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Abstract – In this paper, a variational message passing frame-
work is proposed for Markov random fields. Analogous to 
the traditional belief propagation algorithm, variational mes-
sage passing is performed by only exchanging messages be-
tween adjacent nodes in a graph and updating local estima-
tions, but with more energy and computation saving 
achieved. Explicit forms for distributions in the exponential 
family are derived and applied to a distributed estimation 
problem in wireless sensor networks. Furthermore, struc-
tured variational methods are explored to improve the esti-
mation accuracy, whose performance is elaborated in a 
Gaussian Markov random field, by both theoretical analysis 
and simulation results. To our best knowledge, this is the first 
work to explicitly apply the structured variational approach 
in wireless sensor networks.  

Keywords: Variational method, mean field, sensor networks 

I. INTRODUCTION 

Distributed and energy efficient in nature, message passing algo-
rithms, like belief propagation (BP) [1], are attractive for wireless 
sensor applications [2]. However, BP and other relevant algo-
rithms are known not always to converge in general graphs and 
less powerful in handling continuous variables. Although sam-
pling methods can be used for approximation, they are computa-
tionally intensive, stochastic in nature and difficult to analyze. 

Variational methods [3], which have been used in physics, 
artificial intelligence, image processing, etc. for years, involve 
the minimization of the Kullback–Leibler (KL)  divergence be-
tween the target probability distribution and some “simpler” 
variational distribution. They can be applied to a variety of 
graphical models, whether acyclic or cyclic, discrete or continu-
ous. Actually, BP can be regarded as a special case of variational 
methods with respect to optimizing the “Bethe free energy” [4]. 
However, the application of variational methods in wireless sen-
sor networks (WSN) is still largely unexplored [5].  

Probabilistic inference lies in the core of a wide range of 
sensor applications, like localization, tracking and time synchro-
nization. In general, the objective of distributed inference is to 
compute the posterior probability, given a set of observations and 
some underlying graph model. Variational message passing 
(VMP) has been proposed in [7] for directed Bayesian networks, 
where many advantages over conventional inference methods 
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were observed. In this paper, we derive a variational message 
passing framework for Markov random fields (MRF), which is 
considered as more suitable for modeling sensor networks. In 
particular, we formulate explicit message passing rules for distri-
butions in the exponential family, which covers a large class of 
probabilistic models, and show that the proposed framework can 
be applied on the distributed time synchronization problem in 
wireless sensor networks.  

Inference on a flat network enjoys the benefits of uniformity 
in message formation and modeling convenience. However, 
higher accuracy and faster convergence can be achieved by orga-
nizing the whole network into a more structured one. Clustering 
technique has been utilized on improving network performance, 
lifetime and scalability [9]. Meanwhile, exploiting tractable sub-
structure in graphs is also proven an effective way to improve 
accuracy of variational methods [10][11]. However, structured 
variational approaches are mainly studied in the artificial intelli-
gence area, and little consideration is given on their applications 
in real networks. The graph partition algorithms (e.g.[12]) in this 
context may not be suitable for wireless network application ei-
ther, due to complexity concerns. This motivates us to further 
investigate how to exploit substructures of networks to improve 
variational methods in real systems, where a new distributed 
clustering algorithm may also be necessary. To our best knowl-
edge, this is the first work to explicitly apply the structured varia-
tional approach in wireless networks. 

The rest part of this paper is organized as follows. Section II 
formulates the general variational method and derives its mes-
sage passing form for MRF, which is also exemplified by a dis-
tributed time synchronization application in sensor networks. The 
application of structured variational methods is discussed in Sec-
tion III, where an accessorial distributed clustering scheme is also 
proposed. Section IV presents some supporting simulation results. 
Finally, concluding remarks are given in Section V. 

II. VARIATIONAL MESSAGE PASSING IN MRF 

A.  Variational Method and Mean Field Approach  

Assume 1[ ,..., ]T
NX X X= is an N-dimension random vector and 

1[ ,..., ]T
My y y= is the observation (M is not necessarily equal to 

N, as the following example shows). The basic idea of variation 
methods to estimate the posterior probability ( | )P X y is ap-
proximating it by a variational probability ( )Q X  through the 
means of minimizing the KL divergence 
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( )

( )( || ) ( ) log ( ) log ( | ) ,
( | ) Q XX

Q XKL Q P Q X dX Q P X y
P X y

= = − −∫ H (1) 

where ( )QH is the entropy of ( )Q X and 
( )Q X

 refers to expecta-

tion with respect to ( )Q X . Therefore the optimal marginal 
should be 

{ }*
( )

( )
( ) arg max log ( | ) ( )

Q X
Q X

Q X P X y Q= + H .  (2) 

One simple and widely adopted form for variational distribu-
tions is to assume all variables are independent: 

1

( ) ( )
N

i i
i

Q X Q X
=

= ∏ ,   (3) 

which is also referred to as the mean field (MF) approach. With 
this setting, it yields 

( )

( )

log ( | ) ( )

( ) log ( | ) ( ) log ( )

( ) log ( | ) ( ) ( ).
i ik i k

Q X

i i i i i iX X
ii i

k k k k iQ XX
i k

P X y Q

Q X P X y dX Q X Q X dX

Q X P X y dX Q Q
≠ ≠

+

= −

= + +∏

∑∏ ∏∫ ∫

∑∫

H

H H

(4) 

It is easy to verify that maximizing this objective function with 
respect to the marginal ( )k kQ X gives the standard Gibbs’ distri-
bution [3] 

*
( )

log log ( | ) const
i ii k

k Q X
Q P X y

≠

= +∏ .   (5) 

B. Variational Message Passing in Pairwise MRF 
Consisted of homogeneous nodes, Markov random fields 

(MRF) exhibit modeling convenience for sensor networks mostly. 
A pairwise MRF1 is an undirected graph ( , )V E  with maximum 
cliques of size 2, where each node i V∈  is associated with a ran-
dom variable iX . Define for each node a local potential func-
tion ( )i iXφ  , and for each edge ( , )i j E∈  a compatibility func-
tion ( , )ij i jX Xψ , the Hammersley-Clifford theorem [1] dictates 
that the posterior probability can be represented as the product of 
the potential functions and compatibility functions: 

,
( , )

1( | ) ( ) ( , )i i i j i j
i V i j E

P X y X X X
Z

φ ψ
∈ ∈

= ∏ ∏ , (6) 

where Z is a normalization factor (called partition function in 
physics).  

The exponential family includes a variety of widely used dis-
tributions in practice, like Bernoulli, Gaussian and Poisson [6]. In 
the following, we assume that both the potential functions { }iφ  
and the compatibility functions { }ijψ  belong to the exponential 
family, i.e. they take the form 

{ }( , ) exp ( ) ( )T
i i i i i i iX y X gφ ∝ +θ η θ ,        (7) 

{ }( , ) exp ( , ) ( )T
ij i j ij ij i j ij ijX X X X gψ ∝ +θ η θ ,         (8) 

                                                 
1 MRF with higher order cliques can always be converted into an equivalent pair-
wise MRF. 

whereθ ’s and η ’s are referred to as the natural parameters and 
sufficient statistics, respectively. 

To facilitate variational message passing, rearrange 
( , )T

ij ij i jX Xθ η  as a function of iX : 

( , ) ( ' ) ' ( )T T
ij ij i j ij ij iX X X=θ η θ η .  (9) 

Note 'ijθ may contain the term jX .Let ( )i iXη be the union of suf-
ficient statistics ( )i iXη  and ' ( )ij iXη , then the product of pa-
rameters and statistics in iφ  and ijψ  can be always expressed in 
term of ( )i iXη  (by inserting zeros in the appropriate positions in 
the parameter vectors if needed), i.e., 

( ) ( )T T
i i i i i iX X=θ η θ η ,            (10) 

( , ) ( ' ) ' ( ) ( )T T T
ij ij i j ij ij i ij i iX X X X= =θ η θ η θ η .   (11) 

We call iθ and ijθ  the extended natural parameters and ( )i iXη  
the extended sufficient statistics. 

It can be shown that the optimal approximation *
iQ  is also a 

member of the exponential family with sufficient statistics 
( )i iXη  and natural parameter vector 

*

( ) ( )k k k kk i k ii

i i ijQ X Q X
j≠ ≠∈Γ

= +
∏ ∏∑θ θ θ ,   (12) 

where iΓ stands for the neighboring node set of node i. Note 

( )k kk i
i iQ X

≠

=
∏

θ θ and
( ) ( )k k j jk i

ij ijQ X Q X
≠

=
∏

θ θ , We have the 

variational message passing rules in MRF for the exponential 
family as: 

• Messaging passing: 
( 1)

( )

( )n
jj

n
j i ij Q X

m
−→ = θ  ; 

• Parameter updating: ( ) ( )

i

n n
i i j i

j

m →
∈Γ

= + ∑θ θ . 

In other words, the message is the expectation of the extended 
parameter in the corresponding edge compatibility function. The 
node sums up all the messages from its neighbors and the ex-
tended parameter in its own potential function to get the updated 
parameter vector of the optimal variational distribution.  Notice 
its similarity with belief propagation (in the logarithm scale). 

C. Example-Distributed Time Synchronization in Wireless Sensor 
Networks 

We consider a distributed time synchronization problem as 
an example. Suppose in a sensor network, a pair of time differ-
ences is observed on each edge ( , )i j E∈ : 

ij i j ij

ji j i ji

y x x

y x x

ε

ε

= − +

= − +
,       (13) 

where ix , i V∈ , is the clock offset of node i, which we want to 
estimate. Stacking up the above equations yields 

Y HX ε= + ,        (14) 
where X is a | | 1V × state vector, Y is a 2 | | 1E × observation vec-
tor, H is a 2 | | | |E V×  matrix determined by network topology, 
and ε  is the noise vector.  
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Let ~ ( , )Z μ ΣN be a Gaussian random vector with 

mean μ and positive definite covariance Σ . One can define a new 
set of parameters ( , )ϑ Λ by 1ϑ μ−= Σ , 1−Λ = Σ , and alternatively 
denote 1~ ( , )Z ϑ− ΛN . Using these notations, we dictate  

1 1 1( ) ~ ( , ) ~ ( , )P X μ μ− − −Σ Σ ΣN N , ( ) ~ (0, )P Rε N ,     (15) 

where μ and | | | |[ ]ij V V×Σ = Σ respectively represent the mean vector 

and covariance matrix of  clock offset and 2
2| | 2| |E ER Iσ ×= is the 

covariance of noise. Define matrix 
1 1TU H R H− −= Σ + ,       (16) 

then we have 
1 1 1 1 1( | ) ~ ( , ) ~ ( , )T TP X y U H R y U H R y U− − − − −N N . (17) 

The mean filed approach imposes that the approximate dis-
tribution takes the form 

   
2

2

( )
( ) ( ) exp

2( )
i i

i i
i V i V ii i

x q
Q X Q x K

q q∈ ∈

⎛ ⎞− −
= ∝ ⎜ ⎟−⎝ ⎠

∏ ∏ ,   (18) 

where iq and iiq  are the first and second moments of ( )i iQ x . No-
ticing that [ ]T T TH B B= − , with B being the incidence matrix of 
the underlying network graph and satisfying 

| | if 
( ) 1 if 

0 otherwise,

i
T

ij i

i j
BB j

Γ =⎧
⎪= − ∈ Γ⎨
⎪
⎩

  (19) 

we can get the extended natural parameters of the node potential 
and compatibility function as 

2

0
2 | |1

2
i i

ii σ

⎡ ⎤
⎢ ⎥= Γ⎛ ⎞⎢ ⎥− Σ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

θ  and 2

2

0

ij ji j

ij

y y X
σ

− +⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

θ .    (20) 

Using the variational message passing we derived in Section II.B, 
the natural parameter of the optimal variational distribution is 
updated by 

( 1)

( 1)

( )

( )

2

2
( )

( 1) 2

2

0 2
2 | |1

02

( 2 ) /

2 | |1
2

n
jj

i

i
n

jj

i

n
i i ij Q X

j

ij ji j

i
jii

Q X

n
ij ji j

j

i
ii

y y X

y y q

σ
σ

σ

σ

−

−

∈Γ

∈Γ

−

∈Γ

= +

⎡ ⎤ − +⎡ ⎤
⎢ ⎥ ⎢ ⎥= +Γ⎛ ⎞⎢ ⎥ ⎢ ⎥− Σ +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

⎡ ⎤− +
⎢ ⎥
⎢ ⎥= Γ⎛ ⎞⎢ ⎥− Σ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

∑

θ θ θ

. (21) 

This leads to the variational iteration formula for distributed time 
synchronization: 

( )( ) ( 1)
2

1 2
2 | |

i

n n
i ij ji j

jii i

q y y q
σ

−

∈Γ

= − +
Σ + Γ ∑ ,            (22) 

Which, when 0iiΣ = , coincides with the result obtained by 
Giridhar and Kumar through a least-squares approach in [8]. 

The iteration formula can be represented in matrix form as 
( ) 2 1 ( 1) 2 1( 2 ) (2 ) ( 2 )n T n TH H H yσ σ− − −= Σ + Γ Γ − + Σ + Γq q ,   (23) 

where {| |}idiagΓ = Γ . Denote matrix 

{ }2 1 1( 2 ) (2 ) 2 diag ( 2 | |)T
ii iK H H Aσ σ− −= Σ + Γ Γ − = × Σ + Γ × ,(24) 

where A is the adjacency matrix of the network graph. If 
0σ > and 0iiΣ > , the spectral radius of K satisfies 

2
1

2( ) max max | | 1
2 | |

n

ij ii ij ii i

K Kρ
σ=

≤ = Γ <
Σ + Γ∑ . (25) 

Therefore the iteration converges. 

III. DISTRIBUTED INFERENCE IN STRUCTURED NET-
WORKS  

A.  Structured Mean Field 
The above discussion reveals that the naive mean field approach 
is especially attractive for its computational simplicity. However, 
it may not yield sufficient accuracy and fast convergence due to 
the independence restriction on distributions. A natural idea for 
improvement is to integrate exact probabilistic inference algo-
rithms with the naive mean field method. In other words, if we 
could identify some tractable substructures (clusters) within the 
large graph model, then these substructures could be handled by 
exact methods. This is referred to as the structured mean field 
(SMF) method [3]. 

Given s clusters identified by some means, denoted 
by 1,..., sC C , the variational distribution Q factors across the clus-
ters as 

1

( )
i

s

i C
i

Q Q X
=

= ∏ .   (26) 

The update equations resulting from the structured approxi-
mation are exactly analogous to the naive mean field method. 
The intuition behind is that we can interpret the structured mean 
filed method as a mean field approach over “mega vari-
ables”

iCX . Within a cluster, any exact or more accurate infer-
ence algorithms can be used, like junction tree or (loopy) belief 
propagation. We can expect, as the cluster size (the number of 
nodes in one cluster) increases, exact algorithms are performed 
on more nodes, which should result in a better approximation, 
while this also inevitably increases the computation burden. So 
it’s important to choose an appropriate cluster size and associated 
structure to balance approximate accuracy and computation com-
plexity. 

B. Distributed Clustering Algorithm 
Identifying substructures is a non-trivial problem, for which 

very few automated solutions have been proposed [12]. In the 
following, we describe a simple distributed algorithm to con-
struct a clustered structure within the large network, which will 
be used as a basis for structured variational message passing. 
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More delicate clustering schemes suitable for structured inference 
in wireless networks are open for the further investigation. 

First, we assume sensor nodes are aware of their own de-
grees and neighbors’ degrees information. This can be achieved 
through local broadcasting. Then every node sets its probability 
of becoming a cluster head (CH) as follows: 

max max

residual
prob prob prob

E DCH E D
E D

= + ,     (27) 

where residualE and maxE denote its current residual energy and the 
maximum energy level, D and maxD are its own degree and the 
maximum degree of itself and its neighbors. probE  and probD  
represents the selection weights for energy and degree, con-
strained by 1prob probE D+ = . The underlying rationale is that 
nodes with larger degrees are generally more correlated with oth-
ers, therefore more suitable to be CHs. Taking residual energy 
into consideration tries to avoid that larger-degree nodes are 
quickly depleted of energy supply. Once the CHs are selected, 
they broadcast cluster formation messages to their neighbors, 
bearing the maximum hop (Max_Hop) and the correlation thresh-
old ( thφ ) information. Max_Hop constrains the maximum hops 
from a child node to the CH, while thφ is used to determine how 
likely that a node belongs to a cluster. A node hearing this broad-
cast will join the cluster if its current hop is less than Max_Hop 
and the edge potential function is greater than thφ . The clustered 
nodes will continue forward this message until Max_Hop 
reached. At last, nodes that don’t hear any messages from 
neighbors or withhold from joining other clusters within T sec-
onds are forced to be CHs.  

This algorithm is fully distributed, and can flexibly control 
the cluster size (by Max_Hop) and cluster concentration (by thφ ). 

C. Distributed Inference in Structured Gaussian Markov 
Random Field 

We elaborate the structured variational method in a Gaussian 
Markov random field, which is a widely adopted model in theo-
retical studies and many practical situations. 

Assume X  is a Gaussian Markov random field and each 
node is only associated to a spatial component iX  of it. Each 
node makes a noisy linear observation 

,i i i iy H x ε= + 1, ,i N= ,       (28) 

where channel gain matrix iH  is assumed known, and noise iε  is 
Gaussian with zero mean and variance 2

iR σ= .  

The prior marginal (assumed the same for all nodes) and 
joint correlation functions are formulated as 

1 2 2( ) ( ,1 )i i S S Sp x μ σ σ−= N ,                       (29) 
1( , ) ( [1,1] , )T

ij i j ij S ijp x x μ−= ϒ ϒN , ij ∈ Γ ,             (30) 

where  

2 2

11
1(1 )

ij
ij

ijS ijσ
−Σ⎡ ⎤

ϒ = ⎢ ⎥−Σ− Σ ⎣ ⎦
.               (31) 

Belief propagation is used for intra-cluster inference, where the 
messages and node beliefs are all Gaussian distributed. Assume 
the message ( )n

ijm  and the belief ( )n
ib  are parameterized by 

( ) 1 ( ) ( )( ) ~ ( , )n n n
ij ij ijm x Vμ−N  and ( ) 1 ( ) ( )( ) ~ ( , )n n n

i i ib x q W−N , 

we have obtained the updating rules as [14] 

( )
( )

( )

( 1) 2
\{ }( )

22 2 ( 1)
\{ }

( 1) 2
\{ }( )

2 2 ( 1)
\{ }

(1 )

(1 )1 (1 )

1
1 (1 ) ,

i

i

i

i

n
k jij i ki S S ijn S

ij n
S ijk jS ij i ki

n
k ji ki Sn

ij n
k jS ij i ki

V V

V V
V

V V

μ μ μ σ μ
μ

σσ

σ

σ

−
∈Γ

−
∈Γ

−
∈Γ

−
∈Γ

⎧ Σ + + + Σ∑
⎪ = +

+ Σ+ − Σ +⎪ ∑⎪
⎨

+ +∑⎪
=⎪ + − Σ + ∑⎪⎩

(32) 

with 
1 2

1 2

(1 | |)

(1 | |) ,

T
i i i i i S S

T
i i i i i S

H R y

V H R H

μ μ σ

σ

−

−

= + − Γ

= + − Γ
   (33) 

and  
( ) ( )

( )
( ) ( )

( ) .

n n
k N ii i ki

n n
k N ii i ki

q
W V V

μ μ∈

∈

⎧ = + ∑⎪
⎨ = + ∑⎪⎩

         (34) 

In a clustered graph, the posterior probability could be re-
formulated as 

,
1( | ) ( ) ( , )

i i i j i j

i j Ci

C C C C C C
C C C

P X y X X X
Z

φ ψ
∈ ∈Γ

= ∏ ∏ ,       (35) 

where { }iC C= denotes the entire cluster set. The Markov blanket 
(MB) of cluster iC , ( )iMB C is the set of all nodes outside 
of iC but connected to some nodes in iC , and the clusters that in-
tersect with ( )iMB C are called the Markov blanket clusters 
(MBC) of iC , denoted by

iCΓ . Fig. 1 gives a conceptual illustra-
tion for MB and MBC.  

... ...

... ...

... ...

...
1C

 
Fig. 1 The Markov blanket (shaded nodes) for Cluster C1 . The 

shaded clusters constitute
1CΓ  (reproduced Figure 1. in [13]) 

The extended natural parameters of the cluster potential and 
cluster compatibility functions are 

2[ / 2 ]
i iC Cy σ=θ  and { }[ / 2],

i j iC C ij j i CX i C j= −Σ ∈ ∈ Γθ .  (36) 

Inter-cluster updating in this setting, by applying mean field 
equations, equivalently yields 
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, ,

( )i

i new i old ij j
j MB C

y y m
∈

= − Σ∑ , ii C∈ .      (37) 

That is, the nodes use the estimates of the neighbors in their 
Markov blanket to get “new” observations, and use these “new” 
observations for the next round intra-cluster inference. 

For the structured variational method, we have the following 
theorem: 
Theorem 1: In a Gaussian MRF, the structured variational 
method using GBP as the intra-cluster inference algorithm con-
verges. 

Proof: See appendix. 

IV. SIMULATION RESULTS 

In this section, we present some numerical results to support the 
previous analysis, by comparing the performance of BP, MF and 
SMF on the same network. A snapshot of the network topology 
is shown in Fig.2, where 150 sensor nodes are randomly distrib-
uted in a unit plane and clusters are formed by using a simplified 
version of our proposed clustering algorithm. Nodes belonging to 
different clusters are indicated by distinct markers, while the 
cluster headers are plotted by shaded triangles. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Fig. 2 Snapshot of a clustered network with 150 nodes 

We adopt a similar simulation setting as in [16], where the 
true x is estimated from the noisy y in a Gaussian MRF, as shown 
in (28) . For simplicity, the channel gain iH is assumed to be 1. 
All the other parameters take the values in [16]. The estimation 
mean square error (MSE) is used as the comparison metric, de-
fined by 

2 2
ˆ ˆ ˆ/mMSE x x x= − ,   (38) 

with ˆmx denoting the estimation after mth iterations, and x̂ being 
the exact estimation (the MMSE solution). 

Fig. 3 compares the convergence rate of these three ap-
proaches, where the number of clusters is set to 65 and 15 respec-
tively for SMF. The results verify that BP converges faster than 
the other two (alternatively is more accurate with iteration num-
ber fixed). But we also observe that even when the network is 

divided into very small clusters (65 clusters, corresponding to 2-3 
nodes per cluster on average), SMF can significantly speed up 
the convergence. A fairly large cluster size (15 clusters, corre-
sponding to 10 nodes per cluster on average) achieves almost 
indistinguishable performance to that of BP. 

0 10 20 30 40 50 60

10-4

10
-3

10-2

10-1

100

MF
BP
SMF

Cluster Number = 65

Cluster Number = 15

 
Fig. 3 Mean square error of estimation versus iteration number 

Another important factor for sensor applications is the en-
ergy consumption. This is compared for the three algorithms in 
Fig. 4, where we assume for simplicity that the communication 
energy per message is proportional to the square of the distance 
between two communicating nodes, and the computation energy 
is neglected. It is evident that SMF consumes least energy to ob-
tain the same estimation accuracy, which testifies its superiority.  

0 50 100 150 200 250
10

-5

10
-4

10
-3

10
-2

10
-1

BP
MF
SMF

Cluster Number = 65

Cluster Number = 15

 
Fig. 4 Mean square error of estimation versus communication energy 

Fig. 3 and Fig. 4 jointly indicate that larger cluster size helps 
improve estimation accuracy, while smaller cluster size leads to 
better energy efficiency. Therefore an appropriate cluster size 
should be selected depending on applications. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we develop a general variational message passing 
framework for Markov random fields. Particularly, its explicit 
forms for distributions in the exponential family are derived and 
applied to distributed time synchronization in wireless sensor 
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networks. Structured variational methods are also explored to 
further improve the performance. Our future work includes ex-
ploring its application in more scenarios (e.g. non-linear estima-
tions) and more in-depth analysis. 
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APPENDIX- PROOF OF THEOREM 1 

Combining inter- and intra-cluster updates, we can see the in-
verse message variance updating in belief propagation is inde-
pendent with mean field approach. So we can follow the work in 
[15]. Define the function 
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First we have 

Lemma 1: ( )ijF V is continuous, monotonic and bounded for 
V>0. 

Proof: Define function 
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where 21i SVα σ= + , 2 21 (1 )S ij iVβ σ ρ= + − , 2 2(1 )S ijγ σ= − Σ . Since 

1/ 0γ > and 2 2 2/ /[ (1 )] 0ij S ijα β γ σ− = −Σ − Σ < , it’s straightforward 
to verify that ( )f x is continuous, strictly increasing and bounded 
by (0,1/ )γ . This leads to the convergence of the inverse variance 
iteration.  

Now assuming the inverse variance has already converged, 
we can analyze the convergence of message mean. 

Lemma 2: Define function 
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then ( , )ijG Vμ is a contraction mapping with respect to μ , i.e. for 
any μ and 'μ , there exists (0,1)η ∈  such that 

( , ) ( ', ) 'ij ijG V G Vμ μ η μ μ− < − .  (42) 

Proof: From the definition, we can choose  
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which satisfies the contraction mapping condition. 

Now taking inter-cluster updating into account, the change in 
observations (37) will only reflect on iμ , which will be cancelled 
out in ( , ) ( ', )ij ijG V G Vμ μ− . So Lemma 2 still can be applied. 
That is, the overall iteration converges. 

This concludes the proof of Theorem 1. 


