
c© British Computer Society 2001

Distributed Location Databases for
Tracking Highly Mobile Objects

EVAGGELIA PITOURA AND IOANNIS FUDOS

Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece
Email: {pitoura,fudos}@cs.uoi.gr

In current distributed systems, the notion of mobility is emerging in many forms and applications.
Increasingly many users are not tied to a fixed access point but instead use wireless communications
or dial-up services to access data independent of their physical location. Furthermore, mobile
software, a popular example being mobile agents, is frequently used as a new form of building
distributed network-centric applications. Tracking mobile objects, i.e. identifying their current
location, is central to such settings. In this paper, we exploit the use of hierarchical distributed
location databases, where each database site covers a specific geographical region and contains
location information about all objects residing in it. For highly mobile objects, a scheme based on
forwarding pointers enhanced with auxiliary caching techniques is presented, to reduce the cost
of the overall network and database traffic generated by frequent location updates. The scheme
is extended to support concurrency and failure recovery. Performance is demonstrated through a
number of simulation experiments for a range of call to mobility ratios and for a variety of moving

and calling behaviors.

Received 30 June 1999; revised 9 October 2000

1. INTRODUCTION

Advances in wireless telecommunications and in the
development of portable computers have provided for the
emergence of wireless mobile computing [1, 2, 3]. In
wireless mobile computing, hosts are not attached to a fixed
geographical location, instead their point of attachment to
the network changes as they relocate from one support
environment to another. Besides mobility tied to wireless
communications, mobile software (code or data that move
among network sites) is emerging as a new form of
building distributed network-centric applications. The
mobile software agent [4, 5] is a popular form of such
mobile software. Mobile agents are processes that may
be dispatched from a source computer and transported
to remote servers for execution. Mobile agents can be
launched into an unstructured network and roam around
to accomplish their task [6], thus providing an efficient,
asynchronous method for collecting information or attaining
services in rapidly evolving networks. Other applications of
moving software include the relocation of a user’s personal
environment to support ubiquitous computing [7], and the
migration of services to support load balancing, for instance
the active transfer of web pages to replication servers in the
proximity of clients [8].

Since delivering any message to mobile objects requires
locating them first, deriving efficient strategies for tracking
moving objects is central to mobile computing. In particular,
for future personal communication service (PCS) systems,
with high user populations and numerous customer services,
such signaling and database traffic for locating users is

expected to increase dramatically [9]. To maintain the
current location of mobile objects, distributed location
databases or directories are deployed. Such databases
are often hierarchically structured [9, 10, 11, 12] to
accommodate the increased traffic associated with locating
moving objects. In particular, each leaf database covers
a specific geographical region and maintains location
information for all objects currently residing in that region.
Location databases at internal nodes of the hierarchy contain
information about the location of all objects registered in
areas covered by the databases at their children nodes.

In this paper, we consider the problem of locating moving
objects using such hierarchical tree-structured location
databases. In particular, to reduce the cost associated with
location updates, instead of updating all location databases
involved, only databases up to a specific level of the tree
are updated and a forwarding pointer is appropriately set
at some lower level database. However, if forwarding
pointers are never deleted, then long chains are created,
whose traversal results in an excessive increase in the cost
of locating objects. We propose and evaluate two alternative
conditions for purging forwarding pointers and for updating
the hierarchical database: one based on the maximum
number of the forwarding pointers and the other on the
physical distance between the sites in the chain. In addition,
we introduce a number of auxiliary caching techniques that
effectively reduce the number of pointers traversed before
locating a moving object.

We extend the scheme to correctly support concurrent
execution of location tracking and updating. The treatment
of concurrency is general enough and is applicable to any

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

76 E. PITOURA AND I. FUDOS

hierarchical location database. We also discuss recovery in
the case of site failures and propose solutions to this end.

To study the performance of the forwarding scheme
in conjunction with the caching techniques and the
various conditions for purging forwarding chains, we have
developed an event-driven simulator. We consider two basic
operations: calls to mobile objects that initiate location
searches and moves of mobile objects that initiate location
updates. We have performed a number of experiments
for a range of call to mobility ratios and for objects with
varying mobility and calling behavior. The cost of each
operation has two components: a cost associated with
database operations and a cost associated with messages
among sites. Since which of the two components is the
dominating factor follows from various system-dependent
parameters, our analysis treats each of these costs separately.
The results clearly show that under certain assumptions and
for small call to mobility ratios, the forwarding scheme
coupled with appropriate auxiliary caching techniques on a
per object basis can reduce both the overall database load
and the communication traffic by 20% to 60% depending on
the call to mobility ratio.

The rest of this paper is organized as follows. In Section 2
we introduce the forwarding scheme and various strategies
for improving its performance. In Section 3 we extend the
proposed protocol to handle correctness issues that arise
from the concurrent execution of location searches and
updates. In Section 4 we discuss replication and advanced
location queries. In Section 5 we present our models for the
call and mobility behavior, briefly describe our cost model,
and report performance results. In Section 6 we compare
our work with related research and in Section 7 we offer
conclusions.

2. THE LOCATION STRATEGY

To support efficient tracking of mobile objects, their current
location is maintained in a distributed database. Two
operations are central: updating the stored location of an
object when the object moves and searching the location
of an object when the object is called or invoked. The
granularity of the information maintained about the location
of an object varies. It can be a single site or a set of sites. In
the latter case, once the set is identified, the object is located
by broadcasting a message to all sites in the set, an operation
called paging. We call such sets of sites logical cells or
l-cells.

In particular, in cellular architectures, mobile users
are located in system-defined cells, which are bounded
geographical areas. A cell is a uniquely identifiable unit.
The location strategies proposed in the IS-41 and GSM [13]
standards use a two-tier system in which each moving user
is associated with a pair of a home location register (HLR)
and a visitor location register (VLR). Calls to a given user
query first the VLR in the caller’s region, and then, if the
callee is not found in this region, the callee’s HLR is queried.
Moves require updating the HLR. Similar approaches are
readily applicable to software, for example mobile agents.

In this case, the stored location is a network site or the
agent’s current context. Location information may be stored
at the agent’s home, for example at its birth site, as well
as at its visiting site, i.e. the site it is currently in. In
cellular architectures, an l-cell covers a number of neighbor
cells, while in other architectures an l-cell may cover few
interconnected LANS.

2.1. Hierarchical location databases

To avoid ‘long-distance’ signaling messages to the HLR,
when most location searches and updates are geographi-
cally localized, a hierarchical directory structure has been
proposed [9, 10, 11] and is under study for the Euro-
pean third-generation mobile system called the universal
mobile telecommunication system (UMTS) [14]. Similar
hierarchical architectures have been proposed for locating
moving objects in wireline distributed computing as well
(for example, [12]).

Hierarchical location schemes extend two-tier schemes
by maintaining a hierarchy of location databases, where
a location database at a higher level contains location
information for objects located at levels below it. A location
database at a leaf serves a single l-cell and contains entries
for all objects currently in this l-cell. A database at an
internal node maintains information about objects residing
in the set of l-cells in its subtree. For each mobile object, this
information is a pointer to an entry at a lower level database.
For example, in Figure 1, for an object x residing at l-cell
18, there is an entry in the database at node 0 pointing to the
entry for x in the database at node 2. The entry for x in the
database at node 2 points to the entry for x in the database at
node 6, which in turn points to the entry for x in the database
at node 18.

It is often the case that the only way that two nodes can
communicate with each other is through the hierarchy; no
other physical connection exists among them. For instance,
in telephony, the databases may be placed at the telephone
switches.

Such hierarchical schemes lead to reductions in commu-
nication cost when most calls and moves are localized. In
such cases, instead of contacting the HLR of the object
that may be located far away from the object’s current
location, a small number of location databases in the object’s
neighborhood are accessed. In addition, there is no need for
binding an object to a permanent HLR, since the object can
be located by querying the databases in the hierarchy. On the
other hand, the number of database operations caused by call
and move operations increase. Table 1 summarizes some of
the pros and cons of hierarchical architectures. One problem
with hierarchical architectures is that the load is not evenly
distributed among all nodes since more load is imposed on
nodes on higher levels. Approaches that distribute the entries
of higher-level nodes at more than one site are applicable but
are not discussed here (see [15]).

Let LCA(i, j) stand for the least common ancestor of
nodes i and j , and lca(i, j) be the level of the LCA(i, j).
Let the level of the leaves be level 0. When object x moves

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 77

x

x 18

2

4 5 9

16 27262524222120191817 23

86

121110 151413

1

0

3

x

x

7

is at cell 18
mobile object x

FIGURE 1. Hierarchical location schema. Location database entries are pointers to lower level databases.

TABLE 1. Summary of the pros and cons of hierarchical
architectures.

(+) No need for life-long numbering (no pre-assigned HLR)
(+) Support for locality
(−) Increased number of operations (database operations

and communication messages)
(−) Increased load and storage requirements at higher levels

from l-cell i to l-cell j , the entries for x in the databases
along the path from j to LCA(i, j), and from LCA(i, j) to i

must be updated. For instance, when object x moves from
18 to 20, the entries at nodes 20, 7, 2, 6 and 18 are updated.
Specifically, the entry for x is deleted from the databases at
nodes 18 and 6, and an entry for x is added to the databases
at nodes 2, 7 and 20. When a caller located at l-cell i places
a call for an object y located at l-cell j , the lookup procedure
queries databases starting from node i and proceeding up the
tree until the first entry for x is encountered. This happens
at node LCA(i, j) (the least common ancestor of nodes i

and j). Then, the lookup procedure proceeds downwards
following the pointers to node j . For instance, a call placed
from l-cell 21 to object x (Figure 1), queries databases at
nodes 21, 7 and finds the first entry for x at node 2. Then,
it follows the pointers to nodes 6 and 18. We call the above
operations basic move and basic call respectively.

2.2. Forwarding pointers

To reduce the update cost, a forwarding pointer strategy
is deployed. With this approach, instead of updating all
databases on the path from j through LCA(j, i) to i, only
the databases up to a level m are updated. In addition, a
pointer is set from node s to node t , where s is the ancestor
of i at level m, and t is the ancestor of j at level m. The
level of s and t may vary. A subsequent caller reaches x

through a combination of database lookups and forwarding
pointer traversals. Take, for example, object x located at
node 14 that moves to node 17 (Figure 2). Let level m = 2.
A new entry for x is created in the databases at nodes 17,
6 and 2, the entries for x in the databases at nodes 14
and 5 are deleted, and a pointer is set at x’s entry in the
database at node 1 pointing to the entry of x in the database
at node 2. The entry for x at node 0 is not updated. Using
forwarding pointers may increase the cost of calls, since it
may result in a combination of tree links and forwarding
pointers traversals. For instance, when an object, say at
l-cell 22, calls x, the search message traverses the tree from
node 12 up to the root node 0 where the first entry for x is
found, then goes down to 1, follows the forwarding pointer
to 2, and traverses downwards the path from 2 to 17. On
the other hand, a call placed by an object at 15, results in a
shorter route: it goes up to 5 and 1 and then to 2, 6, and 17.

In the following, we assume forwarding at the leaf level in
which case forwarding pointers are set among leaf nodes, but
the analysis applies to other types of forwarding as well. In
this case, when an object moves from location i to location
j , a forwarding pointer is simply set at node i pointing to
node j . Calls originating from a l-cell k to an object x

located at l-cell l proceed initially as in the basic call: go
up the tree till the first entry for x is encountered and then
down following the entries to a leaf node, say m. However, x
may not be actually located at m; instead the entry at m may
be a forwarding pointer to another leaf node. Thus, before
actually locating an object, a chain of forwarding pointers
may need to be traversed.

2.3. Caching

We propose auxiliary techniques that reduce the number
of forwarding pointers that a call traverses before locating
a mobile object. The first technique is based on the
observation that it should be possible to re-use the

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

78 E. PITOURA AND I. FUDOS

16

old entries for x
new entries for x

2

4 5 7 9

27262524222120191817 23

86

121110 1514

1

0

3

13

old location new location

level m Forwarding Pointer

object x object x

FIGURE 2. Pointer forwarding.

information about the object’s location from the previous
call to that object. To this end, each time a call is set
up, after the address of the callee has been resolved, it is
saved at the first node of the chain. Thus, any subsequent
call to that object can use the cached location to locate
the object, instead of traversing a number of forwarding
pointers. This is essentially a variation of caching in which,
instead of caching the address of the callee at the caller [16],
the address is cached at the starting node of the chain of
forwarding pointers. The cached location can then be used
not only by subsequent calls from the same l-cell, but also
from calls originated from any l-cell. Caching does not add
to the latency of a call operation, since it can be performed
off-line. In contrast to caching at the caller’s location, in
which case cache entries become obsolete once the callee
moves, the cached entry at the first node of the chain can
still be used in conjunction with the forwarding pointers even
when the callee moves.

A similar caching strategy can be deployed along with
move operations. In particular, during each move, the new
location of the object can be cached at the first node of
the chain. However, in contrast to caching at calls, the
entry cached at a move is used only if the next operation
involving the object is a call operation. Intuitively, if the call-
to-mobility ratio (CMR) is very low, continuously updating
the cached entry at each and every move operation (which
corresponds to having in effect a chain of one pointer) adds
to the overall traffic without necessarily reducing the latency
of some call operation. Thus, instead of caching at each
move, caching is done selectively.

The condition for caching at a move is based on an
estimation of the probability that the next operation will be
a call operation. This is approximated by comparing the
number of consequent moves and the call-to-mobility ratio.
This requires a counter to be associated with each mobile
unit. The counter is incremented when the unit changes
location and is set to zero when the unit receives a call. It
also assumes that an estimation of the CMR is available.
For this purpose, techniques such as those proposed in [16]
can be utilized. Let number of moves be the value of the

counter and estimated cmr be the value of the current CMR,
then a simple heuristic is to cache when number of moves
≥ estimated cmr. Again, caching can be performed off-line
without adding up to the move set-up time.

2.4. Full updates

Besides caching, in order for the hierarchical directory
scheme to maintain the property of efficiently supporting
local operations, the directory entries must be occasionally
fully updated. Otherwise, the first node of the chain, i.e. the
node at which each call is initially directed by following the
tree database entries, may end up being far away from the
object’s actual location. Fully updating the data structure
includes (a) deleting all intermediate forwarding pointers in
the chain and (b) updating the internal nodes of the tree
(Figure 3).

Regarding full updates, two issues must be addressed.
One issue is the correct execution of calls that proceed
concurrently with a full update. We consider this issue in
Section 3.1. The other issue refers to the condition for
initiating these procedures. We consider two possibilities.
The first is to initiate a full update when the number of
forwarding pointers exceeds some maximum value. This
is reasonable since the size of the chain directly affects the
cost of calls because this cost depends on the number of
pointers to be traversed. The other is to fully update when
the object moves outside the vicinity of its current region, i.e.
when locality deteriorates. We capture this by considering
the level of the least common ancestor of the previous and
the new location. In particular, an update is initiated when
the object moves to a location u such that the level of the
least common ancestor of u and the previous location is
larger than a threshold level. We experimented with different
values for both criteria for updating; the results are presented
in Section 5.3.

Before setting a forwarding pointer, detecting cycles is
necessary to avoid infinite loops during calls. For example,
consider chain 11 → 18 → 26 → 14 and a move made
to 18. Carelessly adding a pointer to 18 results in chain

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 79

1613

old entries for x
new entries for x

10

2

4 5 7 9

27262524222120191817 23

86

1211 1514

1

0

3

level m

FIGURE 3. Full update of the directory entries.

<node i> set forwarding pointer to j

set database entry for x<node j>

Move

then

else
call delete-cycle

then
perform full-update

else

 update cache at the starting node
of the forwarding pointers chain

(off line)

 if an entry for x was already in j

 if (condition_for_update == TRUE)

 if (condition_for_cache_at_move == TRUE)

Object x moves from node i to node j

Call

 (going downwards)

(going upwards)

Initialize k := i
<node k>

<node l>

while the entry forward_pointer(x) of x at m is a forward pointer
m := forward_pointer(x)

 k := parent(k)
while no entry for x at k

m := l
 of forward pointers chain)

(node where x is in or head

<node m>

j := m (node where x is in)

(off-line)
send acknowledge message to i<node j>

while there is an entry for x at node l and l is not a leaf
 l := child(x)

(traversing the forward
 pointers chain)

l := k (node where the first entry for x is found)

set cache at head of chain

Call from node i to an object x at node j

FIGURE 4. Move and call procedures. For clarity of presentation, for the call operation we do not show the case in which node i is one of
the nodes in the forwarding pointers chain.

11 → 18 → 26 → 14 → 18. Cycles can be detected
by checking upon each move of an object A from j to i,
whether an entry for A already exists at i. If so, there is a
path from j to i which can then be purged, and the chain of
the example becomes 11 → 18.

Finally, although during normal moves cache entries
never become invalid, moves that form cycles or cause the
initiation of full updates make cached entries obsolete. Thus,
there is an additional overhead associated with such moves,
that of updating the entry cached at the first node of the
chain, if any.

Figure 4 summarizes the move and call procedures. The
deployment of these techniques along with the forwarding
pointers strategy reduces the total database load and
communication traffic over the basic hierarchical scheme by
a considerable factor (see Section 5).

3. CONCURRENCY CONTROL AND RECOVERY

3.1. Correctness of concurrent operation

In a hierarchical location database, each call results in a
number of query operations being issued at various nodes
of the database. Similarly, a full update initiated by a move

causes update operations to be executed at several nodes
of the database. The discussion so far was based on the
assumption that moves and calls arrive sequentially and are
handled atomically and isolated one at a time, and thus, there
is no interleaving between the database queries and updates
initiated by move and call operations. In this section, we
extend the move and call procedures to handle concurrency.

First, when a move from l-cell i to l-cell j occurs, a
forwarding pointer pointing to j is set at i. This forwarding
pointer ensures that any calls that have been issued prior to
the movement and have been directed to the old address i

will not be lost. Then, a specific order is imposed on the
database operations that are initiated by a full update. In
particular, each full update is performed in two phases: an
add and a delete phase. Let an object’s x movement from i

to j that causes a full update, and let v0 be the first node in
the forwarding pointers chain of x. If there is no such chain,
v0 is i. First, in the add phase, entries at the path from j

to LCA(j, v0) are inserted in a bottom-up fashion. Then, in
the delete phase, the entries at the path from LCA(j, v0) to
v0 are removed in a top-down fashion. In a similar manner,
forwarding pointers from v0 to i, if any, are deleted starting
from v0 and moving towards i. We also distinguish between

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

80 E. PITOURA AND I. FUDOS

the two phases of a call. During the upward phase, a call
moves up the tree to find an entry for the callee. Once the
first entry for the location of the callee is found, the call
moves downwards to this location.

We serialize full updates caused by move operations
as follows: a full update operation Pk caused by a
movement of an object x is initiated only after any database
updates caused by any previous full update operation Pm

of the location of x has been completed. To enforce
the serialization of full updates, Pk locks for updates the
database entry for x at the new address j . When an entry is
locked for updates by an operation Pk , it cannot be updated
by any other operation Pl (Pl 	= Pk). Instead, any such
update operation is blocked until the lock is released. A
message is sent by Pk to unlock j , when the last entry for
x is deleted. Only then, can a new full update operation Pl

proceed.
Besides updates, we must also ensure that any call

concurrent with a full update will succeed in locating the
object. Specifically, we will first show that:

LEMMA 1. During the upward phase, any call placed by
an object at l-cell c and being concurrently executed with
a move, say from location i to location j , will be directed
either to the old location, i, or the new location j .

Proof. To distinguish among the possible relative positions
of c, i, and j , we use the following two properties of the
least common ancestor that hold for any tree nodes x, y, and
z: (a) lca(x, y) = lca(x, z) ⇒ lca(y, z) ≤ lca(x, z), and
(b) lca(x, y) > lca(x, z) ⇒ lca(y, z) = lca(x, y).

Case (i): lca(j, i) < lca(i, c), that is, the caller is
equidistant from the old, i, and the new, j , locations. Then,
during its upward phase, the call encounters the first entry
for x at LCA(j, c) (= LCA(i, c)). Then, at node LCA(j, i),
the call moves towards j if the add phase has reached the
node, and towards i otherwise.

Case (ii): lca(j, i) > lca(j, c), that is, the caller is closer
to the new location. The call proceeds upwards to node
LCA(j, c). If the add phase has reached LCA(j, c), then
the call is directed to j . Otherwise it continues moving
upwards till it either reaches a newly added entry or it
reaches LCA(c, i), whichever comes first. In the former
case, the caller is directed to j and in the latter case to i.

Case (iii): lca(j, i) = lca(j, c), that is, the caller is closer
to the old location. If the delete phase has reached node
LCA(i, c), the call moves up to LCA(j, c) and then towards
j . Otherwise it moves towards i. ✷

Now, we must show that the call during its downward
phase will succeed in locating the callee. There is a racing
issue. To illustrate it, assume the concurrent execution of
a full update for object x being in its delete phase and a
concurrent call to object x being in its downward phase. Say
that at some time, the call queries node m at level k and
follows the pointer to the corresponding level k − 1 node,
say node l. Immediately afterwards, the move deletes the
entry at level k. Then, traveling faster than the call, the move
arrives at node l and deletes the entry for x. When the call

arrives at node l, it finds no entry for x. There are at least
three ways to handle the problem. We adopt the third as
being the most practical.

Method 1: Repeatable calls. In this approach, no special
treatment is given to concurrent operations. Calls that
read obsolete data fail to track the object, and the lookup
procedure is reissued anew. Specifically, a search fails at
some node u at level k, if the callee has moved out of
the subtree rooted at u and the corresponding entries have
been deleted. In this case, the call can continue by moving
upwards to level k + 1 and read the database at the parent
of node u. Unless, in the meanwhile, the callee has moved
again in the subtree rooted at u, the call will succeed this
second time. Otherwise, it will move repeatedly up and
down the tree. Thus, although simple, this method does not
provide any upper bound on the number of tries a call has to
make before locating a moving object.

Method 2: Obtaining locks. We can use traditional lock-
based concurrency control protocols. In this case, there
are two types of locks: read and write locks. A read
lock for an entry is granted if no other operation holds a
write lock on the entry, while a write lock is granted if
no other operation holds a read or write lock on the entry.
The simplistic locking strategy would be for both the call
and the full-update operations to request and acquire read
and write locks, respectively, on all nodes involved before
proceeding. We discuss here how a locking scheme could be
used if we take into consideration the fact that full updates
are serialized. If we assume the two phases of the full-
update operation, in the beginning of the delete phase, a full-
update operation must request and obtain write locks at all
nodes on the path to the actual location of the object, before
deleting any entry. After attaining all such locks, the update
operation can release them. Before querying any node, a
call operation must first request and obtain a read lock on
the associated entry at the specific node. Read locks can be
released immediately after the entry is read. Such a scheme
may result in high lock contention in the higher levels of the
hierarchy. Furthermore, in the case of updates, locks must be
acquired in a number of nodes of the distributed architecture,
before the update proceeds. A more efficient approach is to
use counters.

Method 3: Using counters. We associate with each entry
for x at each node m a counter, called pending calls counter
(PCCm). PCCm counts the number of calls that queried the
database entry for x at node m while moving downwards
to locate x or following the chain of forwarding pointers
towards x’s current location. An additional counter at m,
called localm, counts the number of calls whose downward
phase started at node m, i.e. calls that found the first entry
for x at node m. Let n be the child node of m that contains
an entry for x. Then, PCCm + localm −PCCn is equal to the
number of call operations traveling downwards from node m

to node n. For example, in Figure 5, the fact that PCC1 =
local0 + PCC0 indicates that there are no pending calls for x

from node 0 to node 1, that is there are no call operations to

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 81

local_0 = 1
PCC_0 = 4

local

PCC_4 = 6

_4 = 2

PCC_1 = 5
local_1 = 2

10 1613

2

4 5 7 86

1

0

9

27262524222120191817 231211 1514

3

entries for x

FIGURE 5. PCC counts the number of calls traveling from a node to its child.

oldk:= k

oldm:= m

Move

<node j> while there is no entry for x
add entry

update entry at k<node k>
while k is not a leaf

k := first node with an entry for x

Full update

Object x moves from node i to node j

<node m> while entry is a forward pointer
m := leaf node

delete entry

k := child of k where k points
while PCC_k < PCC_oldk + local_oldk wait

j := parent(j)

m := forward_pointer entry for x

delete entry
while PCC_m < PCC_oldm + local_oldm wait

Call

(going upwards)

Initialize k := i
<node k>

 k := parent(k)
while no entry for x at k

<node j>

while the entry forward_pointer(x) of x at m is a forward pointer
(traversing the forward

<node m>

(node where x is in or head

<node l>

m := l

 (going downwards)

m := forward_pointer(x)

j := m (node where x is in)

 l := child(x)
while there is an entry for x at node l and l is not a leaf

local_l ++

PCC_l ++

PCC_m++

l := k (node where the first entry for x is found)

 of forward pointers chain)

send acknowledge message to i

 pointers chain)

(off-line) set cache at head of chain

Call from node i to an object x at node j

FIGURE 6. Move and call procedures extended for handling concurrency.

x that have queried node 0 but have not yet reached node 1.
Correspondingly, the fact that PCC1 + local1 − PCC4 = 1
indicates that there is one pending call from node 1 to node 4.

During the delete phase of a full update operation, an entry
at a node n is deleted only if PCCn = PCCm + localm,
where m is n’s parent node whose entry for x points to
n. Otherwise, the delete operation is delayed until the
calls searching for x arrive at node n. We assume that the
operations on counters are atomic.

LEMMA 2. During the downward phase, a call moves
correctly to the location found in the upward phase. Thus,
it arrives at j either directly or indirectly through i by
following pointers.

Proof. Let a call c be at node m at level k during its
downward phase after having found an entry for x. If the
entry for x at m directs the call to the new location j , then
the call will succeed in finding an entry at level k−1 since in
the add phase the entries are included in a bottom-up fashion,
and thus the entry at level k − 1 will be the updated one.

If the entry directs the call to the old location i, the call
will succeed finding an entry at level k − 1 since an entry
is deleted only when all pending calls from previous levels
have been serviced as indicated by the PCC. Similar claims
hold for following the forward chain, if any. ✷

Thus, all calls will eventually succeed in reaching either
i or j . In effect, the algorithm in the first case makes a call
appear as if it has occurred before the move, that is, it pushes
the call backward, or makes it appear as if it has occurred
after the move, that is, it pushes the call forward. Figure 6
summarizes the required modifications of the call procedure
and the implementation of the full update operation.

The condition PCCn = PCCm + localm will eventually
hold, if no messages are lost. Assume that x moves from
cell i to cell j , and LCA(i, j) is at level k. After the entry
of x at node LCA(i, j) is updated, no more messages will
be directed to the entry for x at node n at level k − 1 (that
is, neither PCCn nor localn will be incremented further).
We can similarly show that this holds for all levels k down

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

82 E. PITOURA AND I. FUDOS

to the leaf level. That is after the entry at level k + 1
(k ≥ 0) is deleted no more messages will be directed to
the level k database, thus eventually PCCn will be equal to
PCCm+ localm. However, even if messages are lost, this has
no effect other than leaving a few obsolete entries; no call or
move operation is blocked.

3.2. Failure recovery

With regard to communication failures, we assume that low
level communication protocols ensure that (a) there are no
errors in messages and (b) no messages are lost. Next, we
consider site and media failures. In the case of site failures,
one or more database sites become unavailable, however,
location data stored on disk are not lost and become available
upon recovery. In the case of media failures, location data
are permanently lost. In both cases, the replication inherent
in the hierarchical model is exploited for efficient recovery.

3.2.1. Internal node failure
When an internal database site becomes unavailable, any
location query for an object x directed to this site is re-
directed to all children of the site. The call procedure
proceeds downwards from the child at which an entry for x

is found. When a database site is unreachable, any requests
to insert or delete entries at this site are logged at the sending
site j . The updating process is suspended till the site
recovers. Following recovery, the update process resumes
from site j .

Upon recovery, information at an internal node can be
reconstructed by combining information from its children.
To this end, node i sends a request to reconstruct to its
children. Their replies are unioned to reconstruct the
location entries at i.

When two or more children contain values for the same
object x then:

(i) when no actual position entry and no head of a
forwarding pointer chain is contained, then i should
have no entry for object x;

(ii) when an actual position entry is contained for object x,
then i consults its parent. If i’s parent contains an entry
for object x pointing to i, then i creates an entry for x

pointing to i, otherwise it ignores this child’s reply;
(iii) otherwise (there is a head of a forwarding pointer chain

and no actual position entry), the reply of the child that
contains the head of a forwarding pointer chain for x is
adopted.

There is one subtle point. Consider the following
scenario. A delete message for object x is sent from node i

to its child j , then i fails. Shortly after, i recovers and sends
a reconstruct message to j that arrives before the previously
sent delete message. In this case, the reply from j and thus
the reconstructed location database at i includes an entry for
x. Later, when the delete message arrives at j , the entry
at j will be deleted. Thus, queries for x arriving at j from
i will fail to find an entry for x. A simple solution is to
augment delete and reconstruct messages with timestamps.

Each site j maintains the timestamp trec of the most recent
reconstruct message received. If a delete message with
timestamp smaller than trec arrives at j , j first sends a delete
message to its parent. It deletes the entry only after the
message is acknowledged. Thus there is no need to maintain
backups of internal database sites, since even in the case
of media failures, information from children database sites
suffices to reconstruct the location database at the site.

3.2.2. Leaf node failure
In the case of a search arriving at a leaf database site that
failed, first all sites in the l-cell covered by the failed site are
paged. If the object is not found, then in the case of a search
originated from a caller at this site, the search operation
proceeds upwards to the parent of the site as in the normal
case. If, however, the search arrives from a parent or sibling
site, indicating that the search followed a tree or forward
link respectively, a global search is necessary to locate the
moving object, when paging fails. Some form of informed
search, such as searching sites in the neighborhood, is due.
Alternatively, the call may be suspended till the database
site is reconstructed. When an object enters a new l-cell
or leaves an l-cell, whose covering location database has
failed, the object is informed to periodically poll the failed
site to install the location updates. Upon recovery after a
site failure, obsolete entries created by objects entering or
leaving l-cells during the failure, are expected to be updated
through such periodic polls.

In the case of media failures, location databases at
the leaf level must be reconstructed from scratch. Upon
recovery, the database site can page all l-cells it covers
to reconstruct its entries. Alternatively, entries may be
reconstructed on demand, when a lookup arrives at the site.
In addition, entries are added for objects in the l-cell as
these objects place calls. Keeping backups can expedite
the recovering procedure. However, forwarding pointers
cannot be recovered as described. Instead, global searches
are necessary to locate objects linked with forward pointers.

4. OTHER ISSUES

4.1. Replication

Many location strategies (e.g., [17, 18, 19]) involve
replicating the location of a moving object in more than
one site. Replication results in faster searches, since it
increases the probability of finding a location entry at a
neighbor site. However, faster searches are achieved at the
expense of an increase in the cost of updates. When an object
moves, all replicas maintaining its location become obsolete.
Maintaining forwarding pointers reduces the overhead of
updating replicas, since an object can still be located from its
previous location following forwarding pointers. Selectively
updating some of the replicas is also possible. That is, some
of the replicas (e.g., the replicas at sites from which many
calls originate) may be updated to point to the new location.
Similarly, in the case of caching the callee’s location at
the caller’s site (e.g., [11, 16]), if forwarding pointers are

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 83

used, cache entries remain valid even when the callee moves.
Experiments (see Experiment 4 in Section 5) show that when
replicas are kept at selective sites, the forwarding scheme
outperforms the basic scheme even for high call to mobility
ratios.

4.2. Advanced location queries

Besides location searches and updates, hierarchical location
databases can be exploited for answering a wide range of
advanced queries involving the location of moving objects.
Such queries may be posed by mobile objects or their answer
may involve mobile objects. An example is geographical
multicasting [20] that involves sending messages to all
objects currently in a specific geographical region. Other
queries include queries for locating nearby objects (for
instance mobile objects looking for specific services in their
vicinity) or containment queries (for example, locating all
objects in a specific region). Such queries can be efficiently
answered using hierarchical databases, e.g. by querying
databases at the region specified.

The introduction of forwarding pointers introduces a level
of uncertainty in answering queries because location entries
are not fully updated upon each move. Thus, answers to
location queries are approximate. However, the uncertainty
is bounded (or in the terms of [21] ignorance is bounded)
depending on the condition for full updates. In particular,
consider the first condition, according to which, location
entries are fully updated to reflect the current location of an
object, when the length of the chain of forwarding pointers
exceeds some pre-specified limit k. Then the answer to
a location query is guaranteed to be correct in the sense
that the location returned as an answer was one of the k

previous locations of the object. This can be seen as a time
bound, the object was in the region in one of its k previous
moves. The second condition of full updates depends on the
distance traveled; location entries are fully updated when the
lca of the current and previous location exceeds a specified
threshold x. In this case the answer to the query is within a
specified spatial limit in the sense that the object is currently
in a site with a maximum distance depending on x from the
location returned as an answer.

5. PERFORMANCE EVALUATION

We assume a hierarchy of location databases appropriately
placed at the nodes of a given communication network.
To allow for maximum flexibility in the design of the
location management scheme, we consider hierarchies with
a variable number of levels. The region covered by each leaf
database corresponds to a unique physical address.

5.1. Cost estimation

We make a distinction between the database and the
communication cost. We consider as database cost the total
number of database operations (queries or updates). For
the communication cost, we count the total number of links
traversed by the messages involved. Assume that two nodes

u and v communicate with each other by traversing the
network spanning tree connecting them. In general this
spanning tree may be different from the hierarchical location
database structure. Adjacent nodes in the hierarchical
location database structure need to traverse the network
interconnection spanning tree connecting them, which may
contain several links.

Let span(u, v) be the number of links in the path
connecting u and v in this spanning tree. We assume that
span(u, v) = 2r lca(u, v), that is, it costs r times less,
(i.e. there are r less links in the path) for nodes u and v

to communicate directly than to communicate through their
least common ancestor in the tree. Parameter r allows
the modeling of different communication infrastructures, for
example when the only way for two nodes to communicate
is through the links of the tree, then r = 1. Let c be the l-cell
of caller x, v be the current l-cell of object y, k be the length
of the chain of forwarding pointers for object y, and n be the
new l-cell inside which y moves. In the forwarding scheme,
let v0 be the l-cell containing the first forwarding pointer and
vi (i = 0, . . . , k) the i-th node in the chain.

We consider first a call placed by object x to object y. The
corresponding costs are as follows.

• Basic scheme:
database cost: 2 lca(c, v) + 1
communication cost: 2 lca(c, v) + span(c, v)

• Forwarding scheme:
database cost: 2 lca(c, v0) + k + 1
communication cost:

2 lca(c, v0) +
k−1∑

0

span(vi, vi+1) + span(c, v)

For a move of object y from the current l-cell v to a new
l-cell n, the costs are:

• Basic scheme:
database cost 2 lca(v, n) + 1
communication cost 2 lca(v, n) + 1 + span(v, n)

• Forwarding scheme:
database cost: 2
communication cost: span(v, n)

There are additional costs for caching at calls or moves,
fully updating the hierarchical scheme and deleting cycles,
as follows:

• cost of caching at calls or moves:
communication cost: span(n, v0)

database cost: 1
• cost of a full update of the hierarchical scheme resulting

from a move outside the vicinity of the current region:
communication cost:

2 lca(n, v0) +
k−2∑

0

span(vi , vi+1)

database cost: 2 lca(n, v0) + k

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

84 E. PITOURA AND I. FUDOS

• cost of deleting a cycle (where l is the length of the
cycle):

communication cost:

i=l∑

i=1

span(vj , vj+1) + span(n, v0)

database cost: l

5.2. Calling and mobility model

We assume that, for each object, calls and moves occur
independently. The interarrival times between two calls
follow an exponential distribution, with parameter the mean
interarrival time between two calls, tc. The interarrival times
between two moves follow another exponential distribution,
with parameter the mean interarrival time between two
moves, tm. The ratio of the number of calls over the number
of moves called call to mobility ratio (CMR) is then

CMR = tm

tc
.

The source of a call event is selected using one of the
following distributions.

Arbitrary calls. A call may be placed from any l-cell with
equal probability 1/n, where n is the number of different
l-cells. We use a discrete uniform distribution to select one
from n l-cells.

Set of frequent callers. Each object receives most of its calls
from a specific set of locations. This corresponds to a real-
life situation in which an object is frequently called by a set
of other objects or groups of objects (e.g. in the case of
mobile users, friends, family, business associates or regular
customers, or in the case of mobile software, associated
code). We model a set of frequent callers with a discrete
bimodal distribution, which distributes a Pf probability
uniformly over a set of specific locations and a 1 − Pf

probability uniformly over all other locations. So, a call
has Pf /nf probability to be placed by a specific frequent
calling location, and (1 − Pf)/(n − nf) to be placed by
another location, where nf is the number of frequent calling
locations.

The destination of a move event is selected via one of the
following distributions.

Arbitrary moves. An object may move to any location,
except from its current one, with the same probability. We
use a uniform distribution as in the case of arbitrary calls;
however, the probability that the object remains in the same
location after a move is 0.

Frequent moves to neighbor cells on a grid. Since objects
usually move to nearby locations, we model such a situation
in which distant moves are unlikely to happen and short
moves to neighbor locations are most likely to happen.
We assume that the object moves on a grid of l-cells
(see Figure 7) and that the object may move with a high
probability (PN) to a neighbor l-cell on the grid while there

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

FIGURE 7. Movement to adjacent cells on a grid.

is a small probability (1 − PN) that the object will jump to
some other non-neighbor l-cell. In case of wireless mobile
computing, the movement to neighbor l-cells corresponds
to an active user physically moving across l-cells. On
the other hand, the rare movement to non-neighbor l-cells,
corresponds to a user turning off its mobile host and
turning it on again in some arbitrary l-cell. To model
this distribution, we use a discrete bimodal probability
distribution similar to that used for the set of frequent callers.

5.3. Experiments and results

We have developed an event-driven simulator to evaluate the
performance of the location strategies. We simulate calls to a
specific mobile object and moves made by this object using
an event-driven simulator. An event is either a move or a
call event. The simulator software has been developed in
C++ and runs on a Sun Sparc 10 workstation. The purpose
of the set of experiments is to

• determine the optimal condition for initiating full
updates,

• demonstrate the benefits of caching,
• provide a comparison of the forwarding scheme with

the basic scheme, and
• illustrate optimizations of the forwarding scheme for

frequent callers.

We run the experiments for a wide range of call to
mobility ratios and for a total of about 6000 move and call
events per object.

More specifically, results for Experiments 1–3 are
presented for small CMRs 0.01–1.0 (highly mobile users),
since for larger CMRs the benefits of forward pointers are
diminished. Experiment 4 shows that when the call model
is a set of frequent callers, the benefits of our scheme are
maintained even for large CMRs (0.01–100).

We have experimented with hierarchies of different height
and width. The results show that the relative performance

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 85

TABLE 2. Parameters of the experiments.

Parameter Description Value

CMR Call to mobility ratio for the mobile user Varies
Database cost Total number of database (query and update) Output

operations
Communication cost Weighted sum of tree and forwarding pointer Output

traversals (weighted by distance measured by the
level of the lca of the two locations)

nf Number of frequent caller locations 15
Pf Percentage of calls from frequent callers 80%

(set of frequent callers model)
Pn Probability of moving to an adjacent location 95%

(frequent moves to neighbor cells model)
r Models the relative cost of following 1/3

a forwarding pointer vs. following a tree link

Topology Parameters
Height 8
Node outdegree 4
n Number of leaf nodes ∼65,000

of the schemes under consideration remains the same. The
results presented are for a tree of height 8 and out-degree 4
[22]. The experiments were performed multiple times and
statistical means were derived for all estimates. Since the
relative size of the communication and the database cost
depends on many factors such as the load of the network
and the size of the databases, we consider the two costs
separately. The value of r affects the communication cost
of the forwarding scheme which increases with r . For the
experiments, we set the communication factor r equal to
1/3. This is a realistic assumption, because in practice, even
when traversing a forwarding pointer between two nodes
means following the tree path through their LCA, it costs
less, since there is no need for establishing connections and
querying at each tree node on the path. Table 2 summarizes
the parameters for the experiments.

Experiment 1: condition for full updates

The first experiment aims at determining an appropriate
condition for initiating full updates. We considered both
conditions set in Section 2, i.e. (a) the condition based on
the distance of the move, as determined by the level (height)
of the least common ancestor of the new and old location
of the move operation, and (b) the condition based on the
length of the chain of forwarding pointers. In particular,
we are looking for an optimal value for the level and length
beyond which to fully update so that the overall database
and communication cost is minimized. Table 3 shows the
optimal full update conditions for nearby moves, and Table 4
for uniform moves. The optimal values of length and
height were obtained by performing the same experiment
for different values of the height and length and selecting
the ones for which the communication/database cost was the
minimum.

The optimal purge conditions are different depending on

whether caching is used or not. With caching, full updates
need to be performed less frequently than without caching,
since the cost of calls is reduced by using the cached value.

As expected, the optimal values directly depend on the
CMR, since fully updating increases the cost of moves, while
it decreases the cost of calls. Also, the optimal values
are slightly higher for uniform moves. This is because
basic moves cost more in the uniform model of moves than
in the nearby model of moves and thus the savings from
forwarding are correspondingly higher.

For uniform moves the optimal purge condition for height
(8) coincides with the overall height of the tree, meaning
that a full update has to be performed even less frequently
than given by this condition. This is expected since when
the move distribution is uniform, the probability of a move
traversing the root of the tree is 1

2 , meaning that full update
will occur every second move on average. Thus, the full
update based on the height condition is not appropriate for
uniform moves.

Experiment 2: benefits of caching

We have performed a set of experiments to verify the benefits
of caching. For this set of experiments, the condition for
fully updating was based on the optimal values obtained
at Experiment 1. Caching adds no overhead to the latency
of move or call operations, since it can be performed off-
line. Figure 8 demonstrates the effectiveness of caching for
nearby moves and Figure 9 for uniform moves. Caching
works better in the case of nearby moves, since there is
locality. The mean and maximum chain lengths refer to the
mean and maximum number of pointers a call has to follow
before locating the callee. As shown, caching proves very
effective in minimizing both the mean and the maximum
values of the chain. Besides the call set-up time, we have
also computed the overall database and communication cost

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

86 E. PITOURA AND I. FUDOS

TABLE 3. Optimal values for purging in terms of the overall database and communication cost for nearby moves (left) with caching and
(right) without caching.

Optimal height Optimal length

Database Comm Database Comm
CMR cost cost cost cost

0.01 8 8 20 20
0.05 8 8 13 12
0.1 8 7 11 8
0.2 8 7 8 5
0.3 8 7 5 4
0.4 8 6 5 4
0.5 8 6 4 3
0.6 8 4 4 2
0.8 8 4 4 2
1.0 8 4 3 1

(cache)

Optimal height Optimal length

Database Comm Database Comm
CMR cost cost cost cost

0.01 8 8 20 20
0.05 8 7 13 12
0.1 7 6 10 8
0.2 5 4 7 5
0.3 4 4 5 4
0.4 4 3 5 3
0.5 4 3 4 2
0.6 3 3 3 2
0.8 3 3 3 2
1.0 3 3 2 1

(no cache)

TABLE 4. Optimal values for purging in terms of the overall database and communication cost for uniform moves (left) with caching and
(right) without caching.

Optimal height Optimal length

Database Comm Database Comm
CMR cost cost cost cost

0.01 8 8 20 20
0.05 8 8 20 11
0.1 8 8 20 9
0.2 8 8 19 6
0.3 8 8 19 5
0.4 8 8 19 4
0.5 8 8 18 3
0.6 8 8 18 3
0.8 8 8 17 3
1.0 8 8 17 2

(cache)

Optimal height Optimal length

Database Comm Database Comm
CMR cost cost cost cost

0.01 8 8 20 20
0.05 8 8 20 10
0.1 8 8 14 6
0.2 8 8 13 5
0.3 8 8 9 4
0.4 8 8 8 3
0.5 8 8 7 3
0.6 8 8 6 2
0.8 8 8 5 2
1.0 8 8 4 2

(no cache)

0

5

10

15

20

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

M
ea

n
C

ha
in

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

0

20

40

60

80

1.0

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

M
ax

 C
ha

in

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

FIGURE 8. Effectiveness of caching for nearby moves.

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 87

0

0.1

0.2

0.3

0.4

0.5

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

M
ea

n
C

ha
in

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

0

1

2

3

4

5

6

7

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

M
ax

 C
ha

in

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

FIGURE 9. Effectiveness of caching for uniform moves.

(Figure 10 for nearby moves and Figure 11 for uniform
moves). As shown, caching does not add to the overall
database and communication cost.

In particular, for uniform moves, the overall database
and communication cost are more or less the same for all
schemes, since the benefits of caching in the call set-up time
is balanced with the increase in the overall time.

Experiment 3: forward versus basic

We have performed a number of experiments to study
the effect of the forwarding scheme in decreasing the
overall database load and communication traffic. Depending
on the CMR both the overall database traffic and the
communication cost are decreased by a factor of 52% to a
factor of 5% for nearby moves (Figure 12(left)). For uniform
calls, the corresponding values ranges from around 18% to
around 7% (Figure 12(right)).

The price for this improvement is an increase of the call
set up time. This is shown in Figure 13(left) for nearby
moves and in Figure 13(right) for uniform moves. Call
latency can be effectively kept short if information about
the calling behavior is known beforehand. In this case, a
simple scheme that caches the location of the object at the
callers can reduce the cost. Next, we present results for such
a scheme.

Experiment 4: set of frequent callers

For the purposes of this experiment, we assume a pre-
specified set of frequent callers, uniformly chosen among
all l-cells. In practice, either each mobile object explicitly
specifies this set, or the set is derived by observing for
each mobile object the frequency of receiving calls. We
study how we can benefit from the peculiarity of this model
and reduce the overall cost and the call set-up time by
extending both the basic and the forwarding schemes with
lazy replication.

In particular, the location of a mobile object is replicated
at the l-cell of its frequent callers. To locate an object, a
frequent caller first uses the location saved at its region. If

this location is outdated (e.g. the object has in the meantime
moved to a new location) a location miss is signaled. Upon a
miss, the caller uses the usual procedure to locate the callee.
An outdated replica of an object is updated upon a location
miss, after the current location of the object is found by using
the normal procedure. Setting forwarding pointers improves
the performance of replication since it decreases the location
miss ratio. Figure 14 shows the benefits of forwarding in
terms of the overall cost, while Figure 15 shows the benefit
of forwarding in terms of the call set-up time.

Note, that normally forwarding is tuned for highly mobile
users, thus it does not perform well for high CMR values.
However, in the case of frequent callers, the forwarding
scheme works well even for high values of the CMR, since
the benefits of the lazy evaluation balance the cost increase
of the forwarding schemes.

6. RELATED WORK

Location management has attracted much current research in
mobile computing. Various approaches have been proposed
for reducing the cost of move and call operations for
both hierarchical and non-hierarchical location database
architectures [23, 3]. See for example [24] for a survey.

One proposal to reduce the cost of calls is based on
replicating (see e.g. [18, 19] for hierarchical and [17] for
non-hierarchical architectures) or caching (see e.g. [16] for
non-hierarchical and [11] for hierarchical architectures) the
location of mobile users at the sites of their frequent callers.
To reduce the cost of network traffic generated by frequent
updates, a scheme based on partitioning is presented in
[25, 26]. Partitioning is performed by grouping the cells
among which a mobile unit moves frequently and separating
the cells between which it relocates infrequently. Only
moves across partitions are reported. A hierarchical method
for location binding in wide-area systems is used in the
Globe wide-area location service [12, 15]. Globe advocates
a combination of caching and partitioning. An interesting
feature is that an object, being a service, may have more than
one location. Finally, the assignment of location databases

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

88 E. PITOURA AND I. FUDOS

20000

30000

40000

50000

60000

70000

80000

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

D
at

ab
as

e
C

os
t

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

20000

30000

40000

50000

60000

70000

80000

90000

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

C
om

m
un

ic
at

io
n

C
os

t

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

FIGURE 10. Overall database and communication cost for nearby moves.

75000

80000

85000

90000

95000

100000

105000

110000

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

D
at

ab
as

e
C

os
t

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

90000

95000

100000

105000

110000

115000

120000

125000

130000

135000

140000

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

C
om

m
un

ic
at

io
n

C
os

t

CMR

No cache
Cache at calls only

Cache at moves only
Cache at calls and moves

FIGURE 11. Overall database and communication cost for uniform moves.

to the nodes of a signaling network is discussed in [10],
where database placement is formulated as an optimization
problem. Those schemes are orthogonal to the address
forwarding strategy and can be used in conjunction with it
to further reduce database and communication costs.

Address forwarding for a non-hierarchical architecture is
discussed in [27] along with an analysis of its benefits for
different CMRs. Forwarding pointers have been also used
in [28] again for non-hierarchical location databases. The
focus there is on IP-based protocols. In [29], forwarding is
explored in a different framework for a hierarchical, though
not tree-structured, location database architecture, called
regional matching directory. The treatment is theoretical and
based on a worst case order analysis.

A forwarding pointer technique for a two-tier architecture
is also proposed in the local anchoring scheme [30], where a
forwarding pointer chain of length at most one is maintained.
In particular, for each mobile object, a VLR close to the
object is selected as its local anchor (LA). In some cases,
the LA may be the same as the mobile object’s serving
VLR. Otherwise, the LA maintains a forwarding pointer to
the object’s current VLR. For each mobile object, the HLR
maintains its serving LA. To locate a mobile unit, the HLR

is queried first and then the associated LA is contacted. If
the LA happens to be the serving VLR, no further querying
is necessary, else the forwarding pointer at the LA is used
to locate the mobile unit. Since after a call delivery, the
HLR knows the current location of a mobile unit, the HLR
is always updated after a call to record the current VLR.
Depending on whether the HLR is updated upon a move, two
schemes are proposed: static and dynamic local anchoring.
In static local anchoring, the HLR is never updated at a
move. In dynamic local anchoring, the serving VLR be-
comes the new LA if this will result in lower expected costs.

A non-hierarchical forwarding scheme, SSP chains [31],
has been proposed for transparently migrating object
references between processes in distributed computing. The
SSP-chain short-cutting technique is somewhat similar to
our caching at calls method.

In [32], a form of forwarding pointers is used in
a hierarchical location architecture. Their hierarchical
architecture is different from ours, in that instead of storing
at each internal database a pointer to the corresponding
lower level database, the actual location is stored. That is,
in effect, the location of each mobile object is replicated at
all nodes on the path from the root to the leaf node covering

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 89

0

20

40

60

80

1.0

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

O
ve

ra
ll

C
os

t I
m

pr
ov

em
en

t (
%

)

CMR

Overall communication cost improvement
Overall database cost improvement

0

20

40

60

80

1.0

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

O
ve

ra
ll

C
os

t I
m

pr
ov

em
en

t (
%

)

CMR

Overall communication cost improvement
Overall database cost improvement

FIGURE 12. Decrease of the database and communication traffic caused by forwarding (left) for nearby moves and (right) for uniform
moves.

0

20

40

60

80

1.0

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

O
ve

rh
ea

d
pe

r
ca

ll
(%

)

CMR

Communication cost overhead per call
Database cost overhead per call

0

20

40

60

80

1.0

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

O
ve

rh
ea

d
pe

r
ca

ll
(%

)

CMR

Communication cost overhead per call
Database cost overhead per call

FIGURE 13. Increase of the call set-up time (left) for nearby moves and (right) for uniform moves.

the object’s current location. Furthermore, the emphasis
of our work is on developing techniques for enhancing the
basic pointer forwarding scheme, while the emphasis in [32]
is on designing an adaptive scheme that will dynamically
decide which location scheme to deploy based on the past
behavior of the system. Our scheme can be extended so that
forwarding pointers can be selectively used based on the call
to mobility ratio and other system parameters.

Databases that record the location of moving objects
are also discussed in [33, 34]. However, in this work a
single centralized database is considered. The focus is
on determining when to update the location of a moving
object. The approach advances an information cost model
that captures uncertainty, deviation and communication.

In terms of concurrency control, there has been a lot
of research on databases, including concurrency control
for tree-based indexes. Such concurrency control schemes
exploit the specific characteristic of each index structure
to achieve more concurrency. For example, in B+-trees,
updates occur only when a node becomes full and it must
be split into two sibling nodes. In this case, a B-link tree
[35, 36] (a variant of a B+-tree that uses links to chain

all nodes at each level together) exhibits more concurrency,
since a look-up that arrives at a newly-split node can locate
an entry by just following the links to a sibling node. The
concurrency control schemes in this paper are tailored to the
proposed hierarchical structure.

A locking protocol for location queries is presented in
[37]. Their hierarchical structure is different from ours.
Location information is stored only in leaf nodes; internal
nodes just collect location information from queries that
they submit to lower level nodes. While we consider the
concurrent execution of updates and look-ups, they consider
concurrent updates and aggregate queries of the form: count
the number of mobile users currently in the area covered
by some node x. Before processing an aggregate query of
this type, locks must be requested and acquired on all nodes
in the subtree rooted at x. An update is performed only if
the associated leaf nodes are not locked. Otherwise, the
update is deferred and a message is propagated to the root
making it responsible for updating the leaf nodes. To avoid
the overhead of propagating the message to the root, it is also
suggested to just mark the entries to be updated as obsolete
and let the aggregate query use this information accordingly.

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

90 E. PITOURA AND I. FUDOS

20000

30000

40000

50000

60000

70000

80000

90000

100000

0.01 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0 100.0

D
at

ab
as

e
C

os
t

CMR

Basic
Basic with caching at frequent callers

Forward
Forward with caching at frequent callers

20000

40000

60000

80000

100000

120000

140000

0.01 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0 100.0

C
om

m
un

ic
at

io
n

C
os

t

CMR

Basic
Basic with caching at frequent callers

Forward
Forward with caching at frequent callers

FIGURE 14. Overall database and communication cost for the set of frequent callers.

0

5

10

15

20

25

30

0.01 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0 100.0

M
ea

n
da

ta
ba

se
 c

os
t p

er
 c

al
l

CMR

Basic
Basic with caching at frequent callers

Forward
Forward with caching at frequent callers

0

5

10

15

20

25

30

35

0.01 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0 100.0

M
ea

n
co

m
m

un
ic

at
io

n
co

st
 p

er
 c

al
l

CMR

Basic
Basic with caching at frequent callers

Forward
Forward with caching at frequent callers

FIGURE 15. Call set-up time for the set of frequent callers.

7. SUMMARY

Tracking objects is central to mobile computing. In this
paper, we have studied the use of forwarding pointers in
a hierarchical database arrangement. In such schemes,
instead of fully updating the hierarchical database upon each
location update, a forwarding pointer to the new location
is set at the previous location of the object. However, the
forwarding scheme increases the cost of location searches,
since a chain of forwarding pointers may have to be
traversed before locating an object. To effectively reduce
the length of such chains, we have introduced caching
techniques as well as conditions for initiating an update of
all associated database entries. Finally, we have described a
synchronization method to control the concurrent execution
of location searches and updates and a protocol to handle
site failures. Experimental results show that under certain
assumptions and for small call to mobility ratio, the
proposed forwarding scheme leads in reduction of both the
overall database load and the communication traffic by 20%
to 60% depending on the call to mobility ratio and the
moving behavior.

A preliminary version of our work has appeared in [38].

REFERENCES

[1] Forman, G. H. and Zahorjan, J. (1994) The challenges of
mobile computing. IEEE Comput., 27, 38–47.

[2] Imielinski, T. and Badrinath, B. R. (1994) Wireless mobile
computing: challenges in data management. Commun. ACM,
37, 18–28.

[3] Pitoura, E. and Samaras, G. (1998) Data Management for
Mobile Computing. Kluwer Academic, Dordrecht.

[4] Riecken, D. (ed.) (1994) Special issue on intelligent agents.
Commun. ACM, 37(7).

[5] Vitek, J. and Tschudin, C. (eds) (1997) Mobile Object
Systems: Towards the Programmable Internet. Lectures Notes
in Computer Science, 1222. Springer, Heidelberg.

[6] Huhns, M. N. and Singh, M. P. (eds) (1997) Special issue on
internet-based agents. IEEE Internet Comput., 1(4).

[7] Weiser, M. (1993) Some computer science issues in
ubiquitous computing. Commun. ACM, 36, 75–84.

[8] Baentsch, M., Baum, L., Molter, G., Rothkugel, S. and
Sturm, P. (1997) Enhancing the web’s infrastructure: from
caching to replication. IEEE Internet Comput., 1, 18–27.

[9] Wang, J. Z. (1993) A fully distributed location registration
strategy for universal personal communication systems. IEEE
J. Selected Areas Commun., 11, 850–860.

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

DISTRIBUTED LOCATION DATABASES FOR TRACKING HIGHLY MOBILE OBJECTS 91

[10] Anantharam, V., Honig, M. L., Madhow, U. and Kei, V. K.
(1994) Optimization of a database hierarchy for mobility
tracking in a personal communications network. Performance
Evaluation, 20, 287–300.

[11] Jain, R. (1996) Reducing traffic impacts of PCS using
hierarchical user location databases. In Proc. IEEE Int. Conf.
on Communications, June, Dallas, TX. IEEE Computer
Society Press, Los Alamitos, CA.

[12] van Steen, M., Hauck, F. J., Homburg, P. and Tanenbaum,
A. S. (1998) Locating objects in wide-area systems. IEEE
Commun. Mag., 1, 2–7.

[13] Mouly, M. and Pautet, M. B. (1992) The GSM System for
Mobile Communications. Mouly Consultant, June.

[14] Eynard, C., Lenti, M., Lombardo, A., Marengo, O. and
Palazzo, S. (1995) A methodology for the performance
evaluation of data query strategies in Universal Mobile
Telecommunication Systems (UMTS). IEEE J. Selected
Areas Commun., 13, 839–907.

[15] van Steen, M., Hauck, F. J., Ballintijin, G. and Tanenbaum,
A. S. (1998) Algorithmic design of the globe wide-area
location service. Comp. J., 41, 297–310.

[16] Jain, R., Lin, Y-B., Lo, C. and Mohan, S. (1994) A caching
strategy to reduce network impacts of PCS. IEEE J. Selected
Areas Commun., 12, 1434–1444.

[17] Jannink, J., Lam, D., Shivakumar, N., Widom, J. and Cox,
D. C. (1996) Efficient and flexible location management
techniques for wireless communication systems. In Proc
2nd ACM Int. Conf. on Mobile Computing and Networking
(Mobicom’96), pp. 38–49. ACM Press, New York.

[18] Rajagopalan, S. and Badrinath, B. R. (1995) An adaptive
location management strategy for mobile IP. In Proc. 1st
ACM Int. Conf. on Mobile Computing and Networking
(Mobicom’95), Berkeley, CA. ACM Press, New York.

[19] Shivakumar, N. and Widom, J. (1995) User profile replication
for faster location lookup in mobile environments. In Proc.
1st ACM Int. Conf. on Mobile Computing and Networking
(Mobicom’95), pp. 161–169. ACM Press, New York.

[20] Navas, J. C. and Imielinski, T. (1997) Geographic address-
ing and routing. In Proc. 3rd ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MobiCom’97), Budapest, Hun-
gary, September 1997, pp. 26–30. ACM Press, New York.

[21] Imielinski, T. and Badrinath, B. R. (1992) Querying in highly
mobile distributed environments. In Proc. 18th Int. Conf.
on Very Large Data Bases (VLDB 92), pp. 41–52. Morgan
Kaufmann, San Francisco, CA.

[22] Stanford Pleiades Research Group. Stanford University
Mobile Activity TRAces (SUMATRA). Available at: www-
db.stanford.edu/sumatra.

[23] Mohan, S. and Jain, R. (1994) Two user location strategies for
personal communication services. IEEE Personal Commun.,
1, 42–50.

[24] Pitoura, E. and Samaras, G. (1998) Locating Objects in
Mobile Computing. Technical Report TR: 98-20, University

of Ioannina, Computer Science Dept. IEEE TKDE, accepted.
Also available at: www.cs.uoi.gr/˜pitoura/pub.html.

[25] Badrinath, B. R., Imielinski, T. and Virmani, A. (1992)
Locating strategies for personal communications networks.
In Proc. 1992 Int. Conf. on Networks for Personal
Communications. IEEE Globecomm, FL.

[26] Cho, G. and Marshall, L. F. (1995) An efficient location and
routing schema for mobile computing environments. IEEE J.
Selected Areas Commun., 13, 868–879.

[27] Jain, R. and Lin, Y.-B. (1995) An auxiliary user location
strategy employing forwarding pointers to reduce network
impacts of PCS. Wireless Networks, 1, 197–210.

[28] Ioannidis, J., Duchamp, D. and Maguire Jr, G. Q. (1991) IP-
based protocols for mobile internetworking. In Proc. ACM
SIGCOMM Symposium on Communications, Architectures
and Protocols, pp. 235–245. ACM Press, New York.

[29] Awerbuch, B. and Peleg, D. (1991) Concurrent online
tracking of mobile users. In Proc. SIGCOMM 91, pp. 221–
233. ACM Press, New York.

[30] Ho, J. S. M. and Akyildiz, I. F. (1996) Local anchor scheme
for reducing signalling cost in personal communication
networks. IEEE/ACM Trans. Networking, 4, 709–725.

[31] Shapiro, M., Dickman, P. and Plainfosse, D. (1992)
SSP Chains: Robust, Distributed References Supporting
Acyclic Garbage Collection. Technical Report 1799, INRIA,
Rocquentcourt, France.

[32] Krishna, P., Vaidya, N. H. and Pradhan, D. K. (1996)
Static and dynamic location management in mobile wireless
networks. J. Comp. Commun. (special issue on Mobile
Computing), 19, 321–334.

[33] Sistla, A. P., Wolfson, O., Chamberlain, S. and Dao, S. (1997)
Modeling and querying moving objects. In Proc. 13th Int.
Conf. on Data Engineering (ICDE 97), pp. 422–432. IEEE
Computer Society Press, Los Alamitos, CA.

[34] Wolfson, O., Chamberlain, S., Dao, S., Jiang, L. and
Mendez, G. (1998) Cost and imprecision in modeling the
position of moving objects. In Proc. 14th Int. Conf. on
Data Engineering (ICDE 98), pp. 588–596. IEEE Computer
Society Press, Los Alamitos, CA.

[35] Lehman, P. and Yao, S. (1981) Efficient locking for
concurrent operations on B-trees. ACM Trans. Database Syst.,
6, 650–670.

[36] Sagiv, Y. (1985) Concurrent operations on B*-trees with
overtaking. In Proc. 4th ACM Symp. on Principles of
Database Systems, pp. 28–37. ACM Press, New York.

[37] Budiarto, Harumoto, K., Tsukamoto, M. and Nishio, S.
(1997) Position locking: handling location dependent queries
in mobile computing environment. In Proc. WWCA97.
Lectures Notes in Computer Science, 1274, 363–378.

[38] Pitoura, E. and Fudos, I. (1998) An efficient hierarchical
scheme for locating highly mobile users. In Proc. 7th
Int. Conf. on Information and Knowledge Management
(CIKM’98), pp. 218–225. ACM Press, New York.

THE COMPUTER JOURNAL, Vol. 44, No. 2, 2001

