
382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

Resource Reclaiming in
Multiprocessor Real-Time Systems

Chia Shen, Member, IEEE, Krithi Ramamritham, Member, IEEE, and John A. Stankovic, Senior Member, IEEE

Abstruct-Most real-time scheduling algorithms schedule tasks
with respect to their worst case computation times. Resource
reclaiming refers to the problem of utilizing the resources left
unused by a task when it executes less than its worst case compu-
tation time, or when a task is deleted from the current schedule.
Resource reclaiming is a very important issue in dynamic real-
time multiprocessor environments. In this paper, we present
dynamic resource reclaiming algorithms that are egective, avoid
any run time anomalies, and have bounded overhead cost that is
independent of the number of tasks in the schedule. Each Task
is assumed to have a worst case computation time, a deadline,
and a set of resource requirements. The algorithms utilize the
information given in a multiprocessor task schedule and perform
on-line local optimization. The effectiveness of the algorithms is
demonstrated through simulation studies. The algorithms have
also been implemented in the Spring Kernel [15].

Index Terms- Deadlines, dynamic real-time systems, multi-
processor scheduling, resource constraints, resource reclaiming,
worst case computation times.

I. INTRODUCTION

N real-time applications such as space stations, avionics, I and command and control systems, many tasks have ex-
ecution deadlines. Among these real-time tasks, some are
safety-critical, i.e., their deadlines must be met under all
circumstances, otherwise the result could be catastrophic;
while others are not safety-critical, i.e., missing their deadlines
will seriously degrade the performance of a system but will not
cause catastrophe. In such real-time applications, the resources
required by the safety-critical tasks should be preallocated
and a schedule should be statically produced with respect
to the worst case timing and resource requirements of these
tasks so that their deadlines will be met. On the other hand,
due to the dynamic and nondeterministic nature of these
applications, other real-time tasks have to be scheduled on-line
as they arrive since it is impossible to statically reserve enough
resources for all contingencies with respect to the worst case
requirements of these tasks.

When real-time tasks arrive in a dynamic real-time envi-
ronment, the scheduler dynamically determines the feasibility

Manuscript received February 20, 1991; revised August 21, 1991. This
work is part of the Spring Project at the University of Massachusetts and
is funded in part by the Office of Naval Research under Contracts N00014-
85-K-0398 and NOOO14-92-5-1048, and by the National Science Foundation
under equipment Grants DCR-8500332 and CCR-8716858.

C. Shen is with Mitsubishi Electric Research Laboratories Inc., Cambridge,
MA 02139.

K. Ramamritham and J. A. Stankovic are with the Department of Computer
Science, University of Massachusetts, Amherst, MA 01003.

IEEE Log Number 9206267.

of scheduling the new task and the previously scheduled
tasks, including safety-critical tasks, given their worst case
requirements and current system state. A feasible schedule
is generated if all the timing and resource requirements of
tasks can be satisfied. Tasks are dispatched according to this
feasible schedule. In order to guarantee that real-time tasks
will meet their deadlines once they are scheduled, most real-
time scheduling algorithms schedule tasks with respect to their
worst case computation times [4], [6], [lo], [16]. Since this
worst case computation time is an upper bound, the actual
execution time may vary between some minimum value and
this upper bound, depending on various factors, such as the
system state, the amount and value of input data, the amount
of resource contention, and the types of tasks. Resource
reclaiming refers to the problem of utilizing resources left
unused by a task when it executes less than its worst case
computation time, or when a task is deleted from the current
schedule. Task deletion occurs either during an operation mode
change [ll], or when one of the copies of a task completes
successfully in a fault-tolerant system and the fault semantics
permits deletion of the other copies from the schedule [2].
Resource reclaiming is a very important issue in dynamic
real-time systems, and it has not been addressed in practice.

The design of dynamic resource reclaiming algorithms in
real-time systems has four requirements:

1) correctness: A resource reclaiming algorithm must main-
tain the feasibility of guaranteed tasks, i.e., any possible
run time anomalies must be avoided.

2) inexpensive: The overhead cost of a resource reclaiming
algorithm should be very low compared to tasks’ compu-
tation times since a resource reclaiming algorithm may
be invoked very frequently.

3) bounded complexity: The complexity of a resource re-
claiming algorithm should be independent of the number
of tasks in the schedule, so that its cost can be in-
corporated into the worst case computation time of a
task.

4) effective: A resource reclaiming algorithm should im-
prove the performance of the system, i.e., increase the
guarantee ratio defined as -

the number of tasks guaranteed
the number of tasks arrived

The correctness requirement addresses the issue of avoiding
run time anomalies in a multiprocessor system. Resource
reclaiming is straightforward given a uniprocessor schedule
because there is only one task executing at any moment on the
processor. Resource reclaiming on multiprocessor systems for

1045-9219/93$03.00 0 1993 IEEE

383 SHEN et al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS

tasks with resource constraints is much more complicated. This
is due to the potential parallelism provided by a multiprocessor
system and the potential resource conflicts among tasks. When
the actual computation time of a task differs from its worst
case computation time in a nonpreemptive multiprocessor
schedule with resource constraints, run time anomalies [5]
may occur. These anomalies may cause some of the already
guaranteed tasks to miss their deadlines. In particular, one
cannot simply use any work-conserving scheme, one that will
never leave a processor idle if there is a dispatchable task,
without verifying that task deadlines will not be missed.' For
tasks with precedence constraints, Manacher [7] proposed an
algorithm to avoid these anomalies by imposing additional
precedence constraints on tasks to preserve the order of
tasks which can run in parallel. However, the complexity of
the algorithm is not independent of the number of tasks in
the schedule and the algorithm does not deal with resource
constraints among tasks. Moreover, the primary purpose of
the algorithm is to ensure the feasibility of the original
schedule in the event of tasks executing less than their worst
case computation times in a static system, rather than to
dynamically reclaim unused resource.

Predictability is one of the most important issues in a
real-time operating system. The system overhead incurred in
scheduling, dispatching, and resource reclaiming should not
introduce uncertainty into the system. In particular they should
not cause already guaranteed tasks to miss their deadlines.
Since every task might complete early (i.e., execute less than
its worst case computation time), every task might incur
resource reclaiming overhead. Hence, the resource reclaiming
cost must be low (i.e., inexpensive) so that it is insignificant
compared to the computation time of a task. Moreover, the
entire dispatching cost, which includes the resource reclaiming
cost, should be included in the worst case computation time of
a task. Consequently, the overheads of a resource reclaiming
algorithm must be bounded so that its maximum run time
cost does not vary. One straightforward approach to resource
reclaiming when a task finishes early is to reschedule the
entire set of tasks that is remained in the feasible schedule.
In practice, this will not be beneficial if the rescheduling cost
exceeds the time reclaimed. Further, most scheduling algo-
rithms have time complexities that depend on the number of
tasks to be scheduled, i.e., use of these algorithms for resource
reclaiming would result in unbounded overhead costs. Thus
a resource reclaiming algorithm which employs rescheduling
does not meet the requirements of predictability. One of the
challenging issues in designing resource reclaiming algorithms
is to reclaim resources with a bounded complexity and low
overhead, in particular, a complexity that is not a function of
the number of tasks in the schedule.

In this paper, we present two resource reclaiming algo-
rithms, Basic Reclaiming and Reclaiming with Early Start.
These two algorithms employ strategies that are a form of
on-line local optimization on a feasible multiprocessor sched-
ule. Both of these algorithms have bounded time complexity

'Due to space limitation, we do not present the analysis of the run time
anomalies for our multiprocessor model. See [12] for a complete description
and analysis of the anomalies.

although Reclaiming with Early Start is more expensive to
run than Basic Reclaiming. We prove the correctness of these
algorithms. To understand the performance impact of these
algorithms, we have done extensive simulation studies of the
resource reclaiming algorithms for a five processor multipro-
cessor system. We tested a wide range of task parameters, in-
cluding different worst case computation times and actual com-
putation times of tasks, task laxities, and task resource usage
probabilities, Through simulation results, we demonstrate that

Low complexity run time local optimization can be very
effective in improving the system performance in a dy-
namic real-time system.
Using complete rescheduling as a resource reclaiming
scheme is not a practical choice.
It only pays to do resource reclaiming if one can ensure
that the overhead cost of the resource reclaiming algo-
rithm is below 10% of tasks' worst case computation
times.
Resource reclaiming can compensate for the performance
loss due to the inaccuracy of the estimation of the worst
case computation times of real-time tasks.

Further, to demonstrate the applicability of the algorithms
and to validate the simulation, we have implemented the
resource reclaiming algorithms in the Spring Kernel [15]-a
real-time kernel on a NUMA multiprocessor (Nonuniform
Memory Access multiprocessor) system with shared resources.
In such a multiprocessor system, each processor has local
memory for task code and private resources. Tasks might
also require other nonlocal resources, such as shared data
structures, and communication ports. In this paper the
important issues in implementing the resource reclaiming
algorithms as part of this multiprocessor kernel and the
interplay between the scheduler and the resource reclaiming
algorithms are also presented.

The remainder of the paper is organized as follows. Section
I1 defines our task model, and introduces the terminology used
throughout the paper. In Section 111 we study the resource
reclaiming problem, and present our resource reclaiming
algorithms. The properties of the algorithms, including the
correctness proof, the applicability of the resource reclaiming
algorithms to tasks and systems with other characteristics, are
also discussed in this section. In Section IV, we apply the
resource reclaiming algorithms to dynamic real-time systems
with independent tasks, describe the implementation issues on
a multiprocessor, and present experimental results. In Section
V we summarize the paper.

11. DEFINITIONS AND ASSUMPTIONS

In this section we first define the types of real-time tasks
and resources considered in this paper. Then we define some
of the terminology used. n is the number of tasks {TI , T2, . . .
Tn}, m the number of processors {PI, P2, . . . Pm}, and s the
number of resources { T I , 7-2, . . . rS}.

A. Task Model

Tasks are independent, well-defined schedulable entities. A
task is not preemptable. Resources that can be required by

384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

a task include variables, data structures, memory segments,
and communication buffers. Resources can either be used in
exclusive mode or shared mode [16]. Two tasks conflict on a
resource if both of them need the same resource in exclusive
mode, or one of them needs a resource in exclusive mode
while the other needs the same resource in shared mode. Two
tasks with resource conflict(s) cannot be scheduled in parallel.
Each task T, has the following attributes:

c,: the worst case computation time of T,. At scheduling
time, this value is known to the scheduling algorithm.
But at execution time, a task may have an actual
computation time c: 5 c,.

d,: the deadline of T,;
{R:}: a resource requirement vector for 1 5 j 5 s,

denoting the set of resource requirements of T,;
each element of the vector indicates exclusive-use,
shared-use, or no-use.

B. Terminology

The following definitions will be used in the remainder of
the paper.

Definition 1: A feasible schedule S is a task schedule in
which tasks’ worst case computation time and resource con-
straints are all guaranteed to be met. In this paper, we consider
nonpreemptive feasible schedules in which a scheduled start
time (s t i) and scheduled finish time (f t i) are assigned to each
task Ti in the schedule such that Vi , f t i 5 di.

Definition 2: Given a feasible schedule S , apost-run sched-
ule S’ is a layout of the tasks in the same order as they are
executed at run time with respect to their actual computation
times c:, where Vi , c: 5 ci. Associated with each task Ti in
a post-run schedule S’ is a start time st: and a finish time
f t l . st: and ft: are the actual times at which Ti starts and
completes execution, respectively, and they may be different
from s t i and f t i .

Definition 3: Given a post-run schedule SI, a task T; starts
on-time if st: 5 st i , that is, if the task Ti starts execution by
or before its scheduled start time.

Definition 4: A post-run schedule S’ is correct if Vi 1 5
i 5 n, f t : 5 di.

Lemma 1: If Vi 1 5 i 5 n, T; starts on-time in a post-run
schedule SI, then S’ is correct.

Proof: Given nonpreemptive task executions, by Defini-
tion 3, if Ti starts on time, i.e., st: 5 s t ; , then f t : 5 f t i 5 di.

U
This lemma forms the basis for the correctness of our re-

claiming algorithms. Note that the lemma gives us a sufficient
condition for task starting times. Our reclaiming algorithms
will be designed to start tasks on-time. As we shall see, this
strategy results in reclaiming algorithms that have bounded
reclaiming overhead.

We illustrate the terminology introduced above through the
following example.

Example: Table I provides the attributes of a set of seven
tasks. Each task requires a processor (indicated by the proces-
sor id, pid), and some need an additional resource T I . Fig. 1
shows a two processor feasible schedule S for this set of tasks.

So the resulting post-run schedule S’ is correct.

TABLE I
TASK PARAMETERS FOR EXAMPLE 1

Task spid c, c’ d , r1 st7 f t ,

Ti 2 225 125 225 0 225
T2 2 175 100 400 shared 225 400
T3 1 175 150 175 0 175
T4 1 25 25 200 exclusitie 175 200

200 350 Ts 1 150 75 350

TG 2 100 100 500 400 500
T7 1 150 125 500 shared 350 500

TABLE 11
START TIMES AND FINISH TIMES PRODUCED BY NO RESOURCE RECLAIMING

Tasks TI TZ T3 T4 T5 T6 T7
5t: 0 225 0 175 200 400 350

f t : 125 325 150 200 275 500 475

TABLE I11
START TIMES AND FINISH TIMES PRODUCED

BY THE WORK-CONSERVING ALGORITHM

st : 0 125 0 225 250 225 325

ft’. 125 225 150 250 325 325 450

The scheduled start times st ; and scheduled finish times f t i are
given in Table I. Table I1 and Fig. 2 show one of the possible
post-run schedules S’ and the corresponding start times st:
and finish times f t l of the tasks. All the tasks are on-time in
S’. Hence S’ is correct. On the other hand, Table 111 and Fig.
3 demonstrate one of the possible incorrect post-run schedules
caused by using a work-conserving algorithm. In this post-run
schedule, T2 starts execution at time 125 because, as soon as
TI completes execution, both the resource and the processor
that T2 requires are available. This work-conserving action
causes task T4 to eventually miss its deadline. Thus a correct
resource reclaiming algorithm must be able to guarantee that
this kind of run time anomaly does not occur in a post-run
schedule.

111. RESOURCE RECLAIMING ALGORITHMS
We first discuss the resource reclaiming problem with

respect to its time complexity. Then we present our two
resource reclaiming algorithms, 1) Basic Reclaiming and 2)
Reclaiming with Early Start.

A. Multiprocessor Resource Reclaiming

Since we are working in a dynamic real-time environment,
efficiency and predictability are of major concern for the on-
line resource reclaiming algorithms. There are two extreme
cases that provide the lower and upper bounds on the cost in
terms of time.

Extreme Case 1: Dispatching tasks strictly according to their
scheduled start times (s t) . This implies no resource reclaiming
and, obviously, the cost of resource reclaiming is zero.

Extreme Case 2: Total rescheduling of the rest of the tasks in
the schedule whenever a task executes less than its worst case

SHEN et al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 385

P. I T., T. I T, I

Fig. 1 . A feasible schedule S according to tasks' worst case computation times.

Fig. 2. A post-run schedule S' when tasks execute only up to their actual computation times and no resource reclaiming is done.

**
D

Fig. 3. A post-run schedule S' produced by a work-conserving algorithm.

computation time. Suppose the cost of a particular scheduling
algorithm is f (n) for scheduling n tasks. Then, the cost of
total rescheduling would be O(f (n)) , assuming no new task
arrivals. Note that total rescheduling can be used only if the
cost of this rescheduling is less than the time left unused by
a task.

Note that because the resource constrained multiprocessor
scheduling problem is NP-complete in the nonpreemptive case
[3] and only has high degree polynomial linear programming
solutions in the preemptive case [l], any practical schedul-
ing algorithm used in dynamic real-time systems must be
approximate or heuristic. This implies that it is not always
the case that the same scheduling algorithm will definitely
find a feasible schedule when a task is removed from the
original set of tasks when the task finishes execution. Thus,
even though extreme case 2 provides us with an upper bound
on the time complexity of the resource reclaiming problem,
it does not represent the optimal solution in terms of be-
ing able to find feasible schedules whenever they exist. It
does provide an indication of the best a system can do in
reordering tasks according to available resources. Clearly,
a useful resource reclaiming algorithm should have a com-
plexity less than the total rescheduling extreme, while being
just as effective. We distinguish between two classes of
resource reclaiming algorithms. One is resource reclaiming
with passing, and the other is resource reclaiming without
passing.

Definition 5: A task T, passes task T3 if stl < st:, but
f t J < st,. Thus passing occurs when a task T, starts execution
before other task(s) that are scheduled to finish execution
before T, was originally scheduled to start.

If T, is a task in a feasible schedule, then we can divide
the rest of the tasks in the schedule into three disjoint subsets
with respect to T, defined as follows:

Definition 6:

T,, = {T, : T3 $2 T,, and T, 61 T,,}.

Thus, T,, is the set of tasks that are scheduled to finish before
T, starts. T,, is the set of tasks that are scheduled afrer T,
finishes. T,, is the set of tasks whose scheduled execution
times overlap with the execution time of T,. For example, in

Given a feasible schedule S , if we assume tasks never
execute longer than their worst case computation times, and
there are no interruptions or arbitrary idle times inserted
during the execution of the tasks in S, then we have the
following lemma. This lemma in essence tells us when run-
time anomalies can occur, and will be used in proving the
correctness of our resource reclaiming algorithms in the next
section.

Lemma 2: Given a feasible real-time multiprocessor sched-
ule S , if 3T,, such that task T, does not start on time in a
post-run schedule, then passing must have occurred.

Proof: Since T, does not start on time, st: > st,. Assume
the contradiction, i.e., assume no passing occurred. Then the
tasks in T,, must have been dispatched before T, started
and the tasks in T, , must have been dispatched after T,
finished execution. By definition of a feasible schedule, the
tasks in T N 2 have no resource conflicts with T,, therefore, no
matter what order these task were dispatched with respect to
the dispatching time of T,, they would not have delayed the
dispatching of T,. This contradicts the premise that T, did not
start on time. 0

Fig. 1, T<5 = (7'3, T4), T>5 = {T6, T7}, and TN5 = { T I , T z } .

386 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

A resource reclaiming algorithm that allows passing will
inevitably incur higher complexity in terms of time than
another that does not allow passing. This is because passing
implies altering the ordering of tasks imposed by the feasible
schedule, thus is similar to rescheduling. To determine which
task in the remaining schedule can utilize an idle period
involves searching (since the scheduling problem is in fact a
search problem [16]). Any searching will have a complexity of
at least O(1og n). Since we are interested in designing resource
reclaiming algorithms with bounded cost that can be used for
dynamic real-time systems, we will concentrate on resource
reclaiming algorithms without passing.

B. Algorithms for Multiprocessor Resource Reclaiming
In this section, we present our two multiprocessor resource

reclaiming algorithms, the Basic Reclaiming algorithm and
the Reclaiming with Early Start algorithm. Before the details
of the algorithms are presented, we would like to motivate
the ideas behind the algorithms. Let us reexamine the correct
post-run schedule portrayed in Fig. 2. Actually, this post-run
schedule is a result of no run time resource reclaiming. Notice
that between time 150 to 175 all the processors are idle.
Clearly, every task in the remaining feasible schedule, i.e.,
tasks TzlT4,T5, T6, and T7, could have been started at least
25 time units earlier than their scheduled start times without
in any way jeopardizing the meeting of their deadlines. This
is in essence what our Basic Reclaiming algorithm does as
illustrated in Fig. 9. However, with a more careful inspection
of Figs. 1 and 9, one can see that we can do even better
in utilizing the idle time left in the post-run schedule of
Fig. 9. For example, T2 could have started even earlier than
in this post-run schedule. In particular, it can be started at
time 175 because T2 E TZ5 (see Definition 6). This can be
accomplished if we can in some way represent and utilize
the information given in Definition 6. Our second resource
reclaiming algorithm, Reclaiming with Early Start, does this
and produces the post-run schedule shown in Fig. 11.

Thus the two resource reclaiming algorithms are based on
the idea that a feasible multiprocessor schedule provides task
ordering information that is suficient to guarantee the timing
and resource requirements of tasks in the schedule. If two
tasks T, and T, are such that TJ E TNz (i.e., T, does not
have resource conflict with T, as defined in Definition 6) in
a schedule, then we can conclude that no matter which one
of them will be dispatched first at run time, they will never
jeopardize each other’s deadlines. On the other hand, if T, E
T,, or T, E T,,, we cannot make the same conclusion without
reexamining timing and resource constraints or without total
rescheduling. Assume each task T, is assigned a scheduled
start time st, and a scheduled finish time f t z in the given
feasible schedule, our resource reclaiming algorithms utilize
these two task attributes to infer the information in Definition
6 at run time, i.e., to identify tasks in T,f where Tf is
such that stf 5 st, Vi, and to reclaim resources using
these tasks. Thus our resource reclaiming algorithms perform
local optimization. By doing so, we do not have to explicitly
examine the availability of each of the resources needed by

a task in order to dispatch a task when reclaiming occurs.
This keeps the complexity of the algorithms independent
of the number of tasks in the schedule and the number of
resources in the system-a desirable property of any algorithm
that has to be used in dynamic real-time systems at run
time.

The following definitions are needed to describe our re-
source reclaiming algorithms.

Definition 7: Given a feasible schedule S , a projection list
PL is an ordered list of the tasks in the feasible schedule,
arranged in nondecreasing order of st,. If st, = st, for some
tasks T, and T,, we place the task with the smaller processor
id in the P L first. Thus P L imposes a total ordering on the
guaranteed tasks.

Definition 8: Given a projection list PL, a processor pro-
jection list PPL, is an ordered list of all the tasks scheduled
on processor Pq in the PL, also arranged in nondecreasing
order of stz , for 1 5 i 5 n and 1 5 q 5 m.

Therefore, for the feasible schedule given in Fig. 1, the
projection list of S is P L = {T3,T1,T4,T5,TzlT7,T6}. The
processor projection lists are: PPLl = (T3, T4, T5, T7}, and
PPL2 = {Ti, T2, Ts}.

In the following, we assume the existence of 1) a feasible
schedule for n tasks {TI, Tz, . . . , Tn}, which have been guar-
anteed with respect to their timing and resource constraints
(e.g., using the algorithm presented in [lo]), 2) the correspond-
ing projection list P L and m processor projection lists PPLl
. . . PPL,, and 3) a scheduled start time st,, and scheduled
finish time f t z for each task entry T, in the feasible schedule.
We also assume that we can associate a constant cost to access
the first task in the P L and the first task in each of PPL,
(These assumptions are very practical and easily achievable.)

The resource reclaiming algorithms are presented in pseudo
code in Figs. 4, 5, 6, and 7. Fig. 4 gives the outline of
the resource reclaiming algorithms. Recall that resource re-
claiming occurs when a task completes, say on processor Pq.
There are two steps involved in resource reclaiming. In the
first step, the length of the idle time resulting from the early
completion of tasks is determined. Details of this step are
the same for both the Basic Reclaiming Algorithm and the
Reclaiming with Early Start Algorithm. In the second step,
the next task in PPL,, VT such that P, is idle, is examined to
decide whether it can be immediately dispatched. Figs. 6 and
7 present Step2 for each of these algorithms, respectively. In
the following, we describe the resource reclaiming algorithms
in detail.

Stepl: (see Fig, 5) Resource reclaiming occurs when a
task completes execution and another task is to be dis-
patched. A task scheduled on processor q is not removed
from the P L and PPL, until it finishes execution. This
restriction is important to ensure a consistent view of
the amount of time reclaimable. Upon completion of a
task, Stepl tries to identify idle periods on all processors
and resources by computing a function reclaimd =
s t f - currmt-time (lines 6 to 8 in Stepl); where s t f
is the scheduled start time of the current first task in the
PL. The computation complexity of this function is O(1).
Since the PL imposes a total ordering on the guaranteed

SHEN et al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 387

tasks, s t f must be the minimum scheduled start time
among all tasks in the schedule, including the one(s) still
in execution. Any positive value of reclaim-6 indicates
the length of the idle period resulting 'from tasks finishing
early. Since a task is removed from the schedule only
upon its completion (line 1 in Fig. 5), temp-reclaim-6
could have a negative value (if the first task in the P L
is still in execution) and, in this case, reclaim4 retains
its original value. For example, let us examine Fig. 9. At
time 125 when task TI completes execution, the current
first task in the P L is T3 which is still in execution, and
so tempreclaim-6 = 0 - 125 = -125 since st3 = 0
(refer to Table I for scheduled start times and scheduled
finish times). On the other hand, at time 150 when T3
finishes execution, T4 becomes the first task in the PL,
and so temp-reclaimd = 175 - 150 = 25.
Step2.BASIC: (see Fig. 6) The idea behind the Basic
Reclaiming algorithm is very simple. When a processor
completes a task, it checks to see if all the processors
are idle. If so, the entire schedule can be shifted forward.
Now let us be more precise and discuss the pseudo code
for the algorithm. We immediately start the execution of
the first task T,, on processor P, only if the task is the
current first task in the P L (i.e., it is the next task in the
total order of tasks) or if it has the same st (scheduled
start time) as the current first task (lines 3 to 4 in Fig.
6). Otherwise we compute a function ast,, for T,, to
decide the actual start time (versus the scheduled start
time given in the schedule) for it, taking into consideration
the idle periods that have been accumulated up to now.
This function is ast,, = st,, - reclaim-6, where st,, is
the original scheduled start time of task T,, . This function
is also O(1). Once this function is computed, processor r
will pend until 1) either the calculated ast,, has arrived,
or 2) some other task finishes early and reclaimb is
incremented. In the latter case, Step2.BASIC will be
invoked again (see Fig. 4).
Step2. EAIUYSTART: (see Fig. 7) Notice that the Basic
Reclaiming algorithm will start a task early by an amount
of time equal to reclaimd which is the length of time
that all the processors can reclaim. The Reclaiming with
Early Start algorithm dispenses with this requirement. It
allows a task T,,, the first task in PPL,, to start as
long as the first task T,, in each of the other PPL,
does not conflict over any resources with T,, and no
passing will occur. More precisely, T,, can start if for
1 I q 5 m and q # I-, T,, is either in TNTf or in T>,,.
Now let us define that a task T,, is being early started
if st;, < st,, - reclaimb. In Reclaiming with Early
Start, we first compute (lines 8 to 14) a Boolean function
canstart-early = st,, < ft , , , Vq such that q # r and
1 5 q 5 m, where st,, is the scheduled start time of
the first task on processor r and f t , , is the scheduled
finish time of the first task on processor q. This function
identifies parallelism between the first task on processor
r and the first tasks on all other processors by checking
to see whether the first tasks on all other processors are
in TNTf (see Definition 6). That is, for any two tasks T,,

1' m - the number of processors */
/* reclaimd - the amount of time that hw been nclaimed. *I
/ * reclaimd is set to zero initially. * /
/* Tq, - the newly completed task in P P L , for some processor q . */
Algorithm Resource Reclaiming (algorithmshoice)

Whenever a task T,, completes execution on a processor q , do
t

originalreclaimd = reclaimd;
Stepl(T,,, reclaimd, P L , PPL,);
switch (algorithmrhoice)

case BASICRECLAIMING:
if reclaimd > original_reclaimd

then

for all r such that processor r is idle do
t

I
StepZ.BASIC(r, reclaimd, P L , PPL1, ... , PPL,);

case EARLY-START:
for d r such that processor r is idle do

StepZ.EARLYSTART(r, reclaimd, P L , PPL1, ... , PPL,);
I

end Algorithm Resource Reclaiming

Fig. 4.

Stepl (T,,, reclaimd, P L , PPL,);

/* Task Tqi just completed execution on processor q.*/
1 . REMOVE(T,,, P L , PPL,);
2.
3.
4. then
5 t
6.
7. if tempreclaimd > 0
8. then reclaimd +- tempreclaimd;
9. end if
10.]
11. end if

end Stepl

TI t the fiat task in the current P L ;
if (current-time < (ft,. - reclaimd))

temp-reclaim4 = atf - (currentfime);

Fig. 5.

Step2.BASIC (r, reclaimd, P L , PPL1, ... , PPl,,);

1.
2.
3. if ('I,, == 'I,)

4. then startexecution(T,,);
5. else

7.

Tj t the fist task in the current P L ;
T,, t the fist task in the current PPL,;

or (at., == dtf)

6. t

8. pend(T., ,a&,);
9. I

ast,, = at,, - reclaimd;

10. end if

end Step2.BASIC

Fig. 6.

and T,, , if st,, < ft,, , then Tt, E Tcqf. The complexity
of this function is O (m) . The task will be dispatched if
the value of the Boolean function is true. Only when the
value of the function can-start-early is false, we will
compute the ast,, for task TTr as in Step2.BASIC.

For both algorithms, whenever a positive value of reclaim-6
is obtained in Stepl, Step2 must be executed for all currently
idle processors. Thus the complexity of the basic version is:
0 (1) + m * 0 (1) = O (m) , while Reclaiming with Early Start
has a complexity of 0(1) + m * O (m) = O (m 2) .

388 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

Step2.EARLYSTART (r, reclaimd; P L , P P L I ,

1 .
2.
3. can_start.early - true;
4. if st,, # st,
5. then
6 . {
7. B - 0;
9. {
10. q - q + 1 ;
11.
12. then can_start-early + false;
13. end if

15. }
16. endif
17. if can-start.earlg
18. then startexecution(T,,);
19. else

21.
22. pend(T,, +at,,);
23. }
24. end if

end Step2.EARLYSTART

T, t the first task in the current P L ;
T., - the f i s t task in the current P P L , ;

8. while (candart.early and q < m) do

if (e # 7) and (at., > ft,,)

14. l

20. {
u t . , = at., - reclaimd;

Fig. 7.

time 0 125 150 175 250 300 425 450

r e c l a i m d 0 0 25 25 25 50 50 50

Fig. 8. The values of reclaim-8 at each task completion when the Basic
Reclaiming Algorithm is used.

C. Properties of the Resource Reclaiming Algorithms

The two resource reclaiming algorithms presented above
guarantee that run time anomalies as shown at the end of
Section I1 will not occur. In this section we shall illustrate the
two resource reclaiming algorithms through an example and
prove the correctness of the algorithms in this section. We also
discuss some interesting aspects of the algorithms.

I) Discussion through an Example: Assume we have the
same feasible schedule in Fig. 1 for the set of tasks defined
in Table I. The post-run schedule produced by the Basic
Reclaiming Algorithm is shown in Fig. 9 and the post-
run schedule produced by the Reclaiming with Early Start
Algorithm is shown in Fig. 11. We show the values of
reclaim-& at the time of each task completion in Figs. 8 and
10 for the two algorithms respectively.2 Fig. 2 is the post-run
schedule when no resource reclaiming is done. Thus from Figs.
2, 9, and 11, one can see the effects of resource reclaiming.

Note that once the new value of reclaim-S is determined
in Stepl, every task Ti in the rest of the schedule can in fact
be started reclaim-6 time units earlier than its st i , e.g., at
time 150 when T3 completes execution, T4 can start execution
(see Figs. 9 and 11). This is equivalent to a time translation of
reclaim-S units of time on the remaining feasible schedule,
i.e., the sti and f t i of every task Ti in the remaining
feasible schedule can be translated to sti - reclaim-S and
f ti - rec la imd. However, we do not explicitly carry out this
time translation in the remaining feasible schedule because we

'Note that although there is no task completion at time 300 in Fig. 11, we
include the value of reclaim-6 in Table 8 for comparison purposes.

will incur a time complexity of O (n) to modify the s t i and
f t i of each task, thus violating our boundedness premise.

From the description of the algorithms, it seems obvious
that Reclaiming with Early Start should be more effective than
Basic Reclaiming. However, there are two interesting aspects
of the Reclaiming with Early Start Algorithm that are not
easily seen.

First, Reclaiming with Early Start does not necessarily
accumulate a larger value of rec la imd in the short term.
For example, compare the values of reclaim-6 at time
300 in Figs. 8 and 10. The value of reclaim-S from using
Basic Reclaiming is larger than from using Reclaiming
with Early Start at time 300, even though at time 375,
the converse is true. This is because rec la imd reflects
the time reclaimed on all processors and resources. In
general Reclaiming with Early Start keeps the processors
and resources busier than Basic Reclaiming does. So
when using Reclaiming with Early Start, temp-reclaim-S
might be found to be positive less frequently in Stepl.
But in the long run, such as by time 375, Reclaiming with
Early Start can have a large value of reclaim-6.
Second, since we are dealing with dynamic real-time sys-
tems, tasks can arrive stochastically. Whether a task can
be feasibly scheduled depends very much on the particular
time the task arrives at the system, i.e., the current system
state including the number of tasks and their worst case
requirements, and which tasks are already in execution.
Therefore, even though Reclaiming with Early Start can
eventually have a larger value of rec la imd , it does not
outperform the Basic Reclaiming algorithm with respect
to guaranteeing dynamic task arrivals at every task arrival
instance. This is because starting the execution of a task as
early as possible is not necessarily always the best choice
in a system with nonpreemptive scheduling and dynamic
arrivals. For example, assume we have the same feasible
schedule as in Fig. 1 and, for the ease of explanation,
let us assume scheduling occurs instantaneously. If a task
Tg arrives at time 300 with cg = ck = 50, d g = 375,
and Ri = exclusive (i.e., having a resource conflict with
T7), a system using the Basic Reclaiming algorithm will
be able to feasibly schedule T8 as shown in Fig. 12, while
a system using the Reclaiming with Early Start will not
be able to schedule Ts (since T6 and T7 are already in
execution). Thus we need to examine the effectiveness of
Reclaiming with Early Start and Basic Reclaiming with
respect to dynamic task arrivals through experimental
studies.

2) Correctness: In the following, we shall prove that the
two resource reclaiming algorithms presented in this section
are correct, that is, they will not cause the type of run time
anomalies discussed in Section 11.

Theorem I : Given a feasible multiprocessor schedule S
with resource and processor constraints, the Basice Reclaiming
Algorithm will produce a correct post-run schedule.

Proof: we only have to prove that all tasks start on-time
in the post-run schedule produced by the Basic Reclaiming
Algorithm.

SHEN et al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 389

Fig. 9. The post-run schedule S‘ produced by the Basic Reclaiming Algorithm.

time n 12s isn 17s 2x1 27s 300 37s
reclaim-6 0 0 25 25 25 25 25 125

Fig. 10. The values of reclaim-(, at each task completion when early sturt
is allowed.

By Definition 3, if tasks are dispatched according to their st
in the feasible schedule, they all start on-time. We only have
to observe that the value of reclaim-6 in Step1 reflects the
idle time units on all resources and processors. Therefore, for
reclaim6 > 0, we can have a time translation of reclaimb
units of time (i.e., time moved forward) on the portion of
the feasible schedule remaining to be dispatched. Since the
feasible schedule remains feasible under time translation, and
since Step2.BASIC dispatches every task at st: = st; -
reclaimb, it follows that the tasks in the post-run schedule
produced by the Basic Reclaiming Algorithm must have been
started on-time. 0

Theorem 2: Given a feasible multiprocessor schedule S
with resource and processor constraints, the post-run scheduled
produced by the Reclaiming with Early Start Algorithm is
correct.

Proofi We shall prove that passing does not occur when
Reclaiming with Early Start is used. Then by Lemma 2, we
know that all tasks start on time.

We prove this by contradiction. Consider a task T, to be
dispatched in Step2.EARLYSTART. Suppose 3 T; such that
Tj were dispatched at some time st; < sti while st, > f t i .
This implies that Tj passed T;. But this is impossible; because
if stj > f t ; , can-start-early would have become false in line
12 of StepZEARLYSTART, and hence Tj would not have

3) Applicability of the Resource Reclaiming Algorithms:
Here we discuss the applicability of the resource reclaiming
algorithms to task and multiprocessor systems with various
characteristics.

Shared Memory Versus Local Memory Multiprocessor Mod-
els: There are two types of multiprocessor scheduling models.
In one type, a global shared memory is assumed so that each
task can be executed on any of the processors. In the other
type, each processor possesses its own local memory so that a
task is allocated to one of the processors, and thus can only be
executed on a particular processor at run time. The former can
only model identical multiprocessor systems, while the latter
can model both identical and heterogeneous multiprocessors.
In either type of multiprocessor system, tasks executing on
different processors can share the use of resources, such as
shared data structures. Thus the scheduling algorithm used in
either model must consider not only the timing constraints of
tasks. but also the resource constraints. Both of our resource

been dispatched. 0

reclaiming algorithms preserve the processor assignment a
multiprocessor scheduler makes in constructing a feasible
schedule; therefore they are applicable for both types of
multiprocessor scheduling models.

Precedence Contraints among Tasks: In this paper, we have
assumed that tasks are independent. There are many applica-
tions in which tasks are related by precedence constraints.
Precedence constraints specify the partial ordering among
tasks such that a task can start execution only when all of its
predecessors have completed execution. Since neither of the
resource reclaiming algorithms proposed in this paper allows
passing (as defined in Section 111), they are both directly
applicable for task systems with precedence constraints. If
tasks have precedence constraints in a feasible schedule,
the resource reclaiming algorithms will never violate these
precedence constraints.

Tasks with Explicit Ready Times: Some systems may have
tasks that cannot be started until after some specific time,
called a ready time. For example, periodic tasks cannot be
started until the beginning of their periods. In such systems, a
task with a ready time may have been placed in the feasible
schedule, but it cannot be moved forward to pass its ready
time in the schedule. In this case, our resource reclaiming
algorithms can be modified to take into consideration a task’s
ready time. In Step 2 of each of the algorithms, we need to
consider the ready time of a task when we try to start a task.
Specifically, first at line 4 in Fig. 6 and line 18 in Fig. 7, the
following condition should be added:

0 if current-time 2 ready-time(T,,).
Second, at line 7 in Fig. 6 and line 21 in Fig. 7 we need

to modify the calculation of the actual start time of a task to
the following:

0 ast,, = maz(st,, - reclaim-6, ready-time(T,,)).
Other Types of Tasks: In addition to dynamic hard real-time

tasks, a system may have 1) monotone tasks [14],2) dual-copy
fault-tolerant tasks [2], and 3) non-real-time tasks. Real-time
systems with these types of tasks can all benefit from resource
reclaiming. Instead of using the reclaimed time reclaim-6 for
the tasks that have already been guaranteed in the feasible
schedule, a system can use it to 1) execute the optional part of
a monotone task, 2) increase the time assigned to the primary
copy of a dual-copy fault-tolerant task in a feasible schedule,
or 3) preemptively execute non-real-time background tasks.

4) Computation Time Comparison of Centralized Versus
Concurrent Implementation: Two different approaches can be
taken to implement the resource reclaiming algorithms on a
multiprocessor system - centralized and concurrent. In a cen-
tralized scheme, the algorithm can be implemented by a single
reclaiming daemon process. In a concurrent scheme, each
processor will do its own reclaiming and all the processors

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

Fig. 11. The post-run schedule S' produced by the Reclaiming with Early Start Algorithm.

Fig. 12. The post-run schedule S' produced by the Basic Reclaiming with the addition of TR.

in the multiprocessor system can be concurrently reclaiming
unused time as tasks complete execution. The parallelism
provided by a multiprocessor can be more effectively exploited
with a concurrent implementation. We demonstrate this point
in the following.

Table IV compares the computation time of the centralized
and the concurrent implementation in the worst case, i.e.,
when all m processors complete their respective current task
executions to perform resource reclamation at the same time,
and all shared variables are accessed simultaneously by all
processors. Let Cstepl be the computation time of Stepl,
C B ~ ~ ~ ~ the computation time of StepZ.BASIC, and C E ~ ~ ~ ~ the
computation time of Step2.EARLYSTART. In a concurrent
implementation, lines 7-8 in Stepl must be within a critical
section to maintain the consistency of the value of reclaim-S.
So let us define E to be the computation time plus the
lock-request and lock-release time of lines 7-8 in Stepl
(The lock-request and lock-release time using the predictable
multiprocessor synchronization mechanisms developed in [9]
is 0.05 ms in the worst case when the communication bus
shared by four processors is fully saturated.) Moreover, in
a concurrent implementation the first task in PL and the
first tasks in all the PPL's will be accessed by all the
processors, leading to the necessity of using shared variables
in the implementation. Let 7- = V, - V,,, where V, is
the cost of accessing one shared variable, and V,, the cost
of accessing one nonshared variable. Thus 7- represents the
difference in terms of cost of accessing a variable between
the concurrent and centralized implementation schemes. In
comparing the computation time of a concurrent implemen-
tation versus a centralized (sequential) implementation, we
assume the worst case execution interleaving for the con-
current approach. The computation times in the centralized
column are simply the sequential execution costs. Since, in
the concurrent case, the worst case interleaving is assumed,
the expression Cst,,, + (m - 1) ~ takes into account the costs
of m processors sequentially accessing the critical section. The
expressions C B ~ ~ ~ ~ + 57- and C E ~ ~ ~ ~ + (m + 3). model the
5 and m + 3 shared variables accessed in Step2.BASIC and
Step2.EARLYSTART7 respectively.

In Table V the advantage of the concurrent scheme is
exemplified by an implementation of Step2.BASIC on a

TABLE IV

VERSUS CONCURRENT IMPLEMENTATION
COMPUTATION TIME COMPARISON FOR CENTRALIZED

Centralized Concurrent

Stepl m * Cstrp1 C S t e p l + (m -

Step2.EARLYSTART rn * C E ~ ~ , ~ C E d y + (m + 3)'
Step2.BASIC m * CBaszc CBasic 5'

TABLE V
EXECUTION TIMES (ps) OF Step2.BASIC ON A

VMEBUS BASED MOTOROLA 68020 MULTIPROCESSOR

1 2 3 4 5
number of
processors
I;>* 1
CBaszc 20.5

2.75 3.92 5.33 6.71
centralized 41 61.5 82 102.5
concurrent 29.25 35.1 42.15 49.05

VMEbus based Motorola 68020 multiprocessor. V,, is defined
as the access time of on-board memory. C B ~ , ~ ~ is 20.5 ps
excluding the startexecutzon ~pera t ion .~ The values of V,
were obtained from the worst case timings when two to five
processors contending for the same remote memory location.
The worst case execution times of Step2.BASIC on two to five
processors for the centralized and concurrent implementation
were derived from the formulas given in Table IV. It is evident
from Table V that, for a reasonable number of processors in
a shared bus multiprocessor system, the concurrent scheme is
more efficient.

Iv . A N APPLICATION OF THE
RESOURCE RECLAIMING ALGORITHMS

In many real-time applications, the system is required to
execute tasks in response to external events and signals. To im-
prove the guarantee ratio (the number of tasks guaranteedhhe
number of tasks arrived) of tasks, the resource reclaiming
algorithms presented in the last section can be used. In this
section, we shall be concerned with the application of the

3The startrsecution has the same computation time cost for both
centralized and concurrent schemes.

SHEN er al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 391

resource reclaiming algorithms to such a real-time operating
system kernel [15] and demonstrate the effectiveness of the
algorithms through simulation results.

A. Concurrent Implementation of Resource Reclaiming
Algorithms in a Multiprocessor System

Both resource reclaiming algorithms have been implemented
in the Spring Kernel [15], adopting the concurrent implemen-
t a t i ~ n . ~ In this section, we discuss the important issues in
implementing the resource reclaiming algorithms in a NUMA
multiprocessor (Nonuniform Memory Access multiprocessor)
system with shared resources, and the interplay between the
scheduler and the resource reclaiming algorithms. In a NUMA
multiprocessor system, each processor has local memory for
task code and private resources. Tasks might also require
other nonlocal resources, such as shared data structures, and
communication ports, i.e., we are dealing with real-time tasks
with resource constraints. Thus there exists an integrated
schedule for all the processors on a multiprocessor. Since
predictability and consistency are two important issues and
are difficult to maintain in a dynamic concurrent system, in
the following discussion, we concentrate on how to achieve
boundedness in terms of overhead cost, and how to achieve
data consistency in this concurrent implementation.

Parallel Execution of the Scheduler and Guaranteed Tasks:
In order to maximize the potential parallelism provided by
multiprocessor systems, the Spring Kernel supports the con-
current execution of application tasks and the scheduling
algorithm. This is accomplished by using one processor on
a multiprocessor node as the system processor to offload task
scheduling and other operating system overhead, while using
the remaining processors to execute guaranteed application
tasks. The scheduler on the system processor is responsible
for dynamically producing a feasible schedule for the multi-
processor as tasks arrive. There is a dispatcherprocess on each
application processor. Effectively, whenever a task completes,
this dispatcher process executes Steps1 and Step2 of the
reclaiming algorithm. Thus, reclaiming occurs concurrently
on the application processors.

Fig. 13 illustrates the scheme we use to schedule dynamic
task arrivals with resource reclaiming. GUARANTEE uses
the heuristic scheduling algorithm proposed in [103, which
has a complexity of O (n) . To achieve concurrent execution
of application tasks and the scheduler while maintaining the
predictability of the feasible schedule-to start the execution
of tasks by their scheduled start times, at each task arrival,
a time line called the cut-off-line is calculated in the existing
feasible schedule based on the time cost of the scheduling
algorithm in use. In order to bound the cost of running the
scheduler, we set a value N as the maximum number of tasks
that the scheduler will schedule at a time. So the maximum
value of the cut-on-line is capped by a value current-time +
S C (N) , where S C (N) is the worst case computation time
of the scheduler to schedule N tasks. Any task T, with
s t , - rec la imd < cut-offlline in the schedule will not be

4The Spring kernel is being built on a shared bus multiprocessor consisting
of multiple VME based Motorola 68020 MVME136A boards.

Scheduler

Whenever a task T; arrives, do

Calculate the run time cost SC of the scheduling
algorithm based on the number of tasks in
the current PL plus the new task arrival;

cut-off-line = current3ime + SC;
I, 6 {Tjldj - reclaimd < cutaffl ine};
Calculate the earliest available time

of each resource and processor,
based on the resource and processor requirements,
and f t j of the tasks Tj in I,, and the value of reclaimd;

'-7 + {Tjldtj - reclaim4 > cut-offline};
GUARANTEE(I,, 2';);

t

)

Fig. 13. Scheduling dynamic real-time tasks with resource reclaiming.

considered in the rescheduling process. This ensures that the
scheduling algorithm can execute in parallel with application
tasks. The details of this concurrent implementation can be
found in [8].

Multiple Invocations of the Scheduler: When a new task
arrives, its worst case computation time, deadline, and resource
and processor requirements are assumed to be known. The
system will try to guarantee the new task arrival together
with all the tasks T,, in the original feasible schedule, for
which st , - reclaim-6 2 cut-offline. With the knowledge
of the value of reclaim-6, i.e., the amount of time that has
been reclaimed on all resources and processors, those tasks
T, with st , - reclaamd < cut-off-line will finish at least
reclaim-S time units earlier than their scheduled finish time
f t , . Thus, in calculating the earliest available time of resources
and processors in trying to schedule the new task arrival in
Fig. 13, the scheduler takes the current value of reclaim-6
into consideration.

If the new task arrival is guaranteed, the newly generated
feasible schedule S,,, must be appended to the original
feasible schedule at the cut-offdine. Since the scheduler's
cost SC is the scheduler's worst case computation time,
it is very likely that there are still tasks in the original
feasible schedule before the cut-offline at the time when the
scheduler finishes scheduling. Meanwhile, reclaim-6 will be
continuously updated by the resource reclaiming algorithm.
Let us call the value of reclaim-6 that has been updated
since the new scheduling instance occurred reclaim-delta'.
Thus for the tasks that are in the section of the feasible
schedule before the cut-off-line, the value of reclaim-6' is
valid. However, for the tasks that are in the section of the
feasible schedule produced after the cut-offdine, the rec la im4
portion of the value of reclaim-6' has already been taken into
consideration in calculating the tasks' scheduled start times.
Moreover, there can be more than one cut-offline in a feasible
schedule since more than one task can arrive, causing the
scheduler to be invoked multiple times during the execution of
a feasible schedule. We must develop a protocol to maintain
the correct view of the value of reclaamd between the tasks
that are before and that are after each of the cut-off-lines, i.e.,
between any two portions of the current feasible schedule that
have been constructed at two different scheduling instances.
Otherwise, inconsistent usage of the value of reclaim-6 may
result in incorrect post-run schedules.

392 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

TABLE VI
SIMULATION PARAMETERS

parameter value explanation
overhead-cost 4 The portion of the scheduler’s cost that is constant for each invocation of the scheduler
per-task-cost
Basic Reclaiming
Early Start
number of processors
number of resources
uicc-m in
uicc-max

1mcn

1 m a z

actual computation time

5
1
2
5
5

50
150

9

The portion of the scheduler’s cost dependent on the number of tasks in the schedule
The worst case cost of the Basic Reclaiming algorithm
The worst case cost of the Early Start algorithm
The number of processors used in the simulation
The number of resources used in the simulation
Tasks’ worst case computation times are uniformly
distributed between wccmin and wccmax.
The laxity of a task is calculated based on the worst case
computation time of the task, and it is uniformly distributed between I , , , to Z,,,
times the worst case computation time.

The probability that a task uses a resource in shared or exclusive mode if the task
requires that resource
A task’s actual computation time, uniformly distributed between 50% and 90% of its
worst case computation time

10

V The probability that a task requires any of the resources

0.5

(50%,90%)

LP, V The average load of processor i (as explained in this section)
The mean interarrival time of tasks on processor a , can be calculated for a given L,; 1

To handle this problem, we have designed a protocol. Due to
space limitations, we present only a simplified version of this
protocol in the following. See [13] for a complete description
and correctness analysis of this protocol.

Each task Ti in the feasible schedule has a rese t4 field.
The value of this field is zero for all tasks except for
the task Tf , which is the first task in the total ordering
P L for S,,,,, where S,,,, is the section of the feasible
schedule produced by the kth invocation of the scheduler.
reset-6(Tfk) is set to be equal to the value of reclaim-6
that has been assimilated by the kth invocation of the
scheduler.
As soon as Tfk is dispatched, reclaim-6 = reclaim4 -
reset-S(Tf,).

This protocol ensures the correct view of the value of
reclaim-S throughout a feasible schedule at any time. One
may be tempted to adopt a conceptually simpler protocol, one
that explicitly modifies the sti and f t i of all the tasks after
the cut-ofldine by the amount of reclaim-6 - reset-6(Tfk)
at the end of each scheduler’s invocation. The drawback to
this protocol is that its run time cost is O (n) and reclaim-6
must be locked while this protocol is in progress to avoid race
conditions between the scheduler and the dispatchers. This
means that the dispatchers may have to wait for an amount of
time that is O (n) , i.e., not bounded. So this is not acceptable.

B. Experimental Studies
To evaluate the performance of the resource reclaiming

algorithms and to study the tradeoff between system overhead
costs and run time savings due to resource reclamation, we
present experimental results in this section. Since it is difficult
to collect elaborate performance statistics without affecting
the true performance of the actual Spring Kernel, we have
implemented our resource reclaiming algorithms not only on

the Spring Kernel, but also on a software simulator which
simulates the multiprocessor Spring Kernel.

1) Simulation Method: In our simulations, the system over-
head costs are the worst case costs measured on the Spring
Kernel. The scheduler’s cost SC is calculated before each
invocation of the scheduler as follows: SC = overhead-cost
+ n * per-taskcost, where n is the number of tasks to be
scheduled for the current invocation of the scheduler. As
mentioned in the previous section, in order to bound the cost
of running the scheduler, we set a value N as the maximum
number of tasks that the scheduler will schedule at a time, i.e.,
n 5 N in calculating SC. In all the experiments, whenever
the resource reclaiming algorithms are used, the cost of the
algorithms are added onto a task’s worst case computation
time before the task is scheduled. Table VI lists the worst case
system costs and other simulation parameters respectively used
in our simulation.

A “v” in an entry in Table VI means that the simulation
parameter is a variable. The values listed for the various
parameters are the values used in all or most of the ex-
periments. If a value different from the one stated in Table
VI is used, it will be specified in presenting the results for
that experiment. We have tested two cases for wccmin and
wccmax. One is wcc-min = 50 and wcc-max = 150.
The other is wcc-mzn = 50 and wcc-max = 1000. These
two cases represent the two kinds of task systems in which
the worst case computation times of tasks have small/large
variance. We have found that in most cases, the performance of
the resource reclaiming algorithms is almost the same for both
cases of tasks’ worst case computation times. We also present
results for which we linearly increase the value of wcc-min,
thus causing the ratio of the cost of resource reclaiming to the
average worst case computation time among tasks to decrease.

The combination of the mean interarrival time 1 / X of tasks,
the value of Pus,, the number of resources S, and wccmin

SHEN et al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 393

TABLE VI1
SIMULATOR VALIDATION. NR = No RESOURCE RECLAIMING; BR = BASIC RECLAIMING; ES = EARLY START

Guarantee Performance
Ratios Gain parameters

test # tasks # resources NR BR ES BR-NR ES-NR
Spring Kernel 71.0 73.4 88.6 2.4 17.6

1 583 5 sim(avg. cost) 71.0 73.4 91.4 2.4 20.4

58.0 61.0 72.0 3.0 14.0 sim(worst

Spring Kernel 66.8 69.9 80.0 3.1 13.2
2 566 7 sim(avg. cost) 65.7 70.0 84.3 4.3 18.6

cost)

55.0 59.0 67.0 4.0. 12.0 sim(worst
cost)

and wccmax determines the average load of the system. In our
simulation, tasks arrive as a Poisson process. Every processor
has the same l / X i , for 1 5 i 5 m. We use the following
three formulas to measure the average processor load L,i, the
average resource load L,i, and the resource conflict probability
P, for two tasks.

+ (0.5 * (3)

E[WCC] is the expected value of the worst case computation
time of a task; thus it is either 100 or 525 for the two kinds
of worst case computation times in our simulations. m is
the number of processors and T is the number of tasks in
a schedule. The first two formulas are straightforward. Note
that the average resource load L,i goes up as Pus, increases
even if the expected worst case computation time E[wcc] and
the mean arrival rate X i stay the same. In the third formula,
P, is the probability that two tasks will conflict on any of
the given S resources (versus Pus, which is the probability
that a task will require a resource). Thus P, is a measure
of the resource conflicts in a task load. In order to simulate
task arrivals that have sufficient parallelism to be run on a
multiprocessor system, we must keep the value of P, fairly
low. A high value of P, would indicate the inherent resource
conflicts among many tasks. P, is calculated as 1 minus the
probability that the two tasks will not conflict on any of the
S resources. P, increases when the value of Pus, or the value
of S increases. So if we keep Pus, the same for all the tasks,
the more resources there are in a system, the more resource
conflicts tasks will have.

The performance metric we use is the guarantee ratio of an
algorithm with remect to dvnamic task arrivals. The guarantee
I

the number of tasks uaranteed."In all the ratio is defined as r o ta.s E arriye
simulation experimenk, eacTbJatafpoinkt ConsisPS of ten runs.

t e nu

Our requirement on the statistical data is to generate 95%
confidence intervals for the guarantee ratio whose width is less
than 5% of the point estimate. To evaluate the effectiveness
of the proposed resource reclaiming algorithms, we have
also implemented the following three schemes for comparison
purposes:

guarantee with actual computation time: This is an ideal
scheduling scenario. In this scheme, when a task arrives,
the scheduler omnisciently knows the actual, rather than
the worst case, computation time of the task. Therefore,
resource reclaiming is not necessary.
rescheduling: In the rescheduling scheme, whenever a
task executes less than its worst case computation time,
the scheduler is invoked to reschedule the tasks in the
existing schedule in the same manner as when a new
task arrives. The scheduler is invoked to do resource
reclaiming only if the difference between the worst case
computation time and the actual computation time of the
completed task is greater than the scheduler's cost.
no resource reclaiming: Here no resource reclaiming is
done. Tasks are dispatched according to their scheduled
start times. The case of no resource reclaiming provides
a lower bound on performance.

2) Simulator Validation: To verify the validity of the Spring
software simulator, we conducted empirical tests on the Spring
Kernel. Table VI1 shows the results of two task loads tested
with the number of task arrivals and resources listed in the
table. Each task load was tested on the actual Spring Kernel, as
well as on the simulator with respect to no resource reclaiming,
using the Basic Reclaiming algorithm, and using the Early
Start algorithm. Two types of system overhead costs (i.e., the
costs of the scheduler and the resource reclaiming algorithms)
were used for the simulator-the average and the worst case
costs, both being the measurements from the actual kernel.
As shown in Table VU, when the average cost is used, the
absolute guarantee ratios produced by the simulator are very
close to those of the Spring Kernel. And as expected, when
the worst case cost is used in the simulator, the absolute
guarantee ratios are lower than those of the Spring Kernel.
Since the objective of our simulation studies in the rest of
this section is to evaluate the effectiveness of the resource
reclaiming algorithms, it is important that the amount of
performance gain/loss obtained in using the simulator is a
good approximation of the actual kernel. Thus in the last two
columns in Table VII, the difference in the guarantee ratios
between the resource reclaiming algorithms and no resource
reclaiming is shown. It is clear from these two columns that
the performance gain of employing either of the resource
reclaiming algorithms in the simulation with the worst case

394 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

30 t
20 t lot
0-
0.1 0.2 0.3 0.4 0.5

~ca- usage probability P,,.

Fig. 14. Performance of basic reclaiming and reclaiming with early start.

costs matches closely to the performance gain obtained in the
actual kernel.

3) Simulation Results:
a) Performance Comparison of the Two Resource Reclaim-

ing Algorithms: In this section, we compare the performance
of the two resource reclaiming algorithms with no resource
reclaiming. In Fig. 14, L,, = 0.75 and Pus, varies from 0.1
to 0.5. This represents a heavy to overloaded system. For
example, when Pus, is 0.3, L,, is 1.13, and when Pus, is 0.5,
L,, is 1.9. Reclaiming with Early Start is very effective for all
the resource usage probabilities. Its guarantee ratio is 18.4%
higher than that of no resource reclaiming when Pus, = 0.2.
When the resource conflict is small (i.e., when Pus, 5 0.3
and thus P, 5 0.3), Reclaiming with Early Start performs
much better than Basic Reclaiming since it can exploit more
parallelism. When the value of Pus, is 0.5, the performance of
the Basic Reclaiming algorithm approaches that of Reclaiming
with Early Start. When the value of Pus, is too high, P, is even
larger, indicating high resource conflicts among tasks, thus
little parallelism among tasks. For example, for Pus, = 0.5,
P, = 0.65. In this case there is a very high probability that any
two arriving tasks will have resource conflicts. This will result
in schedules in which very few tasks can be run in parallel.
Since in using a multiprocessor system, one would expect
certain levels of parallelism to exist among the tasks, it is more
appropriate to keep the value of Pus, 5 0.3 (thus, P, 5 0.3) in
the rest of our experiments. From the above results, we see that
Reclaiming with Early Start does outperform Basic Reclaiming
in most of the cases. Thus in the following experiments, we
concentrate on evaluating the performance of Reclaiming with
Early Start.

b) Performance Comparison with Rescheduling: The sched-
uler has a more global view of the tasks in the schedule than
the resource reclaiming algorithm does, but it also has a higher
run time cost. The purpose of this study is to answer the
following question: “Suppose we can reduce the cost of the
scheduler, will the rescheduling scheme be a better choice?”
We compare the performance of the rescheduling scheme with
that of 1) the guarantee with actual computation time, 2)
Reclaiming with Early Start, and 3) the no reclaiming schemes.
Here we artificially vary the scheduler’s per- taskcost from 0

80.-

50
0 1 2 3 4 5

Schedulcr’a per task cost

Fig. 15. Effects of scheduler’s run time cost.

to 5, where 5 is the actual worst case cost we have measured
on the Spring Kernel. The task loads simulated have L,i =
1.0 and Pus, = 0.2.

The simulation results in Fig. 15 indicate that the perfor-
mance of rescheduling degrades 17.1% when the cost of the
scheduling algorithm increases from 0 to 5. Only when the
scheduler’s per-task-cost is zero, does rescheduling perform
better than Reclaiming with Early Start. In real systems, the
cost of the scheduler will be nonzero. So the rescheduling
scheme is not a practical choice. The performance of Reclaim-
ing with Early Start is very close to the performance of the
guarantee with actual computation time scheme no matter how
the cost of the scheduler changes. This demonstrates that low
complexity run time local optimization, such as the one used
in Reclaiming with Early Start, can be very effective in a
dynamic real-time system.

c) Effects of Task Laxity: We now examine the performance
of the various schemes with respect to different task laxities.
Fig. 16 shows the results of the experiments in which Pus, =
0.2 and L,i = 1.0. Here tasks’ laxities are plotted along the X-
axis. At each x point, a task’s laxity is drawn from a uniform
distribution between x% * W C C and x + 100% * WCC, where
W C C is the average worst case computation time of tasks.
With tight task laxities, e.g., x 5 200, resource reclaiming
is not very effective, since, in this case, tasks arrive at the
system with very small laxities, thus many of them cannot
even be guaranteed. As the laxities of the tasks are relaxed,
the performance of Reclaiming with Early Start approaches the
performance of the guarantee with actual computation time
scheme, and is much better than that of rescheduling and
no resource reclaiming. At x = 900, the difference between
the guarantee ratios of using Reclaiming with Early Start and
of using no resource reclaiming is 11%. On the other hand,
rescheduling performs as well as Reclaiming with Early Start
only when the laxity is very tight, i.e., when 2 = 100. It
performs poorly as the laxity increases. The more tasks there
are in the feasible schedule, the more rescheduling will cost.
With larger task laxities, more tasks can be guaranteed, thus
the feasible schedule contains more tasks. We have found that
resource reclaiming is most effective when there are tasks to
be dispatched continuously from the schedule.

SHEN et al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 395

A-A Resheduling *- - -* eaaystplt

50
100 200 300 400 500 600 700 800 900

task I d l y

Fig. 16. Effects of task laxity.

d) Effects of Worst Case Computation Time: In Fig. 17, we
compare the performance of Reclaiming with Early Start with
no reclaiming with respect to different worst case computation
times. As the worst case computation times of tasks increase,

resource reclaimin cost the ratio worst computat&n time decreases. Recall that
the run time cost of Reclaiming with Early Start is 2 (millisec- -

onds). So for the two kinds of worst case computation times we
have tested so far, i.e., uniformly distributed between (50, 150)
and between (50, lOOO), the resource reclaiming overhead cost
is at most 0.4% of a task’s worst case computation time (since
the minimum worst case computation time wcc-man = 50 in
both cases and 2/50 = 0.4). What happens to the performance
of resource reclaiming if wcc-min is smaller so that the ratio
of the resource reclaiming overhead to the minimum worst
case computation time becomes larger? In this experiment, we
varied wcc-min from 5 to 50, and the worst case computation
time of a task is uniformly distributed between wcc-min and
2 * wcc-min. The average processor load LPi is 1.0 and Puse
is set to 0.3. We did not include any scheduling overhead in
this experiment for the purpose of examining the pure effects
of the resource reclaiming overhead costs. In Fig. 17, we plot
the values of wcc-min on the X-axis. When wcc-min = 5,
the resource reclaiming overhead ranges from 20% to 40% of
tasks’ worst case computation times. When wcc-man = 50,
the resource reclaiming overhead is only 0.2% to 0.4% of
tasks’ worst case computation times. As one can see, if the
resource reclaiming overhead can be more than 10% of tasks’
worst case computation time, i.e., when wcc-min < 20 on the
X-axis, the guarantee ratio using Reclaiming with Early Start
can be even worse than without any resource reclaiming. So it
only pays to do resource reclaiming if one can ensure that the
overhead cost of the resource reclaiming algorithm is below a
reasonable percentage of tasks’ worst case computation times,
such as below 10%.

e) Effects of Average Processor Load: In all the above
experiments, we have simulated heavy load situations. In Fig.
18, we examine the performance of Reclaiming with Early
Start with respect to different average processor loads L,i.
We vary the value L,; from heavily loaded (1.0) to lightly
loaded (0.3). In this experiment, Pus, is 0.2. A task’s laxity

’ O r
*-• Eadystaa
U -. -0 NoReclaiming

50
5 10 15 20 25 U) 35 40 45 50

Minimum Worst Cane Compltation Time

Fig. 17. Effects of WCC to resource reclaiming cost ratio.

A-A Actual Computation Time 501’
30

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3
Avenge Pmcessor Load L#

Fig. 18. Effects of average processor load.

is uniformly distributed between 1 to 10 times its worst case
computation time, so that no matter what the average processor
load is, tasks arrive with a large variance of laxities. We
compare the performance of Reclaiming with Early Start with
the performance of guarantee with actual computation time and
no resource reclaiming. As the performance graphs indicate,
the guarantee ratio of Reclaiming with Early Start follows
closely to that of guarantee with actual computation time for
all the different loads. Except when the system is very lightly
loaded, i.e., when L,, < 0.4, Reclaiming with Early Start has
a much higher guarantee ratio than no resource reclaiming.
At L,; = 0.8, the difference between the guarantee ratios
of Reclaiming with Early Start and no resource reclaiming is
14.3. When the load of the system is extremely low, e.g., at
L,, = 0.3, resource reclaiming is not necessary.

Effects of Actual Computation Time to Worst Case Com-
putation Time Ratio: In all the simulations presented above,
the actual computation time of a task is between 50% to 90%
of its worst case computation time, drawn from a uniform
distribution. Fig. 19 shows the results for the case in which all
the tasks in a task load for each simulation point have the same
ratio of actual computation time to worst case computation
time. We plot the percentage of the unused computation time

396 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

’.-. -
1

-.
- A-A Achrd Computation Time *- - -* EUlyStart

- . -. No Reclaiming

40 t
30 -

% of unused canputation time
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

Fig. 19. Effects of different actual to worst case computation time ratios.

on the x axis. This test studies the effect of the accuracy of
worst case execution times upon performance. This ratio is
varied from 100% to 10%. Note that for each test, even if
all the tasks have the same actual computation time to worst
case computation time ratio, their actual computation times
are still very different due to the uniform distribution of their
worst case computation times. Pus, is set to 0.2. The average
processor load has been calculated according to tasks’ actual
computation times rather than their worst case computation
times, i.e., L,i = A; * E[actual computation time]. At each
simulation point, we generated the same average processor
load L,; = 0.6 with respect to the expected actual computation
time, so that if we had known the actual computation times
of tasks, the task load was mostly feasible as demonstrated by
the performance of guarantee with actual computation time.
However, since in using Reclaiming with Early Start and no
resource reclaiming we do not know the actual computation
times at schedule time, the smaller the ratio of the actual
computation time to the worst case computation time (as the
tasks leave more unused computation time), the larger the
worst case load the system has to handle.

The simulation results indicate that-1) For a large range of
the accuracy of worst case computation time estimation (from
30% to loo%), Reclaiming with Early Start performs very
close to that of the guarantee with actual computation time
scheme. This is because Reclaiming with Early Start is very
effective in reclaiming the unused time dynamically, reflecting
the actual computation times of tasks in a timely fashion.
2) The improvement on the guarantee ratio of Reclaiming
with Early Start over no resource reclaiming is substantial.
The guarantee ratio is improved by 23.9% when tasks’ actual
computation time is 40% of their worst case computation
times.

V. CONCLUSION

In this paper, we have investigated the problem of resource
reclaiming in real-time multiprocessor systems. A correctness
criterion was defined for designing correct resource reclaiming
algorithms. We presented two simple resource reclaiming
algorithms, Basic Reclaiming and Reclaiming with Early Start.

The complexity of the algorithms is bounded by the number
of processors in a multiprocessor node. Practical issues for
supporting predictability in multiprocessor real-time systems
were considered and the algorithms were shown to be im-
plementable. In fact, both resource reclaiming algorithms
have been implemented in the Spring Kernel. The resource
reclaiming algorithms have also been studied under dynamic
real-time task arrivals and experimental results are presented.
From the simulation studies, the following can be observed:

Good local optimization can be very effective in a dynamic
real-time system.

In a real-time system, it is important to employ run time
algorithms with bounded time complexity. The complexity of
the algorithm should be independent of the number of tasks.

Beside having bounded time complexity, it is essential for
a resource reclaiming algorithm to be inexpensive in terms of
overhead cost. Our simulation results indicated that it only
pays to do resource reclaiming if one can ensure that the
overhead cost of the resource reclaiming algorithm is below
10% of tasks’ worst case computation times.

Resource reclaiming can compensate for the performance
loss due to the inaccuracy of the estimation of the worst case
computation times of real-time tasks.

Resource reclaiming is very useful for real-time systems
that have to guarantee tasks with respect to their worst case
computation times. For a large range of accuracy of the worst
case computation time estimation (from 30% to 100%) that we
have experimented with, Reclaiming with Early Start performs
very close to that of an ideal scheduling scenario-guarantee
with actual computation time.

Even though Reclaiming with Early Start has a higher
run time cost than that of Basic Reclaiming, it performs much
better than Basic Reclaiming in most of the situations except
1) when the system is lightly loaded with L,; < 0.5 and/or
2) when the resource usage probability of tasks is high with
Pus, 2 0.5.

Simple resource reclaiming algorithms are needed most
when the system is heavily loaded and the invocation of the
scheduling algorithm is expensive compared with the resource
reclaiming algorithms.

When the load of the system is extremely low, e.g.,
L,; 5 0.3, resource reclaiming is not necessary.

Dynamic resource reclaiming is applicable to a wide range
of task resource usage probabilities, task laxities, and system
loads.

In summary, the results show that, although the resource
reclaiming algorithms proposed are very simple, they are very
effective with respect to a wide range of system and task
parameters. We believe that resource reclaiming substantially
improves average system performance.

ACKNOWLEDGMENT

The authors would like to thank the referees for the helpful
comments. The authors also wish to thank L. D. Molesky
for implementing the resource reclaiming algorithms on the
Spring Kernel, and F. Wang for providing the Load Generator
to generate the task loads for the evaluation of the algorithms.

SHEN er al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 397

REFERENCES

[l] J. Blazewicz, W. Cellary, R. Slowinski, and J. Weglarz, Scheduling un-
der Resource Constraints -Deterministic Models , Annals of Operations
Research, J.C. Baltzer AG Scientific Publishing Company, 1986.

[2] H. Chetto and M. Chetto, “Some results of the earliest deadline
scheduling algorithm,” IEEE Trans. Sofiware Eng., vol. 15, no. 10, Oct.
1989.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[4] -, “Scheduling tasks with nonuniform deadlines on two proces-
sors,” J . ACM, vol. 23, no. 3, July 1976.

[5] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J .
Appl. Math., vol. 17 no. 2, Mar. 1969.

[6] K. S. Hong and J. Y-T. Leung, “On-line scheduling of real-time tasks,”
in Proc. Real-Time Syst. Symp., Dec. 1988.

[7] G. K. Manacher, “Production and stabilization of real-time task sched-
ules,”J. ACM, vol. 14, no. 3, July 1967.

[SI L.D. Molesky, K. Ramamritham, C. Shen, J. A. Stankovic, and G.
Zlokapa, “Implementing a predictable real-time multiprocessor kernel -
The Spring Kernel,” in Proc. Seventh IEEE Workshop Real-Time Oper.
Syst. Software, May 1990.

[9] L. D. Molesky, C. Shen, and G. Zlokapa, “Predictable synchronization
mechanisms for multiprocessor real-time systems,” Real-Time Syst. J.,
vol. 2, no. 3, Sept. 1990.

[lo] K. Ramamritham, J. A. Stankovic, and P-F. Shiah, “Efficient scheduling
algorithms for real-time multiprocessor systems,’’ IEEE Trans. Parallel
Distributed Syst., vol. 1, no. 2, Apr. 1990.

[11] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode change
protocols for priority-drive preemptive scheduling,” Real-Time Syst., Int.
J . Time-Critical Comput. Syst., vol. 1, no. 3, Dec. 1989.

[12] C. Shen, K. Ramamritham, and J. A. Stankovic, “Resource reclaiming in
real-time,” Tech. Rep. COINS-90-89, Univ. Massachusetts, Oct. 1990.

[13] C. Shen, “An integrated approach to real-time task and resource man-
agement in multiprocessor systems,” Ph.D. dissertation, Univ. Massa-
chusetts, 1992.

[14] W-K. Shih, J. W. S. Liu, and J-Y. Chung, “Fast algorithms for
scheduling imprecise computation,” in Proc. IEEE Real-Time Syst.
Symp., 1989.

[15] J. A. Stankovic and K. Ramamritham, “The Spring Kernel: A new
paradigm for real-time operating systems,” ACM Oper. Syst. Rev., vol.
23, no. 3, July 1989.

[16] W. Zhao and K. Ramamritham, “Simple and integrated heuristic algo-
rithms for scheduling tasks with time and resource constraints,” J. Syst.
Sofhyare, 1987.

Chia Shen (S’85-M’92) received the M.S. degree
in computer sccience from the University of Mass-
achusetts in 1986, and the B.S. degree in computer
science in 1983 from S.U.N.Y. at Stony Brook.
She is a Ph.D. candidate in the Department of
Computer and Information Science at the University
of Massachusetts at Amherst.

She is currently a member of the Spring Project at
the Computer and Information Science Department
at the University of Massachusetts, Amherst. Her
research interests include real-time multiprocessor

Krithi Ramamritham (M’89) received the Ph.D.
degree in computer science from the University of
Utah in 1981.

Since then he has been with the Department of
Computer and Information Science at the University
of Massachusetts. During 1987-1988, he was a
Science and Engineering Research Council (U.K.)
visiting fellow at the University of Newcastle upon
Tyne, U.K. and a visiting professor at the Technical
University of Vienna, Austria. He is a director
of the Spring project whose goal is to develop . - . .

scheduling algorithms, operating system support, architectural support, and
design strategies for distributed real-time applications. His other research
activities deal with enhancing performance in database applications through
the use of semantic information about the database objects, operations,
transaction model, and the application.

Dr. Ramamritham is an associate editor of the Real-Time Systems journal
and is a co-author of an IEEE tutorial text on hard real-time systems.

John A. Stankovic (S’77-M’79-SM’86) received
the B.S. degree in electrical engineering, and the
M.S. and Ph.D. degrees in computer science, from
Brown University, Providence, RI, in 1970, 1976
and 1979, respectively.

He is a Professor in the Computer and Informa-
tion Science Department at the University of Mass-
achusetts at Amherst. He has held visiting positions
in the Computer Science Department at Carnegie-
Mellon University and at INRIA in France. He
received an Outstanding Scholar Award from the

School of Engineering, University of Massachusetts.
Dr. Stankovic is an Editor-in-Chief for Real-Time Systems and a past editor

for IEEE TRANSACTIONS ON COMPUTERS. He also served as a Guest Editor
for a special issue of IEEE TRANSACTIONS ON COMPUTERS on Parallel
and Distributed Computing. He is series editor for a book series on real-
time systems with the Kluwer Publishing Company. He is a member of
the IEEE executive committee for distributed systems and a member of
the International Advisory Board for the Journal of Computer Science and
Informatics (Computer Society of India). He also serves on the senior technical
advisory board of Advanced Systems Technologies. He served as an IEEE
Computer Society Distinguished Visitor for two years, presented a number
of IEEE tutorials, and has given three Distinguished Lectures at various
universities. He has been a Keynote Speaker at three different conferences.
He is a member of the Association for Computing Machinery and Sigma Xi.

scheduling theory, resource and task allocation, and multiprocessor operating
system support for real-time systems.

Ms. Shen is a member of the IEEE Computer Society and the Association
for Computing Machinery.

