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ABSTRACT

Algorithm-architecture co-exploration is hindered by thelack of ef-
ficient tools. As a consequence, designers are currently able to ex-
plore only a limited set of points in the whole design space. There-
fore, a tool that can allow fast exploration of algorithmic and archi-
tectural tradeoffs in an automated manner is highly desired. In this
paper, we describe TANOR an automated tool targeted for design-
ing hardware accelerators for the class of N-body interaction prob-
lems. The design flow, starting from a high level (MATLAB) de-
scription, configures the entire system automatically. We describe
the design of TANOR and demonstrate the effectiveness and adapt-
ability of our tool using three different target applications, namely,
the gravitational kernel used in astrophysics, the gaussian kernel
common in image processing applications, and a force calculation
kernel applied in molecular dynamics. Our results demonstrate that
TANOR generates hardware accelerator that are competitivewith
existing custom accelerator.

1. INTRODUCTION

Traditionally, ASICs have been used to achieve a performance speedup
in scientific applications. However, in most of these scientific ap-
plications, the precise algorithmic specifications are often subject
to change making reconfigurability desirable. Recent advances in
reconfigurable hardware, especially field programmable gate ar-
rays (FPGAs), have facilitated the use of reconfigurable hardware
for such computationally intensive scientific applications. The com-
putationally intensive tasks of such applications are accelerated
through the reconfigurable hardware. Most of the scientific ap-
plication designers work at algorithmic level and use high-level
languages to model their applications. To realize such an appli-
cation in reconfigurable hardware, the high-level description has to
be translated into a hardware description language (HDL). Manu-
ally translating the high-level descriptions into a HDL description
that fits into the traditional RTL design flow is a clearly veryte-
dious and error-prone process. One of the main goals of our auto-
mated tool flow is to aid the designer in seamlessly transforming
the high-level description of an application in Matlab to HDL.

Several design tools that automate the conversion between high-
level languages and RTL have been developed to reduce the design
cycle and provide scope for algorithmic optimization and archi-

tectural exploration. The input format of the design to these tools
can be broadly classified into three different categories, high-level
graphical languages, algorithmic languages, and behavioral hard-
ware descriptions[1]; Algorithmic languages like SRC Computer
C/Fortran[2], Impulse C[3], Catapult C (Mentor Graphics)[4], and
Xilinx AccelDSP Matlab subset[5] have been developed and tai-
lored into the respective tool-flows developed by several FPGA
vendors. While languages such as SRC and Impulse high-level
specifications reduce the complexity of code development for re-
configurable platforms, the process of porting an existing scientific
code to one of these languages is quite tedious - something scien-
tific software developers are not acquainted with.

In this work, we focus on building our tool to support the class
of N-body interaction problems that supports both algorithmic and
architectural exploration. The classical n-body problem simulates
the evolution of a system of N bodies, which interact. It has di-
verse applicability for studying particle dynamics in areas as varied
as Astrophysics, Molecular Modeling, and Quantum Chemistry[6].
These tasks are very computationally intensive. The wide range of
application domains and the computationally intensive sub-tasks
involved in n-body simulations require reconfigurable hardware ac-
celerators. One of the prominent works in this area has been the
GRAPE project which implements the gravitational N-body inter-
action problem[7]. The GRAPE system used ASICs to accelerate
astrophysical n-body simulations, and was able to attain a peak
performance of 63.4 Tflops from GRAPE-6 system in 2003. How-
ever, as recently noted in [7], there is a need for an automated flow
to support architectures that can be configured for various N-body
problems. The GRAPE PGR system[8] is an effort in this direc-
tion to support reconfigurable systems. Also, some early efforts
have been made towards modeling molecular dynamics using SRC
Computers in [9, 10]. However, this system requires use of a spe-
cialized language and requires manual intervention in manykey
steps of translating specification to implementation such as extract-
ing timing information.

TANOR(A Tool for Accelerating N-body Simulations on Re-
configurable Platform) was motivated by the need for an automated
system generator for N-body interaction problems and driven by
the following key targets,

• Support for kernel specification of the N-body problem in
a high-level language (MATLAB) making the algorithm-



architecture exploration accessible to application designer.

• Provide the end-user control over the design optimizations
and a fully automated design flow starting from MATLAB
specification to HDL synthesis.

• Realize designs competitive in terms of power, area, accu-
racy, and performance to the existing N-body hardware ac-
celerators.

In section 2, we present an overview of TANOR. In section
3, the details of key modules of our tool are explained. In sec-
tion 4, we provide a case study to demonstrate the use of TANOR.
We compare the achieved performance of our implementation with
previous efforts in this direction. Finally, in section 5, we provide
conclusions.

2. TANOR DESIGN FLOW
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Fig. 1. TANOR Design Flow

Figure 1 shows a block diagram of our automated design flow.
The input to TANOR consists of a high-level description of a par-
ticular interaction kernel function for the N-body problem, pro-
vided in MATLAB, and constraints on accuracy, latency, area, and
power, provided by a graphical user interface.

By usingMATLAB as the specification language, we do not
require a separate software emulator for functional verification of
the design at early stages of the design flow. Once the kernel spec-
ification along with the constraint information is providedby the
user, they are processed by the code parser and analyzer(CPA).
This phase parses the kernel functions into an intermediateformat
which is used to perform a series of optimizations. These optimiza-
tions remove any redundancies, as a redundancy in the code can
subsequently translate to extraneous processing units in the hard-
ware.

After the CPA phase, the flow is partitioned into the hardware
and software modules. The task of the hardware module is to gen-
erate the bit file for configuring the FPGA system. This module
generates the HDL description of different blocks of the architec-
ture along with the scripts required by the back-end FPGA com-
piler. Our system is currently targeted to support SynplifyPro 8.6.2

and Xilinx ISE 8.1.03i as back-end tools to generate the bit file to
be configured on the FPGA.

The generated architecture is composed of three main blocks
(See Figure 2): Kernel Function block, Data flow control block,
and Host-FPGA interface block. The Kernel Function block isim-
plemented using the kernel function pipeline generator, which gen-
erates the pipeline architecture of the kernel function in HDL based
on the information from CPA phase. Based on the resource limi-
tations of the target FPGA and the resource size of the generated
kernel function, the number of parallel pipelines to be included
in one FPGA is inferred. The Data flow control block includes the
state machines which control the data steering between the host and
the generated hardware. Moreover, it includes storage buffers and
queues. The automated HDL generation for this block uses HDL
templates that contain variousparameterandgeneratesentences
supported by Verilog-2001 standard. This parameter value setting
and instantiation mapping is automatically done by our toolafter
gathering information from CPA and kernel function code genera-
tor. The Host-FPGA interface block, generates the control signals
for PCI Express core1 and serves as an interface between RX/TX
FIFO of the PCI Express core and the user application.

The generated hardware configuration exploits both spatialand
temporal parallelism. Spatial parallelism is supported bymultiple
instantiations of the pipelines of kernel function. The temporal par-
allelism is exploited by taking into account the latency of various
arithmetic units. For instance, if we choose the single-precision
floating point adder for the accumulation in a MAC(Multiplier Ac-
cumulator) block, each instance of the accumulated partialsum has
a latency of 14 clock cycles. Since the architecture is pipelined, the
instructions for accumulating different target data are scheduled si-
multaneously to maximize the throughput of the accumulator.

The software module generates the host computer program (in
C++) that interfaces the FPGA with the host computer. A key task
of the software module is to communicate data between the host
computer and the FPGA accelerator. The communication of data
to and from the FPGA board is synchronized using interrupts.The
input data is processed and the data flow partitioning is doneby in-
serting commands that aid the hardware in distinguishing between
source and target sets in the N-body interaction problem. The in-
put sequence is then read into an input buffer which is read bythe
PCI Interface in bursts. The hardware generates an interrupt after
processing is done, and the partial results are written backto the
output buffer. These results are read by the host computer tobe
accumulated and re-ordered to fit the result format. This module
aids in algorithmic optimization by modifying the data sequence
fed to the accelerator. The algorithm optimizations are discussed
in detail in section 3.3.

3. TANOR MODULES

3.1. Kernel Function Pipeline Generator

The HDL code generation process for the kernel function is il-
lustrated in Figure 3. The module starts with a MATLAB kernel
specification as input. Only a subset of Matlab functions having
matching hardware primitives in our library are supported.Our
current primitive set is tailored to support a variety of N-body in-
teraction kernels. The code parser and analyzer phase parses this

1The PCI Express Endpoint LogiCore from Xilinx is used for PCI
Express Core. The 4 lane configuration of the PCI Express Corecan
send/receive 64bits of data at a frequency of 125MHz [11].
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transformed algorithm into an intermediate representation known
as an ASG (Abstract Syntax Graph). Each node of this graph repre-
sents either an input or a computation, and edges capture thedata-
path. More importantly, this graph also reveals the opportunities
for optimizations such as CSE (common sub-expression elimina-
tion) which help the tool to come up with minimal hardware design
for the target application. For example, some kernel functions may
have only one output, while some kernel functions can have mul-
tiple outputs. In the case of multiple outputs, the common com-
putations between the different outputs can be eliminated for the
optimal resource usages. Timing information necessary forHDL
code generation is computed by traversing the data-path graph. It
utilizes the timing information of primitive hardware modules from
the hardware library to generate the timing for the entire computa-
tion core. Once the timing information is available, delay elements
are introduced into the data path to synchronize the operations. Fi-
nally, the data-path graph is translated into a HDL description of
Kernel Functions.

Our implementation supportsIEEE-754 Floating Point Stan-
dard and parameterized precision (user defined exponent and man-
tissa widths) arithmetic units. The supported operations include
addition, subtraction, multiplication, division, and square root. In
addition, we can support look-up-table based implementation of
arithmetic functions. Area and latency of these operational units
varies depending on the bit-width of the supported operations. TANOR
automatically selects the arithmetic units with optimal set of pa-
rameters based on the design constraints specified by the user in
the input user specification. Currently Xilinx CORE Generator is
used for Floating-Point Operator[12]. Therefore the latency and
resource information of Xilinx CORE Generator are used for the
timing calculation and delay insertion. For this block, VHDL is
used because CORE Generator only provides the simulation model
of VHDL and the structural mapping is much easily implemented
by generatesentence in VHDL for this automatic generation.

Since kernel function outputs are commonly multiplied and
accumulated in several N-body interaction problems, our genera-

tor also supports a pipelined MAC block. Unless specified by the
user, MAC block is implemented in single precision floating point
arithmetic. However, the precision can be varied accordingto the
requirement of the application. And the outputs of MAC blockare
stored in separate buffers for the accumulator to be shared during
the time of floating point operation latency. MAC block can be
inserted or not according to the characteristic of kernel function.

3.2. Data Flow Control Generator

The Data Flow Control Generator shown in figure 2 contains in-
stantiations of memory blocks and state machines that control data
steering. The memory block contains one FIFO and two single-port
RAMs for storing input information. In addition to these, there are
several FIFOs to store the result and the number of these FIFOs
depends on the number of kernel pipelines used. There are three
different state machines controlling the data flow. The firststate
machine takes care of the input data to be stored into correctmem-
ory locations. The second state machine controls the hardware ex-
ecution and generates signals for reading the data from input FIFO
and RAM, and writing the data to the output FIFOs. The third state
machine decides the order of output FIFO to avoid the collision.

3.3. Algorithmic Optimizer

Key aspects of algorithmic optimizations that influence thehard-
ware efficiency in N-body interaction problems are data traversal
sequence and data representation. Since N-body interaction prob-
lems involve large data sets, the operations are performed in a tiled
fashion. The ordering of these tiles has a significant impacton the
accuracy of the computed result. To reduce computational com-
plexity, data can be compressed to aggregate multiple source-target
interaction computations into one computation[13]. When done
intelligently, this can be achieved without significant reduction in
numerical accuracy. Our algorithmic optimizer module can gen-
erate efficient data traversal sequences based on kernel properties,
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……

out5 = (_440K12_7-_617s_7) 
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Kernel_so.m

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity kernel is generic ( bit_size : integer := 32); 

Port ( clk : in std_logic; 

t1, t2, t3, t4, t5, t6, s1, s2, s3, s4, s5, s6, e1 :

in std_logic_vector(bit_size-1 downto 0); 

out1, out2, out3, out4, out5, out6, out7 :

out std_logic_vector(bit_size-1 downto 0)); 

end kernel; 

architecture Behavioral of kernel is

……

……

……

u_458out71 : f_mul port map(

"10111111100000000000000000000000", --d-1

i_488s(104),

clk,

end Behavioral; Kernel.vhd

MATLAB Kernel.m
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Fig. 4. TANOR System

desired numerical accuracy, and computational resource availabil-
ity. Due to space constraints, we only elaborate the data traversal
techniques used to improve numerical accuracy.

Two different traversal sequences, namelyplain and geomet-
ric tiling are supported by our tool. Inplain tiling the source and
target information is partitioned into sets of pre-defined lengths.
These sets are then compiled into a sequence of tiles in whichev-
ery target set is followed by all possible source sets. For instance,
during the force calculations of an N-body simulation, a summa-
tion of the force exerted on a certain target by all possible sources
is performed. In astrophysical simulations the gravitational force
is inversely proportional to the square of the distance between two
particles. The lack of homogeneity in the spatial configuration of
the particles marginally varies the amount of force exertedby dif-
ferent sources. This variation may result in the lack of precision

if summation is not performed in a sequence that is sorted in the
increasing order of magnitude, due to arithmatic rounding.Hence,
traversing algorithms likeplain tiling which do not take this factor
into consideration are prone to a certain loss of accuracy intheir
results. Geometric Tilingaddresses such an issue by creating an
interaction list for every target particle. This interaction list con-
tains source particles sorted in terms of their distance from the tar-
get under consideration. When tiling is performed, for eachtarget,
the source elements are ordered in the decreasing sequence of their
distance from the target. Additional details of the geometric tiling
are explained in [14].

4. CASE STUDY

4.1. System Configuration

The DN6000k10PCIe-4[15] logic emulation system depicted in
Figure 4 is used as the target hardware platform for evaluating
TANOR. We use two Xilinx Virtex2Pro-100 devices. On one of
the FPGAs, the PCI Express block and data interface FIFO block
are configured to provide the PCI Express 4 Lane DMA mode and
the other blocks, specific to the kernel function and data flow, are
configured on the second FPGA.

In the following sections we demonstrate the effectivenessand
adaptability of our automated tool by developing applications us-
ing three different kernel functions, the gaussian kernel common
in image processing applications, the gravitational kernel used in
astrophysics, and a force calculation kernel applied in molecular
dynamics.



Kernel Precision Number of # of Pipelines Latency Power Performance
Operation per FPGA (Clk cycle) (W) (Gflops)

Gravitational e8m16 56 3 129 6.5 22.2
Gaussian e8m16 19 8 92 5.2 19.2
Force Cal. in MD e8m23 23 4 124 5.0 11.8

Table 1. Resource utilization, power and performance evaluation

4.2. Gaussian Kernel

The gaussian kernel is one of the popular smoothing algorithms
for image processing and reconstruction[16]. A two-dimensional
image is used for the test set. Only one kernel function is provided
to specify the Gaussian kernel.

h(xi, xj) = e

−‖xi−xj‖
2

2σ2 , (1)

xi, xj are the positions ofith pixel andjth pixel respectively.
A taylor series expansion is used for implementing on the hard-
ware. A second order taylor series expansion is specified forthe
Gaussian kernel description.

4.3. Gravitational Kernel

The gravitational kernel, commonly used in astrophysical N-body
simulations, has been implemented. At every time step of thesim-
ulation, the gravitational acceleration force, its first time deriva-
tive, and the potential of every particle in the input domainare
calculated. There are seven kernel functions calculating the mag-
nitude of these parameters at every target particle. An input test
set consists of the source and target particle locations in athree-
dimensional spaceR3. In a gravitational N-body simulation prob-
lem the gravitational force, its time derivative, and the gravitational
field potential exerted at a target setT of particles due to the mass
at a source setSof particles is computed as follows,

ai = c ·
∑

sj∈S

m(sj) · (ti − sj)

‖ti − sj‖
3

, (2)

ȧi = c ·
∑

sj∈S

[

vij

‖ti − sj‖
3
−

3(vij · (ti − sj))(ti − sj)

‖ti − sj‖
5

]

, (3)

θi = c ·
∑

sj∈S

m(sj)

‖ti − sj‖
, ti ∈ T. (4)

Whereti andsj , denote the position of the target and source
particles in T and S, respectively‖t − s‖ denotes the Euclidean
distance between thet ands, m(sj) is the mass of the particles
at locationsj , and c is a constant. Equations 2 and 4 compute
the acceleration and potential of a target particleti, and equation 3
computes the time derivative of the particle acceleration.

4.4. Force Calculation in Molecular Dynamics

Since the force calculation is the most time-consuming partin Molec-
ular Dynamics simulation, it can be accelerated by implementing
it in the hardware[10]. Three dimension input test is used inour
evaluation, and the force calculation formula implementedis as
follows.

~fi =
∑

j 6=i

(

12A

r14

ij

−
6B

r8

ij

+
qiqj

4πε0r8

ij

)

~rij , (5)

GRAPE-6 CHIP TANOR CHIP
Device ASIC FPGA

(XC2VP100-6)
Device tech. 0.25µm 0.13µm

Pipelines/chip 6 3
Frequency(MHz) 90 125
Real Peak Flops 17.2G 22.2G

Power Consumption ∼12W ∼6.5W

Table 2. The comparison with GRAPE-6

~rij is the distance vector between atomsi andj, andrij is the
magnitude of~rij . A and B are constants andqi andqj is the charge
on atomi andj.

4.5. Results

First, we demonstrate the versatility of TANOR by generating hard-
ware for three different N-body interactions. TANOR requires be-
tween 2 to 3 seconds for translating the Matlab specifications to a
HDL code on a Pentium 4 2.4GHz with 1 GigaByte Memory. In
addition, the hardware synthesis time ranges from 1 to 7 hours for
the explored designs. Table 1 shows the resource utilization, power
and performance evaluation for the above three kernels. Thepre-
cision column is the chosen precision for this application,e and m
denote the exponential and mantissa bit widths respectively. Con-
figurations can also be selected based on accuracy, power, orper-
formance considerations. Some variants are shown later forthe
gravitational kernel. The number of operations is the totalnumber
of primitive operations used to implement each kernel function.
The gravitational kernel shows the highest number of operations
per data-path pipeline in Table 1 because 7 kernel functionsare
described for the gravitational kernel.

Number of pipelines per FPGA denotes the maximum number
of the pipelined functional units that can be included in oneFPGA.
The gravitational kernel has a small number of pipelines perFPGA
because large numbers of operations are used to implement a sin-
gle pipeline. Even though the difference of number of operations
is not too high between Gaussian kernel and MD force calculation,
the difference in precision of the implemented units varies. The
MD force calculation units which require higher precision need
more resources per unit and hence have smaller number of data
path pipelines in their implementation. Latency denotes the num-
ber of clock cycles per operation. In the current system, a common
125MHz clock is used for the kernel function, data flow and PCI
express blocks. Power consumption numbers for the different con-
figurations are reported using XPower[17]. Performance numbers
reported were obtained through actual time measurements onour
target platform for a problem size of 5K particles averaged over 20
different executions.

To evaluate the quality of the generated hardware, we used
GRAPE-6 as a comparison point. We observed that the hardware
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generated by TANOR achieves a performance comparable to the
GRAPE-6 chip in terms of FLOPS and power consumption as shown
in Table 2. It should be noted that a direct comparison is difficult
due to differences in technology (0.25µm vs 0.13µm) and imple-
mentation style (ASIC vs FPGA). The results only serve as an in-
dicator that the quality of generated output is competitive.

To demonstrate the ability to use TANOR for algorithmic and
architecture exploration, we show area, power and accuracytrade-
offs of different configurations for the gravitation kernel. In Figure
5(c) we show the trade-offs in accuracy achieved by the choice of
two different algorithmic variants of data traversal, plain and ge-
ometric tiling. We use a double precision result from a Matlab
implementation as a reference to compute the relative errorof each
parameterized precision implementation. It can be observed that
through geometric tiling using a mantissa bit width of 16 we can
achieve accuracy comparable to that of plain tiling for a mantissa
bit width of 20. The single pipeline constraint is implemented to
show the comparison of slices and power. Note that this decrease
in the bit width translates into a 20% reduction in utilized area on
the FPGA, and a 21% reduction in power consumption as shown in
figure 5(a) and 5(b) due to algorithmic-architecture co-exploration.

5. CONCLUSION AND FUTURE WORK

We have developed a tool to automatically generate hardwarefor
accelerating N-body simulation on reconfigurable platform. Our
tool generates the required hardware modules and a softwaredata
communication interface, starting from a high-level MATLAB de-
scription. Using TANOR, we have generated a pipelined hardware
accelerator that can be optimized to meet user design constraints
for three different N-body interaction applications. The perfor-
mance comparison with GRAPE-6 shows that the quality of gen-
erated output is quite competitive. Through variant precision and
data traversal sequences, our automation flow was able to achieve
a 20% reduction in resource utilization, and a 21% reductionin
power consumption while maintaining comparable accuracy.We
are currently working to extend TANOR to multi-FPGA architec-
ture through the serial IO interface.
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