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Abstract— In this paper, we propose a simple, reactive method 
for multiple robots carrying out sequential low-visibility 
navigation in the presence of an observer. Initially, the robots 
have no map of the environment but know the locations of the 
observer and goal. They generate an occupancy grid 
representation of the environment which is modeled using 
potential fields with embedded task information. These fields are 
combined and navigation waypoints extracted. Each robot 
carries out its traverse independently and shares its experience 
with its successor. The experience information consists of the 
occupancy grid and a filtered version of the traveled path used to 
assist the subsequent robot to traverse a lower visibility path. 
This produces a robust and reactive solution for stealthy 
navigation since there is no global path planning and the robots 
are not committed to any particular path. Experiments in 
simulation and real outdoor environments substantiate the 
approach and demonstrate the advantage of sharing information 
to reduce cumulative visibility. The experiments also demonstrate 
the algorithm’s versatility in taking advantage of an environment 
that changes between robot traverses.  

Keywords-component; multi-robot; navigation; potential fields; 
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I. INTRODUCTION 
In concurrent tasks, adding contributors is intuitively 

expected to improve task performance. In many multi-robot 
tasks, this is the case up to some critical limit, after which 
additional robots decrease overall performance due to resource 
conflicts and physical interference. Tasks that require an 
element of stealth, i.e., low visibility of the robots, are 
examples where it can be expected that increasing group size 
decreases task performance due to the larger profile that results. 
Various stealthy multi-robot tasks can be performed on or in 
the presence of single or multiple observers, including locating, 
corralling, surrounding, and navigation. In each of these, the 
robots need to carry out the task while maintaining as low a 
profile as possible. While larger teams may result in a higher 
probability that the robots will be detected, there are also 
advantages to using multiple robots for stealth tasks: each robot 
adds its own sensory data and capabilities to the team to reduce 
overall team exposure.  It is our goal to determine these 
advantages of multi-robot stealth strategies and apply them to 
real multi-robot outdoor environments. In this paper, we 
present our initial approach to this problem by developing an 
algorithm for multi-robot navigation in the presence of a single 
observer. It is assumed the observer has unlimited omni-

directional sensing and the environment consists of objects that 
can occlude the robots from the observer's sensors. The team 
initially has no map of the environment but the locations of the 
goal and the observer are known.  

In our approach, the robots carry out their traverses one at a 
time, sequentially, and generate an occupancy grid 
representation [1] of the environment en route. The occupancy 
grid is modeled by potential fields [2], [3] along with task-
specific information such as observer and goal position. The 
combination of the fields forms an abstract view of the 
environment from which navigation waypoints are extracted. 
To take advantage of multiplicity, each robot commencing a 
traverse is provided with the occupancy grid and filtered path 
information from the previous robot. The filtered path is a 
waypoint list generated from events that occurred along the 
robot’s path. The successor robot uses this information to make 
decisions about waypoint selection and overwrites the provided 
occupancy grid with its ego-centric sensor data. By sharing 
information, each robot follows a lower-visibility path than its 
predecessor, and in the case of static environments, the paths 
are traversed more efficiently.  

To demonstrate the effectiveness of this approach, we 
conducted experiments both in simulation and in a real outdoor 
environment with three Pioneer AT mobile robots. The 
environment configurations allow the robustness of the 
approach to be evaluated in terms of low-visibility path 
selection, the benefits of sharing information, repeatability, and 
reactivity to a changing environment.  

This paper is organized as follows. Section II presents an 
overview of research related to stealthy robot navigation. 
Section III describes our algorithm for multiple robot stealthy 
navigation. Section IV presents experiments in simulation and 
in a real domain. Section V draws the conclusions and Section 
VI summarizes future directions for this work. 

II. RELATED WORK 
To date, there has been little research conducted for stealthy 

tasks with real robots. More popular, but distantly related, are 
the research areas of target tracking and predator/prey. 
However, tasks in these domains generally require the robots to 
be exposed to the target or prey; stealth is rarely a 
consideration.  

Research concerning stealthy tasks includes visibility-
constrained terrain evaluation for stealthy path planning [4] [5], 
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multi-vehicle sensor coverage algorithms [6], and single robot 
stealthy traverses in the presence of a known observer [7]. Each 
of these is examined in this section. 

Teng et al. [4] present an approach to low-visibility 
incremental path planning for an agent in the presence of 
observers with linear trajectories over a digitized terrain. Their 
approach uses a massively parallel hypercube machine to assist 
in determining the visibility constraints from the observers’ 
projected positions at each planning interval. Waypoint 
selection is determined by these constraints and the agent’s 
current trajectory. The resulting waypoints are positions in the 
environment that are guaranteed to be hidden from the 
observers and reachable by the agent within the planning 
interval.  

[5] describe methods of utilizing terrain features to plan 
stealthy paths through outdoor environments in the presence of 
an observer. The method involves extracting features from 
moving images that portray significant curves displaying 
permanence over multiple images. They rationalize that visual 
servoing techniques are better suited to stealthy behaviours 
than frontier-based methods which may fail at critical times 
during the traverse due to localization errors. 

 [6] examine the problems of locating strategic points in an 
environment to observe a specific area, and dynamic sensor 
positioning on vehicles traveling in a formation to maximise 
and balance coverage during a traverse. Both methods involve 
reasoning about the environment state, the vehicles’ sensor 
capabilities, and the task requirements. In the former method, 
candidate locations are evaluated in terms of their stealth 
versus their potential information content. The location that 
offers the most visibility and coverage is selected. Dynamic 
sensor positioning evaluates the current environment state and 
the position of the other vehicles in formation to determine the 
most effective scan pattern for each vehicle’s sensor. The scan 
pattern changes to focus on areas that contain potentially more 
information about threats such as open ground opposed to an 
area occluded by a nearby tree. 

Our approach is similar to the single robot stealthy 
navigation algorithm of [7]. The assumptions of an observer 
with unbounded detection range and an initially unknown 
environment are the same. The environment is mapped as an 
occupancy grid which is then modelled with potential fields. 
Waypoints are extracted from these fields in the areas between 
the robot and the goal with a preference for occluded areas. Our 
approach extends this concept to multiple robot teams and uses 
a different potential field approach.  

III. USING POTENTIAL FIELDS FOR STEALTHY NAVIGATION 
Potential fields have been used in many areas of robotics, 

including manipulator obstacle avoidance [2], reactive 
navigation [3], and robot soccer [8]. They provide a beneficial 
medium for modeling various elements of the robot’s task and 
environment. The fields can be combined and regions of 
interest analysed to extract important task-related information. 
Using a simple path-planning example, global potential fields 
covering the entire environment can be used to represent the 
distances from the goal and from the robot’s location, and local 
high-valued fields to represent the obstacles. By combining 

these, the centroid of the lowest-valued region can be extracted 
as the next waypoint for the robot. Carried out iteratively, this 
ultimately results in an obstacle-free shortest path to the goal, 
since each step resets the robot’s field to a new location.  

Our approach uses the components of the above general 
potential field method, with an additional field to model the 
observer. The combination of these fields creates a virtual, 
task-relevant environment representation from which 
waypoints are extracted. In this representation, the effect of the 
observer’s location encourages less observable traversal paths. 
The main potential fields we use are generated from: 

• distances from the robot, observer, and goal, and 

• occluded areas (shadows) behind objects with respect to 
the observer’s position. 

The distance fields represent the distance from a specified point 
to the boundary of the environment and are modeled as either 
attractors (distances from the robot and goal) or repellors 
(distance from the observer). Examples of these are shown in 
Figure 1a and Figure 1b respectively. Areas in the environment 
that are not visible from the observer are modeled as ‘shadow’ 
attractor potential fields, as shown in Figure 1c. These are 
derived from the robot’s current occupancy grid.  

Figure 1. An example of the potential fields: a) attractive, 
b) repulsive and c) barricade shadow (attractive). Darker 
areas are more attractive for the robot to travel to. 

Each field has an associated bias parameter that determines 
its level of influence on waypoint extraction when the potential 
fields are combined. These biases are adjusted empirically for 
the environment configuration and the robot dynamics, which 
vary with the environment conditions. Since there are only a 
few potential fields in this method, there are few parameters to 
adjust. 

The method for generating and using these potential fields 
is shown in the algorithm below. It is decentralized, and 
executed on board each robot.  

Obtain the occupancy grid and filtered path from previous robot 
if applicable 

While not close to the goal 

Update the occupancy grid with current sensor scans 

Combine potential fields based on the occupancy grid 
objects, distances from the goal, robot and observer 

Add hysteresis to the last waypoint to reduce oscillations in 
waypoint choice 

Add local repellor potential field at robot’s position to 
discourage nearby waypoint selection  

Observer 
� 

Barricade 



Extract the centroid of the lowest valued region1 in the 
resulting potential field as a candidate waypoint 

Adjust waypoint position according to the following rules: 

• In general, if the waypoint is not forward of the plane 
located at the robot’s position and orthogonal to the 
goal heading, discard it and select one that is. There is 
a small level of variance allowed so the robot can 
travel away from this plane in order to negotiate a 
strategic barrier (illustrated in the initial part of robot 1’s 
traverse in Figure 4b). 

• If there is an object between the waypoint and the 
robot, the waypoint is relocated to a position between 
the robot and the corner or end of the object closest 
to the robot, but farthest from the observer.  

• From the robot’s position, if the waypoint is within five 
degrees of the next filtered path waypoint, use the 
filtered path waypoint instead. 

Update the filtered path waypoint list if necessary 

Navigate towards the waypoint 

Return 

Algorithm 1. The algorithm for selecting waypoints. 

To summarize, before a robot commences its traverse, it 
requests the occupancy grid and a filtered version of the path 
from the previous robot, if one is available. The occupancy grid 
shows the explored areas and objects in the environment. The 
filtered path is a series of waypoints derived from events that 
occurred during the robot’s traverse. These events are defined 
as deviations from the current heading by more than 30 degrees 
and places where the robot is about to cross a frontier between 
unobserved (shadow) and observed space or has crossed from 
observed space to unobserved. A waypoint from the filtered 
path of the previous robot is preferred over a potential field 
generated waypoint if they are along similar trajectories, as this 
produces smoother and faster paths.  

Figure 2. Example potential field view of a 55m by 55m 
environment extracted from the occupancy grid. The 

broken black lines indicate unobserved objects. 

                                                           
1 A region is used rather than a point to provide a more general 
and rational solution, to reduce the effects of sensor noise, and 

to keep the waypoints away from objects. The region size is 
empirically set to eight occupancy grid pixels or less. 

Figure 2 shows an example of the first robot during its 
traverse. The potential field is generated from the current 
occupancy grid. The objects (barricades) are the three white 
structures. Behind each are the ‘shadow’ potential fields cast 
from the observer’s position. Since low values are considered 
attractive, the algorithm selects waypoints in these areas. The 
waypoint adjustment rules ensure the selected waypoint is not 
behind the robot. Otherwise, the robot would not leave shadow 
regions until they were filled with the high-valued robot-
position local potential fields. This adjustment is evident in the 
figure with the next waypoint being between the robot and the 
goal, presumably in observed space.  

Also shown in Figure 2 is the robot’s path with the filtered 
waypoints superimposed. The path is light and dark grey, 
signifying where the robot assumed it was and was not being 
observed respectively. The filtered path waypoints in the figure 
are generally located before and after shadow frontiers. 

A waypoint attracts the robot until a new one is chosen 
allowing new environment information to be integrated into the 
reactive path planning. Figure 3 shows another traverse in the 
same environment as Figure 2 with the waypoints 
superimposed as grey dots and a broken white line connecting 
them for temporal clarity. These waypoints provide a crude 
path for the robot but since they are forward-projected, they 
tend to ‘tow’ the robot towards them until another is selected. 
Also, these points are generated with the current environment 
information available at the time which, viewing them 
retrospectively in the more complete figure shown may make 
them appear in odd locations. For example, the waypoint inside 
the upper right barricade appears to be erroneously selected 
since the robot cannot travel inside the barricade. However, at 
the time it was chosen, the barricade extents had not been 
sensed. 

Figure 3. The effect of the waypoints (grey dots) on the 
robot’s path (solid line). 

IV. IV. EXPERIMENTS 
Experiments were conducted in simulation and real 

environments to demonstrate and validate our approach. The 
simulation experiments were carried out on the Stage simulator 
using Player devices [9]. Apart from being a valuable 
development tool, the simulator is beneficial for creating 
different environments for testing the algorithm’s robustness. 
The verisimilitude of the simulator should produce similar 
algorithmic performance to its real counterpart if it is to be 
useful. However, it is difficult to simulate the uncertainties of a 
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real environment. In outdoor environments, the performance of 
the robots is affected by various environmental conditions that 
can change depending on the type and time of day. Sunlight 
affects laser rangefinders, GPS satellite position and terrain 
openness affect GPS-based localization, and terrain surface 
variations (mud, dew, sand, etc.) affect the robot’s dynamics. 
This is in addition to the usual noisy sensors and localization 
errors. Nevertheless, if the variation in these uncertainties is not 
extreme, we expect the robustness of the software architecture 
and the algorithm to accommodate them and produce 
repeatable and predictable performance. 

The environment in these experiments is a relatively flat 
lawn-type area measuring approximately 35m x 35m illustrated 
in Figure 4a and Figure 6a. The configuration of the barricades 
is chosen to highlight the theme of each experiment. The size 
of the occupancy grid and global potential fields for the robots 
is 150 by 150 pixels which results in an environment resolution 
of 233 mm.  

Three Pioneer AT robots were used in each experiment, 
equipped with SICK laser rangefinders (configured for 8m) for 
occupancy grid generation and obstacle avoidance, and DGPS 
and a 3DMG IMU for localization. In simulation, robots had 
near-perfect localization. In the real environment, localization 
precision was generally 1.5 m or better. The robots were 
controlled using the Player interface which allows near-
seamless transportability between programs developed in 
simulation and the real environment.  

Before each experiment commenced, the potential field 
parameters were empirically tuned for the initial environment 
configuration. For real experiments, the tuning was also 
required to account for the dynamics of the ATs in response to 
the current environment conditions. The parameters were 

copied to each robot and did not change during the  
experiment.  

Performance in each experiment was evaluated in terms of 
the time each robot took for its traverse, the distance it traveled 
and, most importantly, the amount of time it was in the 
observer’s sensor range. Additionally, for the simulation 
experiments, one-way ANOVA significance tests were 
performed.  

A. Experiment 1 – The benefits of multiple robots 
The goals of this experiment are to demonstrate the 

algorithm’s path selection and the improvement of stealthy 
traverses from the use of shared information. The experiment 
was repeated three times in the real environment and ten times 
in simulation. Each robot started after the previous had reached 
the goal. This enabled the complete traverse experience to be 
transferred to the subsequent robot. The simulation and real 
environments had a similar barricade configuration as shown in 
Figure 4a. The main difference between the two environments 
is the location of the goal. In the real environment, the goal was 
placed higher due to the fence line shown in the lower right of 
the images in Figure 5. 

An example simulation trial is shown in Figure 4b. The 
robots’ paths are superimposed on the third robot’s final 
occupancy grid. The observer’s location is the shown at the 
bottom center of the diagram and the goal location behind the 
barricade on the right. The black regions indicate known areas, 
grey unknown and white indicates an object. Figure 5 shows an 
example of a real robot trial. Each robot’s path is shown on the 
potential field generated at the end of the traverse. In both 
Figure 4b and Figure 5, the paths also show the filtered 
waypoints that were passed on to the subsequent robot. 

Figure 5. A typical example of the three robot traverses in the outdoor environment. Localisation variations between 
runs placed the goal and observer in slightly different locations. Also, there are artifacts shown near the goal in the left 
and centre images. Despite the noisy environment representation, the robots produced repeatable performance in all 

runs. 

Figure 4. a) Overview of the environment for      b) A simulation run with all robot traverses 
experiment 1.                   superimposed on the third robot’s occupancy grid. 
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The most noticeable difference in robot paths is between 
the first traverse and the others. The first traverse was least 
efficient since it had no initial environment information and 
involved blind decisions until a barricade was detected. 
Consequently, it traveled around the upper left barricade before 
heading towards the goal, hiding behind the barricades along 
the way.  

The second robot’s traverse (shown in Figure 4b and the 
centre image in Figure 5) takes advantage of the occupancy 
grid and filtered path passed to it from the first robot. Although 
it may appear counter-intuitive to avoid the first barricade, the 
result is a lower-visibility path. This is due to its path between 
the start position and second barricade being more direct. The 
robot could therefore travel quicker through the visible region. 
The third robot’s path was similar to the second, and the effect 
of using the filtered path information enabled a more efficient 
traverse.  

Table 1 and Table 2 contain the average performance 
statistics for the ten simulation trials and three real robot trials, 
respectively. The ‘Time’ and ‘Dist’ columns refer to the time 
taken and distance traveled for the traverse. The ‘Ass. Det’ 
column indicates the time the robot assumed it was being 
detected during its run. These values were calculated during the 
trial and are based on the incomplete environment information 
available at the time; they are thus not an accurate 
representation of the detection times. They are included to 
indicate how accurately the robots perceived the situation and 
are not used for any further analysis due to their inaccuracy. 
The ‘Act. Det.’ time is the actual time the robot was observed. 
This is derived from analyzing video information taken from 
the observer’s position for the real robot experiment, and by an 
observer robot in simulation. The ‘No stealth’ traverses are 
where the robot traveled directly to the goal disregarding the 
observer’s position. These are included as a baseline for 
comparison with the stealthy traverses.  

Table 1. Experiment 1 simulation average results.  

Traverse Time s  Dist m Ass. Det. s Act. Det.  s 

No stealth 39.0 34.5  N/a 37.2 

1 67.8 57.0 32.0 38.6 

2 51.7 47.3  24.7 27.0 

3 48.5 45.2 22.8 26.0 

Table 2. Experiment 1 real robot average results.  

Traverse Time s Dist m Ass. Det. s Act. Det. s 

No stealth 55 32 N/a 50 

1 88 47 42 50 

2 65 37 37 41 

3 61 37 33 38 

 

The relationship between traverses correlates between 
tables which indicates the algorithm performed similarly in 

both domains. Each stealthy traverse improved on the previous 
with an overall improvement in the actual detection times over 
the non-stealthy case. There is also a strong correlation in the 
overall trend of the results between tables which reflects the 
simulator’s verisimilitude and adds credibility to the statistical 
analysis.  

Intuitively, the non-stealthy case should provide the 
shortest path to the goal and maximum visibility to the 
observer. The stealthy traverses should show successively 
shorter traverses and lower detection times, even if the robots 
take the same course through the environment due to the effect 
of sharing experiences. 

One-way ANOVA significance tests carried out on the ten 
simulation runs support the above expectations of the 
algorithm’s performance. In most cases, there is a significant 
difference (P < 0.001) between the results for the traverses. 
Considering this with the values in the tables indicates that the 
first stealthy traverse is not as good as the non-stealthy 
traverse, the second stealthy traverse is better than the first (and 
therefore the non-stealthy traverse) and the third is best of all. 
The exceptions (P > 0.05) are the actual detection times 
between: the non-stealthy and first stealthy traverse, and 
between stealthy traverses two and three. The discrepancy with 
the expected better performance of the stealthy algorithm over 
the non-stealthy case is due to the stealthy robot navigating 
around the uppermost barricade in the absence of better initial 
environment knowledge which increased its exposure to the 
observer. This indicates that although the algorithm finds an 
intuitive path behind the available objects during the first pass 
through the environment, there is no significant advantage in 
reduced visibility compared to a direct traverse.  

B. Experiment 2 – Dynamic environment 
The purpose of this experiment was to demonstrate how the 

algorithm performs with an environment that changes between 
traverses. The environment initially contained barricades 
covering the start and goal locations and then a barricade was 
added around the observer as shown in Figure 6a. 

The experiment was carried out once in the real 
environment and ten times in simulation. An example 
simulation run is shown in Figure 6b and the real robot run in 
Figure 7. The filtered path waypoints are annotated as dots on 
each robot’s path.  

 The first robot made its traverse in near-complete visibility 
of the observer similarly to a non-stealthy traverse as shown in 
Figure 6b and the leftmost image in Figure 7. After its traverse, 
a barricade was placed around the observer’s location as shown 
in Figure 6a. The addition of this barricade produced a zero-
visibility path around the observer.  

The second robot started with the occupancy grid and 
filtered path from the first robot which did not include the new 
barricade. Upon its discovery, the robot changed its path to 
travel around the observer (Figure 6b and the centre image in 
Figure 7). The third robot was provided with the second robot’s 
updated occupancy grid and filtered path which allowed it to 
generate a smoother trajectory for the traverse and improve its 



performance further (Figure 6b and the rightmost image in 
Figure 7).  

The performance statistics for the experiment are shown in 
Table 3 for simulation and Table 4 for the real environment. As 
before, the entries annotated as ‘No stealth’ are cases where the 
robot navigated directly to the goal, disregarding the observer. 
These results are shown with and without the barricade around 
the observer annotated as ‘with barr.’ and ‘w/o barr.’, 
respectively. 

A statistical analysis of the results shows a significant 
difference (P < 0.01 or less) between all stealthy traverses 
except for the actual detection times for traverses 2 and 3, and 
the travel time and distances between traverses 1 and 3 (P > 
0.05). The similarity between traverses 1 and 3 indicates that a 
traverse around the observer’s barricade can be as efficient as a 
traverse directly to the goal.  

Table 3. Experiment 2 simulation average results.  

Traverse Time s  Dist m Ass. Det. s  Act. Det. s  

No stealth 
with barr. 

59.5 48.0 N/a 13.3 

No stealth 
w/o barr. 

59.6 43.0 N/a 45.5 

1 51.5 45.7 40.9 41 

2 59.8 49.2 20.8 0 

3 53.9 46.7 14.7 0 

Table 4. Experiment 2 real robot average results. 

Traverse Time s Dist m Ass. Det. s Act Det. s 

No stealth 
w/o barr. 

83.2 37.7 N/a 73 

1 82.9 40.6 74.5 59 

2 87.6 48.0 56.4 0 

3 78 44.9 63.8 0 

 

The non-stealthy traverses are carried out with and without 
the observer’s barricade to allow the stealthy traverses with the 
same environment configuration to be compared. Stealthy 
traverse 1 shows a significant improvement (P < 0.01 or less) 
in travel and detection times over its matching non-stealthy 
case without the barricade. Although it is assumed these 
traverses should produce similar results, the difference is 
mainly due to the stealthy algorithm providing a waypoint-
generated path (with implicit obstacle avoidance) while the 
non-stealthy case uses the goal location as the only waypoint. 
The non-stealthy robot must negotiate the barricades as 
obstacles, which is less efficient.  

Comparing stealthy traverses two and three to the non-
stealthy case with the observer’s barricade shows that most of 
the results are similar (P > 0.05) except for the time taken for 
stealthy traverse three, and naturally, the actual detection times 
(P < 0.001) which are worse for the non-stealthy case. 
Analyzing these results with the values in the table indicates 
that the stealthy traverses result in significantly lower visibility 
than the non-stealthy case. Also, it is possible to produce a path 
that is as efficient as the non-stealthy traverse, although this is a 

 

Start 
location 

Observer 
 (dynamic barricade) 

Goal 

 

Figure 7. The real robot traverses for experiment 2. The observer’s barricade was not fully detected by the 
robots so they assumed they were seen close to the goal when in fact, they were not.  
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Figure 6. a) Overview of the environment used in  b) A typical simulation run with all traverses 
experiment 2.      superimposed on the third robot’s occupancy grid 



side effect of the low-level navigation rather than an 
optimization demonstrated by the stealthy algorithm.   

V. CONCLUSIONS 
The goals of this research are to develop a method for 

multi-robot low-visibility navigation in the presence of an 
observer and to demonstrate how multiple robots can be 
beneficial in such a task. The assumptions are: the robots carry 
out their traverses one at a time, they do not have an initial map 
of the environment but know the locations of the goal and 
observer, and the observer has an unbounded sensor range. The 
method developed is based on extracting waypoints from a 
potential field view of the task based on current environment 
knowledge. Additionally, traverse experiences are shared 
between robots in the form of an occupancy grid and filtered 
path information.  

The method produces intuitive low-visibility paths with and 
without a priori environment information, as is evident by the 
results of the first and subsequent robot traverses respectively.  
Each traverse shows improvement over the previous in 
efficiency and visibility to the observer. The experiments 
conducted in simulation and in the real environment support 
the above claims. The simulation results correlate strongly to 
those in the real environment which demonstrates reproducible 
behaviour of the algorithm in different domains and the realism 
of the simulator. The results also demonstrate the robustness of 
the algorithm in the presence of a changing environment. The 
strength behind the approach lies in its simple and reactive use 
of potential fields to model the environment and the task. 
However, their parameters must be carefully tuned prior to use. 
For our application, this primarily arises from the complexity 
of the environment and the dynamics of the robots, particularly 
to varying outdoor conditions. Since we use only a few 
potential fields, parameter tuning is carried out quickly, even in 
real environments.  

VI. FUTURE WORK 
The approach has been rigorously tested in simulation and 

the real world. It shows promise for application to more 
demanding and complex environments such as MOUT sites. 
Also, the environment representation can be expanded to 
include natural terrain features beneficial for occluding the 
robots. The next stage of testing will focus on demonstrating 
the algorithm in these types of environments initially using the 

newly developed Gazebo 3d outdoor simulator [10] before 
verification in the real domain.  

Apart from testing in different environments, features of the 
observer will also be varied. The observer can be made mobile 
with an unknown initial location. It may also reason about its 
situation as a rational entity by reacting to robot positions and 
the environment. Its sensing will be limited in range and have a 
periodic scan which the robots can take advantage of by 
modelling with potential fields and combining with those in the 
existing approach. 
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