
On Spectral Graph Drawing
Yehuda Koren

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

yehuda@wisdom.weizmann.ac.il

Abstract. The spectral approach for graph visualization computes the layout of a
graph using certain eigenvectors of related matrices. Some important advantages
of this approach are an ability to compute optimal layouts (according to specific
requirements) and a very rapid computation time. In this paper we explore spec-
tral visualization techniques and study their properties. We present a novel view
of the spectral approach, which provides a direct link between eigenvectors and
the aesthetic properties of the layout. In addition, we present a new formulation
of the spectral drawing method with some aesthetic advantages. This formulation
is accompanied by an aesthetically-motivated algorithm, which is much easier to
understand and to implement than the standard numerical algorithms for comput-
ing eigenvectors.

1 Introduction

A graph G(V,E) is an abstract structure that is used to model a relation E over a set
V of entities. Graph drawing is a standard means for visualizing relational informa-
tion, and its ultimate usefulness depends on the readability of the resulting layout, that
is, the drawing algorithm’s ability to convey the meaning of the diagram quickly and
clearly. To date, many approaches to graph drawing have been developed [4, 8]. There
are many kinds of graph-drawing problems, such as drawing di-graphs, drawing planar
graphs and others. Here we investigate the problem of drawing undirected graphs with
straight-line edges. In fact, the methods that we utilize are not limited to traditional
graph drawing and are also intended for general low dimensional visualization of a set
of objects according to their pair-wise similarities (see, e.g., Fig. 2).

We have focused on spectral graph drawing methods, which construct the layout us-
ing eigenvectors of certain matrices associated with the graph. To get some feeling, we
provide results for three graphs in Fig. 1. This spectral approach is quite old, originating
with the work of Hall [6] in 1970. However, since then it has not been used much. In
fact, spectral graph drawing algorithms are almost absent in the graph-drawing litera-
ture (e.g., they are not mentioned in the two books [4, 8] that deal with graph drawing).
It seems that in most visualization research the spectral approach is difficult to grasp in
terms of aesthetics. Moreover, the numerical algorithms for computing the eigenvectors
do not possess an intuitive aesthetic interpretation.

We believe that the spectral approach has two distinct advantages that make it very
attractive. First, it provides us with an exact solution to the layout problem, whereas
almost all other formulations result in an NP-hard problem, which can only be approxi-
mated. The second advantage is computation speed. Spectral drawings can be computed
extremely fast as we have shown in [9]. This is very important because the amount of
information to be visualized is constantly growing exponentially.

(a) (b) (c)

Fig. 1. Drawings obtained from the Laplacian eigenvectors. (a) The 4970 graph. |V | = 4970,
|E| = 7400. (b) The 4elt graph. |V | = 15606, |E| = 45878. (c) The Crack graph. |V | = 10240,
|E| = 30380.

Spectral methods have become standard techniques in algebraic graph theory; see,
e.g., [3]. The most widely used techniques utilize eigenvalues and eigenvectors of the
adjacency matrix of the graph. More recently, the interest has shifted somewhat to the
spectrum of the closely related Laplacian. In fact, Mohar [11] claims that the Laplacian
spectrum is more fundamental than this of the adjacency matrix.

Related areas where the spectral approach has been popularized include clustering
[13], partitioning [12], and ordering [7]. However, these areas use discrete quantizations
of the eigenvectors, unlike graph drawing, which employs the eigenvectors without any
modification. Regarding this aspect, it is more fundamental to explore properties of
graph-related eigenvectors in the framework of graph drawing.

In this paper we explore the properties of spectral visualization techniques, and pro-
vide different explanations for their ability to draw graphs nicely. Moreover, we have
modified the usual spectral approach. The new approach uses what we will call degree-
normalized eigenvectors, which have aesthetic advantages in certain cases. We provide
an aesthetically-motivated algorithm for computing the degree-normalized eigenvec-
tors. Our hope is that this will eliminate the vagueness of spectral methods and will
contribute to their recognition as an important tool in the field of graph-drawing and
information-visualization.

2 Basic Notions

A graph is usually written G(V,E), where V = {1 . . . n} is the set of n nodes, and
E is the set of edges. Each edge 〈i, j〉 is associated with a non-negative weight wij

that reflects the similarity of nodes i and j. Thus, more similar nodes are connected
with “heavier” edges. Henceforth, we will assume wij = 0 for any non-adjacent pair of
nodes. Let us denote the neighborhood of i by N(i) = {j | 〈i, j〉 ∈ E}. The degree of

node i is deg(i) def=
∑

j∈N(i) wij. Throughout the paper we have assumed, without loss
of generality, that G is connected, otherwise the problem we deal with can be solved
independently for each connected component.

The adjacency-matrix of the graph G is the symmetric n× n matrix AG, where

AG
ij =

{
0 i = j
wij i �= j

i, j = 1, . . . , n.

We will often omit the G in AG.
The Laplacian is another symmetric n×n matrix associated with the graph, denoted

by LG, where

LG
ij =

{
deg(i) i = j
−wij i �= j

i, j = 1, . . . , n.

Again, we will often omit the G in LG. The Laplacian is positive semi-definite, and its

only zero eigenvalue is associated with the eigenvector 1n
def= (1, 1, . . . , 1)T ∈ R

n. The
usefulness of the Laplacian stems from the fact that the quadratic form associated with
it is just a weighted sum of all pairwise squared distances:

Lemma 1. Let L be an n× n Laplacian, and let x ∈ R
n. Then

xT Lx =
∑
i<j

wij(xi − xj)2.

The proof of this lemma is direct.
Throughout the paper we will use the convention 0 = λ1 < λ2 ≤ . . . ≤ λn for

the eigenvalues of L, and denote the corresponding real orthonormal eigenvectors by
v1 = (1/

√
n) · 1n, v2, . . . , vn.

Let us define the degrees matrix as the n × n diagonal matrix D that satisfies
Dii = deg(i). Given a degrees matrix, D, and a Laplacian, L, then a vector u and
a scalar µ are termed generalized eigen-pairs of (L,D) if Lu = µDu. Our conven-
tion is to denote the generalized eigenvectors of (L,D) by α · 1n = u1, u2, . . . , un,
with corresponding generalized eigenvalues 0 = µ1 < µ2 � · · · � µn. (Thus,
Lui = µiDui, i = 1, . . . , n.) To uniquely define u1, u2, . . . , un, we require them
to be D-normalized: so uT

i Dui = 1, i = 1, . . . n. We term these generalized eigen-
vectors the degree normalized eigenvectors. It can be shown (see Appendix A) that all
the generalized eigenvalues are real non-negative, and that all the degree normalized
eigenvectors are D-orthogonal, i.e. uT

i Duj = 0, ∀i �= j.

3 Spectral Graph Drawing

The earliest spectral graph-drawing algorithm was that of Hall [6]; it uses the low
eigenvectors of the Laplacian. Henceforth, we will refer to this method as the eigen-
projection method. A few other researchers utilize the top eigenvectors of the adjacency
matrix instead of those of the Laplacian. E.g., the work of [10], which uses the adja-
cency matrix eigenvectors to draw molecular graphs. Recently, eigenvectors of a modi-
fied Laplacian were used in [1] for the visualization of bibliographic networks.

In fact, for regular graphs of uniform degree deg, the eigenvectors of the Laplacian
equal those of the adjacency matrix, but in a reversed order, because L = deg · I − A,
and adding the identity matrix does not change eigenvectors. However, for non-regular
graphs, use of the Laplacian is based on a more solid theoretical basis, and in practice
also gives nicer results than those obtained by the adjacency matrix. Hence, we will
focus on visualization using eigenvectors of the Laplacian.

3.1 Derivation of the Eigen-Projection Method
We will introduce the eigenprojection method as a solution to a minimization problem.
We begin by deriving a 1-D drawing, and then we show how to draw in more dimen-
sions.

Given a weighted graph G(V,E), we denote its 1-D layout by x ∈ R
n, where

x(i) is the location of node i. We take x as the solution of the following constrained
minimization problem

min
x

E(x) def=
∑

〈i,j〉∈E

wij(x(i)− x(j))2 (1)

given: Var(x) = 1,

where Var(x) is the variance of x, defined as usual by Var(x) = 1
n

∑n
i=1 (x(i)− x̄)2,

and where x̄ is the mean of x.
The energy to be minimized, E(x), strives to make edge lengths short. Since the

sum is weighted by edge-weights, “heavy” edges have a stronger impact and hence will
be typically shorter. The constraint Var(x) = 1 requires that the nodes be scattered in
the drawing area, and prevents an overcrowding of the nodes at the same point. Note
that the choice of variance 1 is arbitrary, and simply states the scale of the drawing. We
could equally have chosen a constraint of the form Var(x) = c. In this way, if x0 is the
optimal solution of variance 1, then

√
c · x0 is the optimal solution of variance c. Such

a representation of the problem reminds the force-directed graph drawing approach
(see [4, 8]), where the energy to be minimized replaces the “attractive forces”, and the
variance constraint takes the role of the “repulsive forces”.

The energy and the constraint are invariant under translation (ensure that for every
α: E(x) = E(x + α · 1n), Var(x) = Var(x + α · 1n)). We eliminate this degree of
freedom by requiring that the mean of x is 0, i.e.

∑n
i=1 x(i) = xT ·1n = 0. This is very

convenient since now the variance can be written in a simple form: Var(x) = 1
nxT x. To

simplify the notation we will change the scale, and require the variance to be 1
n , which

is equivalent to xT x =
∑n

i=1 x(i)2 = 1.
Using Lemma 1, we can write the energy in a matrix form: E(x) = xT Lx =∑

〈i,j〉∈E wij · (x(i) − x(j))2. Now the desired 1-D layout, x, can be described as the
solution of the constrained minimization problem

min
x

xT Lx (2)

given: xT x = 1
in the subspace: xT · 1n = 0.

Let us substitute B = I in Claim A (in Appendix A), to obtain the optimal solution
x = v2, the second smallest eigenvector of L.

To achieve a 2-D drawing, we need to compute an additional vector of coordinates,
y. Our requirements for y are the same as those that we required from x, but in addition
there must be no correlation between y and x, so that the additional dimension will
provide us with as much new information as possible1. Since x and y are centered,

1 The strategy to require no correlation between the axes is used in other visualization techniques
like Principal Components Analysis [15] and Classical Multidimensional Scaling [15].

we simply have to require that yT · x = yT · v2 = 0. Hence y is the solution of the
constrained minimization problem

min
y

yT Ly (3)

given: yT y = 1
in the subspace: yT · 1n = 0, yT · v2 = 0.

Again, use Claim A so that the optimal solution is y = v3, the third smallest eigen-
vector of L. In order to obtain a k-D drawing of the graph, we take the first coordinate
of the nodes to be v2, the second coordinate to be v3, and in general, we define the i-th
coordinate of the nodes by vi+1.

4 Drawing using Degree-Normalized Eigenvectors

In this section we introduce a new spectral graph drawing method that associates the
coordinates with some generalized eigenvectors of the Laplacian.

Suppose that we weight nodes by their degrees, so the mass of node i is its degree —
deg(i). Now if we take the original constrained minimization problem (2) and weight
sums according to node masses, we get the following degree-weighted constrained min-
imization problem (where D is the degrees matrix)

min
x

xT Lx (4)

given: xT Dx = 1
in the subspace: xT D1n = 0.

Substitute B = D in Claim A to obtain the optimal solution x = u2, the second smallest
generalized eigenvector of (L,D). Using the same reasoning as in Subsection 3.1, we
obtain a k-D drawing of the graph, by taking the first coordinate of the nodes to be
u2, the second coordinate to be u3, and in general, we define the i-th coordinate of the
nodes by ui+1.

We will show by several means that using these degree-normalized eigenvectors is
more natural than using the eigenvectors of the Laplacian. In fact Shi and Malik [13]
have already shown that the degree-normalized eigenvectors are more suitable for the
problem of image segmentation. For the visualization task, the motivation and explana-
tion are very different.

In order to gain some intuition on (4), we shall rewrite it in the equivalent form:

min
x

xT Lx

xT Dx

in the subspace: xT D1n = 0.

(5)

It is straightforward to show that a solution of (4) is also a solution of (5).
In problem (5) the denominator moderates the behavior of the numerator, as we are

showing now. The numerator strives to place those nodes with high degrees at the center

of the drawing, so that they are in proximity to the other nodes. On the other hand, the
denominator also emphasizes those nodes with high degrees, but in the reversed way: it
strives to enlarge their scatter. The combimation of these two opposing goals, helps in
making the drawing more balanced, preventing a situation in which nodes with lower
degrees are overly separated from the rest nodes.

Another observation is that degree-normalized eigenvectors unify the two common
spectral techniques: the approach that uses the Laplacian and the approach that uses
the adjacency matrix. To see this, use the fact that L = D − A and write Lu = µDu
as (D − A)u = µDu. By changing sides, we get Au = (1 − µ)Du. Thus, the gen-
eralized eigenvectors of (L,D) are also the generalized eigenvectors of (A,D), with
a reversed order. In this way, when drawing with degree normalized eigenvectors, we
can take either the low generalized eigenvectors of the Laplacian, or the top generalized
eigenvectors of the adjacency matrix, without affecting the result.

The degree-normalized eigenvectors are also the (non-generalized) eigenvectors of
the matrix D−1A. This can be obtained by left-multiplying the generalized eigen-
equation Ax = µDx by D−1, obtaining the eigen-equation

D−1Ax = µx. (6)

Note that D−1A is known as the transition matrix of a random walk on the graph G.
Hence, the degree-normalized eigen-projection uses the top eigenvectors of the transi-
tion matrix to draw the graph.

Regarding drawing quality, for graphs that are close to being regular, we have ob-
served not much difference between drawing using eigenvectors and drawing using
degree-normalized eigenvectors. However, when there are marked deviations in node
degrees, the results are quite different. This can be directly seen by posing the problem
as in (5). Here, we provide an alternative explanation based on (6). Consider the two
edges e1 and e2. Edge e1 is of weight 1, connecting two nodes, each of which is of de-
gree 10. Edge e2 is of weight 10, connecting two nodes, each of which is of degree 100.
In the Laplacian matrix, the entries corresponding to e2 are 10 times larger than those
corresponding to e1. Hence we expect the drawing obtained by the eigenvectors of the
Laplacian, to make the edge e2 much shorter than e1 (here, we do not consider the effect
of other nodes that may change the lengths of both edges). However, for the transition
matrix in (6), the entries corresponding to these two edges are the same, hence we treat
them similarly and expect to get the same length for both edges. This reflects the fact
that the relative importance of these two edges is the same, i.e. 1

10 .
In many kinds of graphs numerous scales are embedded, which indicates the exis-

tence of dense clusters and sparse clusters. In a traditional eigen-projection drawing,
dense clusters are drawn extremely densely, while the whole area of the drawing is used
to represent sparse clusters or outliers. This is the best way to minimize the weighted
sum of square edge lengths, while scattering the nodes as demanded. A better draw-
ing would allocate each cluster an adequate area. Frequently, this is the case with the
degree normalized eigenvectors that adjust the edge weights in order to reflect their
relative importance in the related local scale.

For example, consider Fig. 2, where we visualize 300 odors as measured by an
electronic nose. Computation of the similarities between the odors is given in [2]. The

odors are known to be classified into 30 groups, which determine the color of each odor
in the figure. Figure 2(a) shows the visualization of the odors by the eigenvectors of the
Laplacian. As can be seen, each of the axes shows one outlying odor, and places all the
other odors about at the same location. However, the odors are nicely visualized using
the degree normalized eigenvectors, as shown in Fig. 2(b).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) (b)

Fig. 2. Visualization of 300 odor patterns as measured by an electronic nose. (a) A drawing using
the eigenvectors of the Laplacian. (b) A drawing using the degree-normalized eigenvectors.

5 An Optimization Process
An attractive feature of the degree-normalized eigenvectors is that they can be computed
by an intuitive algorithm, which is directly related to their aesthetic properties. This is
unlike the (non generalized) eigenvectors, which are computed using methods that are
difficult to interpret in aesthetic terms. Now we will derive the algorithm.

Differentiating E(x) with respect to x(i) gives ∂E
∂x(i) = 2

∑
j∈N(i) wij(x(i)−x(j)).

Equating this to zero and isolating x(i) we get

x(i) =

∑
j∈N(i) wijx(j)

deg(i)
.

Hence, when allowing only node i to move, the location of i that minimizes E(x)
is the weighted centroid of i’s neighbors.

This induces an optimization process that iteratively puts each node at the weighted
centroid of its neighbors (simultaneously for all nodes). The aesthetic reasoning is clear.
A rather impressive fact is that when initialized with a vector D-orthogonal to 1n, this
algorithm converges in the direction of a non-degenerate degree-normalized eigenvector
of L. More precisely, it converges either in the direction of u2 or that of un.

We can prove this surprising fact by observing that the action of putting each node
at the weighted centroid of its neighbors is equivalent to multiplication by the transition
matrix — D−1A. Thus, the process we have described can be expressed in a compact
form as the sequence {

x0 = random vector, s.t. xT
0 D1n = 0

xi+1 = D−1Axi .

This process is known as the Power-Iteration [5]. In general, it computes the “dom-
inant” eigenvector of D−1A, which is the one associated with the largest-in-magnitude
eigenvalue. In our case, all the eigenvectors are D-orthogonal to the “dominant” eigen-
vector — 1n, and also the initial vector, x0, is D-orthogonal to 1n. Thus, the series
converges in the direction of the next dominant eigenvector, which is either u2, which
has the largest positive eigenvalue, or un, which possibly has the largest negative eigen-
value. (We assume that x0 is not D-orthogonal to u2 or to un, which is nearly always
true for a randomly chosen x0)

In practice, we want to ensure convergence to u2 (avoiding convergence to un). We
use the fact that all the eigenvalues of the transition matrix are in the range [−1, 1]. Now
it is possible to shift the eigenvalues by adding the value 1 to each of them, so that they
are all positive, thus preventing convergence to an eigenvector with a large negative
eigenvalue. This is done by working on the matrix I + D−1A instead of the matrix
D−1A. In this way the eigenvalues are in the range [0, 2], while eigenvectors are not
changed. In fact, it would be more intuitive to scale the eigenvalues to the range [0, 1],
so we will actually work with the matrix 1

2 (I + D−1A). If we use our initial “intuitive”
notions, this means a more careful process. In each iteration, we put each node at the
average between its old place and the centroid of its neighbors. Thus, each node absorbs
its new location not only from its neighbors, but also from its current location.

The full algorithm for computing a k-D drawing is given in Fig. 3. To compute
a degree-normalized eigenvector uj , we will use the principles of the power-iteration
and the D-orthogonality of the eigenvectors. Briefly, we pick some random x, such
that x is D-orthogonal to u1, . . . , uj−1, i.e. xT Du1 = 0, . . . , xT Duj−1 = 0. Then, if
xT Duj �= 0, it can be proved that the series 1

2 (I +D−1A)x, (1
2 (I +D−1A))2x, (1

2 (I +
D−1A))3x, . . . converges in the direction of uj . Note that in theory, all the vectors in
this series are D-orthogonal to u1, . . . , uj−1. However, to improve numerical stability,
our implementation imposes the D-orthogonality to previous eigenvectors in each it-
eration. The power iteration algorithm produces vectors of diminishing (or exploding)
norms. Since we are only interested in convergence in direction, it is customary to re-
scale the vectors after each iteration. Here, we will re-scale by normalizing the vectors
to be of length 1.

The convergence rate of this algorithm when computing ui is dependent on the
ratio µi/µi+1. In practice, we embedded this algorithm in a multi-scale construction,
resulting in extremely fast convergence. The multi-scale ascheme is explained in [9].

6 A Direct Characterization of Spectral Layouts

So far, we have derived spectral methods as solutions of optimization problems, or as a
limit of a drawing process. In this section we characterize the eigenvectors themselves,
in a rather direct manner, to clarify the aesthetic properties of the spectral layout. Once
again the degree-normalized eigenvectors will appear as the more natural way for spec-
tral graph drawing.

As we have seen, the quadratic form E(x) =
∑

〈i,j〉∈E wij(x(i) − x(j))2, which
motivates spectral methods, is tightly related to the aesthetic criterion that calls for plac-
ing each node at the weighted centroid of its neighbors. When the graph is connected, it
can be strictly achieved only by the degenerate solution that puts all nodes at the same

Function SpectralDrawing (G – the input graph, k – dimension)
% This function computes u2, . . . , uk, the top (non-degenerate) eigenvectors of D−1A.

const ε← 10−7 % tolerance
for i = 2 to k do

ûi ← random % random initialization
ûi ← ûi

‖ûi‖
do

ui ← ûi

% D-Orthogonalize against previous eigenvectors:
for j = 1 to i− 1 do

ui ← ui − uT
i Duj

uT
j Duj

uj

end for
% multiply with 1

2
(I + D−1A):

for j = 1 to n do

ûi(j)← 1
2 ·
(
ui(j) +

∑
k∈N(j) wjkui(k)

deg(j)

)
end for
ûi ← ûi

‖ûi‖ % normalization

while ûi · ui < 1− ε % halt when direction change is negligible
ui ← ûi

end for
return u2, . . . , uk

Fig. 3. The algorithm for computing degree-normalized eigenvectors

location. Hence, to incorporate this aesthetic criterion into a graph drawing algorithm,
it should be modified appropriately.

Presumably the earliest graph drawing algorithm, formulated by Tutte [14], is based
on placing each node on the weighted centroid of its neighbors. To avoid the degenerate
solution, Tutte arbitrarily chose a certain number of nodes to be anchors, i.e. he fixed
their coordinates in advance. Those nodes are typically drawn on the boundary. This,
of course, prevents the collapse; however it raises new problems, such as which nodes
should be the anchors, how to determine their coordinates, and why after all such an
anchoring mechanism should generate nice drawings. An advantage of Tutte’s method
is that in certain cases, it can guarantee achieving a planar drawing.

Tutte treats in different ways the anchored nodes and the remaining nodes. Whereas
the remaining nodes are located exactly at the centroid of their neighbors, nothing can
be said about anchored nodes. In fact, in several experiments we have seen that the
anchored nodes are located quite badly.

Alternatively, we do not use different strategies for dealing with two kinds of nodes,
but rather, we treat all the nodes similarly. The idea is to gradually increase the devia-
tions from centroids of neighbors as we move away from the origin (that is the center
of the drawing). This reflects the fact that central nodes can be placed exactly at their
neighbors’ centroid, whereas boundary nodes must be shifted outwards.

More specifically, node i, which is located in place x(i), is shifted from the center
toward the boundary by the amount of µ · |x(i)|, for some µ > 0. Formally, we request
the layout x to satisfy, for every 1 � i � n

x(i)−
∑

j∈N(i) wijx(j)

deg(i)
= µ · x(i) .

Note that the deviation from the centroid is always toward the boundary, i.e. toward +∞
for positive x(i) and toward −∞ for negative x(i). In this way we prevent a collapse at
the origin. We can represent all these n requests compactly in a matrix form, by writing

D−1Lx = µx .

Left-multiplying both sides by D, we obtain the familiar generalized eigen-equation

Lx = µDx .

We conclude with the following important property of degree-normalized eigenvectors:

Proposition 1. Let u be a generalized eigenvector of (L,D), with associated eigen-
value µ. Then, for each i, the exact deviation from the centroid of neighbors is

u(i)−
∑

j∈N(i) wiju(j)

deg(i)
= µ · u(i) .

Note that the eigenvalue µ is a scale-independent measure of the amount of devia-
tion from the centroids. This provides us with a fresh new interpretation of the eigen-
values that is very different from the one given in Subsection 3.1, where the eigenvalues
were shown as the amount of energy in the drawing.

Thus, we deduce that the second smallest degree-normalized eigenvector produces
the non-degenerate drawing with the smallest deviations from centroids, and that the
third smallest degree-normalized eigenvector is the next best one and so on.

Similarly, we can obtain a related result for eigenvectors of the Laplacian:

Proposition 2. Let v be an eigenvector of L, with associated eigenvalue λ. Then, for
each i, the exact deviation from the centroid of neighbors is

v(i)−
∑

j∈N(i) wijv(j)

deg(i)
= λ · deg(i)−1 · v(i) .

Hence for eigenvectors of the Laplacian, the deviation between a node and the centroid
of its neighbors gets larger as the node’s degree decreases.

7 Discussion

In this paper we have presented a spectral approach for graph drawing, and justified
it by studying three different viewpoint for the problem. The first viewpoint describes
a classical approach for achieving graph layouts by solving a constrained energy min-
imization problem. This is much like force directed graph drawing algorithms (for a

survey refer to [4, 8]). Compared with other force-directed methods, the spectral ap-
proach has two major advantages: (1) Its global optimum can be computed efficiently.
(2) The energy function contains only O(|E|) terms, unlike the O(n2) terms appearing
in almost all the other force-directed methods.

A second viewpoint shows that the spectral drawing is the limit of an iterative pro-
cess, in which each node is placed at the centroid of its neighbors. This viewpoint
does not only sharpen the nature of spectral drawing, but also provides us with an
aesthetically-motivated algorithm. This is unlike other algorithms for computing eigen-
vectors, which are rather complicated and far from having an aesthetic interpretation.

We have also introduced a third viewpoint, showing that spectral methods place
each node at the centroid of its neighbors with some well defined deviation. This new
interpretation provides an accurate and simple description of the aesthetic properties of
spectral drawing.

Another contribution of our paper is the introduction of a new spectral graph draw-
ing algorithm, using what we have called degree-normalized eigenvectors. We have
shown that this method is more natural in some aspects, and has aesthetic advantages
for certain kinds of data.

References
1. U. Brandes and T. Willhalm, “Visualizing Bibliographic Networks with a Reshaped Land-

scape Metaphor”, Proc. 4th Joint Eurographics - IEEE TCVG Symp. Visualization (VisSym
’02), pp. 159-164, ACM Press, 2002.

2. L. Carmel, Y. Koren and D. Harel, “Visualizing and Classifying Odors Using a Similar-
ity Matrix”, Proceedings of the ninth International Symposium on Olfaction and Electronic
Nose (ISOEN’02), IEEE, to appear, 2003.

3. F.R.K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, American Mathe-
matical Society, 1997.

4. G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis, Graph Drawing: Algorithms for the
Visualization of Graphs, Prentice-Hall, 1999.

5. G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.
6. K. M. Hall, “An r-dimensional Quadratic Placement Algorithm”, Management Science 17

(1970), 219–229.
7. M. Juvan and B. Mohar, “Optimal Linear Labelings and Eigenvalues of Graphs”, Discrete

Applied Math. 36 (1992), 153–168.
8. M. Kaufmann and D. Wagner (Eds.), Drawing Graphs: Methods and Models, LNCS 2025,

Springer Verlag, 2001.
9. Y. Koren, L. Carmel and D. Harel, “ACE: A Fast Multiscale Eigenvectors Computation for

Drawing Huge Graphs”, Proceedings of IEEE Information Visualization 2002 (InfoVis’02),
IEEE, pp. 137–144, 2002.

10. D.E. Manolopoulos and P.W. Fowler, “Molecular Graphs, Point Groups and Fullerenes”, J.
Chem. Phys. 96 (1992), 7603–7614.

11. B. Mohar, “The Laplacian Spectrum of Graphs”, Graph Theory, Combinatorics, and Appli-
cations 2 (1991), 871–898.

12. A. Pothen, H. Simon and K.-P. Liou, “Partitioning Sparse Matrices with Eigenvectors of
Graphs”, SIAM Journal on Matrix Analysis and Applications, 11 (1990), 430–452.

13. J. Shi and J. Malik, “Normalized Cuts and Image Segmentation”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22 (2000), 888–905.

14. W. T. Tutte, “How to Draw a Graph”, Proc. London Math. Society 13 (1963), 743–768.
15. A. Webb, Statistical Pattern Recognition, Arnold, 1999.

A Solution of Constrained Quadratic Optimization Problems
In this appendix we study a certain kind of constrained optimization problem, whose solution is
a generalized eigenvector.

We use two matrices: (1) A — an n × n real symmetric positive-semidefinite matrix. (2)
B — an n × n diagonal matrix, whose diagonal entries are real-positive. (In fact, it is enough
to require that matrix B is positive-definite.) We denote the generalized eigenvectors of (A, B)
by u1, u2, . . . , un, with corresponding eigenvalues 0 � λ1 � λ2 � · · · � λn. Thus, Aui =
λiBui, i = 1, . . . , n. To uniquely define u1, u2, . . . , un, we require them to be B-normalized,
i.e. uT

i Bui = 1, i = 1, . . . , n.
Clearly, for every 1 � i � n, B

1
2 ui and λi are an eigen-pair of the matrix B− 1

2 AB− 1
2 .

Note that B− 1
2 AB− 1

2 is a symmetric positive-semidefinite. Thus, all the eigenvalues are real
non-negative, and all the generalized eigenvectors are B-orthogonal, i.e. uT

i Buj = 0, ∀i �= j.
Now we define a constrained optimization problem

min
x

xT Ax (7)

given: xT Bx = 1

in the subspace: xT Bu1 = 0, . . . , xT Buk−1 = 0.

Claim. The optimal solution of problem 7 is x = uk, with an associated cost of xT Ax = λk.

Proof. By using the B-orthogonality of u1, . . . , un, we can decompose every x ∈ R
n as a linear

combination where x =
∑n

i=1 αiui. Moreover, since x is constrained to be B-orthogonal to
u1, . . . , uk−1, we can restrict ourselves to linear combinations of the form x =

∑n
i=k αiui.

We use the constraint xT Bx = 1 to obtain

1 = xT Bx =

(
n∑

i=k

αiui

)T

B

(
n∑

i=k

αiui

)
=

(
n∑

i=k

αiui

)T (n∑
i=k

αiBui

)
=

=

n∑
i=k

n∑
j=k

αiuiαjBuj =

n∑
i=k

n∑
j=k

αiαjuiBuj =

n∑
i=k

α2
i .

The last equation stems from the B-orthogonality of u1, u2, . . . , un, and from defining these
vectors as B-normalized.

Hence,
∑n

i=k α2
i = 1 (a generalization of Pythagoras’ Law). Now, we expand the quadratic

form xT Ax

xT Ax =

(
n∑

i=k

αiui

)T

A

(
n∑

i=k

αiui

)
=

(
n∑

i=k

αiui

)T (n∑
i=k

αiAui

)
= (8)

=

(
n∑

i=k

αiui

)T (n∑
i=k

αiλiBui

)
=

n∑
i=k

n∑
j=k

αiuiαjλiBuj =

=
n∑

i=k

n∑
j=k

αiαjλiuiBuj =
n∑

i=k

α2
i λi �

n∑
i=k

α2
i λk = λk.

Thus, for any x that satisfies the constraints, we have xT Ax � λk. Since uT
k Auk = λk, we

can deduce that the minimizer is x = uk. ��

