TANOR: A TOOL FOR ACCELERATING N-BODY SIMULATIONS ON RECONF

IGURABLE

PLATFORM

J. S. Kim, P. Mangalagiri, K. Irick, M. Kandemir, V. Narayama
Department of Computer Science and Engineering
Pennsylvania State University

email: jskim, mangalag, irick,

K. Sobti, L. Deng, C. Chakrabarti
Department of Electrical Engineering

Arizona State University

kandemir, vijay@cse.pdu.e

N. Pitsianis, X. Sun
Department of Computer Science
Duke University

email: Kanwaldeep.Sobti, Lanping.Deng, chaitali@asuw.edail: nikos, xiaobai@cs.duke.edu

ABSTRACT

Algorithm-architecture co-exploration is hindered by Ik of ef-
ficient tools. As a consequence, designers are currentiytalex-
plore only a limited set of points in the whole design spadeere-
fore, atool that can allow fast exploration of algorithmiclaarchi-
tectural tradeoffs in an automated manner is highly desirethis
paper, we describe TANOR an automated tool targeted fogdesi
ing hardware accelerators for the class of N-body intevaqgtirob-
lems. The design flow, starting from a high level (MATLAB) de-
scription, configures the entire system automatically. \&&cdbe
the design of TANOR and demonstrate the effectiveness aat-ad
ability of our tool using three different target applicats namely,
the gravitational kernel used in astrophysics, the gandeianel
common in image processing applications, and a force alounl
kernel applied in molecular dynamics. Our results dematesthat
TANOR generates hardware accelerator that are competiite
existing custom accelerator.

1. INTRODUCTION

Traditionally, ASICs have been used to achieve a perforemapeedup
in scientific applications. However, in most of these sdfenap-
plications, the precise algorithmic specifications aremfubject
to change making reconfigurability desirable. Recent acksim
reconfigurable hardware, especially field programmable gat
rays (FPGAs), have facilitated the use of reconfigurablewsare
for such computationally intensive scientific applicatofhe com-
putationally intensive tasks of such applications are lacated
through the reconfigurable hardware. Most of the scientific a
plication designers work at algorithmic level and use Higlel
languages to model their applications. To realize such afi-ap
cation in reconfigurable hardware, the high-level desicriphas to
be translated into a hardware description language (HDlanA
ally translating the high-level descriptions into a HDL dgtion
that fits into the traditional RTL design flow is a clearly vegy
dious and error-prone process. One of the main goals of dar au
mated tool flow is to aid the designer in seamlessly transfggm
the high-level description of an application in Matlab to HD
Several design tools that automate the conversion betwgen h
level languages and RTL have been developed to reduce tigmndes
cycle and provide scope for algorithmic optimization andhar

tectural exploration. The input format of the design to éh&mls
can be broadly classified into three different categorigg)-fevel
graphical languages, algorithmic languages, and beteviaird-
ware descriptions[1]; Algorithmic languages like SRC Caorep
C/Fortran[2], Impulse C[3], Catapult C (Mentor Graphid§)fand
Xilinx AccelDSP Matlab subset[5] have been developed and ta
lored into the respective tool-flows developed by severab &P
vendors. While languages such as SRC and Impulse high-level
specifications reduce the complexity of code developmentefo
configurable platforms, the process of porting an existaigrgific
code to one of these languages is quite tedious - somethieig-sc
tific software developers are not acquainted with.

In this work, we focus on building our tool to support the slas
of N-body interaction problems that supports both alganithand
architectural exploration. The classical n-body problémusates
the evolution of a system of N bodies, which interact. It has d
verse applicability for studying particle dynamics in area varied
as Astrophysics, Molecular Modeling, and Quantum Chegy{}r
These tasks are very computationally intensive. The widge®f
application domains and the computationally intensive-taisks
involved in n-body simulations require reconfigurable kaack ac-
celerators. One of the prominent works in this area has been t
GRAPE project which implements the gravitational N-bodiern
action problem[7]. The GRAPE system used ASICs to accaerat
astrophysical n-body simulations, and was able to attaieak p
performance of 63.4 Tflops from GRAPE-6 system in 2003. How-
ever, as recently noted in [7], there is a need for an autahflie
to support architectures that can be configured for variot®dy
problems. The GRAPE PGR system[8] is an effort in this direc-
tion to support reconfigurable systems. Also, some earlyrtsff
have been made towards modeling molecular dynamics usi@ SR
Computers in [9, 10]. However, this system requires use giea s
cialized language and requires manual intervention in maayy
steps of translating specification to implementation sgobxéract-
ing timing information.

TANOR(A Tool for Accelerating N-body Simulations on Re-
configurable Platform) was motivated by the need for an aateth
system generator for N-body interaction problems and drivg
the following key targets,

e Support for kernel specification of the N-body problem in
a high-level language (MATLAB) making the algorithm-

architecture exploration accessible to application desig and Xilinx ISE 8.1.03i as back-end tools to generate the leitdi
be configured on the FPGA.

The generated architecture is composed of three main blocks
(See Figure 2): Kernel Function block, Data flow control Bloc
and Host-FPGA interface block. The Kernel Function blockris
e Realize designs competitive in terms of power, area, accu- plemented using the kernel function pipeline generatoigvben-

racy, and performance to the existing N-body hardware ac- erates the pipeline architecture of the kernel functionDi_Hhased
celerators. on the information from CPA phase. Based on the resource limi
tations of the target FPGA and the resource size of the gextkra
kernel function, the number of parallel pipelines to be uiceld
in one FPGA is inferred. The Data flow control block includes t
state machines which control the data steering betweerotahd
the generated hardware. Moreover, it includes storagetsuéind
queues. The automated HDL generation for this block uses HDL
templates that contain varioyg@rameterand generatesentences
supported by Verilog-2001 standard. This parameter vadtiing
2. TANOR DESIGN FLOW and instantiation mapping is automatically done by our &ftér
gathering information from CPA and kernel function codeeyen
tor. The Host-FPGA interface block, generates the contgolads

e Provide the end-user control over the design optimizations
and a fully automated design flow starting from MATLAB
specification to HDL synthesis.

In section 2, we present an overview of TANOR. In section
3, the details of key modules of our tool are explained. In sec
tion 4, we provide a case study to demonstrate the use of TANOR
We compare the achieved performance of our implementatitin w
previous efforts in this direction. Finally, in section 5e\provide
conclusions.

oo [W] for PCI Express cofeand serves as an interface_ be_tween RX/TX
FIFO of the PCI Express core and the user application.
The generated hardware configuration exploits both spail
. y temporal parallelism. Spatial parallelism is supportedriyltiple
Hardware Module Software Module instantiations of the pipelines of kernel function. The pemal par-
allelism is exploited by taking into account the latency afigus
I3 T : arithmetic units. For instance, if we choose the singleigien
Kemel P Data Flow || Hos FRGA Algorithmic floating point adder for the accumulation in a MAC(Multipligc-
ipeline || Control Interface Optimizer . X
Generator || Generator || Generator cumulator) block, each instance of the accumulated pauial has

a latency of 14 clock cycles. Since the architecture is pipdl, the
instructions for accumulating different target data afeesitiled si-
[?Cl[llmt’:][g:;st Comg"fﬂ] multaneously to maximize the throughput of the accumulator

| , - et (Crt) The software module generates the host computer program (in

C++) that interfaces the FPGA with the host computer. A kek ta

Data
Control
Block

(HDL)) \(HDL)
. of the software module is to communicate data between the hos
BN computer and the FPGA accelerator. The communication af dat
— 7 to and from the FPGA board is synchronized using interrufie.
FPGA input data is processed and the data flow partitioning is thgrie-
serting commands that aid the hardware in distinguishirgyédxen
Fig. 1. TANOR Design Flow source and target sets in the N-body interaction problene ifh

put sequence is then read into an input buffer which is reathéy
PCI Interface in bursts. The hardware generates an intesftgy
processing is done, and the partial results are written batke
output buffer. These results are read by the host computke to
. . X accumulated and re-ordered to fit the result format. Thisuteod
vided in MATLAB, and constraints on accuracy, latency, acead aids in algorithmic optimization by modifying the data seqoe

power, provided by a graphical user interface. fed to the accelerator. The algorithm optimizations areudised
By usingMATLAB as the specification language, we do not i, detail in section 3.3.

require a separate software emulator for functional vetiio of
the design at early stages of the design flow. Once the kepeet s

Figure 1 shows a block diagram of our automated design flow.
The input to TANOR consists of a high-level description ofaa-p
ticular interaction kernel function for the N-body problepro-

ification along with the constraint information is providby the 3. TANOR MODULES
user, they are processed by the code parser and an(@hpZe: . o
This phase parses the kernel functions into an intermettiateat 3.1. Kernel Function Pipeline Generator

which is used to perform a series of optimizations. Theseropa-
tions remove any redundancies, as a redundancy in the code ca
subsequently translate to extraneous processing uniteihard-
ware.

After the CPA phase, the flow is partitioned into the hardware
and software modules. The task of the hardware module isrto ge
erate the bit file for configuring the FPGA system. This module
generates the HDL description of different blocks of thehder- 1The PCI Express Endpoint LogiCore from Xilinx is used for PCI

ture along with the scripts required by the back-end FPGA-com Express Core. The 4 lane configuration of the PCI Express Came
piler. Our system is currently targeted to support Syniifg 8.6.2 send/receive 64bits of data at a frequency of 125MHz [11].

The HDL code generation process for the kernel function-is il
lustrated in Figure 3. The module starts with a MATLAB kernel
specification as input. Only a subset of Matlab functionsirav
matching hardware primitives in our library are supportedur
current primitive set is tailored to support a variety of Ny in-
teraction kernels. The code parser and analyzer phasespghise

Input

Constant

FIFO

Kernel
Fune.

MAC

Kernel
Func.

Tgt Infol 1
|

Tgt Infol
o |

Output

Control
State

Data Flow Control
Block Kernel Func.
Host-FPGA Input Control
Interface | State Machine | .
Output Control
Block .
State Machine (:_-;g:;t
L]
Run Control
| State Machine |
Memory Kernel Func.
Blocks
PCIExp.x4 |l ——71 — ||

Fig. 2. TANOR Architecture

transformed algorithm into an intermediate represemaktimown
as an ASG (Abstract Syntax Graph). Each node of this grapk+ep
sents either an input or a computation, and edges captudathe
path. More importantly, this graph also reveals the oppities
for optimizations such as CSE (common sub-expression m@dimi
tion) which help the tool to come up with minimal hardwareidas
for the target application. For example, some kernel famstimay
have only one output, while some kernel functions can have mu
tiple outputs. In the case of multiple outputs, the commom-co
putations between the different outputs can be eliminabedhie
optimal resource usages. Timing information necessarHidi
code generation is computed by traversing the data-papihgia
utilizes the timing information of primitive hardware mdds from
the hardware library to generate the timing for the entir@jgota-
tion core. Once the timing information is available, delégneents
are introduced into the data path to synchronize the oparstiFi-
nally, the data-path graph is translated into a HDL desSoripof
Kernel Functions.

Our implementation support&EEE-754 Floating Point Stan-

tor also supports a pipelined MAC block. Unless specifiedhay t
user, MAC block is implemented in single precision floatiragn
arithmetic. However, the precision can be varied accortindpe
requirement of the application. And the outputs of MAC bleck
stored in separate buffers for the accumulator to be shamdgd
the time of floating point operation latency. MAC block can be
inserted or not according to the characteristic of kernetfion.

3.2. Data Flow Control Generator

The Data Flow Control Generator shown in figure 2 contains in-
stantiations of memory blocks and state machines that@atdta
steering. The memory block contains one FIFO and two sipghe-
RAMs for storing input information. In addition to theseetk are
several FIFOs to store the result and the number of thesesFIFO
depends on the number of kernel pipelines used. There a¥e thr
different state machines controlling the data flow. The Stste
machine takes care of the input data to be stored into cament-

ory locations. The second state machine controls the haedsva

dard and parameterized precision (user defined exponent and manecution and generates signals for reading the data front FHF©

tissa widths) arithmetic units. The supported operatiomtude
addition, subtraction, multiplication, division, and sge root. In
addition, we can support look-up-table based implememiati
arithmetic functions. Area and latency of these operationés
varies depending on the bit-width of the supported opematidANOR
automatically selects the arithmetic units with optimal sepa-
rameters based on the design constraints specified by thenuse
the input user specification. Currently Xilinx CORE Generas
used for Floating-Point Operator[12]. Therefore the lajeand
resource information of Xilinx CORE Generator are used Far t
timing calculation and delay insertion. For this block, VHB
used because CORE Generator only provides the simulatidelmo
of VHDL and the structural mapping is much easily implemente
by generatesentence in VHDL for this automatic generation.

Since kernel function outputs are commonly multiplied and
accumulated in several N-body interaction problems, omege

and RAM, and writing the data to the output FIFOs. The thiedest
machine decides the order of output FIFO to avoid the collisi

3.3. Algorithmic Optimizer

Key aspects of algorithmic optimizations that influence hlaed-
ware efficiency in N-body interaction problems are datadrsal
sequence and data representation. Since N-body intengmioi-
lems involve large data sets, the operations are performadilied
fashion. The ordering of these tiles has a significant impadhe
accuracy of the computed result. To reduce computational co
plexity, data can be compressed to aggregate multiple sdarget
interaction computations into one computation[13]. Wheneal
intelligently, this can be achieved without significantuetion in
numerical accuracy. Our algorithmic optimizer module can-g
erate efficient data traversal sequences based on kermarpes,

function outl = kernell(t,s.e);
rdl =t(1)-s(1);
rd2 =1(2)-s(2):

[MATLAB Kernel.m |

CSE**

0 oy
B3 3 e

th sl 2 52

ASG*s

library IEEE:
use IEEE.STD_LOGIC_1164.ALL:

use IEEE.STD_LOGIC_ARITH.ALL:

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity kernel is generic (bit_size : integer := 32);
Port (clk : in std_logic;

11,12, 3, 14,15, 16, 51, 52, 53, 54, 55, 56, e1

in std_logic_vector(bit_size-1 downto 0);

outl, out2, out3, outd, out, out6, out7 :

out std_logic_vector(bit_size-1 downto 0));

end kernel;

architecture Behavioral of kernel is

u_4580ut71 : f_mul port map(
*10111111100000000000000000000000", --d-1
i_4885(104),
clk,

end Behavioral:

Kernel.vhd

* ASG : abstract syntax graph is an intermediate representation that
captures operations and dependences among them

out7 out7 out? o7 out? gue7

<= VHDL Generation <=

Single Operation Form
8

function [outl,out2,0ut3,outd,out5,out6,out7]=kernel(hdl_t_7, hdl_s_7, hdl_e_7)

out? = (-1*_4885_7)

Kernel_so.m

#*CSE: common sub-expression elimination

Fig. 3. Kernel Function Pipeline Generation

Fig. 4. TANOR System

desired numerical accuracy, and computational resouiaéahil-
ity. Due to space constraints, we only elaborate the datarsal
techniques used to improve numerical accuracy.

Two different traversal sequences, namplgin and geomet-
ric tiling are supported by our tool. lplain tiling the source and
target information is partitioned into sets of pre-defineddths.
These sets are then compiled into a sequence of tiles in veich
ery target set is followed by all possible source sets. Fstairce,
during the force calculations of an N-body simulation, a swan
tion of the force exerted on a certain target by all possibleces
is performed. In astrophysical simulations the gravitsicforce
is inversely proportional to the square of the distance betwtwo
particles. The lack of homogeneity in the spatial configarabf
the particles marginally varies the amount of force exebedif-
ferent sources. This variation may result in the lack of jsien

if summation is not performed in a sequence that is sortetien t
increasing order of magnitude, due to arithmatic roundihence,
traversing algorithms likelain tiling which do not take this factor
into consideration are prone to a certain loss of accuradgeir
results. Geometric Tilingaddresses such an issue by creating an
interaction list for every target particle. This interactilist con-
tains source particles sorted in terms of their distanam fitee tar-
get under consideration. When tiling is performed, for e@cbet,
the source elements are ordered in the decreasing sequeaheé o
distance from the target. Additional details of the geomaeiiing
are explained in [14].

4. CASE STUDY

4.1. System Configuration

The DN6000k10PCle-4[15] logic emulation system depicted i
Figure 4 is used as the target hardware platform for evalgati
TANOR. We use two Xilinx Virtex2Pro-100 devices. On one of
the FPGAs, the PCI Express block and data interface FIFCkbloc
are configured to provide the PCI Express 4 Lane DMA mode and
the other blocks, specific to the kernel function and data, floe
configured on the second FPGA.

In the following sections we demonstrate the effectiversess
adaptability of our automated tool by developing applimasi us-
ing three different kernel functions, the gaussian kereghmon
in image processing applications, the gravitational Keased in
astrophysics, and a force calculation kernel applied inexubr
dynamics.

Kernel Precision| Number of | # of Pipelines| Latency | Power| Performance
Operation per FPGA | (Clkcycle) | (W) (Gflops)
Gravitational e8m1l6 56 3 129 6.5 22.2
Gaussian e8ml6 19 8 92 5.2 19.2
Force Cal. inMD| e8m23 23 4 124 5.0 11.8
Table 1. Resource utilization, power and performance evaluation
4.2. Gaussian Kernel GRAPE-6 CHIP| TANOR CHIP
Device ASIC FPGA
The gaussian kernel is one of the popular smoothing algosth (XC2VP100-6)
for image processing and reconstruction[16]. A two-diniemes! Device tech. 0.250m 0.13um
image is used for the test set. Only one kernel function isigeal Pipelines/chip 6 3
to specify the Gaussian kernel. Frequency(MHZ) 30 175
— I —x; 112 Real Peak Flops 17.2G 22.2G
h(x;,x;) =e 202 @ Power Consumption] ~12W ~6.5W

x4, x; are the positions of;, pixel andj:. pixel respectively.
A taylor series expansion is used for implementing on thel-har
ware. A second order taylor series expansion is specifiethéor
Gaussian kernel description.

4.3. Gravitational Kernel

The gravitational kernel, commonly used in astrophysicdiddy
simulations, has been implemented. At every time step ofithe
ulation, the gravitational acceleration force, its firshei deriva-
tive, and the potential of every particle in the input domane
calculated. There are seven kernel functions calculatiegriag-
nitude of these parameters at every target particle. Antitgsi
set consists of the source and target particle locationstimege-
dimensional spac&®. In a gravitational N-body simulation prob-
lem the gravitational force, its time derivative, and thawgational
field potential exerted at a target Sebf particles due to the mass
at a source se$ of particles is computed as follows,

m(s;) - (ti —sj)

aj=c- Z It *S'HS)
sj€S 1 J
dg=c- Y [vig 3(vii - (b —s5)) (ki — s5) @
o= llt: — s511° llt: —s;11°
bi=c- 3 m(s;) e @
lIt; — s;ll
SjES

Wheret; ands;, denote the position of the target and source
particles in T and S, respective|jt — s|| denotes the Euclidean
distance between theands, m(s;) is the mass of the particles
at locations;, andc is a constant. Equations 2 and 4 compute
the acceleration and potential of a target partigJ@nd equation 3
computes the time derivative of the particle acceleration.

4.4. Force Calculation in Molecular Dynamics

Since the force calculation is the most time-consumingipaviolec-
ular Dynamics simulation, it can be accelerated by impleingn
it in the hardware[10]. Three dimension input test is usedun
evaluation, and the force calculation formula implemerniteds
follows.

(®)

Table 2. The comparison with GRAPE-6

735 is the distance vector between atoivendj, andr;; is the
magnitude of”;;. A and B are constants agglandg; is the charge
on atom; andj.

4.5. Results

First, we demonstrate the versatility of TANOR by genegtiard-
ware for three different N-body interactions. TANOR regsibe-
tween 2 to 3 seconds for translating the Matlab specificatiora
HDL code on a Pentium 4 2.4GHz with 1 GigaByte Memory. In
addition, the hardware synthesis time ranges from 1 to 7shfour
the explored designs. Table 1 shows the resource utilizgbimver
and performance evaluation for the above three kernels.piée
cision column is the chosen precision for this applicatmand m
denote the exponential and mantissa bit widths respegti@dn-
figurations can also be selected based on accuracy, poweer-or
formance considerations. Some variants are shown latethéor
gravitational kernel. The number of operations is the totathber
of primitive operations used to implement each kernel fiomct
The gravitational kernel shows the highest number of ofmerst
per data-path pipeline in Table 1 because 7 kernel functioas
described for the gravitational kernel.

Number of pipelines per FPGA denotes the maximum number
of the pipelined functional units that can be included in BR&A.
The gravitational kernel has a small number of pipelinesHREBA
because large numbers of operations are used to implement a s
gle pipeline. Even though the difference of number of openat
is not too high between Gaussian kernel and MD force calcmat
the difference in precision of the implemented units varigbe
MD force calculation units which require higher precisioeed
more resources per unit and hence have smaller number of data
path pipelines in their implementation. Latency denotesrthm-
ber of clock cycles per operation. In the current system nangon
125MHz clock is used for the kernel function, data flow and PCI
express blocks. Power consumption numbers for the diffexam
figurations are reported using XPower[17]. Performancebamn
reported were obtained through actual time measurementsiron
target platform for a problem size of 5K particles averagest @0
different executions.

To evaluate the quality of the generated hardware, we used
GRAPE-6 as a comparison point. We observed that the hardware

Occupied Slices Power (mW)
40000 4000
30000 - 3000 4
20000 - H F 2000 4 T H
10000 | ﬂ 1000 A ﬂ ﬂ
e8m23 e8m20 e8mi6 e8mi10 e8m23 e8m20 e8mi16 e8mi10
(a) Occupied Slices (b) Power

Accuracy

1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

e8m23 e8m20 e8m16 e8m10

@ Accuracy - Plain
B Accuracy - Geometric|

(c) Accuracy

Fig. 5. Accuracy Trade-offs

(1]

(2]

(3]
(4]

(5]
(6]

(7]
(8]

generated by TANOR achieves a performance comparable to the
GRAPE-6 chip in terms of FLOPS and power consumption as shown

in Table 2. It should be noted that a direct comparison isclilffi
due to differences in technology (042 vs 0.13sm) and imple-

mentation style (ASIC vs FPGA). The results only serve asian i

dicator that the quality of generated output is competitive

(9]

To demonstrate the ability to use TANOR for algorithmic and [10]

architecture exploration, we show area, power and accuradg-
offs of different configurations for the gravitation kernbi Figure
5(c) we show the trade-offs in accuracy achieved by the ehaic
two different algorithmic variants of data traversal, plaind ge-

ometric tiling. We use a double precision result from a Matla

implementation as a reference to compute the relative efmach
parameterized precision implementation. It can be obsketivat

through geometric tiling using a mantissa bit width of 16 vea c

achieve accuracy comparable to that of plain tiling for a tisaa
bit width of 20. The single pipeline constraint is implemashto

show the comparison of slices and power. Note that this dsere

in the bit width translates into a 20% reduction in utilizedaon

the FPGA, and a 21% reduction in power consumption as shown in

figure 5(a) and 5(b) due to algorithmic-architecture colegtion.

5. CONCLUSION AND FUTURE WORK

We have developed a tool to automatically generate hardfeare

accelerating N-body simulation on reconfigurable platfor®ur
tool generates the required hardware modules and a softiasae
communication interface, starting from a high-level MATBAle-

scription. Using TANOR, we have generated a pipelined hardw

accelerator that can be optimized to meet user design edmistr
for three different N-body interaction applications. Therfpr-

mance comparison with GRAPE-6 shows that the quality of gen-

erated output is quite competitive. Through variant pienisnd

data traversal sequences, our automation flow was able tevach
a 20% reduction in resource utilization, and a 21% reduciion

power consumption while maintaining comparable accuraifg.
are currently working to extend TANOR to multi-FPGA archite
ture through the serial 10 interface.

(11]

(12]

(13]

(14]

(15]
(16]
(17]

(18]

(19]

6. REFERENCES

M. Gokhale and P. S. GraharReconfigurable Computing:
Accelerating Computation with Field-Programmable Gate
Arrays Springer, 2006.

“Carte programming environment,”
com/CarteProgEnv.htm.

“Impulsec,” http://www.impulsec.com.

“Catapult ¢ synthesis,” http://www.mentor.com/prads/
cbaseddesign/catapult_synthesis/index.cfm.

“Xilinx acceldsp synthesis tool,” http://www.xilingom/ise/
dspdesignprod/acceldsp.

R. Stevens, “Future directions in computer and systewts-a
tecture for scientific computing,” iimstitute for Theoretical
Atomic and Molecular Physics Worksh&®D00.

J. Makino, “The GRAPE project,Computing in Science &
Engineering vol. 8, pp. 30—40, 2006.

T. Hamada and N. Nakasato, “PGR: a software package for
reconfigurable super-computing,” iimternational Confer-
ence on Field Programmable Logic and Applicatip@605,

pp. 366-373.

D. P. V. Kindratenko, “A case study in porting a pro-
duction scientific supercomputing application to a recenfig
urable computer,” il4th Annual IEEE Symposium on Field-
Programmable Custom Computing Machin2806.

M. G. R. Scrofano, F. Trouw, and V. K. Prasanna, “A hard-
ware/software approach to molecular dynamics on recon-
figurable computers,” irl4th Annual IEEE Symposium on
Field-Programmable Custom Computing Machin2806.

“Xilinx pci express endpoint logicore,” http://wwwiliax.
com/xInx/xebiz/designResourcesfpoductdetails.jsp?
key=DO-DI-PCIEXP.

“Xilinx logicore floating-point operator
http://www.xilinx.com/bvdocs/ipcenter/datheet/
floating point.ds335.pdf.

J. Carrier, L. Greengard, and V. Rokhlin, “A Fast Adapti
Multipole Algorithm for Particle Simulations,SIAM J. Sci.
Stat. Comput.vol. 9, no. 4, pp. 280-292, July 1988.

G. Chen, L. Xue, J. Kim, K. Sobti, L. Deng, X. Sun, N. Pit-
sianis, C. Chakrabarti, M. Kandemir, and N. Vijaykrishnan,
“Using geometric tiling for reducing power consumption in
structured matrix operations,” itEEE International SOC
Conference2006.

“Dinigroup dn6000k10pcie-4," http://www.dinigrougmm/
index.php?product=DN6000k10pcie.

R. C. Gonzalez and R. E. WoodBjgital image processing
(2nd ed.) Prentice Hall, 2002.

“Xilinx xpower,” http://www.xilinx.com/products/dsign
tools/logic design/verification/xpower.htm.

A. K. G. Lienhart and R. Manner, “Using floating-poinfthr
metic on PGAs to accelerate scientific n-body simulations,”
in 10th Annual IEEE Symposium on Field-Programmable
Custom Computing Maching2002, pp. 182-190.

J. F. Makino, Toshiyuki, K. Masaki, and N. Ken, “GRAPE-6
Massively-parallel special-purpose computer for astysph
ical particle simulations,Publications of the Astronomical
Society of Japanvol. 55, pp. 1163-1187, 2003.

http://www.srccomp

v3.0,”

