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ABSTRACT

Channel Coding with Side Information at the encoder(CCSI) can be visualized as a blind watermarking problem:
the original host signal for embedding the watermark is known at the encoder but not at the decoder. Similarly,
the Rate Distortion with Side Information at the decoder(RDSI) is known as distributed source coding: the rate
distortion limits of an input source if a noisy observation of that source is available only at the decoder. There
is a strong duality between CCSI and RDSI for the gaussian case.

We propose a system that exploits the generalized versions of the two information theoretical dualities of
CCSI and RDSI together within a unique setup. The question is ”Can we combine these two separated dual
problems (blind watermarking and distributed source coding) within a single problem?”. The proposed scheme
can be viewed as ”Watermarking or Data Hiding within Distributed Source Coding”. The setup contains the
cascade of the generalized versions of CCSI and RDSI where there exists two different side information, one
available only at the encoder and the other at the decoder. The preliminary experimental results are given using
the theoretical findings of the duality problem.

1. INTRODUCTION

The duality between the properties of a source with a distortion measure and those of a channel is stated at
Shannon’s landmark paper in 1959.1 Hence the limits of channel coding and data compression are known to
be dual since decades. While in the case of data compression, the rate distortion function is the minimum rate
R under a distortion constraint D; for channel coding, the capacity is the maximum transmission rate within a
communication channel with error probability Pe approaching zero.

The theory limits of source coding with side information at the decoder is given by Slepian and Wolf,2 and
the rate distortion limits for the memoryless gaussian lossy case is given in.3 Moreover the channel capacity
with side information at the encoder results are presented by Costa and Pinsker et al.4, 5 Source coding with
side information at the decoder is known as Distributed Source Coding and the dual problem of channel coding
with side information at the decoder is a digital watermarking problem. Recently, the side information duality
for discrete memoryless sources and gaussian cases are demonstrated by Ramchandran et al6, 7 and Girod et al.8

The theoretical limits of a generalized version of this duality is given by Cover and Chiang in 9 where the state
information is available to the sender, receiver, to both or to neither. So all of the eight cases are generalized
and the duality between them are stated.

In this paper, we look at the watermarking problem of a distributed source coding system shown in Fig. 1.
Actually our solution to this problem contains the combination of the generalized version of the duality given
in.9 From the nature of Distributed Source Coding, the aim is achieving the minimum data rate for coding an
input source less then a fidelity criterion D, given Y , a noisy observation of the source available at the decoder
only with i.i.d. ∼ p(x, y). In addition to this setup, we embed a digital watermark M to the input source
X with a distortion constraint between the input source and the watermarked embedded signal W such that
E[(X−W )2] ≤ D1. The watermarked embedded signal W is compressed to a data rate R(W ) such that it can be
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decoded with a fixed distortion E[(W − Ŵ )2] ≤ D2, given that the encoder has an access to the original data X,
and decoder has an access to the noisy observation Y . The proposed system can be viewed as a quantization of
the input signal X in the sense of embedding a watermark M as a function of X (or known as context dependent
watermarking). The watermarked signal W is compressed with a syndrome coding or coloring for the distributed
source coding. In the decoder side, the received color indexes or syndromes are decoded with the help of the
side information Y , and afterwards the embedded watermark M̂ is estimated by using Ŵ , the output of the
syndromes decoding and the side information Y available at the decoder.
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Figure 1. Data Hiding + Distributed Source Coding Scheme.

Data Hiding of Distributed Source Coding can be used on several application scenarios, from image and
video coding to sensor networks. For example, in the case of encoding correlated observations of low-power
sensor networks, Distributed Source Coding principles fit best for achieving power constraints. Moreover in this
system, each sensor can easily hide its own hidden data within the observed signal and be coded with distributed
source coding principles. This hidden data could be also served for digital rights management or contains could
additional information of the sensor like the coordinates of the camera or region of interest information.

In Section.2, the duality between rate distortion and channel capacity with state information is given, both
for a unique side information and the general case where there exists two different side information. A hybrid
scheme is proposed for data hiding within a Distributed Source Coding setup in Section.3. Finally a preliminary
simulation results of the proposed system are given in Section.4.

2. DUALITY

2.1. Rate Distortion with Side Information only available at the Decoder (RDSI01)
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Figure 2. Rate distortion with side information available at the decoder.

Rate Distortion with side information available at the decoder is shown schematically in Fig. 2. The notation
in9 is used such that subindex 01 in RDSI01 indicates the availability of a state information at the decoder but
not the encoder. Let {(Xk, S2k

)} i.i.d. ∼ p(x, s2) be a sequence of independent drawings of jointly distributed
random variables X and S2. Xk is encoded with block length n into a binary stream of rate R, by using a
sequence of (2nR, n) codes with i : Xn → {1, 2, .., 2nR} and X̂n : {1, 2, .., 2nR} → X̂n. The input source X is
to be encoded and transmitted to a receiver which access to a noisy observation S2, and X̂ is estimated with a
fidelity criterion D such that E[(X, X̂)2] ≤ D. The minimum rate of encoding3 for a given fidelity criteria D is:

R01(D) = min
X̂=f(U ;S2),p(u|x)

[I(U ;X) − I(U ;S2)] (1)



where the minimization is over all conditional probability density functions p(u|x) and a function f(U ;S2)
such that E(X − X̂)2 ≤ D. U is defined as an auxiliary variable for the set of codewords representing X and
I(U ;X) is the mutual information between U and X.

2.2. Channel Coding with Side Information only available at the Encoder (CCSI10)
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Figure 3. Channel coding with side information available at the encoder.

The blind watermarking problem can be viewed as channel coding with side information at the encoder which
is shown in Fig 3. The encoder has access to a discrete watermark signal to be embedded M , and the source
signal S1 that the information is to be embedded in. There is a fixed distortion constraint between the source
signal S1 and the watermarked signal W such that E(S1 − W )2 ≤ D1. Since W = S1 + e, and the error e is
dependent on the input source S1 and M , the information to be hidden, this setup is also known as content
dependent data hiding. Then, the watermark embedded signal W is subjected to a fixed distortion attack Z.
The achievable capacity5 of the watermarking system for an error probability P n

e = Pr{M̂(Y n, Sn
2 ) 6= M} is:

C10 = max
p(u,w|s1)

[I(U ;Y ) − I(U ;S1)] (2)

where U is an auxiliary variable and the maximization is over all conditional probability density function
p(u,w|s1) and I(U ;Y ) is the mutual information between U and Y . A rate R is achievable if there exists a
sequence of (2nR, n) codes with P n

e → 0.9

2.3. General Version of Rate Distortion with State Information (RDSIgeneral)
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Figure 4. General version of rate distortion with two state information, one available at the encoder and the other at
the decoder.

Let X,S1, S2 jointly distributed random variables with i.i.d. ∼ p(x, s1, s2). The setup for general version of
rate distortion with state information in Fig. 4 is similar in Section 2.1, but the encoder has access to S1, a noisy
observation of X, where the decoder has access to S2, another noisy observation of X. Then the minimum rate
for achieving a fidelity criterion D is:

RS1,S2
(D) = min

p(u|x,s1)p(x̂|u,s2)
[I(U ;S1, X) − I(U ;S2)] (3)

where the minimization is under the distortion constraint∑

x,u,s1,s2,x̂

d(x, x̂)p(x, s1, s2)p(u|x, s1)p(x̂|u, s2) ≤ D.9



2.4. General Version of Channel Coding with State Information (CCSIgeneral)
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Figure 5. General version of channel coding with two state information, one available at the encoder and the other at
the decoder.

The theorem given in 9 states that the memoryless channel p(y|w, s1, s2) with state information (S1,i, S2,i)
i.i.d. ∼ p(s1, s2), with Sn

1 available only at the encoder, and Sn
2 available only at the decoder, which can be seen

in Fig.5, has capacity:

CS1,S2
= max

p(u,w|s1)
[I(U ;S2, Y ) − I(U ;S1)] (4)

3. A GENERALIZED HYBRID SCHEME: DATA HIDING WITHIN DISTRIBUTED
SOURCE CODING SYSTEM

In this section, we propose a hybrid scheme which utilize both channel coding and rate distortion with state
information at the encoder and decoder respectively. The proposed system can be seen in Figure 6. Actually
the system enables to hide the data M within a input source signal S1 with a distortion measure D1. Then
the watermarked embedded signal W is compressed and transmitted with a fidelity criterion D2 to a receiver
which has access to a noisy observation S2. Hence the encoder has access to two sources, the data to be hide or
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Figure 6. Proposed hybrid scheme: Data hiding within a Distributed Source Coding System.

watermark index M and the input data source S1 that the information will be embedded in. The first criterion is
embedding the watermark to the input source S1 with a fixed-distortion measure D1 where E[(S1 −W )2] ≤ D1.
Afterwards, for a minimum rate R, the embedded watermark signal W is coded and transmitted to a receiver,
given that the encoder has access to the input source S1, while decoder has an access to S2, which is a noisy
observation of the input source S1. The receiver decodes the received signal with the help of noisy observation
S2 with a fidelity criterion D2 such that E[(Ŵ − S1)

2] ≤ D2 and estimates the watermarked signal M̂ with an
error probability Pe(M̂)



Mathematically, the goal is to solve the following constrained problem:

min
E[(S1−W )2]≤D1,E[(Ŵ−W )2]≤D2

Pe(M̂) (5)

where Pe(M̂) represents the decoding error probability Pr{(M̂(Ŵ , S2) 6= M)}, and W,S1, S2 are jointly
distributed random variables with i.i.d. p(w, s1, s2). Moreover the distortion constraint E[(Ŵ − W )2] ≤ D2

leads to a minimum rate function:

R(D2) = min
p(u|w,s1)p(ŵ|u,s2)

[I(U ;S1,W ) − I(U ;S2)] (6)

which is given in Equation 2.3.

In fact the proposed system is closely related to the channel coding with state information described in
Section.2.4, where only the channel attack Z in Fig.5 is replaced by a fixed distortion measure created by the
distributed source coding scheme with two side information, one available only at the encoder, S1 which is the
input signal that the watermark will be embedded, and one at the decoder, S2, a noisy observation of S1 with
i.i.d. ∼ p(s1, s2).

The hybrid problem can be posed as a kind of semi-blind watermarking scheme. The receiver has not access
to the input source signal S1 in order to extract M̂ from the watermarked signal W , but S2, a noisy observation
of the input source S1.

4. EXPERIMENTAL SETUP AND RESULTS

Up to this point, our focus has been on the theoretical aspects of the mixture of two problems Channel Coding
with Side Information and Source Coding with Side Information. In this section, we consider a real system that
implements the data hiding and compression codes in joint manner. We discuss the details of the creation of
codes in our system and give preliminary results.

4.1. Generation of the Side Information and Hidden Message

For our computer simulation, we used synthetically generated 1-D i.i.d. string of binary streams for side informa-
tion S1 and S2 available only at the encoder and decoder respectively; and hidden message M to be embedded.
The construction of S1 is: i.i.d. pseudo-random Bernoulli(1/2) string of appropriate block length so the first
order-entropy of H(S1) = 1bit/sample. The side information available at the decoder S2 : S1 ⊕ N where the
correlation noise level N between S1 and S2 is pseudo-random Bernoulli(p) string of the same length of the side
information and ⊕ is the modulo-2 addition operator. The variable p : 0 ≤ p ≤ 1 controls the correlation level
between two side information such that conditional entropy H(S1 | S2) = H(p). And finally the hidden message
M is a random binary string.

4.2. Data Hiding

For the case of informed data hiding of M within S1, we used basic quantization based on memoryless coset
construction. The algorithm is described as follows: 3 bits information is partitioned into 4 cosets such that each
element of the coset has a hamming distance of 3. According to the two bits data of M the coset members of
that index is chosen Coset00 = {000, 111}, Coset01 = {001, 110}, Coset10 = {010, 101}, Coset11 = {011, 100}.
After creating the codebook, 2bits of M and R bits of S1 is taken. And the least significant 3 bits of the sub-
block of the host signal S1 is depicted for embedding. The 3 bits value of S1 is quantized to W : W (S1,M) =
arg minX∈CosetM ‖ X − S1 ‖ which W is at most one bit differ from S1. The distance metric is chosen as
hamming distance. And this insertion of 2 bits within block length R continues until embedding all the data.
As an example, assume that the 2 bits length message 01 is being embedded into the least 3 significant bits of
S1 which is 010. The minimum hamming distance between 010 and the elements of Coset01 is chosen as the
quantification output, which is W = 110 in this case. At the decoder side, the extraction of the watermark is
straightforward such that the knowing the codebook and insertion frequency R, the coset index that the received
block data resides in is decoded as the embedded data.



4.3. Compression and Decompression Setup

The watermarked string W is compressed by finding its syndrome with respect to a low-density parity check(LDPC)
channel code.15 In fact we use high-rate (3/5) LDPC code and transmit only the check bits to the encoder.
A code expressed as (n,k) where m = n − k check bits are calculated from input stream of length k using a
randomly generated parity check matrix H with dimension (n − k) × n whose codewords satisfy Hx = 0. Since
only the parity check bits are sent to the decoder, so the compression rate is the number of check bits over input
length (n − k)/k.

At the receiver, the compressed data is decoded using belief propagation algorithm in,14, 15 with the help of
side information S2 available only at the decoder. The goal of decoding is to find the nearest likelihood codeword
Ŵ and extract the embedded string estimation M̂ . The side information is assumed to be the systematic bits
and the received compressed data is assumed to be the parity checks. The belief propagation algorithm is very
identical to that used for decoding standard LDPC codes, with some modifications to in our case. First, likelihood
ratios of the systematic bits are initialized according to the correlation noise N between the two side information
S1 and S2. Second, initial likelihood ratios of the parity check bits are based on the fact that probability of
received parity check is in error with a small probability ε. Moreover check-node update node is modified to
recover the errors on the systematic bits using the fact that check-bits are correct with high probability. Finally,
with the knowledge of the coset codebook and estimation of Ŵ using LDPC decoding its trivial to extract the
hidden data M̂ . The distortion levels of the Ŵ and M̂ are given in results.

4.4. Simulation Results

In our experiments, 100 blocks each of 2000bit length of host signal S1 is generated. With a correlation noise
ratio of p : 0 < p < 0.2, the side information S2 available only at the decoder is created as in Sec.4.1. In the
first set of experiments, we tested the performance of the compression system without embedding a watermark.
The S1 is compressed with 3/5 rate LDPC (3500,2000) code as explained in Sec.4.3. Hence for each block, the
1500 parity check bits are sent to the receiver. And receiver decodes the received parity check bits using S2 the
side information available at the decoder, using belief propagation with maximum of 50 iterations. Afterwards,
in the same setup, a 4000 bits length hidden message is embedded while changing the correlation noise between
side information. In the second set of our experiments, for each R bits data of S1, 2 bits long of a hidden
message is embedded as described in Sec.4.2. R is varied between 50 and 2000. With a fixed correlation noise
p = 0.1 between the side information, the signal to embedded watermark noise ratios between host data S1 and
watermarked data W are given for various length of embedded signal.

As seen in Fig.7, for the case of our distributed source coding scheme, up to a correlation noise error of
p < 0.13 the compressed host signal can be obtained without error. Please note that the theoretical limits
of the probability of error for channel capacity of C = 3/5 is pe = 0.08 over all transmitted bits. Since
the correlation noise ratio p is defined only on the systematic bits, the overall achieved ratio of our system is
pe = 0.13∗3/5 = 0.78, close to the theoretical limits. The results of the same experimental setup with embedding
4000 bits length of hidden data M is also given in Fig 7, where the the error between the side information S1

and the estimated watermarked signal Ŵ at the decoder is plotted. Recall that for p < 0.13, all of the 4000
hidden bits are are extracted wperfectly. And we have a hidden message error rate of phm = 1.75 × 10−3 for
p = 0.13, phm = 7.5 × 10−3 for p = 0.14, phm = 5.2 × 10−2 for p = 0.15 and phm = 1.24 × 10−1 for p = 0.16.
For the results of the second set of experiments, a fix correlation noise error of p = 0.1 is used for errorless
watermark extraction. Below are some of the signal to watermark power as a function of Embedded bit size:
Eb/Nw = 34.32dB for 200 bits of watermark, 31.08dB for 400 bits, 28.30dB for 800 bits, 21.16dB for 4000 bits.

5. CONCLUSIONS

In conclusion, we establish a hybrid system for hiding data to a compression process which uses distributed
source coding system. Recent findings about the duality between rate distortion and channel capacity with state
information are used for the system. The hybrid scheme proposed in Fig.6 offers a wide range of multi-source
coding systems. The selection of the inputs such as the side information Si of both sides and the nature of the
hidden information M depends on the considered problem. A memoryless data hiding algorithm is used with
LDPC based distributed compression scheme. A trellis based data hiding with memory can be used for improving



Figure 7. Simulation results.

the performance of the overall system. Indeed, this scheme can be easily adapted for example to video coding
such that temporally correlated successive frames serve as sources Si to be coded and the watermark signal to
be embedded serves for M .
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