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Abstract— Neighbor-Every-Theta (NET) graphs are such that
each node has at least one neighbor in every theta angle sector
of its communication range. We show that for θ < π, NET
graphs are guaranteed to have an edge-connectivity of at least
b 2π
θ
c, even with an irregular communication range. Our main

contribution is to show how this family of graphs can achieve
tunable topology control based on a single parameter θ. Since
the required condition is purely local and geometric, it allows
for distributed topology control. For a static network scenario, a
power control algorithm based on the NET condition is developed
for obtaining k-connected topologies and shown to be significantly
efficient compared to existing schemes. In controlled deployment
of a mobile network, control over positions of nodes can be
leveraged for constructing NET graphs with desired levels of
network connectivity and sensing coverage. To establish this, we
develop a potential fields based distributed controller and present
simulation results for a large network of robots. Lastly, we extend
NET graphs to 3D and provide an efficient algorithm to check
for the NET condition at each node. This algorithm can be used
for implementing generic topology control algorithms in 3D.

Index Terms— topology control, k-connectivity, distributed de-
ployment of mobile nodes, 3D networks

I. INTRODUCTION

Topology control for ad-hoc wireless and sensor networks has
traditionally only dealt with uncontrolled deployments, where
there is no explicit control on positions of nodes [1]–[3]. The pri-
mary mechanisms proposed are power control and sleep schedul-
ing. These methods involve removing edges from an existing,
well connected communication graph in order to save power
while ensuring that the resultant sub-graph preserves connectivity.
Controlled deployments, feasible when positions of individual
nodes can be altered, present a different and interesting scenario
for topology control. Since connectivity properties directly depend
on the positions of nodes, position control can be leveraged
for effective topology control. There is increasing evidence that
such deployments will be possible in, as well as be required
by, a number of future sensor network applications. Consider
the following examples - sensors implanted in civil structures
at select, unobtrusive locations e.g. SHM [4], sensors in water
bodies either anchored to stay in place or mounted on boats
e.g. NAMOS [5], sensors that are not inexpensive enough to
afford high redundancy e.g. MASE [6], small and medium scale
networks maintained by a robot or human e.g. energy harvesting
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using robots [7], and mobile sensor networks e.g. NIMS [8].
Traditional approaches are ill-suited in such scenarios since they
are not designed to exploit control of the motion and placement
of the nodes.

In this paper, we develop a general approach that supports
traditional methods like power control and also allows new
designs for controlled deployments. Our main contributions are:
• a k-connectivity result, based on local conditions and inde-

pendent of communication model
• topology control algorithms based on the k-connectivity re-

sult for a) power control with static nodes, and b) distributed
deployment of mobile nodes

• 3D extensions of 2D results and an efficient algorithm for
topology control in 3D.

We define Neighbor-Every-Theta (NET) graphs in which each
node (except those at the boundary) have at least one neighbor
in every θ sector of its communication range. Our key theoretical
result is that for θ < π, a NET graph has an edge-connectivity
of at least b 2πθ c irrespective of the communication model. This
implies that the condition only depends on the angles between the
neighbors of each node and holds for arbitrary edge-lengths. This
feature is particularly relevant for sensor networks using low-
power radios that have irregular communication range. For the
special case with an idealized disk communication model, we de-
rive conditions for maximizing the sensing coverage area (defined
as the total area sensed by at least one node) while satisfying the
k-connectivity constraint, and for obtaining proximity graphs such
as the Relative Neighborhood Graph. It should be emphasized that
the NET condition is local since each node only requires relative
position information of its (communicating) neighbors.

NET graphs are naturally suited for distributed power control.
We implement a typical power control protocol using satisfaction
of NET condition at each non-boundary node as the termination
criterion and show that a power-efficient network with edge
connectivity b 2πθ c can be achieved even with realistic, irregular
links. This is in contrast to the sector based topology control
algorithms in literature including CBTC [9], [10], that rely on an
idealized disk communication model to guarantee connectivity
properties. In CBTC based power control [11], for a network to
be k-connected, each node must either have a neighbor in every
θ = 2π

3k sector or operate at full power. Our results imply that
a sector angle of θ = b 2πk c is sufficient for k-connectivity. A
three times larger value of sector angle implies a much lower
power requirement. We present simulation results to establish
this in Section VI. Even though we do not consider sleep-
scheduling mechanisms in depth, it is possible to think of designs
where densely deployed nodes make sleep/wake decisions in a
distributed manner by using local, pair-wise negotiations based
on combinations of NET condition satisfaction and other criteria.

Position control is ideal for obtaining topologies that are NET
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graphs. Given the properties guaranteed by the NET condition,
an external agent deploying a static sensor network can make
decisions on the best positions for deployment of new nodes based
on the geometry of the existing network. Self-deploying mobile
nodes can use this condition to decide their motion strategy.
We present a distributed algorithm for self-deployment of mobile
nodes to concretely demonstrate the use of the local and geometric
conditions to implement coverage and connectivity tradeoffs. The
algorithm involves achieving NET condition satisfaction through
purely pair-wise negotiations between neighbors. The perfor-
mance of this algorithm is studied through an implementation
on the Player/Stage simulation platform [12]. Results illustrate
the tunable tradeoff between connectivity and coverage and show
that the distributed algorithm can achieve approximations of
some coverage-maximizing tiling structures that also satisfy NET
conditions.

It has been argued [13] that topology control in three dimen-
sions (3D) is much more complex. There are several operations
that are common to a wide range of topology control algorithms
that have increased and sometimes prohibitively high complexity
in 3D. Examples include obtaining angular information of and
ordering neighbors and checking for intersections of overlapping
regions [14]–[17]. As a result, there is very little work on topology
control algorithms in 3D. We argue that controlled deployment
and NET graphs are well suited for sensor networks in 3D and
present extensions to our 2D results. We propose an efficient
algorithm for identifying the largest empty cone of a node’s
communication range. This algorithm can be used in conjunction
with several deployment and topology control mechanisms for
implementing their 3D extensions.

The paper is organized as follows. The next section defines
the problem and section III presents NET graphs and analysis
of their connectivity properties which are extended to 3D in
section IV. Sections V and VI present applications of NET graphs
for distributed deployment of mobile robots and distributed power
control respectively. Finally we put our work in context with
a discussion of related work in section VII and conclude in
section VIII.

II. PROBLEM FORMULATION

Local conditions that guarantee global network properties are
the key to designing distributed topology control algorithms. In
particular, we study local conditions that guarantee global k-edge-
connectivity of the network. Once such conditions are found,
they can be integrated with controls available in order to design
topology control algorithms. Further, it is important to understand
if the results can be extended to 3D networks in an efficient
manner. A detailed description of these three problems follows.

Problem 1: k-connectivity certificates
Given a network, find local geometric conditions between node

positions that can guarantee global k-edge-connectivity.
A graph is said to be k-edge-connected if at least k edges

must be removed to disconnect it. By Menger’s theorem, this
is equivalent to saying that there exist at least k edge-disjoint
paths between any two nodes in the graph. The graph that we
consider is the communication network where two nodes are said
to have an edge between them if they can communicate. In this
case, high edge-connectivity is desirable because it implies high
fault-tolerance and path diversity.

(a) (b)

Fig. 1. Illustration of the NET condition. Red circles are symmetric neighbors.
In a) node does not satisfy NET condition. It has one sector greater than θ
with no neighbor. In b) node satisfies NET condition, the largest sector with
no neighbors is smaller than θ.

By ‘local’ we mean that each node only has information about
positions of its communicating neighbors relative to its own
position. The global coordinates of nodes are not available. The
conditions we seek must be based only on this local information
so that each node can independently decide whether it satisfies the
condition. Note that, for the k-connectivity certificates, we do not
make any assumption on the communication model. In particular,
we do not assume that the communication model is an idealized
disk where two nodes can communicate if and only if they are
within a fixed distance.

The next step is to apply these conditions in the design of
efficient topology control algorithms. We consider two ways of
modifying the topology of a network - (1) by controlling the
positions of nodes and (2) by controlling the communication
power of nodes.

Problem 2: Topology Control

How can the local geometric conditions for k-connectivity be
integrated with the controls available, like communication power
and node positions, for efficient topology control?

We have the following sub-problems.

a) Distributed deployment of mobile nodes: Given N

mobile nodes, design a distributed control law such that they
move to maximize sensing coverage while maintaining global
k-connectivity.

b) Power control in a static network: Given a static network
of N nodes, how should they choose their communication power
such that the network is k-connected and the energy is minimized?

Lastly, we study the extension to networks in three dimensions.

Problem 3: Extensions to networks in three dimensions

Does the geometric analysis for 2D networks extend to 3D
networks?

It is well known that several geometric results in 2D either do
not extend to 3D or are significantly more complex in 3D [13].
We want to extend our results to 3D and study their correctness
and efficiency.
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III. NEIGHBOR-EVERY-THETA (NET) GRAPHS

In this section, we will define Neighbor-Every-Theta graphs
and show that they give us k-connectivity certificates.

Definition 3.1: The Neighbor-Every-Theta (NET) condition
(Fig. 1) for a node embedded in the 2D plane is defined as
requiring at least one symmetric neighbor in every θ sector of
its communication range.
Nodes A and B are symmetric neighbors if A can communicate
to B and B can communicate to A.

For finite networks, nodes on the network boundary cannot
satisfy such a condition. The boundary of a network can be
defined as a cycle of nodes such that every other node lies inside
the cycle [18]. A node that does not belong to the boundary is
called an interior node.

Definition 3.2: A NET graph is one in which every interior
node satisfies the NET condition for a given θ.

We now analyze the connectivity and coverage properties of
NET graphs. For large networks where the number of boundary
nodes is small compared to the network size, we show that NET
graphs have an edge connectivity of at least b 2πθ c, independent
of the communication model. With the stronger assumption of a
idealized disk communication model, NET graphs, for specific
values of θ, contain proximity graphs such as the Relative
Neighborhood Graph (RNG). An upper bound on the sensing
coverage is shown to be obtained from a symmetric arrangement
of nodes and can be computed as a function of θ. NET graphs
form a family of graphs based on the single parameter θ - as θ
becomes smaller, the graphs become denser with an increasing
level of connectivity.

A. Connectivity Analysis of NET Graphs

The edge-connectivity of any graph is at most its minimum
node degree and can in general be arbitrarily low irrespective
of the node degree [19]. For some special graphs, higher node
degree implies higher edge-connectivity. One example of such
a graph is the random geometric graph, where an average node
degree of O(logN) (where N is the network size) guarantees
an edge-connectivity of 1 with high probability [20]. It turns out
that for em NET graphs also there is relation between minimum
node degree and edge-connectivity. In NET graphs every interior
node has a degree of at least b 2πθ c. We will show that the edge-
connectivity is also at least b 2πθ c (except in pathological cases
where boundary nodes can be disconnected by removing fewer
edges). This means that the easiest way to disconnect a NET graph
is to disconnect a single interior node by removing b 2πθ c edges.
We will now formally establish this property by first considering
the simple case of graphs that are very large so that edges close
to the boundary are not significant. An extreme case of such
graphs are the “boundary-less” graphs defined below. Later, we
will analyze the impact of boundary nodes on connectivity.

Definition 3.3: A NET graph is boundary-less if every node
satisfies the NET condition. For θ < π, such a graph must span
the entire 2D plane.

Definition 3.4: Given a graph G = {V,E}, a cut set is a set
of edges E′ ⊆ E such that G′ = {V,E −E′} has more than one
component. The edge-connectivity a graph, λ, is the size of its
smallest cut set, C. Note that if G is connected, C must divide it
into exactly two components.

(a) ‖ V1 ‖= 1 (b) ‖ V1 ‖= 2

Fig. 2. The red nodes and edges represent G1, dotted edges form the cut
set C.

Fig. 3. ‖ V1 ‖≥ 3 The red nodes and edges represent G1, the dotted edges
form the cut set C. The corresponding convex hull H is shown with solid
black lines.

Definition 3.5: For a graph embedded in the Euclidean plane
a cut is a curve that partitions the graph into two or more
components.

Theorem 3.6: For θ < π, a boundary-less NET graph has an
edge-connectivity λ ≥ b 2πθ c
Proof: Consider a NET graph G = {V,E}. Let C ⊆ E be the
smallest cut set of G so that λ =‖ C ‖. Let the two components
of G′ = {V,E − E′} be G1 = {V1, E1} and G2 = {V2, E2}.
WLOG, ‖ V1 ‖≤‖ V2 ‖.

If ‖ V1 ‖= 1 then ‖ C ‖≥ MinDegree ≥ b 2πθ c (Fig 2(a)).
If ‖ V1 ‖= 2 then ‖ C ‖≥ 2

`
b 2πθ c − 1

´
≥ b 2πθ c since θ < π

(Fig. 2(b)).
Suppose ‖ V1 ‖> 2. Construct the convex hull, H1 of V1. Then

H1 ⊆ V1. Define angle φi at hi ∈ H1 as shown in Fig 3. There
will exist at least 3 vertices1 hi such that φi > π i.e. , ∠hi < π.
WLOG, assume that φ1, φ2 and φ3 > π. Since G = {V,E} is a
NET graph, for i = 1, 2, 3, φi must contain ≥ bπθ c edges ∈ C.
Therefore, ‖ C ‖≥ 3bπθ c ≥ b

2π
θ c. �

The above result holds for the general case where the graph has
boundary nodes provided the cut is completely in the interior of
the network, i.e. if all the nodes in V1 satisfy the NET condition.
If on the other hand, the cut mostly consists of boundary edges
then it is not interesting because it is unlikely to impact net-
work performance. Now consider cuts that intersect the network
boundary twice - when entering and leaving the graph (fig. 4(a)).
WLOG, assume that the cut is minimal in length i.e. it is the
shortest curve corresponding to its cut set. The case when the cut
intersects itself is covered by the above theorem - the number of
edges cut inside the loop alone must be at least b 2πθ c. Assume
that the cut does not intersect itself and by way of contradiction,

1Since H is a convex polygon, ∠hi ≤ π,∀i. Suppose all except 2 internal
angles are = π, say 0 < ∠h1,∠h2 < π and ∠hi = π for i = 3, 4, ...k,
where k is number of vertices of H , then

Pk
1 ∠hi = ((k − 2)π + ∠h1 +

∠h2) > (k − 2)π. Contradiction since
Pk

1 ∠hi = (k − 2)π.
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(a) (b)

Fig. 4. (a) A finite graph where all non-boundary nodes satisfy the NET
condition. The think line L is a cut through the graph (b) L cuts polygons

that it disconnects the network by cutting less than b 2πθ c edges.
We will now analyze the nature of such a cut and prove that away
from the network boundary, the distance along the cut between
two consecutive edges must be less than Rc.sec(θ/2), where Rc is
an upper bound on the edge-length. This implies that away from
the boundary the cut cannot be longer than b 2πθ c · Rc.sec(θ/2).
If θ is not close to π this expression is bounded. For example,
for θ = 0.9π it is ≈ 13 · Rc and for θ = 2π

3 it is 6 · Rc. For
large networks, a “short” cut like this can only exist close to the
boundary (fig. 5(a)) or if the boundary is “pinched” [21](fig. 5(b)).

Lemma 3.7: For θ < π, the length of a minimal cut between
two consecutive edges in a boundary-less NET graph is less than
Rc · sec(θ/2).
Proof: Let L be the cut and l its length between two consecutive
edges it cuts, say (u1, v1) and (u2, v2) (figure 4(b)). Then l ≤
max{d(u1, u2), d(u1, v2), d(v1, u2), d(v1, v2)}, where d() is the
euclidean distance function. Let the node pair that leads to
maximum distance be P1, P2. Now P1 must have at least one
neighbor in each of the two θ sectors adjoining

−−−→
P1P2. Let these

be Q1 at an angle 0 ≤ α1 ≤ θ and Q′1 at an angle 0 ≤ α′1 ≤ θ with−−−→
P1P2. 0 ≤ α1 + α′1 ≤ θ < π. WLOG, α1 < π/2. Similarly Q1

must have a neighbor Q2 at an angle α2 ≤ θ, and so on till some
Qm−1Qm intersects

−−−→
P1P2. Note that the point of intersection

cannot be in between P1 and P2 because otherwise L would cut
Qm−1Qm contradicting the assumption that (u1, v1) and (u2, v2)

are consecutive edges.
We have,

l = ‖P1P2‖
≤ r1 · cos(α1) + r2 · cos(α1 + α2 − π) + · · ·

+rm · cos(α1 + α2 + · · ·+ αm − (m− 1)π)

(where π/2 > α1 > α1 + α2 − π > · · ·
> α1 + α2 + · · ·+ αm − (m− 1)π) > −π/2)

≤ Rc(cos(α1) + cos(α1 + α2 − π) + · · ·
+cos(α1 + α2 + · · ·+ αm − (m− 1)π))

(where Rc is an upper bound on edge length)

≤ Rc((cos(α1) + cos(α1 + θ − π) + · · ·
+cos(α1 − (m− 1)(π − θ)))
(since cos is a concave function in [−π/2, π/2])

= Rc
sin
“
m·(θ−π)

2

”
· cos

“
α1 +

(m−1)·(θ−π)
2

”
sin
“
θ−π

2

”
≤ Rc

1

cos(θ/2)

(a) (b)

Fig. 5. Degenerate cases of cuts through NET graphs that result in poor
connectivity. (a) A cut close to the boundary (b) pinched boundary

�
It must be emphasized that the connectivity result only needs

the largest edge in the network to be bounded and holds even
for a non-ideal and irregular communication models. In the
following subsections, we present further interesting properties
of NET graphs with a stronger assumption of an idealized disk
communication model.

B. Proximity Graphs

Proximity graphs such as the Relative Neighborhood Graph
(RNG), Gabriel Graph (GG) and the Delaunay Graph (DelG)
have several properties such as connectivity, sparseness, efficient
network routes, etc. that make them desirable network topolo-
gies [14], [22]–[24]. We will now analyze conditions under which
NET graphs will contain these proximity graphs. Here we assume
an idealized disk communication model but allow each node to
have a different communication range. Further, the number of
boundary nodes is assumed to be small compared to the network
size. The analysis presented is non-trivial since the edge-lengths
in NET graphs are restricted by the communication range of
nodes, while in proximity graphs they depend only on the relative
positions of nodes and very long edges are possible.

The set of edges E for various proximity graphs is defined as
follows [19]. In what follows, we use the name and location of
a node interchangeably.

Disk graph (DG(V,E,R)): The directed graph containing all
outgoing edges of a node, u ∈ V , not longer than R(u).

E = {(u, v)|u, v ∈ V and d(u, v) ≤ R(u)}

Given positive r ∈ R, let C(p, r) be the circle consisting
of points whose distance from point p is strictly less than r.
Define the lune, denoted L(p, q), to be the intersection of two
circles, both of radius d(p, q), centered at these points, that is,
L(p, q) = C(p, d(p, q)) ∩ C(q, d(p, q)).

Relative Neighborhood Graph (RNG(V)): The undirected
graph containing an edge (u, v) if there is no point w ∈ V that is
simultaneously closer to both u and v. Equivalently, (p, q) is an
edge if L(p, q) ∩ V = ∅.

E = {(u, v)|u, v ∈ V and ∃ no w ∈ V 3

d(u,w) < d(u, v) and d(v, w) < d(u, v)}

Gabriel Graph (GG): The undirected graph containing an
edge (u, v) if the disk whose diameter is edge (u, v) does not
contain any other points of V, that is, if C(u+v

2 ,
d(u,v)

2 )∩V = ∅.

E = {(u, v)|u, v ∈ V and C(
u+ v

2
,
d(u, v)

2
) ∩ V = ∅}
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Fig. 6. RNG sector condition. a) The circle of radius d(x, y) > Rc subtends
an angle of 2π

3
at x. The lune contains an area larger than a 2π

3
sector. b)

The limiting case, when d(x, y) = R(x).

Delaunay Graph (DelG): The undirected graph containing an
edge (u, v) if the Voronoi regions of u and v have non-empty
intersection. From the properties of Voronoi diagrams it follows
the edges of triangle (u, v, w) are in DelG(V ) if their circumcircle
does not contain any other points of V .

These graphs are hierarchically related:
RNG(V ) ⊆ GG(V ) ⊆ DelG(V ).

In the proofs that follow, we assume that each node, u,
in the network has a communication range R(u) so that the
communication graph of the network is a disk graph. Our next
step is to find conditions under which the RNG of the network
is contained in the communication graph. This is equivalent to
finding conditions under which no edge (u, v) of an RNG is
longer than either R(u) or R(v). The following theorem presents
this condition. Later, we prove similar results for the GG and
DelG.

Theorem 3.8: If each node x ∈ V has at least one neighbor
in every 2π

3 sector of C(x,R(x)), the communication graph is a
supergraph of RNG(V ). Moreover, 2π

3 is the largest angle that
satisfies this property.
Proof: Consider any node x ∈ V . Suppose x has at least one
neighbor in every 2π

3 sector of C(x,R(x)). We first show that
for any node y outside C(x,R(x)), the edge (x, y) /∈ RNG(V ).
The lune L(x, y) will contain a sector of at least 2π

3 (Fig.6). By
premise, ∃ a node in L(x, y). This implies that RNG(V ) does
not have any edges incident on x that are longer than R(x).

Next we show that for any node z ∈ V inside C(x,R(x))

such that d(x, z) > R(z) i.e. (x, z) ∈ DG(V,E,R) but (z, x) /∈
DG(V,E,R), the edge (x, z) /∈ RNG(V ). Since z also has a
neighbor in every 2π

3 sector of C(z,R(z)) and d(x, z) > R(z),
from the above argument (x, z) /∈ RNG(V ).

Therefore RNG(V ) ⊆ DG(V,E,R(x)).
Now suppose a node x′ ∈ V ′ has two neighbors with a sector

angle of 2π
3 + δ (δ > 0) between them (Fig.7). We can place a

node y′ outside C(x′, Rc) such that the edge (x′, y′) ∈ RNG(V ′).
Therefore, 2π

3 is the largest angle for which this condition holds.�
We have shown that for θ ≤ 2π

3 , NET graph contains the RNG
assuming an idealized disk communication model. We can prove
a similar property for GG and DelG, except that in this case the
value of θ is a function of the distance to neighbors.

Lemma 3.9: If each node x ∈ V has at least one neighbor
in every θ = 2arccos( r

R(x)
) sector of C(x, r) (r ≤ R(x)), the

communication graph is a supergraph of GG(V ). Proof: See
Appendix.

Fig. 7. θ = 2π
3

bound for RNG - L(x, y) is empty

Corollary 3.10: If a node x has at least one neighbor in
every θ = 2arccos( r

R(x)
) sector of C(x, r) (r ≤ R(x)), the

communication graph is a supergraph of DelG(V ). Proof: See
Appendix.

In real networks, it is not possible for the boundary nodes to
satisfy the conditions required by the theorems. We show using
simulated deployments (in section V) that the assertions can be
validated in spite of these exceptions.

C. Coverage Analysis of NET Graphs

Having listed the conditions that guarantee global connectivity
properties, we now turn to the problem of maximizing coverage.
We assume that all nodes have a idealized disk sensing model
with a sensing radius of Rs. Maximizing sensing coverage is
equivalent to packing problem with a constraint placed on the
communication neighbors. This is a very hard problem given
an irregular communication model and even harder to solve
locally. Therefore, we make a simplifying assumption that the
communication model is also an idealized disk with a radius Rc
for all nodes. Suppose that in order to satisfy the NET sector
conditions, a node must have k = b 2πθ c neighbors. From the
node’s local perspective, all neighbors must be located on the
perimeter of the communication range to maximize coverage.
Intuitively, the nodes must also be placed symmetrically on the
perimeter. We prove this result for the special case when Rc = Rs.

Lemma 3.11: For Rs = Rc, the area coverage is maximized
when the k ≥ 3 nodes are placed at the edges of k disjoint 2π

k
sectors of C(x,Rc).
Proof: Consider a node x and k nodes y1, y2, ...., yk placed on the
perimeter of C(x,Rc). Let these nodes be placed in anticlockwise
order at angles β1 = 0, β2, ...., βk respectively. Define

θi = βi+1 − βi, 1 ≤ i ≤ k − 1

θk = 2π − βk (1)

We need to find θi such that the total area covered by these
k+1 nodes is maximized. The open disks of all nodes lie within
C(x, 2Rc) and are tangent to this disk at exactly one point (Ti)
each. The disks of adjacent nodes i and i+1 intersect at point Ii
(and at X). The total coverage lies between πR2

c and 4πR2
c and

is maximized when the area
kP
i=1

TiIiTi+1 is minimum (Fig.8).

TiIiTi+1

= TiXTi+1 − IiYiTi − IiYi+1Ti+1 − IiYiXYi+1

= (2Rc)
2 · θi

2
− 2R2

c ·
θi
2
− 1

2
(2Rc sin

θi
2

)(2Rc cos
θi
2

)

= R2
c(θi − sin θi)
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X

Ii

Ti

Yi+1

Yi

θi

θi

2R c R c

Ti+1

Fig. 8. Coverage with k nodes placed on the communication perimeter of
node x. The shaded area is the total coverage.

kX
i=1

TiIiTi+1 = R2
c(

kX
i=1

θ −
kX
i=1

sin θi)

= R2
c(2π −

kX
i=1

sin θi) (2)

The problem now reduces to finding max
kP
i=1

sin θi subject to

kP
i=1

θi = 2π and 0 ≤ θi ≤ 2π. Since sin is non-negative and

concave in [0, π] and non-positive in (π, 2π], it follows that the
solution is θi = 2π

k , 1 ≤ i ≤ k.�
For k = 3, 4, 6, it is possible to place nodes such that each

node has its neighbors placed symmetrically on its communication
range. The resulting communication graph will be a tiling of
the space: hexagonal, square and triangle for k = 3, 4 and 6

respectively. In these cases, since each node maximizes coverage
locally, the total coverage of the network will also be the maxi-
mized. For values of k other than 3, 4 and 6 such an arrangement
is not possible since the corresponding tiling structures do not
exist. Therefore in these cases, the local condition for optimizing
coverage will not necessarily optimize global coverage. Due
to their symmetry, tiling graphs possess some other desirable
properties. It can be verified that the hexagonal tiling (θ = 2π

3 ) is
an RNG and in this case, GG ≡ RNG. This holds for the square
tiling (θ = π

2 ) as well. The triangle tiling (θ = π
3 ) is a DelG.

Based on the above theorem, we can compute an upper bound
on the maximum achievable coverage of a NET graph as a
function of θ. Consider the arrangement in Fig. 8 with all the
neighbors placed symmetrically around x. If each overlap area
within the sensing range of x is divided by the number of nodes
that cover it, then the sum of these weighted areas will give
the maximum possible per-node coverage. In this computation
we ignore the boundary nodes which cannot have a symmetric
placement of neighbors. Therefore, this is an asymptotic bound.
This upper bound on coverage is plotted in Fig. 13 along with
the lower bound for edge-connectivity derived in theorem 3.11.

In the next section we extend NET graphs to 3D and study
their connectivity and coverage properties.

IV. NET GRAPHS IN THREE DIMENSIONS

Network configuration in 3D is significantly more complex
than in 2D [13]. There are several operations that are common

Fig. 9. NET graph: each cone of angle θ must have at least one neighbor.

Fig. 10. RNG cone angle condition

to a wide range of sensor network configuration algorithms
in 2D that have increased and sometimes prohibitively high
complexity in 3D. We argue that controlled deployment and NET
graphs are well suited for sensor networks in 3D and present
extensions to our 2D results. We propose an efficient algorithm
for identifying the largest empty cone of a node’s communication
range. This algorithm can be used in conjunction with a number
of generic deployment and topology construction mechanisms for
implementing their 3D extensions.

A node satisfies the NET3D condition if it has at least one sym-
metric neighbor in every cone of solid angle θ. A NET3D graph
is one in which every node except those on the boundary satisfy
the NET3D condition. If the network is very large compared to
the size of the boundary, the following is our conjecture for the
edge-connectivity.

Conjecture 4.1: For θ < 2π, a boundary-less NET3D graph
has an edge-connectivity λ ≥ b2πθ c �

Note that, like in 2D, the connectivity result is independent of
the communication model. For specific values of θ, NET3D graphs
will contain proximity graphs such as RNG, GG, and DelG.

Lemma 4.2: If each node x ∈ V has at least one neighbor in
every θ = π cone of S(X,R(x)), the communication graph is a
supergraph of RNG(V ).

Lemma 4.3: If each node x ∈ V has at least one neighbor in
every θ = 2π(1 − r

Rc
) cone of S(X,R(x)), the communication

graph is a supergraph of GG(V ) and DelG(V ). Moreover, 2π(1−
r

R(x)
) is the largest angle that satisfies this property.

The proofs follow from the corresponding proofs in 2D and
the fact that a cone with apex angle α will contain a solid angle
of θ = 2π(1 − cos(α)). For example in the proof for RNG, the
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3D lune will contain a cone with apex angle α = 2π
3 and solid

angle of θ = π.

A. Integrating geometric conditions with topology control

The local conditions described above can be integrated with
node placement to construct efficient topologies. A key require-
ment is an algorithm to check for empty cones larger than a given
θ. For instance, to check for formation of RNG, θ = π. This step
is non-trivial in 3D because there exists no natural “order” of
neighbors. We propose the following algorithm for finding the
largest empty cone around a given node.

Algorithm 1: largestCone(G = (V,E),v ∈ V )
let S be the unit sphere centered at v

for each u ∈ Neighbor(v), let −→vu be the
direction vector from v to u

let cu be the intersection of −→vu with S
let DT be spherical delaunay triangulation cu∀u
find ai,j,k = area of circumcircle of triangle

(ui, uj , uk) ∈ DT
return max(ai,j,k)

Algorithm 1: Find largest empty cone around a node

Theorem 4.4: For a given graph G = (V,E) and node v,
largestCone returns the largest empty cone around v.
Proof: The circumcircle of every (spherical) triangle in the
spherical delaunay triangulation is empty [25]. Therefore the cone
returned by largestCone is certainly empty. Suppose there exists
an empty cone (whose image on the unit sphere is the circle c)
that is larger than the one returned by largestCone. Then the
center of c lies in some triangle t of the delaunay triangulation.
Since c is empty, none of the vertices of t must lie inside c. This
implies that the circumcircle of t will be larger than c which is a
contradiction. Therefore largestCone correctly returns the largest
empty cone.�.

The computational complexity of largestCone is O(dlog(d))

where d is the number of neighbors of a node. This is because, the
complexity of spherical triangulation is O(dlog(d)), the number
of triangles generated is O(d), and sorting them will also take
O(dlog(d)) time.

Several topology control algorithms [14]–[16], [23], [26] in
2D rely on directional information and in particular use the angle
between adjacent neighbors. This algorithm can be used as a
primitive for extending such algorithms to 3D.

V. DEPLOYMENT USING NET GRAPHS

Controlled deployments are well suited to take advantage of the
global properties of NET graphs resulting from local geometric
conditions. This applies to scenarios of deployment of static nodes
by an autonomous agent and self-deployment of mobile nodes. In
controlled deployment of a static sensor network, the agent can
make decisions about the best locations for new nodes based on
the local geometry of the existing network. Self-deploying mobile
nodes can use this local condition to decide their motion strategy.
The coverage can be maximized by positioning neighbors within
adjacent θ sectors as far apart from each other as possible. In
general, based on the coverage and connectivity requirements of
an application, nodes can either be pre-configured for a certain
value of θ or they can tune it dynamically.

This section presents a virtual potential fields based self-
deployment algorithm for mobile nodes. We assume that all nodes
have idealized disk models for communication and sensing with
radii of Rc and Rs respectively. This ensures that negotiations
between neighboring nodes are symmetric and simplifies the
problem.

A. Distributed Deployment of Mobile Nodes

Potential field based algorithms have been widely used for the
deployment of mobile networks [27]–[29]. These algorithms in-
volve constructing local virtual forces between neighboring robots
to encode their desired motion and/or placement configuration.
In our algorithm, we use two kinds of forces. The first, Frepel,
causes the nodes to repel each other to increase their coverage
and the second, Fattract constrains neighboring nodes to stay
connected. These forces have inverse square law profiles - Frepel

tends to infinity when the distance between the nodes decreases
to zero and Fattract tends to infinity when the distance between
nodes increases to Rc. They are tuned such that when two
nodes apply a force of Frepel + Fattract on each other, they
settle exactly at Rc. The convergence of this controller is well
known [29]. By using a combination of these mutually opposing
forces, each node maximizes its coverage while maintaining the
NET condition of having at least one neighbor in every θ sector.

The algorithm involves exchange of purely pairwise informa-
tion between nodes. Each individual node then combines this
information to check for NET condition satisfaction. The result
of this check is then translated to individual decisions for each
of its neighbors.

In a typical mobile deployment scenario, all nodes start in
positions close to each other so that the initial network is
highly well connected and the NET condition is trivially satisfied.
Each node begins by repelling all neighbors to increase its
sensing coverage. In the process, it loses communication with
some neighbors that move farther than Rc. When the number
of neighbors is close to the number required to satisfy the
NET condition, the node assigns priority values to each of its
neighbors based on their contribution towards satisfying its NET
condition. This is done by computing sector angles between
adjacent neighbors. The neighbors contributing to larger sector
angles have a higher priority and the node applies the attractive
force to hold them within its communication range. Nodes on
the boundary designate all neighbors as low priority and hence
allow the decision to be made based on the requirement of their
neighbors. The pseudocode for this algorithm is shown below.
c1, c2 are parameters that can be tuned for how strictly the NET
condition is required to be satisfied.

Algorithm 2: assignPriority(θ, node, neighborList)
if node is on boundary

for q ∈ neighborList
priority[node][q] = 1

else
for q ∈ neighborList

sectorV oid[q] = angle(qprev, q) + angle(q, qnext)

if sectorV oid[q] < c1 · θ
priority[node][q] = 0 (redundant)

else if c1 · θ ≤ sectorV oid[q] < c2 · θ
priority[node][q] = 1 (low priority)

else priority[node][q] = 2 (high priority)
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To ensure that the forces are symmetric, nodes exchange pair-
wise priority information and apply forces based on the average
priority.

Algorithm 3: distributedDeployment(θ)
find neighborList

degree = sum(neighborList)

if (degree > ( 2π
θ + 1))

repel all neighbors
else if (degree > 2π

θ or boundary)
priority = assignPriority(θ, self , neighborList)

for q ∈ neighborList,
if (priority[self ][q] + priority[q][self ]) ≥ 1

repel + attract q
else repel q

else repel + attract all neighbors

The condition used for classifying boundary nodes plays an
important role in determining the final network structure. During
deployment, the boundary of the network grows and nodes that
were previously interior nodes become boundary nodes. Once a
node becomes a boundary node, it is not required to satisfy the
NET condition. If interior nodes are allowed to easily switch to
becoming boundary nodes, the coverage will increase because
nodes will spread out but the connectivity properties will suffer.
On the other hand, if interior nodes are constrained to always
satisfy NET condition and are not able to switch to the boundary
then the network cannot spread out and coverage will be poor.
We use a heuristic based on the observation that boundary nodes
have large empty sectors. Initially all nodes are designated as
non-boundary. If a node has an empty sector greater than αb for
time τ , then it declares itself as a boundary node. Similarly, if a
boundary node has no empty sector greater than αb for time τ ,
then it becomes an interior node.

B. Simulation Results

The algorithms were implemented in the Player/Stage software
platform which simulates the behavior of real sensors and actua-
tors with high fidelity [12]. It does not provide support for realistic
communication models and hence we use a simple, idealized disk
communication model. In our simulations, Rs was chosen equal
to Rc. This is not a requirement for the algorithm and the coverage
results are intended to be illustrative. We note that the connectivity
results are independent of Rs [28]. If Rs < Rc

2 , then the per node
coverage is very high and in fact close to πR2

s because nodes can
satisfy edge constraints without any overlap of sensing areas. If
on the other extreme, Rs is significantly larger than 2 · Rc then
the per node coverage is low compared to πR2

s because of large
overlaps. The interesting behavior happens when Rs and Rc are
comparable.

The parameters c1 and c2 in assignPriority can be tuned
depending on how strictly NET satisfaction is desired. For the
results presented in this section, a conservative choice was sought
and the empirically determined values are shown in Table. I. The
sector parameter αb is used by individual nodes for boundary
detection. Choosing a large value for αb will result in many
boundary nodes considering themselves interior nodes trying to
ensure NET satisfaction and impedes the spreading. On the other
hand, choosing a small value leads to interior nodes switching
to boundary nodes and decreases network connectivity. The

θ 2π
3

π
2

2π
5

π
3

2π
7

π
4

c1 1.15 1.15 1.25 1.0 1.1 1.1
c2 1.45 1.5 1.6 1.3 1.3 1.3
αb

21π
20

11π
12

5π
6

5π
6

5π
6

5π
6

TABLE I
PARAMETER SETTINGS

appropriate setting of boundary sector αb depends on the θ value
and the empirically determined settings are shown in Table. I.

Results are shown for deployments of 100 robots with each
experiment repeated 10 times. Fig.11 show the final network
configuration from sample runs of the distributed algorithm for
varying θ values. For θ = 2π

3 , hexagonal tiling is difficult to
achieve in a distributed manner and combined with the conserva-
tive choice of c1 and c2, the algorithm pushes the deployment to a
square tiling (Fig.11a). Large blocks of square tiling are achieved
for θ = π

2 (Fig. 11b). For the non-tiling angle θ = 2π
5 (at least

5 neighbors required), in most cases it is actually beneficial to
settle for 6 neighbors and tile triangularly. Fig. 11c shows that
the algorithm correctly allows for the highly stable tiling in large
portions of the final configuration. This is also obtained for the
tiling angle θ = π

3 , as shown in figure Fig. 11d. Samples for
θ = 2π

7 and θ = π
4 are also shown. No tiling is possible for these

angles. Fig.12 shows that the deployment algorithm adapts well
to obstacles. On encountering an obstacle, the nodes continue to
spread while avoiding it and surround it with little impact on the
NET graph. Obstacles have the effect of increasing the number
of boundary nodes in the network and as a result, the network
structure is not as uniform as before.

Fig. 13a compares the coverage obtained from the deployment
algorithms to an asymptotic upper bound on coverage obtained
from Lemma 3.11 by considering node overlaps as described
in Section.V. The algorithm’s coverage is close to the bound
for smaller values of θ and the difference grows with θ. The
difference can be attributed to a conservative choice of parameters
c1 and c2. This is reflected in the fact that the average node degree
resulting from the deployment algorithm is always greater than
b 2πθ c (Fig. 13c) even though the boundary nodes have smaller
node degrees. Also note that the coverage upper bound is tight
only in case of tiling angles. For non-tiling angles, it is not clear
what the optimal deployment is.

Fig. 13b shows the edge connectivity values. For the k-
connectivity calculation, boundary nodes and one hop neighbors
of boundary nodes are not considered. For the chosen c1 and c2
values a connectivity of k = b 2πθ c is not guaranteed, but it is very
often achieved and connectivity b 2πθ c−1 is almost always assured.
Using lower values for c1 and c2 can provide a guaranteed level
of connectivity at the cost of some coverage. Fig. 13d shows the
number of sectors of interior nodes that violate the NET condition.
A 10 % leeway was allowed for deviation from θ, i.e., a violation
occurs if sector angle > 1.1 · θ. There is a drop in violations for
θ = 2π

5 since it defaults to the 6-neighbor triangular tiling while
there is a sudden increase for θ = 2π

7 and θ = π
4 since there

are no tiling angles in sight making it difficult for the pair-wise
negotiations to attain symmetrical placement of neighbors. The
asymmetry and small value of θ result in increased violations.
Note that this does not adversely affect the k-connectivity.

Fig. 14 shows a comparison of the communication graph
obtained from deployment with θ = π

3 with its corresponding
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RNG. In Fig. 14c, the dark lines represent the edges in the RNG
that are absent in the communication graph. The communication
graph differs from the RNG in exactly 3 edges at the boundary
of the network. Even in the presence of boundary nodes in real
networks, these results validate the assertion in Theorem 3.8 that
the communication graph will contain the RNG for θ ≤ 2π

3 . Also,
the communication graph contains only a few non-boundary edges
that are not in the RNG and will therefore inherit the sparseness
properties of the RNG.

VI. POWER CONTROL WITH NET GRAPHS

In this section we illustrate how NET graphs can be used for
topology control of a static network by varying the commu-
nication power. The result is a power control mechanism that
can guarantee k-edge-connectivity without any restriction on the
communication model. In contrast, most existing power control
algorithms, including the well-known CBTC [11], [26] algorithm,
require an idealized binary disk communication model.

In the power control problem, we are given a network de-
ployed with a sufficieltly large density so that connectivity (k-
connectivity) is guaranteed when nodes operate at full power. The
objective is to find an assignment of transmission powers to nodes
so that the reduced graph retains connectivity (k-connectivity)
while expending minimum energy. In some applications it is
also desirable to maintain other properties such as planarity,
sparseness, spanner, etc. NET graphs are naturally suited for
distributed power control because
• they are based on local geometric conditions that guarantee

global k-connectivity,
• communication range for the low power radios used in

sensor network applications is highly irregular [30], [31].
The connectivity properties of NET graphs are independent
of the communication model.

Consider a sensor network such that when nodes operate at
full power, they satisfy the NET condition for a given θ. Using a
typical power control protocol and satisfaction of NET condition
at each internal node as the termination criterion, a power-efficient
k-connected network can be achieved.

We have implemented a completely distributed power control
algorithm as follows. Starting with a minimum value, each
node incrementally increases its transmission power till the NET
condition is satisfied. We assume that the orientation of neighbors
can be computed either from angle-of-arrival of messages or
localization information. Each node computes its empty sectors
and increments power if 1) NET condition is not satisfied or 2)
if it has an asymmetric incoming link from a node that does not
satisfy NET condition. Since boundary nodes (detected using an
algorithm such as [18]) are not required to satisfy NET condition,
they only increase power in response to incoming asymmetric
links. This is a simple implementation with scope for further
power optimization which we plan to pursue in future. Our
objective here is to demonstrate that for a given θ the resulting
topologies preserve b 2πθ c edge-connectivity. In simulations, we
used realistic statistical models for wireless links developed in
[31] for which the authors have made code available online [32].

Fig. ?? shows typical topologies resulting with 500 nodes dis-
tributed uniformly at random on a 80m x 80m square. Nodes that
cannot satisfy the NET condition at full power are identified as
boundary nodes (shown as red squares). The initial transmission
power was set to −10dB and incremented in steps of 1dB.

Links that had a packet reception rate of at least 90% were
considered active. Note that the figures only show bidirectional
links. The simulations were terminated when all non-boundary
nodes satisfied NET condition.

Fig. ?? (a) and (b) show the comparison the topologies resulting
from NET based power control and CBTC(α) [11] for 2-edge-
connectivity. According to CBTC(α) a node must either have a
neighbor in every θ = 2π

3k or operate at full power to guarantee k-
edge-connectivity. We show that having a neighbor in every θ =
2π
k is sufficient to guarantee k-edge-connectivity. As a result, NET

condition results in a significantly sparser, and hence efficient,
topologies compared to CBTC(α).

Fig. 16 shows the edge-connectivity and average power over
100 iterations. Edge-connectivity was computed as the minimum
number of paths consisting of symmetric links between any two
internal nodes. In all experiments, the edge-connectivity was
always greater than b 2πθ c. This validates our key theoretical result,
Theorem 3.4. The average power used increases quickly as θ

decreases (fig. 16(b)). This implies that for efficient topology
control it is important to choose the largest value of θ possible
depending on the application requirements. Because NET graph
requires an angle (θ = 2π/k) that is three times bigger than
the angle required by CBTC(α) (θ = 2π/3k), the power saved
will very large. For example, for 2-edge-connectivity, CBTC(α)
requires an average power of 4dB while NET graph requires
−6dB.

These initial results are promising because we are able to
achieve power-efficient topologies that guarantee k-connectivity
through distributed power control even with realistic, irregular
link models.

VII. RELATED WORK

Sector based graphs have existed for a long time. The Yao
graph [33] (also called θ-graph) introduced by A. C. Yao in 1977
is constructed by dividing the area around each node into equal
sectors of θ each and adding an edge to the closest node in each
sector if there exists one. The symmetric Yao graph [10] is a
subgraph of the Yao graph containing only the edges chosen by
both of the two end nodes. Every NET graph is a symmetric Yao
graph but the converse is not true. This is because in a Yao graph,
the angle between two adjacent neighbors of a node can be greater
than θ depending on how the sectors were initially defined but in
a NET graph this angle cannot be greater than θ. As a result, the
properties we prove for NET graphs do not hold for Yao graphs.
θ ≤ π

3 guarantees that the Yao graph contains the RNG whereas
a much larger angle of θ ≤ 2π

3 is sufficient to guarantee that the
NET graph contains the RNG. Similarly, for θ = π, NET graphs
are connected [34] but the Yao graph is not necessarily connected.

Sector based conditions were introduced for topology control
of wireless ad-hoc networks by Li, Wang, Bahl and Watten-
hofer [9] and Li, Wan, and Wang [10]. In the Cone Based
Topology Control mechanism (CBTC) [9], each node either has
a neighbor in every θ sector or operates at full power. Under
the assumption of an idealized disk communication model, it
is shown that the graph is connected if θ ≤ 2π

3 . Further, if
the full power graph is k-connected then for θ ≤ 2π

3k , the
reduced graph retains k-connectivity [11]. In comparison, NET
graphs achieve k-connectivity with a much larger angle (and
hence significantly lower power) of θ = 2π

k and do not require
a the idealized disk model for communication. The difference
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(a) θ = 2π
3 (b) θ = π

2 (c) θ = 2π
5

(d) θ = π
3 (e) θ = 2π

7 (f) θ = π
4

Fig. 11. Sample deployments with 100 nodes and Rc = Rs = 8.0.

(a) θ = 2π
3 (b) θ = 2π

5 (c) θ = π
3

Fig. 12. Sample deployments in the presence of obstacles with 100 nodes and Rc = Rs = 8.0.

between the two techniques is established in Section VI. Li et
al proposed using geometric graphs such as RNG, GG, Delaunay
and Yao graphs for topology control and to address the non-
planarity and high node degree of Yao graph extended it to
symmetric Yao graph, YaoGG, YaoYao graph, reverse Yao graph,
and SθGG [10]. In [35] a modified Yao structure is proposed
for k-vertex connectivity, where each node must have at least
k + 1 neighbors in each sector of angle less than π

3 around
it. This implies that each node must have at least 6 · (k + 1)

neighbors which is 6 times the corresponding number required for
k-edge-connectivity using NET graphs. For scatternet formations,
Stojmenovic proposed protocols that apply geometric graphs such
as Yao graphs, RNG, and GG on the scatternet graph to limit node
degree and ensure planarity while retaining connectivity [36].
Recently, Xue and Kumar [37] have defined θ-coverage condition
which is equivalent to the NET condition and analyzed the critical
radius for asymptotic θ-coverage for a randomly deployed 2D
network. Further, they prove using geometric arguments that
for θ ≤ π, θ-coverage implies 1-connectivity. The same result
was simultaneously established by D’Souza et al [34] for a
weak monotonicity communication model which is more general
than the idealized disk communication model. Our paper extends

this result to address k-connectivity as a function of θ, for any
arbitrary communication model. There is a rich body of literature
on topology control with a wide variety of techniques in addition
to sector based techniques (see [14]).

Sleep scheduling seeks to activate only a fraction of the nodes
in a densely deployed network. Several researchers have studied
the problem of finding the smallest set of active nodes that can
simultaneously achieve complete coverage and connectivity where
complete coverage is defined as every point in the network domain
being within the sensing range of at least one active node. Under
this definition, coverage and connectivity are not opposing goals;
in fact, if the sensing range is at least twice the communication
range, then complete coverage implies connectivity [15], [16]. In
contrast we focus on the problem of maximizing sensing coverage
given a fixed number of nodes so that higher coverage, in most
cases, implies poorer connectivity. OGDC [15] and CCP [16] are
sleep scheduling protocols based on geometric conditions. While
OGDC seeks to minimize the number of active nodes, CCP can
provide different degrees of coverage and connectivity. Interest-
ingly, the geometric optimality conditions presented in [15], as
pointed out by the authors, can be attained exactly if the positions
of nodes can be controlled. Even though we do not consider sleep-
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(a) (b)

(c) (d)

Fig. 13. Performance of the Sequential and Distributed deployment Algorithms for a deployment of 100 nodes in terms of (a) Coverage, (b) Edge Connectivity
(c) Average Degree and (d) NET condition satisfaction

(a) (b) (c)

(d) (e) (f)

Fig. 14. For θ ≤ 2π
3

, the communication graph is a supergraph of RNG. (a) Communication Graph (b) RNG (c) Difference for θ = 2π
3

. (d) Communication
Graph (e) RNG (f) Difference for θ = 2π

4
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(a) θ = π (b) θ = 2π
6

Fig. 15. Comparison of NET graphs and CBTC(α) for a uniform random network of 500 nodes. For 2-edge-connectivity, (a) NET graph requires sector
angle θ = π and average power −5.91dB while (b) CBTC requires θ = 2π

6
and average power of 4.10dB.

(a) edge-connectivity (b) average power

Fig. 16. Simulation results of power control based on NET graphs for a uniform random network of 500 nodes averaged over 100 runs. The edge-connectivity
is greater than the 2π

k
lower bound derived in Theorem 3.4. The average communication power for achieving 2-connectivity using CBTC(α) is 4dB (red

square) compared to −6dB using NET graphs.

scheduling mechanisms in depth, it is possible to think of designs
where densely deployed nodes make sleep/wake decisions in a
distributed manner by using local, pair-wise negotiations based
on combinations of NET condition satisfaction and other criteria.

Deployment and repair of static networks by mobile robots
has been presented in [38], [39]. Typically, such algorithms
have focussed on the control strategies for the robot rather
than properties of the network. By providing conditions that are
distributed and can be easily combined with robot controllers,
our work provides a means of integrating the two objectives.
Self deployment of networks of robots, where the key focus is
on maximizing sensing coverage, has been well studied. Cortes
et al [17], present a Voronoi partition based algorithm that
is distributed and guaranteed to maximize coverage. Wang, et
al., [40] also use a Voronoi based approach to redistribute
densely deployed mobile nodes to sparsely deployed areas and
improve coverage. Potential field based deployment algorithms
also maximize coverage [27] and have been extended to impose
local constraints such as minimum degree of each node [28].
Simulations in [28] show that constraining the degree can result
in the deployed network being connected with high probability.
An incremental deployment algorithm that ensures line-of-sight
connectivity has been presented in [41]. The above algorithms,
like the NET based distributed deployment, require information
about angle and distance to neighbors. They maximize coverage
but do not guarantee network connectivity.

Topology control in 3D is significantly more complex and is
relatively less studied in the literature. In [11], an algorithm has
been presented to extend CBTC [9] to 3D. The computational
complexity at each node is O(d3log(d)), d being the average node

degree. The spherical Delaunay triangulation based algorithm that
we present has complexity O(dlog(d). Our algorithm has been
implemented in [42] along with another technique where CBTC
is applied on projections of 3D points on a 2D plane. Simulation
results presented show that both techniques result in retaining
connectivity with high probability. In this paper, we prove that
NET3D guarantees k-connectivity for θ ≤ 4π

k < 2π. In XTC [43]
links with poor quality that can be substituted with multi-hop
paths with better quality, are incrementally deleted. It does not
use the disk assumption or angular information; given an initially
connected network in 3D, it can retain connectivity.

VIII. SUMMARY AND CONCLUSIONS

This paper addresses distributed topology control using a con-
struct called Neighbor-Every-Theta (NET) graphs. These graphs
have the following two properties that allow for simple and
practical algorithm design:
• tunable connectivity based on a single parameter, the sector

angle θ
• connectivity guarantees do not depend on communication

model
NET graphs are such that each node has at least one neighbor

in every θ sector around it. We prove that for a given θ < π,
NET graphs have an edge connectivity of at least b 2πθ c, except in
pathological cases where the network can be partitioned close
to its boundary. This property holds even in cases when the
communication model is irregular. For the special case of an
idealized disk communication model, it is shown that for specific
values of θ, NET graphs contain proximity graphs such as the
relative neighborhood graphs that are well known to be desirable
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Fig. 17. Sector condition for GG

communication topologies. We also prove the symmetric neighbor
placement condition for maximizing sensing coverage under the
NET condition.

To concretely demonstrate the use of NET graphs for tunable
topology control, we consider two scenarios:
• For deployment of mobile nodes, we develop a distributed

controller that maximizes sensing coverage while maintain-
ing local sector conditions. This controller is based on
virtual potential fields, where a combination of attractive
and repulsive forces decides the motion, and pair-wise ne-
gotiations between communicating neighbors. Simulations
on the Player/Stage platform provide controller performance
evaluation and also serve to substantiate the analysis.

• For power control in a static network, we implement a typical
protocol using satisfaction of NET condition at each internal
node as the termination criterion and show that a power-
efficient network with edge connectivity 2π

θ can be achieved
even with realistic, irregular links.

Lastly, we consider NET graphs in three dimensions and study
their connectivity properties. It is our conjecture that for a given
solid angle θ < 2π, NET3D graphs have an edge connectivity of
at least b 2πθ c when partitions close to the boundary are ignored.
There is very little earlier work on topology control in 3D. Several
geometric computations become complex and even intractable
when extended from 2D to 3D. We have developed an efficient
algorithm for determining the largest empty cone around a node
in 3D based on spherical Delaunay triangulations. The running
time is O(dlogd) for average node density d, which is a significant
improvement over the earlier O(d3logd) algorithm proposed in the
context of CBTC [11]. The new algorithm can be used to extend
several sector based topology control algorithms to 3D. Topology
control in 3D is an important area for further research.

APPENDIX

Proof: [of Theorem 3.9] Consider a node X and a node Y
outside C(X,Rc). For any r ≤ Rc, let β be the angle subtended
by the intersection area C(X, r) ∩C(X+Y

2 ,
d(X,Y )

2 ) at X. From
Fig.17 we have,

r

2
=
d(X,Y )

2
cos(

β

2
)⇒ β = 2arccos(

r

d(X,Y )
).

Since arccos is strictly decreasing in [0, 1] and d(X,Y ) ∈
(Rc,∞), the smallest angle subtended is

θ = inf β = 2 arccos(
r

Rc
). (3)

Fig. 18. Sector condition for DelG

Suppose x has at least one neighbor in every

θ = 2 arccos(
r

Rc
)

sector of C(X, r). By definition, the edge (X,Y ) /∈ GG(V ) if

C(
d(X,Y )

2
,
d(X,Y )

2
, ) ∩ V 6= ∅. (4)

(4) is satisfied for any choice of Y if there is a node Z ∈ V in the
θ sector of C(X, r). By premise such a Z exists and hence the
GG will not have any edge lengths greater than Rc. This implies
that GG(V ) ⊆ DG(V,E,Rc).�

Proof: [of Theorem 3.10] Consider all circles passing
through X and Y . The smallest is C(X+Y

2 ,
d(X,Y )

2 ) and the
largest are two circles of infinite radius of which the straight
line through X and Y is an arc. From Fig.18, it can be seen that
the intersections of these circles with C(X, r) subtend an angle
which is at least θ at X, where

θ = inf β = 2 arccos(
r

Rc
).

By premise, there is at least one node in every θ sector of C(X, r).
Therefore, every circle passing through X and Y will contain
another node. So,

1) there is no Z ∈ V such that the 4XY Z ∈ DelG(V )

2) trivially C(X+Y
2 ,

d(X,Y )
2 ) also contains another node.

By 1,2 and definition of DelG, the edge (X,Y ) /∈ DelG(V ). Since
the choice of Y is arbitrary, there are no edge lengths greater than
Rc in the DelG. Hence DelG ⊆ DG(V,E,Rc). �
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