taken into account when
calculating resource wastage.
Imaginary resource wastage: for both FPGA area models, the
imaginary resource wastage is defined as the area designed for the
rejected task when running on the FPGA. This definition is based
on the assumption that the task is successfully allocated on the
FPGA.
Life time: for a hardware task or an area on the FPGA, the life
time means the period they exist on the FPGA; for an application,
the life time means the period from the beginning of the applica-
tion to the ending of the application.

A

Placed task 1

Placed task 2

Placed 

task 

Mismatch 

area 

Pre-partitioned 

boock
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Figure 6. Resource wastage by placed tasks

By adopting the complex number representations, our model,
which is named “placement quality measurement in complex num-
ber domain” (PQM -IC), uses complex numbers. The PQM -IC



contains the following equations:

Aac =

∑n
i=1((Sblock − Saci)× Tlifei)

Sall × Tapp
× n

m + n
......(1)

Aac =

∑
(Sless × Tperiod)

Sall × Tappless
× n

m + n
......(1)′

Brj =

∑m
j=1(Srejectj × Tlifej)

Sall × Treject
× m

m + n
......(2)

qm = Aac + iBrj ......(3)

Qm =
√

A2
ac + B2

rj ......(4)

tan a =
Brj

Aac
......(5)

In equation (1), Sblock represents the size of the block assigned to
the accepted task i; Saci is the size of accepted task i; Tlifei is the
life time of task i; Tapp is the application life time. In equation
(1)′, Sless is the size of a waste rectangle; Tperiod is the life time
for the waste rectangle; Tappless is the total application execution
time when there are waste rectangles on the FPGA. In equation (2),
Srejectj stands for the size of the rejected task j and Treject for is
the total life time of rejected tasks if they are mapped on the FPGA.
For these three equations, Sall is the size of the complete FPGA;
m and n stand for total number of accepted tasks and rejected tasks
respectively.

As shown in equation (3), the placement quality defined in this
paper uses complex number whose real part Aac and imaginary
part Brj are related to real resource waste and imaginary resource
waste respectively. In equation (1) where the Aac is defined for
pre-partitioned FPGA area model (e.g. fixed 1D, fixed 2D and IF
in this paper), the numerator represents the sum of the product of
real resource wastage and its life time; the denominator is given
as the product of the complete FPGA area and the life time of the
application; the quotient of them reflects that how many percents
of the FPGA resource are wasted by placed tasks during the ap-
plication execution. Then by multiplying the rate of the placed
task taking from the number of total input tasks, we average the
resource wastage caused by placed tasks. In equation (1)′, the Aac

is defined for flexibly partitioned FPGA area model (e.g. BBF and
BFF). The equation (2) defines Brj for both pre-partitioned and
flexibly partitioned FGPA models. The equation (1)′ and (2) holds
similar explanation as that of equation (1).

Equation (4) gives the absolute value of placement quality (Abs
placement quality) which is used for our comparison as shown in
Figure 7. For online placement algorithms, small Abs placement
quality are expected. The small value reflects the low real and
imaginary resource wastage, which implies that the FPGA is effi-
ciently used during the application execution. In equation (5), the
angle a [degree ◦] is named contribution factor, the value of a re-
flects the contribution to the Abs placement quality from both real
resource wastage side and imaginary resource wastage side. Large
values for a imply relatively larger average imaginary resource
wastage (Brj) compared to real resource wastage(Aac) during the
application execution. This corresponds to three situations: 1) rel-
atively large number of tasks are rejected, 2) few tasks with long
life time are rejected, 3) combination of 1) and 2). These cases
imply that the task placement algorithm used in the reconfigurable
system can not efficiently use the FPGA when running the appli-
cation.

In the 1D model, the fixed slots are partitioned to fit the largest
task. A small task placed in such a slot brings a large amount of
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Figure 7. Placement quality

real resource wastage which gives a large Abs placement qual-
ity. That is why the Abs placement quality of the 1D decreases
when the input task size increases as shown in Figure 7. For the
2D model, the Abs placement quality increases when the task size
gets larger. The reason is that the number of blocks corresponding
to each task type is fixed, so the Abs placement quality seems to
be proportional to the task size. BFF and BBF perform better with
the small task size (T500) and the mixed task size(T[500, 1500]).
However, with task size increasing, the Abs placement quality in-
creases dramatically as shown in T1000 and T1500 of Figure 7.
This is because the larger task set implies the larger waste rect-
angles. These waste rectangles can not fit any task in the appli-
cation during their life time, which further bring high task rejec-
tion numbers. Thanks to the block repartition mechanism and the
pre-partitioning on the FPGA, the IF algorithm provides required
blocks as many as possible and places the new tasks in the blocks
best fit. Overall, the IF has lower average Abs placement quality
(2.5%) compared to 1D (7.8%) and 2D (3.8%), and it achieves bet-
ter performance (2.7%) compared to BFF and BBF in T1000 and
T1500 (4.2%).

As shown in Figure 7, the algorithms have similar Abs place-
ment quality in T1000 except for 1D. In this situation, the val-
ues of Abs placement quality can not explicitly show the perfor-
mance differences of these algorithms. By using our PQM -IC
model, the coupled placement quality vectors can be mapped onto
the complex number plane as shown in the left side of Figure 8
(The right side shows the related data), which explicitly depict the
algorithm performances during the application execution. In order
to make the figure clear, we did not follow exact scales, but kept
the originally related positions of these placement quality vectors.
For the 1D, the small contribution factor a (3.67◦) and large Abs
placement quality imply that during application execution, most
input tasks can be allocated by paying price of high real resource
waste. In addition, this analysis implies that the 1D algorithm can
be improved by making smaller pre-partitioned blocks. The 2D
algorithm has the biggest contribution factor reflecting the high
imaginary waste, which is normally brought by high task rejection
rate. This means during the application execution, the FGPA can
not be efficiently used by implementing the 2D task placement al-
gorithm. For the other algorithms, a similar interpretation holds.
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4.3 Algorithm execution time

An important aspect of dynamic partial reconfiguration is the
speed with which an allocation can be computed. In the algorithm
execution time evaluation, we compare the IF algorithm execution
time with execution time of 1D, 2D, BBF and BFF. The longest
computation time, which is for BBF using T500, is used as the
baseline. Execution time for other items will be given as a per-
centage to this baseline. In our implementation of 1D and 2D, we
also use linked lists to represent resources usage.

Execution time

0

10

20

30

40

50

60

70

80

90

100

T500 T1000 T1500 T[500, 1500]

Task size

(%
)

1D

2D

BBF

BFF

IF

Figure 9. Algorithm execution time

It can be observed from Figure 9 that the 1D and 2D algo-
rithms have the shortest execution time; the execution time of the
IF is also short, but 10% longer compared with 1D and 2D. This is
because the 1D and 2D algorithms only check the first node in the
free space linked list for an arriving task, while the IF algorithm
further can implement the split and merge process for task alloca-
tion if required. The computational complexity for each of them is
O(1).

The BFF and BBF have the longest execution time. In BBF,
all available free rectangles will be examined to find the best fit
one for each arriving task, while the BFF only chooses the first
fit free rectangle in each task type. The computational complexity
for BBF is O(n) and the worst case complexity of BFF (the free
rectangles are additionally linked into a linear list [11] and n is the
number of tasks placed on the FPGA), is also O(n). For larger

Table 2. Data about stages during execution

No. of No. of No. of Split and Recovery
B16 B32 B48 merge calls calls

Initial 3 3 3 - -
Sim Tmix 1 5 2 3 242 249
Sim Tmix 2 1.39 6.22 1.39 148 177
Sim Tmix 3 1 1 5 222 231

task sizes, execution time for both of them decreases. This is be-
cause for larger size tasks, there are relatively fewer tasks that can
be allocated. Hence the number of free rectangles in the data struc-
ture is less than that for smaller size tasks, the time used in both
algorithms for finding a free rectangle and data structure update is
reduced.

Overall, although the execution time of IF is around 1.5x longer
than that of 1D and 2D, the superior performance in terms of the
rejection number and resource wastage compensate for slightly
longer computation time. Compared to BBF and BFF, our IF al-
gorithm has 2x to 3.3x speedup.

4.4 Self adaptive resource management

As shown in previous parts of this evaluation section, the algo-
rithms based on the fixed pre-partitioned FPGA models (e.g. the
1D and 2D used in this paper) bring worse overall performance
in terms of rejection number and placement quality compared to
those of the algorithms using the flexibly partitioned FPGA model
(e.g. the BFF and BBF in this paper). The reason is attributed to
the mismatch between arriving tasks and pre-partitioned blocks.
There are two kinds of mismatch, accept mismatch and reject mis-
match. In an accept mismatch, a small size task is placed in a
large size block, which bring obvious real resource wastage. In a
reject mismatch, a new large size task can not be assigned to the
FPGA resources which are pre-partitioned as small size blocks,
even if the total available resource is suitable for the new task.
This brings a high task rejection number and a high imaginary re-
source wastage. However, the fixed pre-partitioned model makes
resource management much easier compared to the flexibly parti-
tioned FPGA model. So the time used for free space searching and
resource data structure updating are much shorter.

The block repartition mechanism used in the IF algorithm ful-
fills the resources self adaptation function. During an application,
the split and merge process provides as many required size blocks
as possible, while the recovery process reassembles these blocks
to the original blocks when they are released, which makes the re-
sources highly reusable. In this way, there is lower possibility of
the two kinds of mismatch happening in the IF algorithm.

A mixed task set, Tmix (we consider it as an application), is
generated to simulate this resource self adaptation mechanism. In
order to demonstrate this capability, we run the following simu-
lation. There are three continuously sequential stages in the ap-
plication: Tmix 1(724, 171, 105), Tmix 2(164, 715, 119), and
Tmix 3(200, 256, 542). Different stages have their own demand
for block size. For example, the Tmix 2 stage contains 164 T500
tasks, 715 T1000 tasks and 119 T1500 tasks, which reflects high
demand for medium size blocks. The column 2 to 4 of the table 2
shows the average number of various-size blocks during each stage
of the application. The figure 10 shows the percentage of FPGA
resource averagely used by various-size blocks during each stage
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of the application. The B16, B32 and B64 refer to the small block,
medium block and large block respectively. As shown in figure 10
and table 2, during different stages, the IF algorithm automatically
redistributes the FPGA resources at run-time according to various
demands. This means that the area allocation and subsequent us-
age reflects the specific application requirements for the FPGA re-
sources. For example, during the Tmix 2 stage, the average num-
ber of medium size blocks is 6.22 on the FPGA. Corresponding
to Figure 10, around 70% of the FPGA resources are used for the
6.22 medium size blocks during that stage. The same situation can
be observed in other stages. In the last two columns of the table
2, the initialization times of “split and merge” and recovery func-
tions during different stages are shown, these two types of opera-
tions brings the flexible and expected resource redistribution and
resource recovery during the application execution. Without these
operations, the IF will perform similarly to the fixed 2D, which
are much worse than the experimental results of the IF algorithm
as shown earlier.

5 Conclusion and future work

In this paper, we proposed a new algorithm for on-line task
placement for the FPGA-based partial reconfiguration system. In
spite of certain constraints that apply, our experimental validation
has shown that the IF algorithm has better overall performance for
all task sizes. In the future, our work will focus on: (i) relaxing
some of the constraints to make the IF algorithm more flexible; (ii)
to support more specific location requirement, such as the arrival
task requirement for I/O pins; (iii) to provide preemptive tasks
support, we are planning to develop an on-line scheduler, which is
another key part for preemptive support; (iv) task relocation; (v)
to provide flexible inter-task connection.
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