
Code quality analysis in open source
software development
Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou
& Georgios L. Bleris

Department of Informatics, Aristotle University of Thessaloniki, 54006 Thessaloniki,
Greece, email: stamelos@csd.auth.gr, lef@csd.auth.gr, bleris@csd.auth.gr

Abstract. Proponents of open source style software development claim that
better software is produced using this model compared with the traditional closed
model. However, there is little empirical evidence in support of these claims. In
this paper, we present the results of a pilot case study aiming: (a) to understand
the implications of structural quality; and (b) to figure out the benefits of struc-
tural quality analysis of the code delivered by open source style development. To
this end, we have measured quality characteristics of 100 applications written for
Linux, using a software measurement tool, and compared the results with the
industrial standard that is proposed by the tool. Another target of this case study
was to investigate the issue of modularity in open source as this characteristic is
being considered crucial by the proponents of open source for this type of soft-
ware development. We have empirically assessed the relationship between the
size of the application components and the delivered quality measured through
user satisfaction. We have determined that, up to a certain extent, the average
component size of an application is negatively related to the user satisfaction for
this application.

Keywords: Code quality characteristics, open source development, software
measurement, structural code analysis, user satisfaction

INTRODUCTION

Open source software development (referred to simply as open source in the following) is
based on a relatively simple idea: the core of the system is developed locally by a single pro-
grammer or a team of programmers. A prototype system is released on the Internet, which
other programmers can freely read, modify and redistribute the system’s source code. The
evolution of the system happens in an extremely rapid way; much faster than the typical rate
of a ‘closed’ project.

Open source has managed to produce some impressive products such as the Linux oper-
ating system, the Apache Web Server and the Perl language. Netscape has also launched an

Info Systems J (2002) 12, 43–60 43

© 2002 Blackwell Science Ltd

open source project for Mozilla, its new Web Browser, proving that open source is a serious
candidate for the development of large-scale commercial software. Overall, it appears that
open source is presenting the traditional software development industry with an important
challenge.

People of the ‘open source community’ claim that this evolutionary process, based on
the combined expertise of an unlimited number of programmers/users, produces better
software than the traditional closed model, in which just a single development team of a
limited number of programmers has access and modification rights on the source code. Pro-
grammers involved in open source projects are highly motivated because they produce soft-
ware mainly for personal satisfaction and, therefore, they are also expected to be highly
productive.

Although most promising, there are various concerns regarding open source as a de-
velopment philosophy that aims to produce high quality software systems. One issue is that
the open source development process is not well defined (McConnell, 1999). The project
is normally directed by the initial creator, who is responsible for any management ac-
tivities (e.g. release of new versions, configuration management) of the rapidly changing
new system. There are crucial development activities, such as system testing and documen-
tation that are ignored. The requirements are defined by the programmers themselves. In
practice, only general market requirements may be satisfied. Only detailed design seems
to gain some attention, whereas most of the effort is definitely dedicated to coding and
debugging.

The most well known attempt to informally define an open source process is Eric Raymond’s
‘The Cathedral & the Bazaar’ paper (Raymond, 2000). In this paper, some common principles
underlying the process are described. The most known principles are ‘release early and
release often’ and ‘given enough eyeballs all bugs are shallow’. These two principles largely
define the power of open source: (a) rapid evolution so that many users/programmers may
be given the opportunity to use the new system and modify it, and no time is spent in ‘un-
necessary’ management activities; and (b) many programmers working at the same time on
the same problem, increasing the probability of its solution.

Open source supporters describe this innovative software development process (Bollinger
et al., 1999) as a very intensive spiral model (Boehm, 1988). However, it seems that no risk
assessment is ever performed and no measurable goals are set during open source devel-
opment, as would be required by Boehm’s spiral model. Moreover, Bollinger and colleagues
(Bollinger et al., 1999) point out that an important requirement for open source code is that it
should be ‘rigorously modular, self-contained and self explanatory’, to allow development at
remote sites. Another reason for obtaining high quality code from an open source project is
the fact that the next step may be the maintenance of the open product to address vertical
marketing requirements. In this case, a close project should probably be launched; system
requirements should be more precise, and design and documentation demands should be
more stringent, requiring high quality code to work on.

It is easily seen that the open source philosophy has both advantages and disadvantages,

44 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

and a series of articles (Bollinger et al., 1999; McConnell, 1999; O’Reilly, 1999; Wilson, 1999)
has appeared recently, discussing the pros and cons of open source. Software experts and
researchers, who are not convinced by open source’s ability to produce quality systems, iden-
tify the unclear process, the late defect discovery and the lack of any empirical evidence as
the most important problems (collected data concerning productivity and quality). Recently,
Harrison (2001) has emphasised the need for empirical studies of open source by the soft-
ware engineering research community.

In this paper, we focus on the last issue: no data have ever been published in support of
the various claims in favour of or against open source. The reduction of defect correction
costs has not been recorded systematically, and the necessary quality characteristics of the
source code have not been demonstrated by any thorough data analysis. Only recently, a
couple of case studies have attempted to quantify various aspects of the open source devel-
opment. Mockus and colleagues (Mockus et al., 2000) have examined developer participa-
tion, core team size, productivity and defect density. Godfrey & Tu (2000) have studied the
evolution rate of Linux kernel.

As McConnell (1999) points out, the open source projects should not be compared with the
average closed project. They should be compared with the software development effective-
ness achieved by leading-edge organizations that use a combination of practices to produce
better quality and keep costs and schedules down. This assertion suggests that the internal
quality of the delivered open source product should be compared with the quality levels
required by the modern software industry.

As already mentioned, the core of open source activities happens at the code level. It is,
therefore, reasonable to focus there, measuring and assessing the resulting product, i.e. the
delivered code. The purpose of this article is to report and discuss the results of a pilot case
that examines the quality of the source code delivered by open source development. Another
purpose of our analysis is to identify structural metrics that may help in distinguishing more
than one candidate versions of a software component when determining the contents of an
open source release, in particular metrics related to component size. To this end, we meas-
ured 100 applications developed for Linux, using a software measurement tool. We have
assessed the results according to the industrial standard proposed by the tool itself for bench-
marking purposes. Initially, we have limited our analysis to the component level of the appli-
cations, planning to extend the case study to the architectural level as well.

In the following, we briefly review some papers that are related to our subject and which
inspired our work. For a long time, programming style has been recognized to be directly
related to certain program quality characteristics such as clarity and understandability (Berry
& Meekings, 1985). Recently, Mengel & Yerramilli (1999) studied the quality of 90 C++ novice
student programs through the static analysis of source code, using the same tool that has
been used in our study. In another paper, Pighin & Zamolo (1997) analysed statically 350 000
lines of source code of industrial programs written in C. They managed to identify a discrim-
inatory function that allowed them to predict module reliability classes based on structural
characteristics of the code.

Enhancing open source release quality 45

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

MEASUREMENT AND ASSESSMENT OF OPEN SOURCE CODE

For our case study, we have used Logiscope‚ (Telelogic, 2000), a comprehensive set of tools
able to perform, automatically, code measurement and comparison with user-defined pro-
gramming standards. Moreover, Logiscope provides its own programming standard that is the
result of empirical conclusions that came out after the analysis of millions of lines of indus-
trial source code. The tool is used by several large organizations to control their programming
process. A total of 70 companies in the telecommunications, automotive/transport, aero-
space/defence, energy, process control and industry sectors are being reported to use the
tool and the underlying methodology. Another example of large organization using a similar
approach is the US National Security Agency (NSA) (Drake, 1996). NSA reported that, after
3 years of measurement and quality assurance activities, they collected and analysed results
on some 25 million lines of code; a sample drawn from more than one billion lines of code.
They compiled a set of measures, similar to the one used in our study, and they used it to
‘promote high-quality processes where they matter most – at the code level’.

Using Logiscope‚, we examined a sample of 100 C programs found in the SUSE Linux 6.0
release. The total size of the code examined is 606 095 physical lines of source code. The
selection of the programs was made at random, so that the set includes a wide variety of
applications, resulting in a representative subset of the applications. By the term ‘application’,
we mean a program written for Linux; it can be a compiler, a utility function (mail, zip, . . .), a
device driver, etc. The programs were analysed using the Telelogic Logiscope Code Checker
and Viewer functions to calculate values of selected metrics and obtain recommendations for
code improvement.

As mentioned above, we limited our analysis to the component level. A ‘component’ is any
C function in the program. The quality of the programs was defined as the conformance to
the accepted range of values, as set in Logiscope. Data from these programs were collected
for 10 metrics to measure component quality [for a thorough discussion on structural metrics,
see (Fenton & Pfleeger, 1997)]. The metrics, along with the acceptable range set by the tool
given in parentheses, are the following:

1 number of statements (N_STMTS): counts the average number of executable statements
per component [1–50].
2 cyclomatic complexity (VG): as defined by McCabe (1976). It is a metric based on graph
theory that represents the number of linearly independent paths in a connected graph, in our
case, the component control flow graph. It is considered an indicator of the effort needed to
understand and test the component [1–15].
3 maximum levels (MAX_LVLS): measures the maximum number of nestings in the control
structure of a component. Excessive nesting reduces readability and testability of a compo-
nent [1–5].
4 number of paths (N_PATHS): counts the mean number of non-cyclic paths per com-
ponent. It is another indicator of the number of tests necessary to test a component [1–
80].

46 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

5 unconditional jumps (UNCOND_J): counts the number of occurrences of GOTO. This type
of statements contradicts the principles of structural programming for sequential control flow
[0].
6 comment frequency (COM_R): this is defined as the proportion of comment lines to
executable statements [0.2–1].
7 vocabulary frequency (VOC_F): defined by Halstead (1975) as the sum of the number of
the unique operands, n1, and operators, n2, that are necessary for the definition of the program.
This metric provides a different view of component size [1–4].
8 program length (PR_LGTH): measures the program length as the sum of the number of
occurrences of the unique operands and operators. This metric provides also another view of
component size [3–350].
9 average size (AVG_S): Measures the average statement size per component and is equal
to PR_LGTH/N-STMTS [3–7].
10 number of inputs/outputs (N_IO): counts the number of input and exit nodes of a compo-
nent. This metric controls the conformance to another known principle of structured pro-
gramming (only one input and one output is allowed) [2].

The tool, by default, measures each component and evaluates it against four basic criteria,
namely testability, simplicity, readability and self-descriptiveness, using the measured values.
The criteria are taken from an international standard concerning the subcharacteristics of soft-
ware quality (International Standards Organization (ISO), 1991). This standard is used by
numerous companies in the software industry (Fenton et al., 1995) and, despite criticisms, it
is considered an important milestone in the development of software quality measurement.
Moreover, the above criteria reflect adequately the quality characteristics that are desirable for
open source code, as described in Introduction. Open source code should be testable to allow
rapid evolution and simple enough to allow frequent modifications and extensions. Obviously,
it should be also readable and self-descriptive to facilitate these activities.

The tool proposes specific recommendations for each software component and criterion.
The recommendation levels are the following: ACCEPT, COMMENT, INSPECT, TEST,
REWRITE. Not all of the recommendation levels are used for every criterion, e.g. COMMENT
is not related to testability, which results from structural information. The tool determines the
recommendation by examining the number of component measures that fall within the accept-
able range. Each criterion is related to a specific subset of the 10 metrics given above
(Table 1). For example, to assess testability, the conformance to the predefined ranges for
metrics VG, MAX_LVLS, N_IO is examined. Notice that only seven out of the 10 metrics are
actually used for component assessment. A possible outcome of the tool analysis may be ‘the
testability of component X is acceptable’ or ‘the readability of component Y requires that Y
be rewritten’.

The above analysis produces eventually four recommendations per component. However,
for open source code quality analysis, a global assessment for each component, combining
all four criteria, would be preferable. To this purpose, we used an aggregation mechanism that
is incorporated in the tool. For each criterion, a score is computed taking account of the related

Enhancing open source release quality 47

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

metrics, each one with a different weight according to the programming language used. For
example, the formula for testability is:

in which CVG is a binary variable that stands for ‘conformance to the predefined range for
metric VG’, taking value ‘1’ when this assertion is true and ‘0’ otherwise. CMAX_LVLS and
CN_IO are defined in a similar way. Conformance for all three metrics would result to a score
of 100. Another weighted-sum expression calculates the final component score from the
scores obtained for each criterion.

Eventually, for each component a final score is calculated, ranging from 0 to 100, based on
the four scores obtained for each one of the criteria mentioned above. A final score of between
90 and 100 signals an acceptable component. On the contrary, a final score of 30 or lower
reveals a component that must be rewritten from scratch. A component should violate most
of the metric ranges to be assigned the recommendation REWRITE. Intermediate scores lead
to the other recommendations (Table 2).

The aggregation mechanism is entirely based on the weighted-sum approach, and the use
of an arbitrary numerical scale for component assessment may be considered a limitation of
Logiscope‚ (for the application of more elaborate aggregation procedures in software evalu-
ation, see Morisio & Tsoukiàs, 1997 and Stamelos et al., 2000). All components examined by
the tool should obtain the ACCEPT recommendation to be considered conformant with the
level of quality required by modern software industry.

Each component of an application has been measured and the mean value of each metric
has been calculated across an application. Descriptive statistics across all applications are
reported in Table 3. For each metric, the minimum, maximum, mean, standard deviation and

 testability = + +40 40 20* * _ * _ ,CVG CMAX LVLS CN IO

48 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Table 1. Relationship between quality criteria and metrics

Criterion Related metric

Testability VG, MAX_LVLS, N_IO

Simplicity VG, N_STMTS, AVG_S

Readability VG, PR_LGTH, MAX_LVLS, AVG_S

Self descriptiveness COM_R

Table 2. Component classification according to the score obtained

Recommendation Min Max

ACCEPTED 90 100

COMMENT 80 90

INSPECT 50 80

TEST 30 50

REWRITE 0 30

median values are given. In some cases, extremely varying values have been observed, but
this is normal given the wealth of applications examined and the high number of people that
have been involved in the development of the applications.

On average, the numbers for N_PATHS, UNCOND_J, COM_R and N_IO are outside the
predefined ranges. The obtained result for N_PATHS seems to be the most distant from the
allowed range, but this is probably as a result of poor definition and interpretation of
the metric’s impact on code quality. Nevertheless, the metric is not considered in the subse-
quent criteria analysis.

The average value for UNCOND_J is 0.14, not far from the ideal value (0). Moreover, in
certain cases the use of GOTO statements is not prohibited, e.g. when we wish to implement
exception handling in a component.

We consider the non-conformance of N_IO and COM_R metrics to be more alarming. On
average, each analysed component has approximately three input–output nodes, one more
than that which is expected by the structured programming principles. This may lead to the
necessity for additional test cases and complicates component integration testing. The number
of comments is also too low: on average one comment line appears for every 10 executable
statements, indicating that in open source little care is taken for documenting the code
produced.

For each application component, a single recommendation was obtained. Next, for each
application, the percentage of components falling in each recommendation class was calcu-
lated. Table 4 provides the statistical description of the percentage of components allocated
in the five recommendation classes. In one extreme case (a utility application), it was judged
that all components should be rewritten. In four cases, all components were considered of
acceptable quality.

Overall, the results suggest that the mean value of acceptable components is about 50%.
On average, a percentage of 31% needs further comments, a percentage of 9% needs inspec-
tion, a percentage of 4% needs further testing and another 5–6% need to be completely rewrit-

Enhancing open source release quality 49

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Table 3. Statistical description of the 100 Linux applications’ source code measurements (abbreviations explained in

the text)

Minimum Maximum Mean SD Median

N_STMTS 3.00 92.00 23.43 12.25 21.65

VG 1.00 35.00 7.70 4.28 7.58

MAX_LVLS 1.00 8.00 2.99 0.81 2.94

N_PATHS 1.00 32 767.00 1266.34 3317.85 704.96

UNCOND_J 0.00 1.96 0.14 0.30 0.00

COM_R 0.00 1.32 0.11 0.15 0.08

VOC_F 1.50 9.90 2.75 0.93 2.67

PR_LGTH 18.00 516.00 133.38 73.17 122.82

AVG_S 3.68 14.96 6.35 1.58 5.96

N_IO 2.00 6.03 2.92 0.77 2.80

ten. A small percentage of components has not been assessed by the tool because of some
computational problems. Note that software organizations, applying programming standards
based on software metrics, would require that all components should be considered
acceptable.

COMPONENT SIZE AND USER SATISFACTION

As mentioned above, modularity is being considered a crucial characteristic of the open source
code. To investigate the relationship between component size and user satisfaction, we char-
acterised the external quality of the LINUX applications by assigning a user satisfaction rating
to each one of them. However, for this part of the study, we have considered only the appli-
cations considered stable by the release distributors. After removing an application with
outlying values, the decreased sample size was 83 out of 100. We have used the metrics
N_STMTS and PR_LGTH to represent the size of the components.

User satisfaction is probably the most straightforward way for measuring the external quality
of a program. We have used a simple rating system based on a four-point defect severity
scale followed by IBM (Jones, 1992). User satisfaction is measured through the following
ordinal scale:

A user experiences only superficial errors at worst.
B all major program functions working but at least one minor function is disabled or incorrect.
C at least one major function is disabled or incorrect.
D program inoperable.

For our pilot study, we asked four experienced LINUX users to provide satisfaction ratings
for every application out of the 83 considered, for which they felt they were familiar enough
to provide a sound assessment. All four users had an experience of more than 2 years with
various Linux applications. The users were also asked to take into account the usability of the
applications. We received answers only for 71 applications, as none of the users considered
he was familiar enough with the remaining 12 applications.

50 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Table 4. Statistical description of the component allocation within the five recommendation classes according to

Logiscope‚ industrial standard

Minimum Maximum Mean SD Median

ACCEPT (%) 0.00 100.00 50.18 18.65 48.37

COMMENT (%) 0.00 66.66 30.95 14.09 31.83

INSPEC (%) 0.00 50.00 8.55 8.50 7.65

TEST (%) 0.00 16.00 4.31 4.14 3.55

REWRIT (%) 0.00 100.00 5.57 10.73 3.20

UNDEFI (%) 0.00 7.69 0.42 1.29 0.00

For the statistical analysis, each metric was considered a random numerical variable. As
our aim was to detect differences among the rating levels of user satisfaction for each metric,
we performed one-way analysis of variance (ANOVA) for every metric by the factor (categori-
cal variable) USRSAT representing user satisfaction. In cases where the ANOVA showed
some indication of differences among the levels of the factor, we further used post hoc tests
for multiple comparisons to locate which levels (ratings) were in fact different. Besides the
standard ANOVA, we used also non-parametric analysis of variance tests such as the
Kruskal–Wallis (K–W) and the Jonckheere–Terpstra (J–T) tests. The normality of the numeri-
cal variables used in standard ANOVA was checked by the non-parametric Kolmogorov–
Smirnov (K–S) test. The SPSS‚ statistical package was used for all statistical tests.

In general, we did not find any relationship between the majority of the metrics we have
considered in this case study and user satisfaction. This fact does not invalidate these metrics,
as their purpose is to capture the effort needed for code development activities and is not
meant to foresee explicitly user satisfaction. However, we have detected indication of rela-
tionship between component size and user satisfaction. In the following, we present the results
regarding only these metrics.

Number of statements (N_STMTS): The variable is normally distributed (K–S-test with
P = 0.759). The ANOVA of N_STMTS by USRSAT gave P = 0.036 < 0.05, which means that
there is an indication of significant difference among the ratings of the factor. The J–T non-
parametric test also showed some difference (P = 0.011 < 0.05). The post hoc tests and the
graphs in Figure 1 show that there is a significant difference in N_STMTS between applica-
tions rated as ‘A’ and those rated as ‘C’. The merging of the ratings B, C and D into a single
rating created a new grouping of the data in two samples for which ANOVA showed some
difference of the corresponding mean values of N_STMTS (P = 0.013 < 0.05). This last
difference can be seen in Figure 2.

Program length (PR_LGTH): This variable is also normally distributed (K-S-test with
P = 0.110). The ANOVA by USRSAT gave P = 0.011 < 0.05, indicating significant difference
among the ratings of the factor. The J–T non-parametric test verified the difference
(P = 0.011 < 0.05). Again, merging of the ratings B, C and D created two groups differing in
the corresponding mean values of N_STMTS (ANOVA with P = 0.014 < 0.05). The differences
among the ratings appear in Figures 3 and 4.

DISCUSSION

Our study revealed some interesting results that we are going to discuss in detail. However,
we should remember that general conclusions may be drawn only from more extensive
empirical studies that should involve a sufficiently large number of open source products of
different application domains, programming languages, degree of success and popularity
among users. In this paper, we are mostly interested in identifying the nature of the benefits
that structural code analysis may bring to the open source community.

Enhancing open source release quality 51

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

52 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Figure 1. Differences in N_STMTS with respect to USRSAT.

Enhancing open source release quality 53

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Figure 2. Differences in N_STMTS with respect to USRSAT (ratings B, C, and D are merged in one).

54 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Figure 3. Differences in PR_LGTH with respect to USRSAT.

Enhancing open source release quality 55

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Figure 4. Differences in PR_LGTH with respect to USRSAT (ratings B, C, and D are merged in one).

According to our opinion, the results of the comparison with the industrial standard of
Logiscope‚ may be interpreted as follows:

1 the structural code quality of the Linux applications provides results higher than that which
someone countering open source might expect, considering the limited control over the devel-
opment process that has been followed.
2 the structural code quality of the Linux applications provides results lower than the quality
implied by the standard.

The first result is in favour of open source development. Traditional developers might fear
that open source has a high probability of producing unreadable code, of low quality and
impossible to maintain. They may think that open projects manage to survive only because
a large number of programmers, with infinite patience because of their personal interest, are
available to correct bugs and provide add-ons. From the data we have examined, it seems
that this conjecture can not be supported. The average percentage of acceptable components
across the programs is still high, as half of the components are in good shape. On the other
hand, the average percentage of components that must be rewritten is not prohibitive for a
corrective activity on the code. However, it should be noted that according to Pareto’s law, a
small percentage of the software will be responsible for the majority of the problems, so 5–6%
of components needing to be rewritten is still a worrying result.

On the contrary, the second finding is against the open source development philosophy.
Given the direct link between internal and external quality characteristics and the findings of
this case study, it seems that the open source community should seriously take into account
the need to develop higher quality code. This is suggested by the fact that, on average, almost
half of the components of each application examined have not received the ACCEPT rec-
ommendation and must be reworked or revisited in some way (i.e. rewritten, tested, inspected
or commented). Although the open source strength stems from the massive code-level peer
review, such a suggestion implies that the way the code is structured necessitates even further
work. Anyway, the quality of the code developed for Linux applications did not meet the require-
ments of the industrial standard we have considered, in contrast to what open source propo-
nents have claimed up to now.

Looking back at the open source process it seems that structural code quality could be
established as one of the project goals, defined as a set of structural measures and good
programming rules. There are three distinct key practices that may help in achieving high
quality code:

1 the programmers could be asked to take into account structural code quality when inter-
vening in the code.
2 the project co-ordinator could assess the quality of the code returned by the programmers
according to a predefined standard. This implies that certain components, non-conformant to
the standard, may be rejected even if they provide correct bug fixes or new functionality.
3 the project co-ordinator could take appropriate code re-engineering decisions whenever the
project seems to experience severe problems.

56 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

According to our opinion the first practice is very hard to pursue because of the nature of
the open source development. If not instructed otherwise by his professional environment,
each individual programmer develops his own coding style, which most probably will not
adhere to any coding standard at all. Even if the number of programmers following pro-
gramming standards increases, it is not possible to guarantee that the new working version
of a component will be produced by one of them. Besides all this, it is very tempting to violate
coding rules of any kind when a quick solution may be achieved easily.

The second practice is not difficult, provided that project co-ordinators rely, not only on open
source power, but on internal software quality as well. A programming standard must be fol-
lowed, either based on a predefined industrial standard or based on systematic analysis of
the code developed in similar projects. A measurement tool may then be applied before deter-
mining the contents of the new release. Modern tools of this type allow easy customization
of the standard against which the code is measured.

We believe that the third practice is also a viable one. An issue with open source is that it
gained popularity and respect because of a number of great successes. But what will happen
in case a major open source project fails? The goal of structural code quality may be proved
hard to respect while the project evolves rapidly. The project co-ordinator should rather monitor
regularly the degree of code quality and should launch a re-engineering step at a certain point,
in which, always following the open source style, the desired structural quality should be
achieved. Such action may be necessary when a dead-end is reached when developing some
component of particularly high complexity. This situation is analogous to what happens in an
organization using a legacy system that can no long fulfil its mission. Although less attractive
from a programmer point of view, the idea to re-engineer open source code might be neces-
sary for open source to survive as a valid alternative to close development.

The analysis concerning user satisfaction demonstrated that, up to some extent, the average
component size is negatively related to the external quality of the applications. In other words,
applications with relatively small average component size seem to work better than applica-
tions that are composed of components of larger average size. This finding confirms the need
for increased modularity already stressed by open source specialists (Bollinger et al., 1999).
It is also contrary to what is known as the ‘Goldilock’s Conjecture’, i.e. that there is an optimal
module size, nor too small nor too big. They are also against the claims of other researchers
(Hatton, 1997) stating that, ‘in any software system, larger components are proportionally more
reliable than smaller components’. As observed by Fenton & Neil (1999), if such statements
were in generally true ‘it would mean that program decomposition as a way of solving prob-
lems simply did not work’, undermining fundamental concepts, like modularity, information-
hiding, object-orientation and structured design.

Although there is indication of only a partial relationship between component size and user
satisfaction, these findings could be still used when deciding the contents of an open source
release. Release configuration is a frequent activity in open source development and might
take place even daily (Raymond, 2000). When more than one candidate exists for a new
version of an application, our analysis suggests that, all things being equal, the version char-
acterized by the smaller component size could be selected for participation in the new release.

Enhancing open source release quality 57

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Intuitively, less component size is the result of better design and, consequently, of lower defect
density and better user satisfaction. In addition, smaller component size should facilitate
program maintenance and evolution. Given that this approach is easily automated, we believe
that it can be easily integrated in the open source process.

CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have tried to provide empirical data to contribute quantitatively to the ongoing
discussion concerning the real power of open source style of software development. Our
goal was mainly to investigate the benefits that structural code analysis could provide to
open source and provide clues for further empirical research. We have found that the quality
of code produced in one case by open source is lower than that which is expected by an
industrial standard, but not prohibitive of further improvement. We have speculated on a
number of suggestions, quite common in industrial software development, aiming to enhance
the evolving open source development process. We have also detected indication that
increased modularity, measured as the average size of components in an application, is not
only expected to facilitate open source development, but also is related to user satisfaction.
Overall, we have imagined an open source process with the following features:

1 the definition of a programming standard to be respected by the project participants at the
launch of the project.
2 the statical source code analysis in the stage before release content definition, to measure
the code developed and verify conformance to the rules imposed.
3 the utilization of the measurement results in the configuration of the new release.

Of course, the collected measurements might be further analysed to improve the perfor-
mance of the project and provide guidance for new open source projects.

It is clear however, that more empirical evidence is needed to support any claims
about open source quality. Source code analysis should be performed across more than one
open source projects, considering architectural evaluation as well. The adoption of certain
programming practices (heuristics) that are considered to improve code quality should also
be investigated (Deligiannis et al., 2001). Open source may require the definition of its
own quality standards, and each significant open source project might have custom code
quality requirements, as is the standard practice with advanced software organizations. More
research is also needed to correlate user satisfaction and its components (usability, function-
ality, etc.) to internal quality characteristics. Open source will also benefit from the definition
of a more formal process that will allow the development of innovative supporting techniques
and tools.

58 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Enhancing open source release quality 59

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Berry, R. & Meekings, B. (1985) A style analysis metric.

Communications of the ACM, 28 (1), 80–88.

Boehm, B. (1988) A spiral model for software development

and enhancement. IEEE Computer, 21 (5), 61–72.

Bollinger, T., Nelson, R., Self, K. & Turnbull, S. (1999) Open

source methods: peering through the clutter. IEEE

Software, 16 (4), 8–11.

Deligiannis, I., Shepperd, M., Roumeliotis, M. & Stamelos,

I.. (2001) An empirical investigation of object-oriented

design heuristics for maintainability. Journal of Systems

and Software, (in press).

Drake, T. (1996) Measuring software quality: a case study.

IEEE Computer, 29 (11), 78–87.

Fenton, N., Iizuka, Y. & Whitty, R. (eds). (1995) Software

Quality Assurance and Measurement: A Worldwide

Perspective. International Thomson Computer Press,

London.

Fenton, N. & Pfleeger, S.L. (1997) Software Metrics: a

Rigorous and Practical Approach. 2nd edn. International

Thomson Computer Press, London.

Fenton, N. & Neil, M. (1999) A critique of software defect

prediction models. IEEE Transactions on Software Engi-

neering, 25 (5), 675–689.

Godfrey, M. & Tu, Q. (2000) Evolution in open source soft-

ware: a case study. Proceedings IEEE International

Conference on Software Maintenance.

Halstead, M. (1975) Elements of Software Science.

Elsevier, North-Holland.

Harrison, W. (2001) Editorial: Open Source and Empirical

Software Engineering. Empirical Software Engineering,

6, 193–194.

Hatton, L. (1997) Re-examining the fault density-compo-

nent size connection. IEEE Software, 14 (2), 89–98.

International Standards Organisation (1991) Information

Technology-Software Product Evaluation: Quality Char-

acteristics and Guidelines for their Use. ISO/IEC IS

9126, Geneva.

Jones, C. (1992). Applied Software Measurement.

McGraw-Hill, New York.

McCabe, T. (1976) A complexity measure. IEEE Transac-

tions on Software Engineering, 2 (4), 308–320.

McConnell, S. (1999) Open source methodology: ready for

prime time? IEEE Software, 16 (4), 6–8.

Mengel, S. & Yerramilli, V. (1999) A case study of the static

analysis of the quality of Novice student programs. Pro-

ceedings SIGCSE ’99, 78–82.

Mockus, A., Fielding, R. & Herbsleb, J. (2000) A case study

of open source software development: the Apache

Server. Proceedings of the International Conference on

Software Engineering.

Morisio, M. & Tsoukiàs, A. (1997) IusWare, A methodology

for the evaluation and selection of software products.

IEEE Proceedings on Software Engineering, 144,

162–174.

O’Reilly, T. (1999) Lessons from open source software

development. Communications of the ACM, 42 (4),

33–37.

Pighin, M. & Zamolo, R. (1997) A predictive metric based

on discriminant statistical analysis. Proceedings ACM

ICSE ¢97, 262–269.

Raymond, E. (2000) The Cathedral and the Bazaar.

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/.

Stamelos, I., Vlahavas, I., Refanidis, I. & Tsoukias, A.

(2000) Knowledge-based evaluation of software

systems: a case-study. Information and Software Tech-

nology, 42 (5), 333–345.

Telelogic (2000) Logiscope User’s Manual, V3.1. Telelogic,

Paris.

Wilson, G. (1999) Is the open source community setting a

bad example? IEEE Software, 16 (1), 23–25.

Biographies

Dr Ioannis Stamelos has been a Lecturer of Computer

Science at the Department of Informatics, Aristotle

University of Thessaloniki, Greece, since 1997. He

received a BSc degree in Electrical Engineering from the

ACKNOWLEDGEMENTS

The authors would like to thank Telelogic for the use of Logiscope‚ at the University of
Thessaloniki and Marco Mesturino for his helpful comments.

REFERENCES

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

60 I Stamelos et al.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 43–60

Polytechnic School of Thessaloniki and a PhD in Com-

puter Science from the Aristotle University of Thessaloniki

(1988). He worked as a Senior Researcher at Telecom

Italia from 1988–1994, and as a Systems Integration

Director at STET Hellas, a mobile telecom operator, from

1995–1996. He teaches courses on language theory,

object orientation, software engineering and information

systems. His research interests include evaluation, cost

estimation and management in the areas of information

systems and open source software. He is a member of the

IEEE and IEEE Computer Society.

Dr Lefteris Angelis received both his BSc and PhD

degrees in Mathematics from the Aristotle University of

Thessaloniki. He is specialized in the study and combina-

torial construction of optimal experimental designs and,

more generally, in statistical methods. He has worked since

1999 as a Lecturer at the Department of Informatics of

Aristotle University, teaching courses on calculus and

applied mathematics. His research interests involve algo-

rithmic and combinatorial planning of optimal experiments,

computational methods in mathematics and statistics,

random search algorithms and statistical methods with

applications in various areas of software engineering and

particularly in the estimation of cost of software projects.

Apostolos Oikonomou holds a BSc degree in Com-

puter Science from the Aristotle University of Thessaloniki.

He is now pursuing a MSc degree on Information Systems

at the Imperial University, London, UK. He is interested in

software measurement, CASE tools and open source

development.

Prof. George L. Bleris is a Professor of Mathematics

at the Department of Informatics, Aristotle University of

Thessaloniki, Greece. He received a BSc degree in Math-

ematics, and a PhD in Physics from the Aristotle Univer-

sity of Thessaloniki (1980). He has served as a Professor

or Assistant Professor in the Departments of Physics and

Informatics for 20 years. He teaches courses on physics,

thermodynamics, statistical physics, group theory, linear

algebra and discrete mathematics. Some of his research

interests are cellular automata, non linear systems and

information systems cryptography. He is the author of

seven books and 70 scientific papers. Prof. Bleris is the

Director of the Programming Languages and Software

Engineering Laboratory at the Department of Informatics.

