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Abstruct-Most real-time scheduling algorithms schedule tasks 
with respect to their worst case computation times. Resource 
reclaiming refers to the problem of utilizing the resources left 
unused by a task when it executes less than its worst case compu- 
tation time, or when a task is deleted from the current schedule. 
Resource reclaiming is a very important issue in dynamic real- 
time multiprocessor environments. In this paper, we present 
dynamic resource reclaiming algorithms that are egective, avoid 
any run time anomalies, and have bounded overhead cost that is 
independent of the number of tasks in the schedule. Each Task 
is assumed to have a worst case computation time, a deadline, 
and a set of resource requirements. The algorithms utilize the 
information given in a multiprocessor task schedule and perform 
on-line local optimization. The effectiveness of the algorithms is 
demonstrated through simulation studies. The algorithms have 
also been implemented in the Spring Kernel [15]. 

Index Terms- Deadlines, dynamic real-time systems, multi- 
processor scheduling, resource constraints, resource reclaiming, 
worst case computation times. 

I. INTRODUCTION 

N real-time applications such as space stations, avionics, I and command and control systems, many tasks have ex- 
ecution deadlines. Among these real-time tasks, some are 
safety-critical, i.e., their deadlines must be met under all 
circumstances, otherwise the result could be catastrophic; 
while others are not safety-critical, i.e., missing their deadlines 
will seriously degrade the performance of a system but will not 
cause catastrophe. In such real-time applications, the resources 
required by the safety-critical tasks should be preallocated 
and a schedule should be statically produced with respect 
to the worst case timing and resource requirements of these 
tasks so that their deadlines will be met. On the other hand, 
due to the dynamic and nondeterministic nature of these 
applications, other real-time tasks have to be scheduled on-line 
as they arrive since it is impossible to statically reserve enough 
resources for all contingencies with respect to the worst case 
requirements of these tasks. 

When real-time tasks arrive in a dynamic real-time envi- 
ronment, the scheduler dynamically determines the feasibility 
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of scheduling the new task and the previously scheduled 
tasks, including safety-critical tasks, given their worst case 
requirements and current system state. A feasible schedule 
is generated if all the timing and resource requirements of 
tasks can be satisfied. Tasks are dispatched according to this 
feasible schedule. In order to guarantee that real-time tasks 
will meet their deadlines once they are scheduled, most real- 
time scheduling algorithms schedule tasks with respect to their 
worst case computation times [4], [6], [lo], [16]. Since this 
worst case computation time is an upper bound, the actual 
execution time may vary between some minimum value and 
this upper bound, depending on various factors, such as the 
system state, the amount and value of input data, the amount 
of resource contention, and the types of tasks. Resource 
reclaiming refers to the problem of utilizing resources left 
unused by a task when it executes less than its worst case 
computation time, or when a task is deleted from the current 
schedule. Task deletion occurs either during an operation mode 
change [ll], or when one of the copies of a task completes 
successfully in a fault-tolerant system and the fault semantics 
permits deletion of the other copies from the schedule [2]. 
Resource reclaiming is a very important issue in dynamic 
real-time systems, and it has not been addressed in practice. 

The design of dynamic resource reclaiming algorithms in 
real-time systems has four requirements: 

1)  correctness: A resource reclaiming algorithm must main- 
tain the feasibility of guaranteed tasks, i.e., any possible 
run time anomalies must be avoided. 

2) inexpensive: The overhead cost of a resource reclaiming 
algorithm should be very low compared to tasks’ compu- 
tation times since a resource reclaiming algorithm may 
be invoked very frequently. 

3)  bounded complexity: The complexity of a resource re- 
claiming algorithm should be independent of the number 
of tasks in the schedule, so that its cost can be in- 
corporated into the worst case computation time of a 
task. 

4) effective: A resource reclaiming algorithm should im- 
prove the performance of the system, i.e., increase the 
guarantee ratio defined as - 

the number of tasks guaranteed 
the number of tasks arrived 

The correctness requirement addresses the issue of avoiding 
run time anomalies in a multiprocessor system. Resource 
reclaiming is straightforward given a uniprocessor schedule 
because there is only one task executing at any moment on the 
processor. Resource reclaiming on multiprocessor systems for 
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tasks with resource constraints is much more complicated. This 
is due to the potential parallelism provided by a multiprocessor 
system and the potential resource conflicts among tasks. When 
the actual computation time of a task differs from its worst 
case computation time in a nonpreemptive multiprocessor 
schedule with resource constraints, run time anomalies [5] 
may occur. These anomalies may cause some of the already 
guaranteed tasks to miss their deadlines. In particular, one 
cannot simply use any work-conserving scheme, one that will 
never leave a processor idle if there is a dispatchable task, 
without verifying that task deadlines will not be missed.' For 
tasks with precedence constraints, Manacher [7] proposed an 
algorithm to avoid these anomalies by imposing additional 
precedence constraints on tasks to preserve the order of 
tasks which can run in parallel. However, the complexity of 
the algorithm is not independent of the number of tasks in 
the schedule and the algorithm does not deal with resource 
constraints among tasks. Moreover, the primary purpose of 
the algorithm is to ensure the feasibility of the original 
schedule in the event of tasks executing less than their worst 
case computation times in a static system, rather than to 
dynamically reclaim unused resource. 

Predictability is one of the most important issues in a 
real-time operating system. The system overhead incurred in 
scheduling, dispatching, and resource reclaiming should not 
introduce uncertainty into the system. In particular they should 
not cause already guaranteed tasks to miss their deadlines. 
Since every task might complete early (i.e., execute less than 
its worst case computation time), every task might incur 
resource reclaiming overhead. Hence, the resource reclaiming 
cost must be low (i.e., inexpensive) so that it is insignificant 
compared to the computation time of a task. Moreover, the 
entire dispatching cost, which includes the resource reclaiming 
cost, should be included in the worst case computation time of 
a task. Consequently, the overheads of a resource reclaiming 
algorithm must be bounded so that its maximum run time 
cost does not vary. One straightforward approach to resource 
reclaiming when a task finishes early is to reschedule the 
entire set of tasks that is remained in the feasible schedule. 
In practice, this will not be beneficial if the rescheduling cost 
exceeds the time reclaimed. Further, most scheduling algo- 
rithms have time complexities that depend on the number of 
tasks to be scheduled, i.e., use of these algorithms for resource 
reclaiming would result in unbounded overhead costs. Thus 
a resource reclaiming algorithm which employs rescheduling 
does not meet the requirements of predictability. One of the 
challenging issues in designing resource reclaiming algorithms 
is to reclaim resources with a bounded complexity and low 
overhead, in particular, a complexity that is not a function of 
the number of tasks in the schedule. 

In this paper, we present two resource reclaiming algo- 
rithms, Basic Reclaiming and Reclaiming with Early Start. 
These two algorithms employ strategies that are a form of 
on-line local optimization on a feasible multiprocessor sched- 
ule. Both of these algorithms have bounded time complexity 

'Due to space limitation, we do not present the analysis of the run time 
anomalies for our multiprocessor model. See [12] for a complete description 
and analysis of the anomalies. 

although Reclaiming with Early Start is more expensive to 
run than Basic Reclaiming. We prove the correctness of these 
algorithms. To understand the performance impact of these 
algorithms, we have done extensive simulation studies of the 
resource reclaiming algorithms for a five processor multipro- 
cessor system. We tested a wide range of task parameters, in- 
cluding different worst case computation times and actual com- 
putation times of tasks, task laxities, and task resource usage 
probabilities, Through simulation results, we demonstrate that 

Low complexity run time local optimization can be very 
effective in improving the system performance in a dy- 
namic real-time system. 
Using complete rescheduling as a resource reclaiming 
scheme is not a practical choice. 
It only pays to do resource reclaiming if one can ensure 
that the overhead cost of the resource reclaiming algo- 
rithm is below 10% of tasks' worst case computation 
times. 
Resource reclaiming can compensate for the performance 
loss due to the inaccuracy of the estimation of the worst 
case computation times of real-time tasks. 

Further, to demonstrate the applicability of the algorithms 
and to validate the simulation, we have implemented the 
resource reclaiming algorithms in the Spring Kernel [15]-a 
real-time kernel on a NUMA multiprocessor (Nonuniform 
Memory Access multiprocessor) system with shared resources. 
In such a multiprocessor system, each processor has local 
memory for task code and private resources. Tasks might 
also require other nonlocal resources, such as shared data 
structures, and communication ports. In this paper the 
important issues in implementing the resource reclaiming 
algorithms as part of this multiprocessor kernel and the 
interplay between the scheduler and the resource reclaiming 
algorithms are also presented. 

The remainder of the paper is organized as follows. Section 
I1 defines our task model, and introduces the terminology used 
throughout the paper. In Section 111 we study the resource 
reclaiming problem, and present our resource reclaiming 
algorithms. The properties of the algorithms, including the 
correctness proof, the applicability of the resource reclaiming 
algorithms to tasks and systems with other characteristics, are 
also discussed in this section. In Section IV, we apply the 
resource reclaiming algorithms to dynamic real-time systems 
with independent tasks, describe the implementation issues on 
a multiprocessor, and present experimental results. In Section 
V we summarize the paper. 

11. DEFINITIONS AND ASSUMPTIONS 

In this section we first define the types of real-time tasks 
and resources considered in this paper. Then we define some 
of the terminology used. n is the number of tasks {TI ,  T2, . . . 
Tn}, m the number of processors {PI, P2, . . . Pm}, and s the 
number of resources { T I ,  7-2, . . . rS}. 

A. Task Model 

Tasks are independent, well-defined schedulable entities. A 
task is not preemptable. Resources that can be required by 
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a task include variables, data structures, memory segments, 
and communication buffers. Resources can either be used in 
exclusive mode or shared mode [16]. Two tasks conflict on a 
resource if both of them need the same resource in exclusive 
mode, or one of them needs a resource in exclusive mode 
while the other needs the same resource in shared mode. Two 
tasks with resource conflict(s) cannot be scheduled in parallel. 
Each task T, has the following attributes: 

c,: the worst case computation time of T,. At scheduling 
time, this value is known to the scheduling algorithm. 
But at execution time, a task may have an actual 
computation time c: 5 c,. 

d,: the deadline of T,; 
{R:}: a resource requirement vector for 1 5 j 5 s, 

denoting the set of resource requirements of T,; 
each element of the vector indicates exclusive-use, 
shared-use, or no-use. 

B. Terminology 

The following definitions will be used in the remainder of 
the paper. 

Definition 1: A feasible schedule S is a task schedule in 
which tasks’ worst case computation time and resource con- 
straints are all guaranteed to be met. In this paper, we consider 
nonpreemptive feasible schedules in which a scheduled start 
time ( s t i )  and scheduled finish time (f t i )  are assigned to each 
task Ti in the schedule such that Vi ,  f t i  5 di.  

Definition 2: Given a feasible schedule S ,  apost-run sched- 
ule S’ is a layout of the tasks in the same order as they are 
executed at run time with respect to their actual computation 
times c:, where Vi ,  c: 5 ci. Associated with each task Ti in 
a post-run schedule S’ is a start time st: and a finish time 
f t l .  st: and ft: are the actual times at which Ti starts and 
completes execution, respectively, and they may be different 
from s t i  and f t i .  

Definition 3: Given a post-run schedule SI, a task T; starts 
on-time if st:  5 st i ,  that is, if the task Ti starts execution by 
or before its scheduled start time. 

Definition 4: A post-run schedule S’ is correct if Vi  1 5 
i 5 n, f t :  5 di.  

Lemma 1: If Vi  1 5 i 5 n, T; starts on-time in a post-run 
schedule SI, then S’ is correct. 

Proof: Given nonpreemptive task executions, by Defini- 
tion 3, if Ti starts on time, i.e., st:  5 s t ; ,  then f t :  5 f t i  5 di. 

U 
This lemma forms the basis for the correctness of our re- 

claiming algorithms. Note that the lemma gives us a sufficient 
condition for task starting times. Our reclaiming algorithms 
will be designed to start tasks on-time. As we shall see, this 
strategy results in reclaiming algorithms that have bounded 
reclaiming overhead. 

We illustrate the terminology introduced above through the 
following example. 

Example: Table I provides the attributes of a set of seven 
tasks. Each task requires a processor (indicated by the proces- 
sor id, pid), and some need an additional resource T I .  Fig. 1 
shows a two processor feasible schedule S for this set of tasks. 

So the resulting post-run schedule S’ is correct. 

TABLE I 
TASK PARAMETERS FOR EXAMPLE 1 

Task spid c, c’ d ,  r1 st7 f t ,  

Ti 2 225 125 225 0 225 
T2 2 175 100 400 shared 225 400 
T3 1 175 150 175 0 175 
T4 1 25 25 200 exclusitie 175 200 

200 350 Ts 1 150 75 350 

TG 2 100 100 500 400 500 
T7 1 150 125 500 shared 350 500 

TABLE 11 
START TIMES AND FINISH TIMES PRODUCED BY NO RESOURCE RECLAIMING 

Tasks TI  TZ T3 T4 T5 T6 T7 
5t: 0 225 0 175 200 400 350 

f t :  125 325 150 200 275 500 475 

TABLE I11 
START TIMES AND FINISH TIMES PRODUCED 

BY THE WORK-CONSERVING ALGORITHM 

st :  0 125 0 225 250 225 325 

ft’. 125 225 150 250 325 325 450 

The scheduled start times st ;  and scheduled finish times f t i  are 
given in Table I. Table I1 and Fig. 2 show one of the possible 
post-run schedules S’ and the corresponding start times st: 
and finish times f t l  of the tasks. All the tasks are on-time in 
S’. Hence S’ is correct. On the other hand, Table 111 and Fig. 
3 demonstrate one of the possible incorrect post-run schedules 
caused by using a work-conserving algorithm. In this post-run 
schedule, T2 starts execution at time 125 because, as soon as 
TI completes execution, both the resource and the processor 
that T2 requires are available. This work-conserving action 
causes task T4 to eventually miss its deadline. Thus a correct 
resource reclaiming algorithm must be able to guarantee that 
this kind of run time anomaly does not occur in a post-run 
schedule. 

111. RESOURCE RECLAIMING ALGORITHMS 
We first discuss the resource reclaiming problem with 

respect to its time complexity. Then we present our two 
resource reclaiming algorithms, 1) Basic Reclaiming and 2) 
Reclaiming with Early Start. 

A.  Multiprocessor Resource Reclaiming 

Since we are working in a dynamic real-time environment, 
efficiency and predictability are of major concern for the on- 
line resource reclaiming algorithms. There are two extreme 
cases that provide the lower and upper bounds on the cost in 
terms of time. 

Extreme Case 1:  Dispatching tasks strictly according to their 
scheduled start times ( s t ) .  This implies no resource reclaiming 
and, obviously, the cost of resource reclaiming is zero. 

Extreme Case 2: Total rescheduling of the rest of the tasks in 
the schedule whenever a task executes less than its worst case 
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Fig. 1 .  A feasible schedule S according to tasks' worst case computation times. 

Fig. 2. A post-run schedule S' when tasks execute only up to their actual computation times and no resource reclaiming is done. 

** 
D 

Fig. 3. A post-run schedule S' produced by a work-conserving algorithm. 

computation time. Suppose the cost of a particular scheduling 
algorithm is f ( n )  for scheduling n tasks. Then, the cost of 
total rescheduling would be O( f ( n ) ) ,  assuming no new task 
arrivals. Note that total rescheduling can be used only if the 
cost of this rescheduling is less than the time left unused by 
a task. 

Note that because the resource constrained multiprocessor 
scheduling problem is NP-complete in the nonpreemptive case 
[3] and only has high degree polynomial linear programming 
solutions in the preemptive case [l], any practical schedul- 
ing algorithm used in dynamic real-time systems must be 
approximate or heuristic. This implies that it is not always 
the case that the same scheduling algorithm will definitely 
find a feasible schedule when a task is removed from the 
original set of tasks when the task finishes execution. Thus, 
even though extreme case 2 provides us with an upper bound 
on the time complexity of the resource reclaiming problem, 
it does not represent the optimal solution in terms of be- 
ing able to find feasible schedules whenever they exist. It 
does provide an indication of the best a system can do in 
reordering tasks according to available resources. Clearly, 
a useful resource reclaiming algorithm should have a com- 
plexity less than the total rescheduling extreme, while being 
just as effective. We distinguish between two classes of 
resource reclaiming algorithms. One is resource reclaiming 
with passing, and the other is resource reclaiming without 
passing. 

Definition 5: A task T, passes task T3 if stl < st:, but 
f t J  < st,. Thus passing occurs when a task T, starts execution 
before other task(s) that are scheduled to finish execution 
before T, was originally scheduled to start. 

If T, is a task in a feasible schedule, then we can divide 
the rest of the tasks in the schedule into three disjoint subsets 
with respect to T, defined as follows: 

Definition 6: 

T,, = {T, : T3 $2 T,, and T, 61 T,,}. 

Thus, T,, is the set of tasks that are scheduled to finish before 
T, starts. T,, is the set of tasks that are scheduled afrer T, 
finishes. T,, is the set of tasks whose scheduled execution 
times overlap with the execution time of T,.  For example, in 

Given a feasible schedule S ,  if we assume tasks never 
execute longer than their worst case computation times, and 
there are no interruptions or arbitrary idle times inserted 
during the execution of the tasks in S,  then we have the 
following lemma. This lemma in essence tells us when run- 
time anomalies can occur, and will be used in proving the 
correctness of our resource reclaiming algorithms in the next 
section. 

Lemma 2: Given a feasible real-time multiprocessor sched- 
ule S ,  if 3T,, such that task T, does not start on time in a 
post-run schedule, then passing must have occurred. 

Proof: Since T, does not start on time, st: > st,. Assume 
the contradiction, i.e., assume no passing occurred. Then the 
tasks in T,, must have been dispatched before T, started 
and the tasks in T, ,  must have been dispatched after T, 
finished execution. By definition of a feasible schedule, the 
tasks in T N 2  have no resource conflicts with T,, therefore, no 
matter what order these task were dispatched with respect to 
the dispatching time of T,, they would not have delayed the 
dispatching of T,. This contradicts the premise that T, did not 
start on time. 0 

Fig. 1, T<5 = (7'3, T4), T>5 = {T6, T7}, and TN5 = { T I , T z } .  
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A resource reclaiming algorithm that allows passing will 
inevitably incur higher complexity in terms of time than 
another that does not allow passing. This is because passing 
implies altering the ordering of tasks imposed by the feasible 
schedule, thus is similar to rescheduling. To determine which 
task in the remaining schedule can utilize an idle period 
involves searching (since the scheduling problem is in fact a 
search problem [16]). Any searching will have a complexity of 
at least O(1og n). Since we are interested in designing resource 
reclaiming algorithms with bounded cost that can be used for 
dynamic real-time systems, we will concentrate on resource 
reclaiming algorithms without passing. 

B. Algorithms for Multiprocessor Resource Reclaiming 
In this section, we present our two multiprocessor resource 

reclaiming algorithms, the Basic Reclaiming algorithm and 
the Reclaiming with Early Start algorithm. Before the details 
of the algorithms are presented, we would like to motivate 
the ideas behind the algorithms. Let us reexamine the correct 
post-run schedule portrayed in Fig. 2. Actually, this post-run 
schedule is a result of no run time resource reclaiming. Notice 
that between time 150 to 175 all the processors are idle. 
Clearly, every task in the remaining feasible schedule, i.e., 
tasks TzlT4,T5, T6, and T7, could have been started at least 
25 time units earlier than their scheduled start times without 
in any way jeopardizing the meeting of their deadlines. This 
is in essence what our Basic Reclaiming algorithm does as 
illustrated in Fig. 9. However, with a more careful inspection 
of Figs. 1 and 9, one can see that we can do even better 
in utilizing the idle time left in the post-run schedule of 
Fig. 9. For example, T2 could have started even earlier than 
in this post-run schedule. In particular, it can be started at 
time 175 because T2 E TZ5 (see Definition 6). This can be 
accomplished if we can in some way represent and utilize 
the information given in Definition 6. Our second resource 
reclaiming algorithm, Reclaiming with Early Start, does this 
and produces the post-run schedule shown in Fig. 11. 

Thus the two resource reclaiming algorithms are based on 
the idea that a feasible multiprocessor schedule provides task 
ordering information that is suficient to guarantee the timing 
and resource requirements of tasks in the schedule. If two 
tasks T, and T, are such that TJ E TNz (i.e., T, does not 
have resource conflict with T, as defined in Definition 6) in 
a schedule, then we can conclude that no matter which one 
of them will be dispatched first at run time, they will never 
jeopardize each other’s deadlines. On the other hand, if T, E 
T,, or T, E T,,, we cannot make the same conclusion without 
reexamining timing and resource constraints or without total 
rescheduling. Assume each task T, is assigned a scheduled 
start time st, and a scheduled finish time f t z  in the given 
feasible schedule, our resource reclaiming algorithms utilize 
these two task attributes to infer the information in Definition 
6 at run time, i.e., to identify tasks in T,f where Tf is 
such that stf 5 st, Vi, and to reclaim resources using 
these tasks. Thus our resource reclaiming algorithms perform 
local optimization. By doing so, we do not have to explicitly 
examine the availability of each of the resources needed by 

a task in order to dispatch a task when reclaiming occurs. 
This keeps the complexity of the algorithms independent 
of the number of tasks in the schedule and the number of 
resources in the system-a desirable property of any algorithm 
that has to be used in dynamic real-time systems at run 
time. 

The following definitions are needed to describe our re- 
source reclaiming algorithms. 

Definition 7: Given a feasible schedule S ,  a projection list 
PL is an ordered list of the tasks in the feasible schedule, 
arranged in nondecreasing order of st,. If st, = st, for some 
tasks T, and T,, we place the task with the smaller processor 
id in the P L  first. Thus P L  imposes a total ordering on the 
guaranteed tasks. 

Definition 8: Given a projection list PL,  a processor pro- 
jection list PPL,  is an ordered list of all the tasks scheduled 
on processor Pq in the PL, also arranged in nondecreasing 
order of stz ,  for 1 5 i 5 n and 1 5 q 5 m. 

Therefore, for the feasible schedule given in Fig. 1, the 
projection list of S is P L  = {T3,T1,T4,T5,TzlT7,T6}. The 
processor projection lists are: PPLl = (T3, T4, T5, T7}, and 
PPL2 = {Ti, T2, Ts}. 

In the following, we assume the existence of 1) a feasible 
schedule for n tasks {TI, Tz, . . . , Tn}, which have been guar- 
anteed with respect to their timing and resource constraints 
(e.g., using the algorithm presented in [lo]), 2) the correspond- 
ing projection list P L  and m processor projection lists PPLl  
. . .  PPL,, and 3 )  a scheduled start time st,, and scheduled 
finish time f t z  for each task entry T, in the feasible schedule. 
We also assume that we can associate a constant cost to access 
the first task in the P L  and the first task in each of PPL,  
(These assumptions are very practical and easily achievable.) 

The resource reclaiming algorithms are presented in pseudo 
code in Figs. 4, 5, 6, and 7. Fig. 4 gives the outline of 
the resource reclaiming algorithms. Recall that resource re- 
claiming occurs when a task completes, say on processor Pq. 
There are two steps involved in resource reclaiming. In the 
first step, the length of the idle time resulting from the early 
completion of tasks is determined. Details of this step are 
the same for both the Basic Reclaiming Algorithm and the 
Reclaiming with Early Start Algorithm. In the second step, 
the next task in PPL,, VT such that P, is idle, is examined to 
decide whether it can be immediately dispatched. Figs. 6 and 
7 present Step2 for each of these algorithms, respectively. In 
the following, we describe the resource reclaiming algorithms 
in detail. 

Stepl: (see Fig, 5) Resource reclaiming occurs when a 
task completes execution and another task is to be dis- 
patched. A task scheduled on processor q is not removed 
from the P L  and PPL, until it finishes execution. This 
restriction is important to ensure a consistent view of 
the amount of time reclaimable. Upon completion of a 
task, Stepl tries to identify idle periods on all processors 
and resources by computing a function reclaimd = 
s t f  - currmt-time (lines 6 to 8 in Stepl); where s t f  
is the scheduled start time of the current first task in the 
PL. The computation complexity of this function is O(1). 
Since the PL imposes a total ordering on the guaranteed 
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tasks, s t f  must be the minimum scheduled start time 
among all tasks in the schedule, including the one(s) still 
in execution. Any positive value of reclaim-6 indicates 
the length of the idle period resulting 'from tasks finishing 
early. Since a task is removed from the schedule only 
upon its completion (line 1 in Fig. 5),  temp-reclaim-6 
could have a negative value (if the first task in the P L  
is still in execution) and, in this case, reclaim4 retains 
its original value. For example, let us examine Fig. 9. At 
time 125 when task TI completes execution, the current 
first task in the P L  is T3 which is still in execution, and 
so tempreclaim-6 = 0 - 125 = -125 since st3 = 0 
(refer to Table I for scheduled start times and scheduled 
finish times). On the other hand, at time 150 when T3 
finishes execution, T4 becomes the first task in the PL,  
and so temp-reclaimd = 175 - 150 = 25. 
Step2.BASIC: (see Fig. 6) The idea behind the Basic 
Reclaiming algorithm is very simple. When a processor 
completes a task, it checks to see if all the processors 
are idle. If so, the entire schedule can be shifted forward. 
Now let us be more precise and discuss the pseudo code 
for the algorithm. We immediately start the execution of 
the first task T,, on processor P, only if the task is the 
current first task in the P L  (i.e., it is the next task in the 
total order of tasks) or if it has the same st (scheduled 
start time) as the current first task (lines 3 to 4 in Fig. 
6). Otherwise we compute a function ast,, for T,, to 
decide the actual start time (versus the scheduled start 
time given in the schedule) for it, taking into consideration 
the idle periods that have been accumulated up to now. 
This function is ast,, = st,, - reclaim-6, where st,, is 
the original scheduled start time of task T,, . This function 
is also O(1). Once this function is computed, processor r 
will pend until 1) either the calculated ast,, has arrived, 
or 2) some other task finishes early and reclaimb is 
incremented. In the latter case, Step2.BASIC will be 
invoked again (see Fig. 4). 
Step2. EAIUYSTART: (see Fig. 7) Notice that the Basic 
Reclaiming algorithm will start a task early by an amount 
of time equal to reclaimd which is the length of time 
that all the processors can reclaim. The Reclaiming with 
Early Start algorithm dispenses with this requirement. It 
allows a task T,,, the first task in PPL,, to start as 
long as the first task T,, in each of the other PPL,  
does not conflict over any resources with T,, and no 
passing will occur. More precisely, T,, can start if for 
1 I q 5 m and q # I-,  T,, is either in TNTf or in T>,,. 
Now let us define that a task T,, is being early started 
if st;, < st,, - reclaimb. In Reclaiming with Early 
Start, we first compute (lines 8 to 14) a Boolean function 
canstart-early = st,, < ft , , ,  Vq such that q # r and 
1 5 q 5 m, where st,, is the scheduled start time of 
the first task on processor r and f t , ,  is the scheduled 
finish time of the first task on processor q. This function 
identifies parallelism between the first task on processor 
r and the first tasks on all other processors by checking 
to see whether the first tasks on all other processors are 
in TNTf (see Definition 6). That is, for any two tasks T,, 

1' m - the number of processors */  
/*  reclaimd - the amount of time that hw been nclaimed. *I 
/ *  reclaimd is set to zero initially. * /  
/*  Tq, - the newly completed task in P P L ,  for some processor q .  */  
Algorithm Resource Reclaiming (algorithmshoice) 

Whenever a task T,, completes execution on a processor q ,  do 
t 

originalreclaimd = reclaimd; 
Stepl(T,,, reclaimd, P L ,  PPL,);  
switch (algorithmrhoice) 

case BASICRECLAIMING: 
if reclaimd > original_reclaimd 

then 

for all r such that processor r is idle do  
t 

I 
StepZ.BASIC(r, reclaimd, P L ,  PPL1,  ... , PPL,); 

case EARLY-START: 
for d r such that processor r is idle do 

StepZ.EARLYSTART(r, reclaimd, P L ,  PPL1,  ... , PPL,); 
I 

end Algorithm Resource Reclaiming 

Fig. 4. 

Stepl (T,,,  reclaimd, P L ,  PPL,);  

/* Task Tqi just completed execution on processor q.*/ 
1 .  REMOVE(T,,, P L ,  PPL,);  
2. 
3. 
4. then 
5 t  
6. 
7.  if tempreclaimd > 0 
8. then reclaimd +- tempreclaimd; 
9. end if 
10. ] 
11.  end if 

end Stepl 

TI t the fiat task in the current P L ;  
if (current-time < (ft,. - reclaimd)) 

temp-reclaim4 = atf - (currentfime); 

Fig. 5. 

Step2.BASIC (r, reclaimd, P L ,  PPL1, ... , PPl,,); 

1. 
2. 
3. if ('I,, == 'I,) 

4. then startexecution(T,,); 
5.  else 

7.  

Tj t the fist  task in the current P L ;  
T,, t the fist  task in the current PPL,; 

or (at., == dtf) 

6. t 

8. pend(T., ,a&,); 
9. I 

ast,, = at,, - reclaimd; 

10. end if 

end Step2.BASIC 

Fig. 6. 

and T,, , if st,, < ft,, , then Tt, E Tcqf. The complexity 
of this function is O ( m ) .  The task will be dispatched if 
the value of the Boolean function is true. Only when the 
value of the function can-start-early is false, we will 
compute the ast,, for task TTr as in Step2.BASIC. 

For both algorithms, whenever a positive value of reclaim-6 
is obtained in Stepl, Step2 must be executed for all currently 
idle processors. Thus the complexity of the basic version is: 
0 ( 1 )  + m * 0 ( 1 )  = O ( m ) ,  while Reclaiming with Early Start 
has a complexity of 0(1) + m * O ( m )  = O ( m 2 ) .  
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Step2.EARLYSTART (r, reclaimd; P L ,  P P L I ,  

1 .  
2. 
3. can_start.early - true; 
4. if st,, # st, 
5. then 
6 .  { 
7.  B - 0; 
9. { 
10. q - q + 1 ;  
11. 
12. then can_start-early + false; 
13. end if 

15. } 
16. endif 
17. if can-start.earlg 
18. then startexecution(T,,); 
19. else 

21. 
22. pend(T,, +at,,); 
23. } 
24. end if 

end Step2.EARLYSTART 

T, t the first task in the current P L ;  
T., - the f i s t  task in the current P P L , ;  

8. while (candart.early and q < m) do 

if (e # 7) and (at., > ft,,) 

14. l 

20. { 
u t . ,  = at., - reclaimd; 

Fig. 7. 

time 0 125 150 175 250 300 425 450 

r e c l a i m d  0 0 25 25 25 50 50 50 

Fig. 8. The values of reclaim-8 at each task completion when the Basic 
Reclaiming Algorithm is used. 

C. Properties of the Resource Reclaiming Algorithms 

The two resource reclaiming algorithms presented above 
guarantee that run time anomalies as shown at the end of 
Section I1 will not occur. In this section we shall illustrate the 
two resource reclaiming algorithms through an example and 
prove the correctness of the algorithms in this section. We also 
discuss some interesting aspects of the algorithms. 

I )  Discussion through an Example: Assume we have the 
same feasible schedule in Fig. 1 for the set of tasks defined 
in Table I. The post-run schedule produced by the Basic 
Reclaiming Algorithm is shown in Fig. 9 and the post- 
run schedule produced by the Reclaiming with Early Start 
Algorithm is shown in Fig. 11. We show the values of 
reclaim-& at the time of each task completion in Figs. 8 and 
10 for the two algorithms respectively.2 Fig. 2 is the post-run 
schedule when no resource reclaiming is done. Thus from Figs. 
2, 9, and 11, one can see the effects of resource reclaiming. 

Note that once the new value of reclaim-S is determined 
in Stepl, every task Ti in the rest of the schedule can in fact 
be started reclaim-6 time units earlier than its st i ,  e.g., at 
time 150 when T3 completes execution, T4 can start execution 
(see Figs. 9 and 11). This is equivalent to a time translation of 
reclaim-S units of time on the remaining feasible schedule, 
i.e., the sti and f t i  of every task Ti in the remaining 
feasible schedule can be translated to sti - reclaim-S and 
f ti - rec la imd.  However, we do not explicitly carry out this 
time translation in the remaining feasible schedule because we 

'Note that although there is no task completion at time 300 in Fig. 11, we 
include the value of reclaim-6 in Table 8 for comparison purposes. 

will incur a time complexity of O ( n )  to modify the s t i  and 
f t i  of each task, thus violating our boundedness premise. 

From the description of the algorithms, it seems obvious 
that Reclaiming with Early Start should be more effective than 
Basic Reclaiming. However, there are two interesting aspects 
of the Reclaiming with Early Start Algorithm that are not 
easily seen. 

First, Reclaiming with Early Start does not necessarily 
accumulate a larger value of rec la imd in the short term. 
For example, compare the values of reclaim-6 at time 
300 in Figs. 8 and 10. The value of reclaim-S from using 
Basic Reclaiming is larger than from using Reclaiming 
with Early Start at time 300, even though at time 375, 
the converse is true. This is because rec la imd reflects 
the time reclaimed on all processors and resources. In 
general Reclaiming with Early Start keeps the processors 
and resources busier than Basic Reclaiming does. So 
when using Reclaiming with Early Start, temp-reclaim-S 
might be found to be positive less frequently in Stepl. 
But in the long run, such as by time 375, Reclaiming with 
Early Start can have a large value of reclaim-6. 
Second, since we are dealing with dynamic real-time sys- 
tems, tasks can arrive stochastically. Whether a task can 
be feasibly scheduled depends very much on the particular 
time the task arrives at the system, i.e., the current system 
state including the number of tasks and their worst case 
requirements, and which tasks are already in execution. 
Therefore, even though Reclaiming with Early Start can 
eventually have a larger value of rec la imd ,  it does not 
outperform the Basic Reclaiming algorithm with respect 
to guaranteeing dynamic task arrivals at every task arrival 
instance. This is because starting the execution of a task as 
early as possible is not necessarily always the best choice 
in a system with nonpreemptive scheduling and dynamic 
arrivals. For example, assume we have the same feasible 
schedule as in Fig. 1 and, for the ease of explanation, 
let us assume scheduling occurs instantaneously. If a task 
Tg arrives at time 300 with cg = ck = 50, d g  = 375, 
and Ri = exclusive (i.e., having a resource conflict with 
T7), a system using the Basic Reclaiming algorithm will 
be able to feasibly schedule T8 as shown in Fig. 12, while 
a system using the Reclaiming with Early Start will not 
be able to schedule Ts (since T6 and T7 are already in 
execution). Thus we need to examine the effectiveness of 
Reclaiming with Early Start and Basic Reclaiming with 
respect to dynamic task arrivals through experimental 
studies. 

2) Correctness: In the following, we shall prove that the 
two resource reclaiming algorithms presented in this section 
are correct, that is, they will not cause the type of run time 
anomalies discussed in Section 11. 

Theorem I :  Given a feasible multiprocessor schedule S 
with resource and processor constraints, the Basice Reclaiming 
Algorithm will produce a correct post-run schedule. 

Proof: we only have to prove that all tasks start on-time 
in the post-run schedule produced by the Basic Reclaiming 
Algorithm. 



SHEN et al.: RESOURCE RECLAIMING IN MULTIPROCESSOR REAL-TIME SYSTEMS 389 

Fig. 9. The post-run schedule S‘ produced by the Basic Reclaiming Algorithm. 

time n 12s isn  17s 2x1  27s 300 37s 
reclaim-6 0 0 25 25 25 25 25 125 

Fig. 10. The values of reclaim-(, at each task completion when early sturt 
is allowed. 

By Definition 3, if tasks are dispatched according to their st 
in the feasible schedule, they all start on-time. We only have 
to observe that the value of reclaim-6 in Step1 reflects the 
idle time units on all resources and processors. Therefore, for 
reclaim6 > 0, we can have a time translation of reclaimb 
units of time (i.e., time moved forward) on the portion of 
the feasible schedule remaining to be dispatched. Since the 
feasible schedule remains feasible under time translation, and 
since Step2.BASIC dispatches every task at st: = st; - 
reclaimb, it follows that the tasks in the post-run schedule 
produced by the Basic Reclaiming Algorithm must have been 
started on-time. 0 

Theorem 2: Given a feasible multiprocessor schedule S 
with resource and processor constraints, the post-run scheduled 
produced by the Reclaiming with Early Start Algorithm is 
correct. 

Proofi We shall prove that passing does not occur when 
Reclaiming with Early Start is used. Then by Lemma 2, we 
know that all tasks start on time. 

We prove this by contradiction. Consider a task T, to be 
dispatched in Step2.EARLYSTART. Suppose 3 T; such that 
Tj were dispatched at some time st; < sti while st, > f t i .  
This implies that Tj passed T;. But this is impossible; because 
if stj > f t ; ,  can-start-early would have become false in line 
12 of StepZEARLYSTART, and hence Tj would not have 

3) Applicability of the Resource Reclaiming Algorithms: 
Here we discuss the applicability of the resource reclaiming 
algorithms to task and multiprocessor systems with various 
characteristics. 

Shared Memory Versus Local Memory Multiprocessor Mod- 
els: There are two types of multiprocessor scheduling models. 
In one type, a global shared memory is assumed so that each 
task can be executed on any of the processors. In the other 
type, each processor possesses its own local memory so that a 
task is allocated to one of the processors, and thus can only be 
executed on a particular processor at run time. The former can 
only model identical multiprocessor systems, while the latter 
can model both identical and heterogeneous multiprocessors. 
In either type of multiprocessor system, tasks executing on 
different processors can share the use of resources, such as 
shared data structures. Thus the scheduling algorithm used in 
either model must consider not only the timing constraints of 
tasks. but also the resource constraints. Both of our resource 

been dispatched. 0 

reclaiming algorithms preserve the processor assignment a 
multiprocessor scheduler makes in constructing a feasible 
schedule; therefore they are applicable for both types of 
multiprocessor scheduling models. 

Precedence Contraints among Tasks: In this paper, we have 
assumed that tasks are independent. There are many applica- 
tions in which tasks are related by precedence constraints. 
Precedence constraints specify the partial ordering among 
tasks such that a task can start execution only when all of its 
predecessors have completed execution. Since neither of the 
resource reclaiming algorithms proposed in this paper allows 
passing (as defined in Section 111), they are both directly 
applicable for task systems with precedence constraints. If 
tasks have precedence constraints in a feasible schedule, 
the resource reclaiming algorithms will never violate these 
precedence constraints. 

Tasks with Explicit Ready Times: Some systems may have 
tasks that cannot be started until after some specific time, 
called a ready time. For example, periodic tasks cannot be 
started until the beginning of their periods. In such systems, a 
task with a ready time may have been placed in the feasible 
schedule, but it cannot be moved forward to pass its ready 
time in the schedule. In this case, our resource reclaiming 
algorithms can be modified to take into consideration a task’s 
ready time. In Step 2 of each of the algorithms, we need to 
consider the ready time of a task when we try to start a task. 
Specifically, first at line 4 in Fig. 6 and line 18 in Fig. 7, the 
following condition should be added: 

0 if current-time 2 ready-time(T,,). 
Second, at line 7 in Fig. 6 and line 21 in Fig. 7 we need 

to modify the calculation of the actual start time of a task to 
the following: 

0 ast,, = maz(st,, - reclaim-6, ready-time(T,,)). 
Other Types of Tasks: In addition to dynamic hard real-time 

tasks, a system may have 1) monotone tasks [ 14],2) dual-copy 
fault-tolerant tasks [2], and 3) non-real-time tasks. Real-time 
systems with these types of tasks can all benefit from resource 
reclaiming. Instead of using the reclaimed time reclaim-6 for 
the tasks that have already been guaranteed in the feasible 
schedule, a system can use it to 1) execute the optional part of 
a monotone task, 2) increase the time assigned to the primary 
copy of a dual-copy fault-tolerant task in a feasible schedule, 
or 3 )  preemptively execute non-real-time background tasks. 

4) Computation Time Comparison of Centralized Versus 
Concurrent Implementation: Two different approaches can be 
taken to implement the resource reclaiming algorithms on a 
multiprocessor system - centralized and concurrent. In a cen- 
tralized scheme, the algorithm can be implemented by a single 
reclaiming daemon process. In a concurrent scheme, each 
processor will do its own reclaiming and all the processors 
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Fig. 11. The post-run schedule S' produced by the Reclaiming with Early Start Algorithm. 

Fig. 12. The post-run schedule S' produced by the Basic Reclaiming with the addition of TR. 

in the multiprocessor system can be concurrently reclaiming 
unused time as tasks complete execution. The parallelism 
provided by a multiprocessor can be more effectively exploited 
with a concurrent implementation. We demonstrate this point 
in the following. 

Table IV compares the computation time of the centralized 
and the concurrent implementation in the worst case, i.e., 
when all m processors complete their respective current task 
executions to perform resource reclamation at the same time, 
and all shared variables are accessed simultaneously by all 
processors. Let Cstepl be the computation time of Stepl, 
C B ~ ~ ~ ~  the computation time of StepZ.BASIC, and C E ~ ~ ~ ~  the 
computation time of Step2.EARLYSTART. In a concurrent 
implementation, lines 7-8 in Stepl must be within a critical 
section to maintain the consistency of the value of reclaim-S. 
So let us define E to be the computation time plus the 
lock-request and lock-release time of lines 7-8 in Stepl 
(The lock-request and lock-release time using the predictable 
multiprocessor synchronization mechanisms developed in [9] 
is 0.05 ms in the worst case when the communication bus 
shared by four processors is fully saturated.) Moreover, in 
a concurrent implementation the first task in PL and the 
first tasks in all the PPL's will be accessed by all the 
processors, leading to the necessity of using shared variables 
in the implementation. Let 7- = V, - V,,, where V, is 
the cost of accessing one shared variable, and V,, the cost 
of accessing one nonshared variable. Thus 7- represents the 
difference in terms of cost of accessing a variable between 
the concurrent and centralized implementation schemes. In 
comparing the computation time of a concurrent implemen- 
tation versus a centralized (sequential) implementation, we 
assume the worst case execution interleaving for the con- 
current approach. The computation times in the centralized 
column are simply the sequential execution costs. Since, in 
the concurrent case, the worst case interleaving is assumed, 
the expression Cst,,, + (m - 1 ) ~  takes into account the costs 
of m processors sequentially accessing the critical section. The 
expressions C B ~ ~ ~ ~  + 57- and C E ~ ~ ~ ~  + ( m  + 3). model the 
5 and m + 3 shared variables accessed in Step2.BASIC and 
Step2.EARLYSTART7 respectively. 

In Table V the advantage of the concurrent scheme is 
exemplified by an implementation of Step2.BASIC on a 

TABLE IV 

VERSUS CONCURRENT IMPLEMENTATION 
COMPUTATION TIME COMPARISON FOR CENTRALIZED 

Centralized Concurrent 

Stepl m * Cstrp1 C S t e p l  + ( m  - 

Step2.EARLYSTART rn * C E ~ ~ , ~  C E d y  + ( m  + 3)' 
Step2.BASIC m * CBaszc CBasic 5' 

TABLE V 
EXECUTION TIMES (ps) OF Step2.BASIC ON A 

VMEBUS BASED MOTOROLA 68020 MULTIPROCESSOR 

1 2 3 4 5 
number of 
processors 
I;>* 1 
CBaszc 20.5 

2.75 3.92 5.33 6.71 
centralized 41 61.5 82 102.5 
concurrent 29.25 35.1 42.15 49.05 

VMEbus based Motorola 68020 multiprocessor. V,, is defined 
as the access time of on-board memory. C B ~ , ~ ~  is 20.5 ps 
excluding the startexecutzon ~pera t ion .~  The values of V, 
were obtained from the worst case timings when two to five 
processors contending for the same remote memory location. 
The worst case execution times of Step2.BASIC on two to five 
processors for the centralized and concurrent implementation 
were derived from the formulas given in Table IV. It is evident 
from Table V that, for a reasonable number of processors in 
a shared bus multiprocessor system, the concurrent scheme is 
more efficient. 

Iv .  A N  APPLICATION OF THE 
RESOURCE RECLAIMING ALGORITHMS 

In many real-time applications, the system is required to 
execute tasks in response to external events and signals. To im- 
prove the guarantee ratio (the number of tasks guaranteedhhe 
number of tasks arrived) of tasks, the resource reclaiming 
algorithms presented in the last section can be used. In this 
section, we shall be concerned with the application of the 

3The startrsecution has the same computation time cost for both 
centralized and concurrent schemes. 
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resource reclaiming algorithms to such a real-time operating 
system kernel [15] and demonstrate the effectiveness of the 
algorithms through simulation results. 

A. Concurrent Implementation of Resource Reclaiming 
Algorithms in a Multiprocessor System 

Both resource reclaiming algorithms have been implemented 
in the Spring Kernel [15], adopting the concurrent implemen- 
t a t i ~ n . ~  In this section, we discuss the important issues in 
implementing the resource reclaiming algorithms in a NUMA 
multiprocessor (Nonuniform Memory Access multiprocessor) 
system with shared resources, and the interplay between the 
scheduler and the resource reclaiming algorithms. In a NUMA 
multiprocessor system, each processor has local memory for 
task code and private resources. Tasks might also require 
other nonlocal resources, such as shared data structures, and 
communication ports, i.e., we are dealing with real-time tasks 
with resource constraints. Thus there exists an integrated 
schedule for all the processors on a multiprocessor. Since 
predictability and consistency are two important issues and 
are difficult to maintain in a dynamic concurrent system, in 
the following discussion, we concentrate on how to achieve 
boundedness in terms of overhead cost, and how to achieve 
data consistency in this concurrent implementation. 

Parallel Execution of the Scheduler and Guaranteed Tasks: 
In order to maximize the potential parallelism provided by 
multiprocessor systems, the Spring Kernel supports the con- 
current execution of application tasks and the scheduling 
algorithm. This is accomplished by using one processor on 
a multiprocessor node as the system processor to offload task 
scheduling and other operating system overhead, while using 
the remaining processors to execute guaranteed application 
tasks. The scheduler on the system processor is responsible 
for dynamically producing a feasible schedule for the multi- 
processor as tasks arrive. There is a dispatcherprocess on each 
application processor. Effectively, whenever a task completes, 
this dispatcher process executes Steps1 and Step2 of the 
reclaiming algorithm. Thus, reclaiming occurs concurrently 
on the application processors. 

Fig. 13 illustrates the scheme we use to schedule dynamic 
task arrivals with resource reclaiming. GUARANTEE uses 
the heuristic scheduling algorithm proposed in [ 103, which 
has a complexity of O ( n ) .  To achieve concurrent execution 
of application tasks and the scheduler while maintaining the 
predictability of the feasible schedule-to start the execution 
of tasks by their scheduled start times, at each task arrival, 
a time line called the cut-off-line is calculated in the existing 
feasible schedule based on the time cost of the scheduling 
algorithm in use. In order to bound the cost of running the 
scheduler, we set a value N as the maximum number of tasks 
that the scheduler will schedule at a time. So the maximum 
value of the cut-on-line is capped by a value current-time + 
S C ( N ) ,  where S C ( N )  is the worst case computation time 
of the scheduler to schedule N tasks. Any task T, with 
s t ,  - rec la imd < cut-offlline in the schedule will not be 

4The Spring kernel is being built on a shared bus multiprocessor consisting 
of multiple VME based Motorola 68020 MVME136A boards. 

Scheduler 

Whenever a task T; arrives, do 

Calculate the run time cost SC of the scheduling 
algorithm based on the number of tasks in 
the current PL plus the new task arrival; 

cut-off-line = current3ime + SC; 
I, 6 {Tjldj  - reclaimd < cutaffl ine}; 
Calculate the earliest available time 

of each resource and processor, 
based on the resource and processor requirements, 
and f t j  of the tasks Tj in I,, and the value of reclaimd; 

'-7 + {Tjldtj - reclaim4 > cut-offline}; 
GUARANTEE(I,, 2';); 

t 

) 

Fig. 13. Scheduling dynamic real-time tasks with resource reclaiming. 

considered in the rescheduling process. This ensures that the 
scheduling algorithm can execute in parallel with application 
tasks. The details of this concurrent implementation can be 
found in [8]. 

Multiple Invocations of the Scheduler: When a new task 
arrives, its worst case computation time, deadline, and resource 
and processor requirements are assumed to be known. The 
system will try to guarantee the new task arrival together 
with all the tasks T,, in the original feasible schedule, for 
which st ,  - reclaim-6 2 cut-offline. With the knowledge 
of the value of reclaim-6, i.e., the amount of time that has 
been reclaimed on all resources and processors, those tasks 
T, with st ,  - reclaamd < cut-off-line will finish at least 
reclaim-S time units earlier than their scheduled finish time 
f t , .  Thus, in calculating the earliest available time of resources 
and processors in trying to schedule the new task arrival in 
Fig. 13, the scheduler takes the current value of reclaim-6 
into consideration. 

If the new task arrival is guaranteed, the newly generated 
feasible schedule S,,, must be appended to the original 
feasible schedule at the cut-offdine. Since the scheduler's 
cost SC is the scheduler's worst case computation time, 
it is very likely that there are still tasks in the original 
feasible schedule before the cut-offline at the time when the 
scheduler finishes scheduling. Meanwhile, reclaim-6 will be 
continuously updated by the resource reclaiming algorithm. 
Let us call the value of reclaim-6 that has been updated 
since the new scheduling instance occurred reclaim-delta'. 
Thus for the tasks that are in the section of the feasible 
schedule before the cut-off-line, the value of reclaim-6' is 
valid. However, for the tasks that are in the section of the 
feasible schedule produced after the cut-offdine, the rec la im4 
portion of the value of reclaim-6' has already been taken into 
consideration in calculating the tasks' scheduled start times. 
Moreover, there can be more than one cut-offline in a feasible 
schedule since more than one task can arrive, causing the 
scheduler to be invoked multiple times during the execution of 
a feasible schedule. We must develop a protocol to maintain 
the correct view of the value of reclaamd between the tasks 
that are before and that are after each of the cut-off-lines, i.e., 
between any two portions of the current feasible schedule that 
have been constructed at two different scheduling instances. 
Otherwise, inconsistent usage of the value of reclaim-6 may 
result in incorrect post-run schedules. 
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TABLE VI 
SIMULATION PARAMETERS 

parameter value explanation 
overhead-cost 4 The portion of the scheduler’s cost that is constant for each invocation of the scheduler 
per-task-cost 
Basic Reclaiming 
Early Start 
number of processors 
number of resources 
uicc-m in 
uicc-max 

1mcn 

1 m a z  

actual computation time 

5 
1 
2 
5 
5 

50 
150 

9 

The portion of the scheduler’s cost dependent on the number of tasks in the schedule 
The worst case cost of the Basic Reclaiming algorithm 
The worst case cost of the Early Start algorithm 
The number of processors used in the simulation 
The number of resources used in the simulation 
Tasks’ worst case computation times are uniformly 
distributed between wccmin and wccmax. 
The laxity of a task is calculated based on the worst case 
computation time of the task, and it  is uniformly distributed between I , , ,  to Z,,, 
times the worst case computation time. 

The probability that a task uses a resource in shared or exclusive mode if the task 
requires that resource 
A task’s actual computation time, uniformly distributed between 50% and 90% of its 
worst case computation time 

10 

V The probability that a task requires any of the resources 

0.5 

(50%,90%) 

LP, V The average load of processor i (as explained in this section) 
The mean interarrival time of tasks on processor a ,  can be calculated for a given L,; 1 

To handle this problem, we have designed a protocol. Due to 
space limitations, we present only a simplified version of this 
protocol in the following. See [13] for a complete description 
and correctness analysis of this protocol. 

Each task Ti in the feasible schedule has a rese t4  field. 
The value of this field is zero for all tasks except for 
the task Tf ,  which is the first task in the total ordering 
P L  for S,,,,, where S,,,, is the section of the feasible 
schedule produced by the kth invocation of the scheduler. 
reset-6(Tfk) is set to be equal to the value of reclaim-6 
that has been assimilated by the kth invocation of the 
scheduler. 
As soon as Tfk  is dispatched, reclaim-6 = reclaim4 - 
reset-S(Tf, ). 

This protocol ensures the correct view of the value of 
reclaim-S throughout a feasible schedule at any time. One 
may be tempted to adopt a conceptually simpler protocol, one 
that explicitly modifies the sti and f t i  of all the tasks after 
the cut-ofldine by the amount of reclaim-6 - reset-6(Tfk) 
at the end of each scheduler’s invocation. The drawback to 
this protocol is that its run time cost is O ( n )  and reclaim-6 
must be locked while this protocol is in progress to avoid race 
conditions between the scheduler and the dispatchers. This 
means that the dispatchers may have to wait for an amount of 
time that is O ( n ) ,  i.e., not bounded. So this is not acceptable. 

B. Experimental Studies 
To evaluate the performance of the resource reclaiming 

algorithms and to study the tradeoff between system overhead 
costs and run time savings due to resource reclamation, we 
present experimental results in this section. Since it is difficult 
to collect elaborate performance statistics without affecting 
the true performance of the actual Spring Kernel, we have 
implemented our resource reclaiming algorithms not only on 

the Spring Kernel, but also on a software simulator which 
simulates the multiprocessor Spring Kernel. 

1) Simulation Method: In our simulations, the system over- 
head costs are the worst case costs measured on the Spring 
Kernel. The scheduler’s cost SC is calculated before each 
invocation of the scheduler as follows: SC = overhead-cost 
+ n * per-taskcost, where n is the number of tasks to be 
scheduled for the current invocation of the scheduler. As 
mentioned in the previous section, in order to bound the cost 
of running the scheduler, we set a value N as the maximum 
number of tasks that the scheduler will schedule at a time, i.e., 
n 5 N in calculating SC. In all the experiments, whenever 
the resource reclaiming algorithms are used, the cost of the 
algorithms are added onto a task’s worst case computation 
time before the task is scheduled. Table VI lists the worst case 
system costs and other simulation parameters respectively used 
in our simulation. 

A “v” in an entry in Table VI means that the simulation 
parameter is a variable. The values listed for the various 
parameters are the values used in all or most of the ex- 
periments. If a value different from the one stated in Table 
VI is used, it will be specified in presenting the results for 
that experiment. We have tested two cases for wccmin and 
wccmax. One is wcc-min = 50 and wcc-max = 150. 
The other is wcc-mzn = 50 and wcc-max = 1000. These 
two cases represent the two kinds of task systems in which 
the worst case computation times of tasks have small/large 
variance. We have found that in most cases, the performance of 
the resource reclaiming algorithms is almost the same for both 
cases of tasks’ worst case computation times. We also present 
results for which we linearly increase the value of wcc-min, 
thus causing the ratio of the cost of resource reclaiming to the 
average worst case computation time among tasks to decrease. 

The combination of the mean interarrival time 1 / X  of tasks, 
the value of Pus,, the number of resources S, and wccmin 
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TABLE VI1 
SIMULATOR VALIDATION. NR = No RESOURCE RECLAIMING; BR = BASIC RECLAIMING; ES = EARLY START 

Guarantee Performance 
Ratios Gain parameters 

test # tasks # resources NR BR ES BR-NR ES-NR 
Spring Kernel 71.0 73.4 88.6 2.4 17.6 

1 583 5 sim(avg. cost) 71.0 73.4 91.4 2.4 20.4 

58.0 61.0 72.0 3.0 14.0 sim(worst 

Spring Kernel 66.8 69.9 80.0 3.1 13.2 
2 566 7 sim(avg. cost) 65.7 70.0 84.3 4.3 18.6 

cost) 

55.0 59.0 67.0 4.0. 12.0 sim(worst 
cost) 

and wccmax determines the average load of the system. In our 
simulation, tasks arrive as a Poisson process. Every processor 
has the same l / X i ,  for 1 5 i 5 m. We use the following 
three formulas to measure the average processor load L,i, the 
average resource load L,i, and the resource conflict probability 
P, for two tasks. 

+ (0.5 * (3) 

E[WCC] is the expected value of the worst case computation 
time of a task; thus it is either 100 or 525 for the two kinds 
of worst case computation times in our simulations. m is 
the number of processors and T is the number of tasks in 
a schedule. The first two formulas are straightforward. Note 
that the average resource load L,i goes up as Pus, increases 
even if the expected worst case computation time E[wcc] and 
the mean arrival rate X i  stay the same. In the third formula, 
P, is the probability that two tasks will conflict on any of 
the given S resources (versus Pus, which is the probability 
that a task will require a resource). Thus P, is a measure 
of the resource conflicts in a task load. In order to simulate 
task arrivals that have sufficient parallelism to be run on a 
multiprocessor system, we must keep the value of P, fairly 
low. A high value of P, would indicate the inherent resource 
conflicts among many tasks. P, is calculated as 1 minus the 
probability that the two tasks will not conflict on any of the 
S resources. P, increases when the value of Pus, or the value 
of S increases. So if we keep Pus, the same for all the tasks, 
the more resources there are in a system, the more resource 
conflicts tasks will have. 

The performance metric we use is the guarantee ratio of an 
algorithm with remect to dvnamic task arrivals. The guarantee 
I 

the number of tasks uaranteed."In all the ratio is defined as r o ta.s E arriye 
simulation experimenk, eacTbJatafpoinkt ConsisPS of ten runs. 

t e nu 

Our requirement on the statistical data is to generate 95% 
confidence intervals for the guarantee ratio whose width is less 
than 5% of the point estimate. To evaluate the effectiveness 
of the proposed resource reclaiming algorithms, we have 
also implemented the following three schemes for comparison 
purposes: 

guarantee with actual computation time: This is an ideal 
scheduling scenario. In this scheme, when a task arrives, 
the scheduler omnisciently knows the actual, rather than 
the worst case, computation time of the task. Therefore, 
resource reclaiming is not necessary. 
rescheduling: In the rescheduling scheme, whenever a 
task executes less than its worst case computation time, 
the scheduler is invoked to reschedule the tasks in the 
existing schedule in the same manner as when a new 
task arrives. The scheduler is invoked to do resource 
reclaiming only if the difference between the worst case 
computation time and the actual computation time of the 
completed task is greater than the scheduler's cost. 
no resource reclaiming: Here no resource reclaiming is 
done. Tasks are dispatched according to their scheduled 
start times. The case of no resource reclaiming provides 
a lower bound on performance. 

2) Simulator Validation: To verify the validity of the Spring 
software simulator, we conducted empirical tests on the Spring 
Kernel. Table VI1 shows the results of two task loads tested 
with the number of task arrivals and resources listed in the 
table. Each task load was tested on the actual Spring Kernel, as 
well as on the simulator with respect to no resource reclaiming, 
using the Basic Reclaiming algorithm, and using the Early 
Start algorithm. Two types of system overhead costs (i.e., the 
costs of the scheduler and the resource reclaiming algorithms) 
were used for the simulator-the average and the worst case 
costs, both being the measurements from the actual kernel. 
As shown in Table VU, when the average cost is used, the 
absolute guarantee ratios produced by the simulator are very 
close to those of the Spring Kernel. And as expected, when 
the worst case cost is used in the simulator, the absolute 
guarantee ratios are lower than those of the Spring Kernel. 
Since the objective of our simulation studies in the rest of 
this section is to evaluate the effectiveness of the resource 
reclaiming algorithms, it is important that the amount of 
performance gain/loss obtained in using the simulator is a 
good approximation of the actual kernel. Thus in the last two 
columns in Table VII, the difference in the guarantee ratios 
between the resource reclaiming algorithms and no resource 
reclaiming is shown. It is clear from these two columns that 
the performance gain of employing either of the resource 
reclaiming algorithms in the simulation with the worst case 
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Fig. 14. Performance of basic reclaiming and reclaiming with early start. 

costs matches closely to the performance gain obtained in the 
actual kernel. 

3) Simulation Results: 
a) Performance Comparison of the Two Resource Reclaim- 

ing Algorithms: In this section, we compare the performance 
of the two resource reclaiming algorithms with no resource 
reclaiming. In Fig. 14, L,, = 0.75 and Pus, varies from 0.1 
to 0.5. This represents a heavy to overloaded system. For 
example, when Pus, is 0.3, L,, is 1.13, and when Pus, is 0.5, 
L,, is 1.9. Reclaiming with Early Start is very effective for all 
the resource usage probabilities. Its guarantee ratio is 18.4% 
higher than that of no resource reclaiming when Pus, = 0.2. 
When the resource conflict is small (i.e., when Pus, 5 0.3 
and thus P, 5 0.3), Reclaiming with Early Start performs 
much better than Basic Reclaiming since it can exploit more 
parallelism. When the value of Pus, is 0.5, the performance of 
the Basic Reclaiming algorithm approaches that of Reclaiming 
with Early Start. When the value of Pus, is too high, P, is even 
larger, indicating high resource conflicts among tasks, thus 
little parallelism among tasks. For example, for Pus, = 0.5, 
P, = 0.65. In this case there is a very high probability that any 
two arriving tasks will have resource conflicts. This will result 
in schedules in which very few tasks can be run in parallel. 
Since in using a multiprocessor system, one would expect 
certain levels of parallelism to exist among the tasks, it is more 
appropriate to keep the value of Pus, 5 0.3 (thus, P, 5 0.3) in 
the rest of our experiments. From the above results, we see that 
Reclaiming with Early Start does outperform Basic Reclaiming 
in most of the cases. Thus in the following experiments, we 
concentrate on evaluating the performance of Reclaiming with 
Early Start. 

b) Performance Comparison with Rescheduling: The sched- 
uler has a more global view of the tasks in the schedule than 
the resource reclaiming algorithm does, but it also has a higher 
run time cost. The purpose of this study is to answer the 
following question: “Suppose we can reduce the cost of the 
scheduler, will the rescheduling scheme be a better choice?” 
We compare the performance of the rescheduling scheme with 
that of 1) the guarantee with actual computation time, 2) 
Reclaiming with Early Start, and 3) the no reclaiming schemes. 
Here we artificially vary the scheduler’s per- taskcost  from 0 

80.-  

50 
0 1 2 3 4 5  

Schedulcr’a per task cost 

Fig. 15. Effects of scheduler’s run time cost. 

to 5, where 5 is the actual worst case cost we have measured 
on the Spring Kernel. The task loads simulated have L,i = 
1.0 and Pus, = 0.2. 

The simulation results in Fig. 15 indicate that the perfor- 
mance of rescheduling degrades 17.1% when the cost of the 
scheduling algorithm increases from 0 to 5. Only when the 
scheduler’s per-task-cost is zero, does rescheduling perform 
better than Reclaiming with Early Start. In real systems, the 
cost of the scheduler will be nonzero. So the rescheduling 
scheme is not a practical choice. The performance of Reclaim- 
ing with Early Start is very close to the performance of the 
guarantee with actual computation time scheme no matter how 
the cost of the scheduler changes. This demonstrates that low 
complexity run time local optimization, such as the one used 
in Reclaiming with Early Start, can be very effective in a 
dynamic real-time system. 

c) Effects of Task Laxity: We now examine the performance 
of the various schemes with respect to different task laxities. 
Fig. 16 shows the results of the experiments in which Pus, = 
0.2 and L,i = 1.0. Here tasks’ laxities are plotted along the X- 
axis. At each x point, a task’s laxity is drawn from a uniform 
distribution between x% * W C C  and x + 100% * WCC, where 
W C C  is the average worst case computation time of tasks. 
With tight task laxities, e.g., x 5 200, resource reclaiming 
is not very effective, since, in this case, tasks arrive at the 
system with very small laxities, thus many of them cannot 
even be guaranteed. As the laxities of the tasks are relaxed, 
the performance of Reclaiming with Early Start approaches the 
performance of the guarantee with actual computation time 
scheme, and is much better than that of rescheduling and 
no resource reclaiming. At x = 900, the difference between 
the guarantee ratios of using Reclaiming with Early Start and 
of using no resource reclaiming is 11%. On the other hand, 
rescheduling performs as well as Reclaiming with Early Start 
only when the laxity is very tight, i.e., when 2 = 100. It 
performs poorly as the laxity increases. The more tasks there 
are in the feasible schedule, the more rescheduling will cost. 
With larger task laxities, more tasks can be guaranteed, thus 
the feasible schedule contains more tasks. We have found that 
resource reclaiming is most effective when there are tasks to 
be dispatched continuously from the schedule. 
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Fig. 16. Effects of task laxity. 

d)  Effects of Worst Case Computation Time: In Fig. 17, we 
compare the performance of Reclaiming with Early Start with 
no reclaiming with respect to different worst case computation 
times. As the worst case computation times of tasks increase, 

resource reclaimin cost the ratio worst computat&n time decreases. Recall that 
the run time cost of Reclaiming with Early Start is 2 (millisec- - 

onds). So for the two kinds of worst case computation times we 
have tested so far, i.e., uniformly distributed between (50, 150) 
and between (50, lOOO), the resource reclaiming overhead cost 
is at most 0.4% of a task’s worst case computation time (since 
the minimum worst case computation time wcc-man = 50 in 
both cases and 2/50 = 0.4). What happens to the performance 
of resource reclaiming if wcc-min is smaller so that the ratio 
of the resource reclaiming overhead to the minimum worst 
case computation time becomes larger? In this experiment, we 
varied wcc-min from 5 to 50, and the worst case computation 
time of a task is uniformly distributed between wcc-min and 
2 * wcc-min. The average processor load LPi is 1.0 and Puse 
is set to 0.3. We did not include any scheduling overhead in 
this experiment for the purpose of examining the pure effects 
of the resource reclaiming overhead costs. In Fig. 17, we plot 
the values of wcc-min on the X-axis. When wcc-min = 5, 
the resource reclaiming overhead ranges from 20% to 40% of 
tasks’ worst case computation times. When wcc-man = 50, 
the resource reclaiming overhead is only 0.2% to 0.4% of 
tasks’ worst case computation times. As one can see, if the 
resource reclaiming overhead can be more than 10% of tasks’ 
worst case computation time, i.e., when wcc-min < 20 on the 
X-axis, the guarantee ratio using Reclaiming with Early Start 
can be even worse than without any resource reclaiming. So it 
only pays to do resource reclaiming if one can ensure that the 
overhead cost of the resource reclaiming algorithm is below a 
reasonable percentage of tasks’ worst case computation times, 
such as below 10%. 

e) Effects of Average Processor Load: In all the above 
experiments, we have simulated heavy load situations. In Fig. 
18, we examine the performance of Reclaiming with Early 
Start with respect to different average processor loads L,i. 
We vary the value L,; from heavily loaded (1.0) to lightly 
loaded (0.3). In this experiment, Pus, is 0.2. A task’s laxity 
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Fig. 17. Effects of WCC to resource reclaiming cost ratio. 
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Fig. 18. Effects of average processor load. 

is uniformly distributed between 1 to 10 times its worst case 
computation time, so that no matter what the average processor 
load is, tasks arrive with a large variance of laxities. We 
compare the performance of Reclaiming with Early Start with 
the performance of guarantee with actual computation time and 
no resource reclaiming. As the performance graphs indicate, 
the guarantee ratio of Reclaiming with Early Start follows 
closely to that of guarantee with actual computation time for 
all the different loads. Except when the system is very lightly 
loaded, i.e., when L,, < 0.4, Reclaiming with Early Start has 
a much higher guarantee ratio than no resource reclaiming. 
At L,; = 0.8, the difference between the guarantee ratios 
of Reclaiming with Early Start and no resource reclaiming is 
14.3. When the load of the system is extremely low, e.g., at 
L,, = 0.3, resource reclaiming is not necessary. 

Effects of Actual Computation Time to Worst Case Com- 
putation Time Ratio: In all the simulations presented above, 
the actual computation time of a task is between 50% to 90% 
of its worst case computation time, drawn from a uniform 
distribution. Fig. 19 shows the results for the case in which all 
the tasks in a task load for each simulation point have the same 
ratio of actual computation time to worst case computation 
time. We plot the percentage of the unused computation time 
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Fig. 19. Effects of different actual to worst case computation time ratios. 

on the x axis. This test studies the effect of the accuracy of 
worst case execution times upon performance. This ratio is 
varied from 100% to 10%. Note that for each test, even if 
all the tasks have the same actual computation time to worst 
case computation time ratio, their actual computation times 
are still very different due to the uniform distribution of their 
worst case computation times. Pus, is set to 0.2. The average 
processor load has been calculated according to tasks’ actual 
computation times rather than their worst case computation 
times, i.e., L,i = A; * E[actual computation time]. At each 
simulation point, we generated the same average processor 
load L,; = 0.6 with respect to the expected actual computation 
time, so that if we had known the actual computation times 
of tasks, the task load was mostly feasible as demonstrated by 
the performance of guarantee with actual computation time. 
However, since in using Reclaiming with Early Start and no 
resource reclaiming we do not know the actual computation 
times at schedule time, the smaller the ratio of the actual 
computation time to the worst case computation time (as the 
tasks leave more unused computation time), the larger the 
worst case load the system has to handle. 

The simulation results indicate that-1) For a large range of 
the accuracy of worst case computation time estimation (from 
30% to loo%), Reclaiming with Early Start performs very 
close to that of the guarantee with actual computation time 
scheme. This is because Reclaiming with Early Start is very 
effective in reclaiming the unused time dynamically, reflecting 
the actual computation times of tasks in a timely fashion. 
2 )  The improvement on the guarantee ratio of Reclaiming 
with Early Start over no resource reclaiming is substantial. 
The guarantee ratio is improved by 23.9% when tasks’ actual 
computation time is 40% of their worst case computation 
times. 

V. CONCLUSION 

In this paper, we have investigated the problem of resource 
reclaiming in real-time multiprocessor systems. A correctness 
criterion was defined for designing correct resource reclaiming 
algorithms. We presented two simple resource reclaiming 
algorithms, Basic Reclaiming and Reclaiming with Early Start. 

The complexity of the algorithms is bounded by the number 
of processors in a multiprocessor node. Practical issues for 
supporting predictability in multiprocessor real-time systems 
were considered and the algorithms were shown to be im- 
plementable. In fact, both resource reclaiming algorithms 
have been implemented in the Spring Kernel. The resource 
reclaiming algorithms have also been studied under dynamic 
real-time task arrivals and experimental results are presented. 
From the simulation studies, the following can be observed: 

Good local optimization can be very effective in a dynamic 
real-time system. 

In a real-time system, it is important to employ run time 
algorithms with bounded time complexity. The complexity of 
the algorithm should be independent of the number of tasks. 

Beside having bounded time complexity, it is essential for 
a resource reclaiming algorithm to be inexpensive in terms of 
overhead cost. Our simulation results indicated that it only 
pays to do resource reclaiming if one can ensure that the 
overhead cost of the resource reclaiming algorithm is below 
10% of tasks’ worst case computation times. 

Resource reclaiming can compensate for the performance 
loss due to the inaccuracy of the estimation of the worst case 
computation times of real-time tasks. 

Resource reclaiming is very useful for real-time systems 
that have to guarantee tasks with respect to their worst case 
computation times. For a large range of accuracy of the worst 
case computation time estimation (from 30% to 100%) that we 
have experimented with, Reclaiming with Early Start performs 
very close to that of an ideal scheduling scenario-guarantee 
with actual computation time. 

Even though Reclaiming with Early Start has a higher 
run time cost than that of Basic Reclaiming, it performs much 
better than Basic Reclaiming in most of the situations except 
1) when the system is lightly loaded with L,; < 0.5 and/or 
2) when the resource usage probability of tasks is high with 
Pus, 2 0.5. 

Simple resource reclaiming algorithms are needed most 
when the system is heavily loaded and the invocation of the 
scheduling algorithm is expensive compared with the resource 
reclaiming algorithms. 

When the load of the system is extremely low, e.g., 
L,; 5 0.3, resource reclaiming is not necessary. 

Dynamic resource reclaiming is applicable to a wide range 
of task resource usage probabilities, task laxities, and system 
loads. 

In summary, the results show that, although the resource 
reclaiming algorithms proposed are very simple, they are very 
effective with respect to a wide range of system and task 
parameters. We believe that resource reclaiming substantially 
improves average system performance. 
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