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Abstract

Compensating for intraoperative brain shift using computational models has shown promising results. Since computational time is an
important factor during neurosurgery, a priori knowledge of the possible sources of deformation can increase the accuracy of model-
updated image-guided systems. In this paper, a strategy to compensate for distributed loading conditions in the brain such as brain
sag, volume changes due to drug reactions, and brain swelling due to edema is presented. An atlas of model deformations based on these
complex loading conditions is computed preoperatively and used with a constrained linear inverse model to predict the intraoperative
distributed brain shift. This relatively simple inverse finite-element approach is investigated within the context of a series of phantom
experiments, two in vivo cases, and a simulation study. Preliminary results indicate that the approach recaptured on average 93% of sur-
face shift for the simulation, phantom, and in vivo experiments. With respect to subsurface shift, comparisons were only made with sim-
ulation and phantom experiments and demonstrated an ability to recapture 85% of the shift. This translates to a remaining surface and
subsurface shift error of 0.7 ± 0.3 mm, and 1.0 ± 0.4 mm, respectively, for deformations on the order of 1 cm.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Ever since its advent, medical imaging has played a sig-
nificant role in surgical planning and treatment because it
provides valuable information about anatomical structures
and function. This has been particularly helpful for neuro-
surgical procedures where often the surgeon has to remove
a tumor without damaging the healthy brain tissue sur-
rounding it. In order to take advantage of image guidance
during a neurosurgical procedure (also known as image-
guided neurosurgery, IGNS), preoperative tomograms of
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the patient must be registered to the patient’s anatomy in
physical space. While image-to-patient rigid alignment is
relatively straight-forward, clinical studies in IGNS have
exposed limitations to this approach. Systematic studies
have reported that the brain is capable of deforming during
surgery for a variety of reasons, including pharmacologic
responses, gravity, edema, surgical manipulation and respi-
ration (Roberts et al., 1998; Nimsky et al., 2001; Nabavi
et al., 2001) and that the brain can shift a centimeter or
more in a non-rigid fashion (Hartkens et al., 2003).

To correct for deformations, various imaging techniques
such as computed tomography (CT) (Butler et al., 1998),
magnetic resonance imaging (MRI) (Nabavi et al., 2001),
and ultrasound (US) (Letteboer et al., 2005) have been
investigated for intraoperative image-guided surgery. CT
procedures have been questioned for their dose exposure,
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while MR procedures are considered cumbersome and
have been questioned for their cost-effectiveness. Current
US systems suffer from low soft-tissue contrast and lack
image clarity as compared to CT and MR imaging meth-
ods. Therefore, in their current state intraoperative imag-
ing systems do not present a complete solution for
guidance correction of the brain shift phenomenon.

As a cost-effective and efficient method, computational
modeling is a procedure that can translate complex surgical
events into accurate estimates of tissue response and
thereby compensate for intraoperative brain shift. In
model-updated image-guided neurosurgery (MUIGNS), a
biomechanical model of brain shift is driven with sparse
data1 to accurately deform preoperative images to their
current intra-operative position. Several groups have inves-
tigated the potential value of physical/biomechanical mod-
els underpinned by various biomechanical concepts (Miga,
1998; Wittek et al., 2005; Miller, 1999; Skrinjar et al., 2002;
Edwards et al., 1998; Hagemann et al., 1999; Ferrant et al.,
2001). Towards this end, Paulsen et al. (1999) reported a 3-
D biomechanical model governed by consolidation
mechanics. Additional development of the equations and
their solutions can be found elsewhere (Paulsen et al.,
1999; Miga, 1998). In this work, a patient-specific mesh is
created and case-specific boundary data such as tumor
resection and/or tissue retraction is imposed to generate
updates of the preoperative images over the entire course
of surgery. Despite previous success with the model
approach (Miga et al., 1999; Platenik et al., 2002; Miga
et al., 1998, 2000, 2001), there are several remaining chal-
lenges discussed below that need addressing in order to
attain the goal of MUIGNS.

One of the greatest challenges presented by MUIGNS is
that the computational time associated with the model does
not meet the real-time constraints of neurosurgery. For a
23,000 node, 123,500 element mesh with four degrees of
freedom (DOF) at each node on a single central processing
unit (CPU) Silicon Graphics Indigo workstation, Miga
et al. (2001) reported a run time of 8.5 min to simulate
gravity-induced deformations, 6.5 min to simulate retrac-
tion, 5.5 min to simulate excision and 6.0 min to simulate
unretraction for the first time step, and 5.75–7.0 min for
every subsequent time step. These run times can be signif-
icantly improved with use of parallel processing and more
powerful computers, as demonstrated by Warfield et al.
(2002). Using a Sun Microsystems Sun Fire 6800 with 12
750 MHz UltraSPARC-III CPUs, for a 43,584 nodes,
214,035 element mesh with three DOF at each node, War-
field et al. reported a run time of 15 s. These performance
improvements are encouraging and will only add to the
impetus to bring complex models to the operating room.

Another critical component of MUIGNS is the accurate
translation of boundary conditions during the course of
1 Sparse data is defined as data with limited intraoperative extent or
information.
surgery. For example, the amount of cerebrospinal fluid
(CSF) loss during surgery and the head orientation of the
patient in the operating room (OR) may be two important
factors in determining the degree of shift from gravitational
forces (Miga et al., 1999). Although the preoperative surgi-
cal plan can provide an estimate of the patient’s orientation
a priori, estimates for the degree of change in buoyancy
forces acting on the brain are somewhat more elusive.
Related to the hydrated nature of the brain, intracranial
pressure from the edematous tissue surround tumors can
cause the brain to swell within the craniotomy region.
Models that are biphasic in nature may be better suited
to capture these brain shift effects. In addition, deforma-
tions from retractor blades and internal strain energy
changes that occur during tumor exposure and resection
can also contribute to brain shift during surgery. Each of
these factors present a challenge with respect to prescribing
boundary and internal forcing conditions. While non-
guided prediction is desirable, there is little doubt that
the accuracy of brain shift models can be increased by inte-
grating feedback from sparse intraoperative data (Roberts
et al., 1999). These sparse displacement measurements can
be obtained from a number of sources (Nauta, 1994; Hart-
kens et al., 2003; Lunn et al., 2001; Sun et al., 2003, 2005;
Sinha et al., 2005). Sparse intraoperative data is typically
used as displacement or stress boundary conditions to con-
strain the computational model. Using the measured sparse
displacements, Ferrant et al. (2002) and Skrinjar et al.
(2002) rigidly constrained their computational model to
exactly match the measured displacements, as if they were
known boundary conditions. Though this method is rela-
tively easy to implement, it faces the potential limitation
that since boundary displacements are constrained to
match measured surface displacements, artificial forces
can be introduced at the measured points which by obser-
vation are stress-free. More specifically, in this framework,
all deformations result from the application of contact
forces when the force environment is considerably more
complex and could involve a myriad of contact and distrib-
uted loading conditions. Given this, it is worth exploring
alternative approaches for integrating sparse intraoperative
data with computational modeling. Also, it should be
noted that time taken to compute the displacements using
the computational model and the time taken to integrate
the sparse data with the computational model, must
meet the real-time constraints of neurosurgery. Thus the
incorporation of sparse measurements must not only
improve accuracy, but also significantly reduce the time
required to update the preoperative images.

In recent developments, Lunn et al. (2005) presented a
novel method that corrects brain shift by combining a best
prior estimate (BPE) with a force perturbation correction
technique to better match sparse data to model output.
The reported method casts the model correction with a
nonlinear optimization framework which uses the method
of Lagrange multipliers to rapidly correct their BPE of
brain deformations. They call the method the adjoint
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equation method (AEM) and have had encouraging preli-
minary results. While the mathematical approach is quite
elegant, it still represents a challenging optimization frame-
work that is significantly under-determined. Also in addi-
tion to the computational cost, the AEM reduces
modeling efforts to solve for the optimal distribution of
forcing functions rather than concentrating on generating
a more deterministic model. For the sole purpose of shift
correction, this is quite appropriate but it focuses the
framework at using models to regularize data rather than
model deformation events.

In the work presented here, a constrained linear inverse
model is combined with a biomechanical tissue model to
best fit the measured sparse intraoperative data. Initially
presented in Dumpuri et al. (2003), the method reported
here extends the earlier framework by incorporating a
smoothing constraint to improve the efficiency and accu-
racy of solution. In order to account for the degree of
uncertainty associated with all the sources of deformation,
the computational model is run multiple times and these
multiple model solutions are combined with the help of a
inverse model to predict the intraoperative brain shift. It
should also be noted that a considerable amount of the
framework can be pre-computed and that at this time the
inverse approach is a direct solution. With this technique,
the model solutions act as training samples for the inverse
model and the sparse intraoperative data act as control
points, thereby removing the degree of uncertainty associ-
ated with MUIGNS. The framework proposed herein has
some specific distinctions from the work of others: (1) the
atlas of deformations is constructed from simulations
based on physiological events, therefore the framework
moves beyond the role of image interpolator to one that
provides quantitative estimates of deformation-related
properties (e.g. stresses, interstitial pressure dynamics,
etc.), (2) the atlas of solutions generated is of more consid-
erable breadth and attempts to include all the forces caus-
ing intraoperative brain shift and the varying surgical
presentations of the patient (e.g. mannitol induced defor-
mations, gravity-induced sag, and resection), (3) the inverse
model is linear, and takes advantage of pre-processing, (4)
the framework introduces a simple weighting scheme to
constrain the atlas, and (5) presents a semi-automatic
boundary condition generator to translate the boundary
conditions encountered in the OR and should allow for
the easy reproduction by others.

In this study, the fidelity of a constrained linear inverse
model approach is demonstrated in a phantom experiment,
two in vivo cases and a simulation study. It should be
noted that though the sparse intraoperative data can
include both pressure and displacement measurements, dis-
placement data was chosen to test the accuracy of the pro-
posed inverse model. In this study a laser-range scanner
(LRS) is used to acquire sparse data measurements (Sinha
et al., 2005, 2006). The laser-range scanner used in Sinha
et al. (2005) is capable of generating a three-dimensional
point cloud corresponding to (x,y,z) cartesian coordinates
and two-dimensional texture co-ordinates (u,v). In Sinha
et al. (2005, 2006) the LRS was modified by the attachment
of 12 infrared light emitting diode (IRED) markers, allow-
ing for the scanner to be tracked in physical-space. The
approach to measuring brain shift using LRS is as follows:
LRS is used to scan the cortical surface, the initial scan is
registered to the patient’s preoperative images thereby
establishing a correspondence between image-space and
physical-space (Miga et al., 2003), the brain then deforms
during surgery, and LRS is used to acquire a serial scan-
ning dataset of the cortical surface after deformation.
The shift acquired is then transformed to physical-space
coordinates with the aid of a calibration phantom. The
shift-tracking protocol using LRS has been described in
detail in Sinha et al. (2005). These sparse intraoperative
measurements are used to constrain the linear inverse
model. Also to meet the real-time demands of neurosurgery
a parallel implementation of the computational model on a
multiprocessor architecture is considered.
2. Methods

2.1. Computational model

Eqs. (1) and (2) were originally developed by Biot (1941)
to represent biphasic soil consolidation, but were later used
by Nagashima et al. (1990) and Paulsen et al. (1999) to
model the deformation behavior of brain tissue.

r � Gr~uþr G
1� 2m
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where ~u is the displacement vector, p the interstitial pres-
sure, G the shear modulus, m the poisson’s ratio, a the ratio
of fluid volume extracted to volume change of the tissue
under compression, qt the tissue density, qf the fluid den-
sity, g the gravitational unit vector, 1/S the amount of fluid
which can be forced into the tissue under constant volume,
t the time, kc the capillary permeability, pc the intracapil-
lary pressure, k the hydraulic conductivity.

Eq. (1) reflects the equations of mechanical equilibrium.
Within this description, deformations can be caused from
surface forces and displacements, the existence of intersti-
tial fluid pressure gradients, and changes to tissue buoy-
ancy forces. Additionally, this expression assumes that
the continuum consists of a porous solid tissue matrix
infused with an interstitial fluid whereby the matrix
deforms as a linear elastic solid while the fluid flows
according to Darcy’s law. Eq. (2) relates the time rate of
change of volumetric strain to changes in interstitial
hydration.

First reported within the context of gravity-induced
brain shift by Miga et al. (1999), the right-hand-side of
Eq. (1) is used to represent the effect of gravitational forces
acting on the brain. The effect of gravitational forces on the
brain can be modeled as a difference in density between



Fig. 1. BC set for a supine patient with neutral head orientation in the
OR. Displacement BCs: Surface 1 is stress-free at atmospheric pressure.
Surfaces 2 and 5 are permitted to move along the cranial wall but not
along the normal direction. Surfaces 3 and 4 are fixed for displacements.
Interstitial pressure. BCs: Surfaces 1, 2 and 3 lie above the assumed level of
intraoperative CSF drainage and therefore reside at atmospheric pressure.
Surfaces 4 and 5 lie below the assumed level of intraoperative CSF
drainage and therefore allow no fluid drainage.
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tissue and surrounding fluid. Intraoperative CSF drainage
reduces the buoyancy forces which serve to counteract
gravity forces thus causing the brain to sag.

The last term on the left-hand-side of Eq. (2) represents
the hydrodynamic forces that act on the brain due to fluid
capillary exchange. The term kc(p � pc) represents the fluid
exchange between capillary and interstitial spaces and can
be used to simulate the effects of hyperosmotic drugs or
swelling on the brain. Hyperosmotic drugs such as manni-
tol are administered to decrease the effect of elevated intra-
cranial pressure due to edema. These drugs have the effect
of reversing the blood–brain osmotic barrier, drawing
water from the extracellular brain space, thereby decreas-
ing brain volume. This decreased capillary pressure pulls
interstitial fluid from the extracellular brain space causing
a decrease in tissue volume. Conversely, elevated capillary
pressures increase local tissue volume, resulting in tissue
stress and distortion. A pressure elevation of 20–30 mmHg
has been measured in experimental brain edema and shown
to be capable of driving edema fluid through the brain
(Reulen et al., 1977) (for this work, a value of 27 mmHg
was used). The term kc(p � pc) is intended to model these
fluid exchanges. It should be noted that the effects of man-
nitol are modeled as a volumetric force with decreased
pressures acting on the whole brain, whereas tissue swelling
is modeled as a local force with elevated pressures acting in
the edematous region alone. Material properties reported
in Appendix A.2 are based on values in the literature as
well as those deduced through optimization in experiments
by Miga (1998). As reported in appendix, a heterogenous
distribution of kc is assumed to account for the different
structural and biomechanical characteristics of the gray
and white matter, tumor and edema.

Eqs. (1) and (2) are solved numerically using the Galer-
kin weighted residual method. Finite element treatment of
these equations coupled with a weighted time-stepping
scheme results in an equation of the form
[A]Un+1 = [B]Un + Cn+1 where [A] and [B] represent the
stiffness matrices for the n + 1 and nth time step, respec-
tively, C represents boundary condition information and
known force distributions, and U represents the solution
vector (3 displacements and pressure) at the node. The
detailed development of these equations can be found in
previous publications (Paulsen et al., 1999; Miga, 1998).

The boundary conditions used in the model are illus-
trated in Fig. 1 and was first reported in Miga et al.
(1998). Although the actual boundary conditions are
patient specific, the highest elevations in the brain are
stress-free, the mid-elevations are permitted to move along
the cranial wall, while the brain stem is fixed. The amount
of intraoperative CSF drainage determines the fluid drain-
age boundary condition for each of these elevations. Ele-
ments and hence the corresponding nodes in the mesh
lying above the assumed level of intraoperative CSF drain-
age are assumed to reside at atmospheric pressure, while
elements lying below the CSF drainage level do not allow
fluid drainage. These boundary conditions were used to
validate the accuracy of the computational model in Miga
et al. (1998, 1999, 2000). The results reported suggest that
these boundary conditions compare well to those encoun-
tered in the OR.

2.2. Parallel computation of the finite element model

As described earlier, the volumetric deformation of the
brain is determined by solving the three displacements (x,
y and z) and pressure (p) at each node of the finite element
mesh. Each node thus gives rise to four degrees of freedom.
The elements in the finite element mesh matrix are divided
equally amongst the processors available for computation.
The boundary conditions are then applied in a similar man-
ner (divided amongst available processors). It should be
noted that though the rows of the matrix and the boundary
condition nodes are divided equally amongst the proces-
sors, some processors do more work than others due to
the irregular connectivity of the mesh. The Portable, Exten-
sible Toolkit for Scientific Computation (PETSc) package
(Balay et al., 1997, 2001, 2004) is used to assemble the stiff-
ness matrix and to solve the biphasic brain model.

2.3. Inverse model

As discussed above, computation time is an important
factor in MUIGNS. By incorporating a priori knowledge
about the sources of deformation, it may be possible to
improve efficiency of a MUIGNS system by decreasing
the computational time and it may also be possible to
increase the accuracy of a MUIGNS system. With respect
to the accuracy, certain aspects of the brain shift problem
can be difficult to predict within the OR environment
regardless of available data acquisition. For example, in
the practical OR setting, it is very difficult to differentiate
shift due to changes in CSF volume and from fluid-deplet-
ing drugs such as mannitol. Even something as simple as
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knowing the patient orientation in the OR, i.e., the direc-
tion of gravity with respect to the brain can be challenging.
For example, in frameless stereotactic procedures, the ref-
erence emitter is commonly attached to the patient’s fixa-
tion. This allows tracked instruments to be directly
related to the patient’s image volume once the patient has
been registered. This has the advantage that as the patient’s
bed is lowered and/or rotated, the reference frame is
rotated with the patient. However, in so doing, the absolute
reference to the OR (the reference frame of gravity) can be
lost unless a second reference emitter is attached to OR
space (not commonly done). Without a second reference
emitter, the direction of gravity relative to the patient is
lost. One approach to addressing this uncertainty is to gen-
erate an atlas of deformation solutions based on a range of
possible surgical presentations. This has the added benefit
to efficiency by allowing for precomputation of the defor-
mation atlas.

In this paper, a realization to the brain shift compensa-
tion problem is proposed using a precomputed deforma-
tion atlas. Operationally, Eqs. (1) and (2) are solved for a
range of possible factors causing brain shift. Let the defor-
mation atlas, E, be the matrix obtained by assembling these
model solutions whereby E is of size (n · 3) · m, where n is
the number of nodes in the finite element mesh, 3 is the
number of Cartesian displacement components at each
node, and m the number of model solutions. In general,
n · 3 is significantly larger than m, so E is a rectangular
matrix. The model-data misfit error between a linear com-
bination of precomputed displacement solutions and the
actual displacements can be written as

evolume ¼ ½E�fag � fUg ð3Þ
where U is the measured volumetric intraoperative shift,
i.e., shift at all nodes and is (n · 3) · 1 vector, and a is
the m · 1 vector of regression coefficients. This can then
be expressed as the least squared error objective function,

GvolumeðaÞ ¼ ð½E�fag � fUgÞTð½E�fag � fUgÞ ð4Þ
As noted above, the measurements U are often incom-

plete or sparse. As a result, model solutions within E are
interpolated to the specific measured intraoperative data
points and these interpolated solutions are assembled in
an intraoperative sparse deformation atlas, M. Thus M is
of size (ns · 3) · m, where ns is the number of points for
which sparse intraoperative data has been measured. The
displacement data sets in M serve as the training samples
for the inverse model and reduce the model-data misfit
error, and objective function to

esparse ¼ ½M�fag � fug ð5Þ
GsparseðaÞ ¼ ð½M�fag � fugÞTð½M�fag � fugÞ; ð6Þ

respectively. Here, u is the sparse intraoperative shift mea-
sured at ns points in the brain. This, however, can trans-
form the problem into an undetermined system because
there are usually more regression coefficients than measure-
ment points (i.e. m > ns). While minimum norm solutions
can produce perfect fitting of the data they are often unsat-
isfying with respect to volumetric shift prediction due to
the measurements being confined to a small spatial region
(e.g. craniotomy in this case). This is addressed by intro-
ducing an extra constraint, which has the effect of encour-
aging a spatially smooth displacement field that is confined
within the cranial extents. The modified objective function
can be written as,

GsparseðaÞ ¼ ð½M�fag � fugÞTð½M�fag � fugÞ
þ /½W �Tf!gfag ð7Þ

The second term in this expression is a function of the
mechanical strain energy at each point within the model
and serves to constrain the regression coefficients to values
that would also minimize the elastic energy across the
deformation atlas. In this expression, the term ! refers to
the linear elastic strain energy matrix, described by
!i,j = 1/2{�i,j}

t[Si,j]{�i,j}, where Si,j, �i,j is the elastic stiffness
tensor, and Cartesian strain tensor in vector form, respec-
tively, for the ith node of the jth solution from the atlas
(material properties are in Appendix A.2). With the devel-
opment of any multi-term objective function (Eq. (7)), care
must be taken to allow proper scaling of terms such that
the data is matched optimally while also retaining the ben-
eficial effects of constraints. This process of regularization
is often problem specific. With this in mind, a distance
based weighting factor vector WT = [W1,W2,W3, . . . ] is
introduced that is similar to that in Lynch (2004), and is
used with the strain energy matrix described above. The
weighting vector is constructed as,

W i ¼
1

ð1þ ri=lÞe�ri=l
ð8Þ

where ri is the distance between the centroid of the mea-
surement nodes and the ith node in the brain volume.
The l is a characteristic length that specifies the domain
over which measurement nodes should have influence.
With that, the form of Eq. (8) reduces the strain energy
constrain within the region of measurements nodes, i.e.
the craniotomy in this case. While displacements tend to
be small in areas remote from the craniotomy, they will
have increased strain energy and increased weighting.
When Eq. (7) is optimized for the regression coefficients,
the net effect of the constraint term is to enforce a minimal
elastic energy state on remote regions of the domain while
selecting coefficients that best match the shift in the cranial
and tumor regions. / in Eq. (7) provides a scaling role such
that the solution is not biased by the strain energy con-
straint term. The values for l and / were found empirically
and are 0.125 and 1/2700, respectively.

Finally, setting the partial derivative to zero, the opti-
mum for Eq. (7) has a direct solution for {a}. Once the
regression coefficients are determined, these are used to cal-
culate the full volume displacements using

fU �g ¼ Ea ð9Þ



Fig. 2. Framework for MUIGNS using the constrained linear inverse model.

2 We found that a threshold value between n = �0.2 and n = �0.3
worked best for all patient orientations.
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where {U*} is the predicted volumetric brain shift. Fig. 2
shows a schematic of the MUIGNS system using the in-
verse finite-element model approach.

2.4. Automatic boundary condition generator and atlas
formation

In order to predict intraoperative brain shift using the
inverse model based on a pre-computed deformation atlas,
a number of training samples/displacement data sets are
required. Additionally, for increased accuracy, it is impor-
tant that the model represent the degree of uncertainty
associated with all the sources of deformation. For exam-
ple, a deformation atlas for predicting gravity-induced
brain deformations should contain displacement data sets
for a range of possible patient orientations in the OR
and varying degree of buoyancy force changes for each
patient orientation. The surgeon’s preoperative plan can
be used to approximate the patient’s orientation in the
OR and subsequently used to generate multiple boundary
condition sets (BCs), to sample all possible patient orienta-
tions. This underscores the need for a template BC that is
accurate so as to facilitate automatic BC generation.

Based on the BC representation shown in Fig. 1, a
patient-specific automatic boundary condition generator
has been developed. The only necessary inputs are the
approximate patient orientation in the OR as predicted
by the neurosurgeon’s preoperative surgical plan, an antic-
ipated region/size for the craniotomy, the computational
mesh based on the preoperative image volume, and the
location of the patient’s brain stem in the preoperative
image study. Based on this information, all possible patient
orientations in the OR are assumed and BCs for the
patient-specific mesh domain are generated. The automatic
BC generator algorithm is as follows:

1. For a given preoperative patient-orientation estimate
(PPoE), the node normals for all nodes on the boundary
are calculated and the following operation is performed
over all boundary nodes: ~eg �~eni 6 n; i ¼ 1; 2; 3; . . . ; n
boundary nodes, where ~eg is the gravitational unit vec-
tor,~eni is the unit vector associated with the nodal nor-
mal to the brain surface for the ith boundary node and n
is a scalar tolerance specified by the user.2 Boundary
nodes that satisfy this condition are assigned stress-free
boundary conditions (Neumann condition), while those
that do not are allowed to slide along the cranial cavity
but not in the direction of the surface normal. However
in cases where tissue swelling, due to elevated intracra-
nial pressure, is to be taken into account, the nodes in
craniotomy region are identified and assigned stress-free
boundary conditions while other boundary nodes are
allowed to slide along the cranial cavity but not in the
direction of the surface normal.

2. The brainstem is identified from the patient’s preopera-
tive images and nodes within a given radius are classified
as fixed (Dirichlet condition), which overrides the condi-
tions determined in Step 1.

3. The interstitial pressure BCs are determined by:
~di � ð�~egÞP hj; hmin 6 hj 6 hmax; j ¼ 1; 2; 3; . . . ;m ele-
vations, where ~di is the Cartesian coordinate of the ith
boundary node and hj is an elevation distribution. Based
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on previous experience in the OR, it has been deter-
mined that the upper (hmax) and lower bound (hmin)
for the elevation distribution is 65% and 15% of the total
elevation, respectively. Boundary nodes that satisfy the
above expression are considered to be at atmospheric
conditions (Dirichlet condition in pressure), while those
that do not are the non-draining regions of the brain
(Neumann condition in pressure).

4. Elements in the domain with reduced buoyancy forces
are identified based on the following expression: ~Dk�
ð�~egÞP hj; hmin 6 hj 6 hmax, j = 1, 2, 3, . . . , M eleva-
tions, where ~Dk is the Cartesian position of the kth
tetrahedral element centroid. Elements satisfying this
condition are considered to have a complete reduction
in their buoyancy forces and are assumed to have a sur-
rounding fluid density equal to that of air (qf as shown in
Eq. (1)). Elements that do not satisfy the above condi-
tion are assumed to have a surrounding fluid density
equal to that of the tissue density (qt as shown in Eq. (1)).
Fig. 3. BC atlas developed using the automatic BC generator algorithm.
(a) Displacement BCs generated for varying patient orientations based on
PPoE. Nodes in the light gray regions of the figure are assigned stress-free
BCs and those in the dark gray regions are allowed to slide along the
cranial cavity but not in the direction of the surface normal. (b) Pressure
BCs for varying levels of intraoperative CSF drainage, for a given patient
orientation. Nodes above the CSF drainage level (black region) are
assumed to be at atmospheric conditions and nodes below the CSF
drainage level (gray region) are assumed to be the non-draining regions of
the brain. Also, elements in gray are submerged in CSF and are assumed
to have a surrounding fluid density equal to that of the tissue density and
elements in blue are assumed to have a surrounding fluid density equal to
that of air. For brevity and clarity, only a few BC sets are shown here.
Fig. 3a shows a sampling of the BC atlas as generated by
the automatic BC generator algorithm for the displace-
ment/stress BCs. Fig. 3b shows a sampling of the BC atlas
for the interstitial pressure BCs.

3. Experiments

3.1. Phantom studies

Phantom experiments were conducted to quantify the
fidelity of the constrained linear inverse model and to sim-
ulate gravity-induced brain shift. Fig. 4 shows the experi-
ment set up.

The phantom was made of polyvinyl alcohol(PVA)
(Flinn Scientific, Inc., Batavia IL). A 7% solution of PVA
with one freeze–thaw cycle was used to construct the brain
phantom. The phantom was fixed on an incline and sub-
merged in a water-filled tank and a baseline CT scan was
acquired. To simulate the loss of CSF drainage during neu-
rosurgery, water was drained to two different levels and CT
scans were acquired for each drainage level. Twelve 1 mm
diameter stainless steel bearings (http://www.bocabea-
rings.com) were fixed on the surface of the phantom and
used to track the motion of the phantom surface during
all CT scans. It is worth noting the following two limita-
tions of these phantom experiments: (i) in surgery, the brain
is confined within the skull thereby constraining the brain
shift, whereas no such confinements existed for the phan-
tom, (ii) the brainstem is assumed not to shift in this frame-
work whereas in these experiments the entire bottom
surface of the brain phantom was fixed to the incline. While
the phantom experiment is not exactly analogous to surgi-
cal conditions, the goal was to simulate the scale of gravity-
induced deformations in an experimental setup and vali-
date the fidelity of the constrained linear inverse model.
The CT images were acquired in a fixed experimental setup
so that any discrepancies between image sets after drainage
were solely due to deformation. Examples of phantom
deformations can be seen in Fig. 5.

The starting point for the framework begins with the gen-
eration of the subject-specific model in the ‘‘preoperative’’
state in this case, a geometric model of the phantom in its
fully submerged state. From the imaging data, a marching
cubes algorithm (Lorensen and Cline, 1987) was used on
the segmented CT data to generate an initial approximation
of the surface of the brain phantom. FastRBF Toolbox
(Farfield Technologies, http://www.farfieldtechnology.
com) was then used to define a parametric version of the
marching cubes surface. A tetrahedral mesh generator (Sul-
livan et al., 1997) was then used to create a volumetric tetra-
hedral mesh using the patch description obtained from the
FastRBF toolbox. The angle of inclination was used for
the phantom PPoE. Twenty-seven different orientations
with three different drainage levels were used to create the
displacement data sets/training samples using a 3D linear
elastic model. Material properties used in the computational
model have been reported in Appendix A.1. Also, the model

http://www.bocabearings.com
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http://www.farfieldtechnology.com


Fig. 4. Phantom experiment set up used to simulate gravity induced deformations and assess the accuracy of the proposed constrained linear inverse
model. For picture clarity, the tank is shown with no water in it.

Fig. 5. Phantom deformation results of the RBF surfaces of the
segmented brain phantom from CT image volumes. Two different views
have been shown for each water drainage level to assist in depth
perception. (a) Resulting shift when water in the tank was drained to half
the original level. (b) Resulting shift when water in the tank was drained to
about 90% of the original level. Regions have been highlighted and
zoomed in to show the shifts at a finer scale.
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was reduced to an isotropic elastic material model and
hence Eq. (1) was used with a = 0. Displacements obtained
using the stainless-steel bearings were used to constrain and
to assess the accuracy of the constrained linear inverse
model. To estimate the accuracy of the constrained linear
inverse model in predicting full volume displacements, six
1 mm stainless steel bearings implanted at a depth of
1–2 cm inside the phantom were used as targets and the
magnitude of target registration errors (TRE)3 of the
3 Target registration error (TRE) in this context is defined as the error
between the measured shifted position and the predicted shifted position
of the sub-surface bearings.
sub-surface bearings were examined. Additionally, displace-
ments of the surface and the sub-surface bearings were pre-
dicted using the forward model in an open-loop manner to
determine its accuracy with respect to modeling sag. In this
case, boundary conditions i.e., drainage levels, and the incli-
nation of the phantom were known a priori and therefore
the gravity forces causing shift were ascertained. These
forces were then applied to the computational model and
the displacements were compared to those estimated using
the constrained linear inverse model. Results have been pre-
sented in Section 4.2.

3.2. Clinical studies

Two patients undergoing tumor resection (Sinha, 2005;
Sinha et al., 2005) were used to validate the constrained lin-
ear inverse model. In both cases, an optically tracked LRS
system was used to track the cortical surfaces during neu-
rosurgery. Upon opening the dura, the tracked LRS unit
was used to capture the brain surface. After tumor resec-
tion, the process was repeated. Corresponding cortical fea-
tures were identified in both scans and used as measures of
displacement. Previous work has shown that serial brain
shift measurements using a tracked LRS were in agreement
with those measured independently by an optically tracked
stylus (i.e. a gold standard in measurement).

Patient 1 was a 65 year old male with a history of esoph-
ageal cancer and had an associated 3 cm area abnormal
enhancement in the left frontal lobe. He underwent a ste-
reotactic left frontal craniotomy for microsurgical resection
of the tumor.

Patient 2 was a 36 year old male with a 6 · 8 cm tumor
mass originating in the left frontal lobe and crossing across
the midline in the corpus collosum to the collateral frontal
lobe.

In each case, mannitol was administered and no initial
shift was observed after opening the durage. It is impor-
tant to note that the absence of initial shift post dura
opening is not necessarily commonplace. Findings by



Fig. 6. Pre- and post-resection LRS surfaces overlaid on the preoperative
MR volume. (a) and (b) respectively show the pre- and post-LRS surfaces
overlaid on Patient 1’s preoperative MR volume. (c) and (d) respectively
show the pre- and post-LRS surfaces overlaid on Patient 2’s preoperative
MR volume. See Sinha (2005) and Sinha et al. (2005).

Fig. 7. Two frontal views of the volume rendered brain with an increase in
tissue volume simulated at the craniotomy region, simulated using two
different kc values. The craniotomy region is highlighted and zoomed in to
show the increase in tissue volume on a finer scale. 1 in the figure refers to
the undeformed mesh. 2 refers to the increase in tissue volume simulated
using kc1. 3 refers to the increase in tissue volume simulated using kc2. kc1

and kc2 values have been reported in Appendix A.2. Though the falx
cerebri was modeled, it has not been shown in the figure.
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Dorward et al. (1998), Nimsky et al. (2000), and Sun et al.
(2005) have reported post dura opening shift in many
cases. Intraoperative cortical surfaces (after dura opening
but before tissue resection, and after tumor resection) of
each patient were acquired by the tracked LRS unit.
Fig. 6 shows the LRS surfaces overlaid on the textured
preoperative MR volume.

A patient-specific model was generated for each patient.
The brain, falx cerebri, tumor and edema were segmented
from the patient’s preoperative MR data set and the tetra-
hedral mesh was generated in a manner similar to the brain
phantom. Tissue mechanical properties were based on pre-
vious experiences and have been reported in Appendix A.2.
For each patient, brain shift was simulated with five differ-
ent atlases that reflected different assumptions about the
surgical presentations of the patient: (I) tumor was
assumed to be stiffer than the brain tissue (Miga et al.,
2001) and was not resected from the brain volume. Manni-
tol was not administered and gravity was the solitary factor
causing shift, (II) tumor was resected from the volume. As
in the previous atlas, mannitol was not administered and
gravity was the solitary factor causing shift, (III) tumor
was assumed to be stiffer than the brain tissue. Mannitol
was administered and was the solitary factor causing shift,
and (IV) tumor was resected from the brain volume. As in
the previous atlas, mannitol was the solitary factor causing
brain shift (V) all four aforementioned atlases were concat-
enated into one large deformation atlas. Atlas I and II
employed 64 different orientations with five different CSF
drainage levels for each orientation, resulting in 320 dis-
placement data sets/training samples for each deformation
atlas for a total of 640 among Atlas I and II. Atlas III and
IV used three different capillary permeability values for
each of the 64 patient orientations, thus resulting in 192
displacement data sets for each atlas for a total of 384
among Atlas III and IV. Atlas V thus consisted of 1024
deformation data sets. Tissue resection was simulated by
identifying the model elements that coincide with the pre-
operative tumor volume and decoupling the corresponding
nodes (Miga et al., 2001) Fig. 7.

With respect to the driving sparse data, 12 correspond-
ing points between the serial LRS scans were identified
manually by an experienced user. These points are
transferred to physical-space coordinates as described in
Section 1 and (Sinha et al., 2005). The registration results
reported in Sinha (2005) and Sinha et al. (2005) are used
to establish correspondence between the initial LRS scan
(physical-space) and the finite element mesh (image-space).
Nodes on the brain surface closest to the twelve corre-
sponding points identified on the initial LRS scan are then
identified using a closest-point algorithm and these nodes
are used to compute the intraoperative deformation Atlas
[M] described in Section 2.3. Also, the difference in position
between the twelve corresponding points in physical space,
i.e., the difference in physical-space coordinates between
the twelve points identified on the initial LRS scan and
post-resection scan, was used to constrain and validate
the accuracy of the five deformation atlases using the
inverse approach. Sub-surface measurements were not
available for the clinical studies. Therefore, a ‘‘leave one
out’’ technique was employed for the surface points to val-
idate the accuracy of the constrained linear inverse model.
In other words, the inverse model is challenged 12 times,
each time leaving out one of the corresponding points from
the intraoperative deformation Atlas [M] and the measured
shift u. Error is then computed using only the omitted
point, thereby resulting in 12 error measurements for each
deformation atlas. Mean, standard deviation and maxi-
mum values across these 12 error samples have been
reported in the following section.



Table 1
Computational times associated with parallel implementation of the finite
element model

Number of
processors

Total
time (s)

Precondition + iterative
solution for first time step (s)

Successive time
steps (#5) (s)

2 853.7 154.3 623.4
4 392.2 51.7 212.5
6 202.6 32.2 117.0
8 140.0 23.9 86.0

10 138.3 23.3 85.1
12 117.5 19.0 70.5
14 130.2 16.6 81.8
16 116.7 20.7 67.5
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3.3. Simulation studies

To test the fidelity of the approach in a controlled man-
ner and to validate sub-surface shifts predicted by the
inverse model, brain shift was compensated for using two
different deformation atlases that reflected different
assumptions about the surgical presentations of the
patient. A finite element mesh representative of a human
brain was generated in a manner similar to the one
described in Section 3.2. Twelve nodes on the brain surface
closest to the tumor were picked to simulate the sparse
intraoperative measurement points. Nodes belonging to
the brain stem are fixed and in cases where tumor is
resected, nodes corresponding to the tumor volume are
decoupled when assembling the stiffness matrix. As a result,
brain stem, tumor and measurement nodes were excluded
when assessing the accuracy of the proposed framework.
Shift error for all the other surface and sub-surface nodes
served as unbiased error estimates and results have been
presented in the following section.

Atlas I is a concatenated deformation atlas reflecting
brain shift due to gravity, mannitol and tumor resection,
while Atlas II additionally included shift caused by tissue
swelling. It should be noted that Atlas I as defined here is
analogous to Atlas V used in Section 3.2. In order to
account for the brain shift due to increased intracranial
pressure from the edematous tissue, brain shift was simu-
lated due to increased intracranial pressure using the
kc(p � pc) in Eq. (2). Three different craniotomy sizes
(2 cm radius, 2.5 cm radius and 3 cm radius) were assumed
and for each craniotomy size, three different edematous tis-
sue regions were assumed. The edematous tissue was sub-
jected to an elevated intracranial pressure of 27 mmHg
and three different kc values were assumed, thus resulting
in a total of 27 different scenarios. The displacement data
sets resulting from these 27 scenarios were used to build
the aforementioned deformation Atlas II. Atlas II the con-
catenated deformation atlas, thus consisted of 1051 defor-
mation data sets.

Six different displacement data sets, not part of the
atlases mentioned above, were used to validate the accu-
racy of two aforementioned atlases using the constrained
linear inverse model. The forces causing shift in these differ-
ent displacement sets are as follows: (A) Gravity-induced
deformations with tumor not being resected from the tissue
volume. (B) Mannitol-induced shift with tumor being
resected from the tissue volume. (C) Brain shift resulting
from tissue swelling being the solitary factor causing shift.
(D) Brain shift resulting from tissue swelling with mannitol
being administered. (E) Brain shift from tissue swelling
with gravity-induced deformations and (F) Gravity and
mannitol-induced deformations with tumor resected from
the tissue volume. It should be noted that although manni-
tol and gravity-induced sag were used to neutralize the
effect of tissue swelling in (D), and (E), respectively, the
net displacements on the surface still reflected a swelled
brain within the craniotomy region. Also the robustness
of the constrained linear inverse model was tested by add-
ing random noise to displacement vectors contained in
Atlases I and II. The random noise level was assigned to
have a maximum of 3% of a given displacement magnitude
and incurred a maximum random angular error of 4�. This
ensured that the perturbed displacement data sets was still
contained within the atlases.

4. Results

4.1. Parallel implementation of the finite element model

Table 1 illustrates the computational time necessary to
solve the biphasic model on a finite element mesh contain-
ing 19,468 nodes and 104,596 elements, using 16 processors
(2.8 GHz, Intel Pentium4, 1GB RAM).

With four degrees of freedom this requires the solving of
a total of 77,872 equations. Also the biphasic model is time
dependent and a total of five time-steps were used to solve
the system reported here. The second column in the table is
the total computational time taken to solve the system and
includes file I/O, communication across processors, stiff-
ness matrix assembly, application of boundary conditions,
and solution of the matrix system for all the five time steps.
The total times reported assume the patient-specific finite
element mesh has already been prepared. The third column
in the table reports the time taken to precondition the
matrix of equations and solve for the first time increment.
The fourth column in the table reports the time required to
complete all subsequent time-step calculations. The table
shows that using two processors the total computational
time required to solve the system takes 853.7 s and using
all 16 processors it takes 116.7 s to solve the system.

4.2. Phantom studies

Fig. 8 shows the mean error between the measured and
predicted shift for the phantom experiments using the con-
strained linear inverse model. Measured shift is defined as
the displacement of the bearings as measured during subse-
quent CT scans.

In addition, simulation results using the model in a
purely predictive mode are presented. I and II in the figure
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represent water drainage levels of 50% and 90%, respec-
tively. Surface represents the beads on the phantom surface
and were used to constrain the inverse model, while Target

is associated with the sub-surface beads that represent
novel points for assessing unbiased prediction errors. Shift
error refers to the magnitude error between the measured
and predicted shifted positions of the bearings. Fig. 8
shows the angular error h, which represents the directional
accuracy between the measured and the predicted shift.
Averaging over both the drainage levels, the constrained
linear inverse model recaptured 95.9% of the mean defor-
mation on the surface and 88.5% of the average shift at
subsurface targets while the purely predictive computa-
tional model recaptured 92% of the mean deformation on
the surface and 85.3% of the average shift at subsurface tar-
gets. The formula for % shift recapture has been reported
in Appendix A.3.
Fig. 8. Phantom Experiment Results. (a) Mean Shift error in mm,
between the measured and predicted shift. Measured shift is defined as the
displacement of the bearings as measured during subsequent CT scans.
(b) Mean angular (h) error in degrees between the measured and predicted
shift. I and II represent water drainage levels of 50% and 90% respectively.
Surface represents displacements of the bearings fixed on the phantom
surface and were used to constrain the inverse model whereas Target

represents the displacements of bearings implanted inside the phantom
and were used as unbiased error estimators. The average measured surface
shift of the phantom was 10.1 ± 4.5 mm, and 21.2 ± 9.3 mm for drainage
conditions I and II, respectively. The average measured target shift of the
phantom was 5.6 ± 2.1 mm, and 11.3 ± 4.3 mm for drainage conditions I
and II, respectively.
4.3. Clinical studies

Fig. 9a shows the mean shift error and the mean angular
error between the predicted and the measured intraopera-
tive brain shift for Patient 1 and Patient 2 reported in Sec-
tion 3.2 computed using the constrained linear inverse
model. As in Fig. 9b, predicted shift error in the figure
refers to the error in the magnitude between the measured
and the predicted intraoperative brain shift, while angular
error, h, represents the inaccuracies in the direction of
propagation. The deformation atlases used to simulate
the predicted shift have been described in detail in Section
3.2.

In order to visualize the shift vectors predicted using the
constrained linear inverse model for Patient 1, (shown in
Fig. 10), the measured and predicted shifts of the
corresponding points were added to their respective initial
Fig. 9. Patient 1 and 2 results. (a) Mean shift error between the measured
and predicted shift. Measured Shift for Patient 1: 6.1 ± 2.4 mm with a
maximum displacement of 10.3 mm. Measured Shift for Patient 2:
10.8 ± 3.7 mm with a maximum displacement of 16.3 mm. (b) Mean
angular (h) error in degrees between the measured and predicted shift.
Atlas I: Tumor was not resected from the brain volume and gravity was
the solitary shift-causing factor. Atlas II: Tumor was resected from the
brain volume and gravity was the solitary shift-causing factor. Atlas III:
Tumor was not resected from the brain volume and mannitol was the
solitary shift-causing factor. Atlas IV: Tumor was resected from the brain
volume and mannitol was the solitary shift-causing factor. Atlas V: All
four aforementioned atlases were concatenated into one deformation
atlas.
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positions and were projected on to the LRS surface
acquired after resection. Shift vectors predicted using dis-
placement data sets in Atlas IV were used to generate the
figure shown.

Similarly for Patient 2, Fig. 11 shows the measured and
predicted shift vectors projected onto the LRS surface
acquired after resection. Shift vectors predicted using dis-
placement data sets in Atlas V were used to generate the
figure shown.

Averaging over all five atlases for Patient 1, the con-
strained linear inverse model produces a mean displace-
Fig. 10. Measured and shift vectors predicted using the constrained linear
inverse model (shown as line segments) overlaid on the post-resection LRS
surface for Patient 1. Shift predicted using Atlas IV (mannitol being the
solitary shift causing factor, tumor resected from the tissue volume) has
been shown here. The numbers in the figures represent the absolute error
between the measured and predicted shift. Each figure, (a), (b) and (c)
demonstrates the overlay from a different camera angle to assist with
depth perception.

Fig. 11. Measured and shift vectors predicted using the constrained linear
inverse model (shown as line segments) overlaid on the post-resection LRS
surface for Patient 2. Shift predicted using Atlas V (concatenated
deformation atlas) has been shown here. The numbers in the figures
represent the absolute error between the measured and predicted shift.
Each figure (a), (b) and (c), demonstrates the overlay from a different
camera angle to assist with depth perception.
ment error of 0.7 mm ± 0.3 mm and a mean angular
error of 5.8� ± 3.6� with respect to a mean cortical shift
of 6.1 ± 2.4 mm. Similarly for Patient 2, the constrained
linear inverse model produces a mean displacement error
of 0.7 mm ± 0.4 mm and a mean angular error of
3.2� ± 0.4� with respect to a mean cortical shift of
10.8 ± 3.7 mm.

4.4. Simulation studies

As stated earlier, in the simulation studies, the con-
strained linear inverse model was challenged by using a
deformation field that was novel to the training atlas.
The six different displacement sets that were used to vali-
date the accuracy have been presented in detail in Section
Fig. 12. Simulation study results. (a) Mean shift error between the total
and predicted shift. (b) Angular error between measured and predicted
shift. Atlas I is a concatenated deformation atlas reflecting brain shift due
to gravity, mannitol and tumor resection, while Atlas II additionally
included shift caused by tissue swelling. (A) Gravity-induced deformations
with tumor not being resected from the tissue volume. (B) Mannitol-
induced shift with tumor being resected from the tissue volume. (C) Brain
shift resulting from tissue swelling being the solitary factor causing shift.
(D) Brain shift resulting from tissue swelling with mannitol being
administered. (E) Brain shift from tissue swelling with gravity-induced
deformations and no mannitol being administered, and (F) Gravity and
mannitol-induced deformations with tumor being resected from the tissue
volume. The average total shift for A, B, C, D, E, and F in the simulation
cases was 11.7 ± 3.4 mm, 8.8 ± 2.4 mm, 5.5 ± 1.3 mm, 6.5 ± 1.2 mm,
3.3 ± 0.6 mm, and 14.3 ± 3.7 mm, respectively.
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3.3. Also noise was added to the displacement data sets in
the atlas to test the robustness of the constrained linear
inverse model. Fig. 12 shows the mean error between the
predicted and the total shift using the constrained linear
inverse model for the atlases with and without the noise
added to them.

Atlas I did not include tissue swelling and hence behaved
poorly when challenged with displacements resulting solely
due to tissue swelling, i.e., displacement data set C. It is
worth noting that though the accuracy of Atlas I improved
when presented with displacements resulting from a combi-
nation of tissue-swelling and gravity and mannitol-induced
deformations, i.e., displacement data sets D and E, Atlas II
which included the displacement data sets due to tissue
swelling, significantly outperformed Atlas I. The figure also
demonstrates that the constrained linear inverse model is
relatively insensitive to the noise added to the displacement
data sets contained in the Atlases.

As stated earlier, nodes other than the measurement
nodes and the zero displacement nodes were used as targets
to quantify the accuracy of the constrained linear inverse
model and the shift error of these targets across the volume
of the brain is shown in Fig. 13. Shift predicted by Atlas II
when challenged with displacement data set A was used to
calculate the shift error shown in the figure. Fig. 13a pre-
Fig. 13. Shift error computed using Atlas II when challenged with the displa
through the tumor (b) Shift (magnitude) error at the surface in the vicinity of th
slice as (a). It should be noted that tumor was modeled as not being resec
corresponding to the tumor region were not used to calculate the shift error r
sents the total shift at a slice passing through the tumor
and Fig. 13c shows the shift error at approximately the
same slice through the brain volume, while Fig. 13b shows
the error distribution on the surface in the vicinity of the
measurement nodes. As seen in the figures, though the
error increases as one moves farther away from the mea-
surement nodes, the inverse approach performs well in
the vicinity of the tumor, producing a mean shift error of
1.3 ± 0.7 mm, a mean angular error of 9.7 ± 2.3� and a
maximum shift error of 2.8 mm with respect to a mean shift
of 5.9 ± 2.8 mm and a maximum shift of 11.7 mm. It
should be noted that the tumor was being modeled as not

being resected from the tissue volume. Though the figure
depicts error distribution for a single displacement data
set, similar error distributions were observed for all the dis-
placement data sets that were used to validate the inverse
model.

4.5. Summary of results

To summarize the performance of the constrained lin-
ear inverse model for all the experiments reported herein,
the % shift recaptured and shift error and directional
error (angular error) of the constrained linear inverse
model for all experiments is reported in Table 2. For a
cement data set A. (a) Magnitudes of the shift in mm, for a slice passing
e measurement nodes (c) Shift (magnitude) error at approximately the same
ted from the tissue volume for the displacement data set A. The nodes
eported herein.



Table 2
% shift recaptured, angular error and the mean ± standard deviation (max.) shift error using the deformations predicted by the constrained linear inverse
model

Measured/total shift, mm % Shift recaptured Angular error, degrees Shift error, mm

Min. Mean

Phantom

Level I 7.9 ± 3.3(17.3) 91.4 91.8 4.2 ± 2.4(6.9) 0.6 ± 0.4(1.5)
Level II 16.3 ± 6.8(32.3) 81.9 92.6 6.9 ± 2.9(12.5) 1.2 ± 0.6(5.8)

Clinical

Patient 1 6.1 ± 2.4(10.3) 84.4 89.4 6.0 ± 3.8(12.6) 0.6 ± 0.5(1.6)
Patient 2 10.8 ± 3.7(16.3) 88.9 96.3 2.9 ± 1.5(5.7) 0.6 ± 0.5(1.8)

Simulation

Atlas II 8.4 ± 2.1(15.6 ± 7.2)a 76.8 85.9 2.8 ± 0.7(4.4) 1.2 ± 0.4(3.7)

Mean ± standard deviation (maximum) of the measured/total shift have been reported.
a Six different displacement sets were used to constrain and test the fidelity of constrained linear inverse model. Therefore average maximum total shift

and the standard deviation of the shift over the six different displacement sets has been reported.
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given water drainage level in the phantom experiments,
the predicted surface and sub-surface deformations were
averaged and was used to calculate the % recapture and
the shift and angular error reported in the Table. For
the in vivo cases, shift predicted using Atlas V, the con-
catenated deformation atlas was used to calculate the
amount of shift that was recaptured and the error charac-
teristics reported here. For the simulation study, shift
recapture, directional accuracy and shift error was calcu-
lated from the results of the averaged over all six distrib-
uted loading condition simulations using Atlas II.

5. Discussion

The integration of sparse intraoperative data into
MUIGNS is not a trivial task. As stated in Miga et al.
(2001), sparse intraoperative data applied in an interpola-
tive/extrapolative sense cannot capture the entire range of
deformation. They also note that the sparse intraopera-
tive displacement data must be applied in a manner that
is consistent with the forces causing those displacements.
The constrained linear inverse modeling approach pro-
posed here achieves this integration in an efficient man-
ner. Although it may seem time consuming to build an
atlas of deformations, results from Section 4.1 indicate
that using a multiprocessor environment significantly
reduces the amount of time taken to generate atlases.
As stated in Section 4.1, using 16 processors it takes
approximately 117 s to calculate one basis solution/train-
ing sample in the deformation atlas. Therefore for a
deformation atlas with 320 basis solutions, using 16 pro-
cessors it required approximately 10 h to build each atlas
reported in Section 3.2. It should be noted that a sensitiv-
ity analysis has not been performed which may indicate
that the level of detail in the atlases presented here may
not be necessary to achieve meaningful shift corrections
during surgery. The results here are encouraging given
this relatively modest atlas; and perhaps similar results
may be achieved with sparser training sets. This awaits
further study.

The in vivo cases reported in this work were treated as
unknown systems, i.e. the surgeon did not generate the
PPoE but rather retrospective estimates based on opera-
tion notes were used. Ultimately, the PPoE will be pro-
vided by the surgeon using an ordinary graphical user
interface (GUI) one day prior to the surgery. The infor-
mation provided will reflect the anticipated patient orien-
tation, craniotomy size, and location of the brain stem in
reference to the preoperative image volume. Once these
have been designated, the automatic BC generation is per-
formed to sample the possible deviations from the PPoE.
This boundary condition atlas and the model is then sub-
mitted to the multi-processor cluster which returns a
deformation atlas several hours later. This strategy has
several distinct advantages: (1) it accounts for the uncer-
tainty in distributed surgical loads, such as the gravita-
tional sag and the physiological parameters like the
amount of mannitol that will be administered, in a real-
time sense (2) the method relies on relatively inexpensive
small-scale computer clusters, (3) the time-consuming cal-
culations are performed preoperatively, and (4) all forms
of data (e.g. fMR, PET, SPECT, etc.) can be mapped
within each solution and either combined through the
inverse model or they can be actively computed based
on the displacement fields predicted using the constrained
linear inverse model. It should also be noted that the com-
pensation for distributed loading conditions is only the
first stage in this compensation strategy. The second stage
is to monitor the more direct interactions such as retrac-
tion, and resection. These actions are more representative
of surface loading conditions as opposed to distributed
ones. We hypothesize that direct predictive modeling
approaches with these should deliver the required accu-
racy. Previous experience with animal systems supports
this tenet (Platenik et al., 2002; Miga et al., 2000). Surface
loadings resulting from tissue retraction and the resulting
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deformations can be modeled as a multistep process (Miga
et al., 2001) and this has been demonstrated previously
(Platenik et al., 2002; Miga et al., 2000, 2001). This paper
represents an approach to the more difficult distributed
loading conditions.

The results from the Phantom experiments are impor-
tant on two distinct levels. The first level is in validating
the model approximation reported by Miga et al. for mod-
eling brain sag (Miga et al., 1999), i.e. using the (qt � qf)g
term in Eq. (1). In Miga et al. (1999), gravitational sag in
four clinical cases was compensated for using this term
and encouraging results were presented. The data reported
in Miga et al. (1999) used the same mechanism for simulat-
ing sag but only represent surface measurements. In the
work presented here, surface and subsurface beads were
tracked in a phantom under controlled gravitational load-
ing conditions. As stated in Section 4.2, the computational
model recaptured approximately 88.7% of the surface and
subsurface shift. The second level of significance for the
phantom experiments is in validating the proposed con-
strained linear inverse model approach for distributed sur-
gical loads. Table 2 indicates an approximate 92%
compensation capability when only using sparse surface
data to guide the inverse model. One interesting aspect to
observe in the phantom results is that the constrained lin-
ear inverse model outperformed the forward-based compu-
tational model that used the known boundary conditions.
Undoubtedly the inaccuracies in the forward model are
from inappropriate small-strain approximations, nonlinear
material effects. Despite these inaccuracies and the lack of
explicit drainage/incline information, the constrained lin-
ear inverse model delivered a modest improvement over
the open-loop predictive model synthesizing a better match
through the combination of the pre-computed basis
solutions.

For the clinical studies, it was interesting to note that
in both the patient cases, the atlas with mannitol-induced
deformations recaptured most of the measured shift. Atlas
III, mannitol-induced deformations with non-resected
tumor recaptured most of the shift for Patient 1, while
for Patient 2, Atlas IV, mannitol-induced deformations
with resected tumor recaptured most of the measured
shift. While no statistical significance can be inferred, it
is interesting that mannitol was administered in both
patients and that when comparing the results among the
atlas’, the predictions by mannitol induced shift are better
than the gravity-induced shift. Although anecdotal, this
may suggest that mannitol-induced shift may have a more
prominent role in compensation strategies than previously
reported. While these thoughts are intriguing, unfortu-
nately, more detailed validation with subsurface measure-
ments in a bigger patient population will be required to
assert any conclusions. Nevertheless, the results among
the experiments are markedly consistent and indicate that
the constrained linear inverse modeling approach is a via-
ble method for the compensation of distributed loading
conditions.
The simulation results concerned with brain swelling
were of comparable accuracy to the phantom and clinical
experiments. In addition, the reported swelling shift magni-
tudes were comparable to those found in the literature
(Dorward et al., 1998; Nimsky et al., 2000; Sun et al.,
2005). One common criticism of the MUIGNS systems is
that tissue swelling cannot be accounted for. Initial results
of the sensitivity of the inverse model to noise (as shown in
Fig. 12) shows that the model is relatively insensitive to
noise, as long as the displacement data are still contained
by the atlas. The results shown here suggest that swelling
conditions encountered in the OR can be simulated using
computer models. Fig. 13c shows the distribution of the
shift error recaptured in the tumor region. Though the
error increased when compared to the error distributions
on the surface containing the measurement nodes (shown
in Fig. 13b), the constrained linear inverse model still
recaptured 83.6% of the mean shift in the vicinity of the
tumor. These results combined with the target/sub-surface
validations from the phantom experiments suggest that the
constrained linear inverse model is a good framework for
predicting sub-surface displacements using sparse intraop-
erative measurements.

While the work presented here is encouraging, the fol-
lowing issues need to be addressed before implementing
this approach in a MUIGNS system: (i) more detailed
validations with intraoperative imaging modalities such
that the accuracy of the technique in predicting full vol-
ume displacements can be achieved; though validating
the accuracy of the model has been reserved for a future
study, the phantom results shown here and the simulation
study results reported in Dumpuri et al. (2003) suggest
that the model will behave in a similar fashion when pre-
dicting full volume displacement fields from sparse intra-
operative data; (ii) sensitivity analysis of the inverse
model to the particular selection of the boundary condi-
tions and the consistency of the atlas; (iii) more detailed
understanding of the internal structures affecting brain
shift, e.g. the falx cerebri has been shown to inhibit
cross-hemisphere movement; (iv) new studies focused on
the improvement from subsurface data such as from co-
registered ultrasound; and, (v) more studies regarding
the sensitivity of the methods to the number and spatial
distribution of sparse intraoperative data points. With
respect to this last point, the results presented here have
yielded a potentially important finding. In both the phan-
tom and clinical experiments, the constrained linear
inverse model was guided with a relatively modest number
of points (12–15 points) spatially distributed on the area
of observation. The level of model-fit in these cases is
remarkable and makes it evident that assumptions regard-
ing the extent, i.e. amount of data necessary for model-
updating can and should be challenged as these new
systems are developed.

Previous work has demonstrated that modeling can
predict deformations induced by surface loading condi-
tions such as tissue retraction (Platenik et al., 2002; Miga
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et al., 2001). Although detailed clinical studies have not
been presented, the results suggest that the inverse model
has the capability to predict intraoperative brain shift
resulting from distributed loading conditions. These pre-
liminary results indicate that the inverse model when
combined with the approach reported in Platenik et al.
(2002) and Miga et al. (2001) has the ability to predict
introperative brain shift resulting from surface loads
and distributed loads, thereby completing the MUIGNS
framework.
6. Conclusions

In is interesting to note early reports dismissing meth-
odologies to correct for intraoperative shift that did not
involve traditional intraoperative imaging (specifically,
iMR, and iCT) (Rubino et al., 2000). These early reports
believed that conditions such as swelling and brain vol-
ume changes due to hyperosmotic drugs could not be pre-
dicted or practically modeled. In the experiences shown
here and by others, these conclusions continue to be chal-
lenged and the potential for computer modeling within
the OR environment is only now being realized. There
is a growing acceptance that predicting brain shift at
scales relevant to surgical interventions through computer
models is very possible when proper approximations to
forcing conditions are understood and when sufficient
data is present to guide predictions. Albeit for surface dis-
placements, the results presented in this work show that
with a good set of basis-solutions/training-samples, the
constrained linear inverse model can be used to predict
cortical shift. In future work, the accuracy of this
approach in predicting full volume displacement fields
from sparse intraoperative data sets will be achieved using
a comprehensive digitization approach. Further approach
enhancements are being pursued and will include more
anatomical constraint information and possibly a non-lin-
ear optimization framework.
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Appendix A

The symbols used for the material properties have been
described in Section 2.1.

A.1. Material properties used for the phantom experiments

Symbol Value (units)
E 1875 N/m2

m 0.45 (no units)
E

G ¼
2ð1þ cÞ
A.2. Material properties used for the in vivo and simulation

studies

Symbol Value (units)
E, white and gray 2100 (N/m2)
E, tumor 100,000 (N/m2)
E, falx 210,000 (N/m2)
m 0.45 (no units)
qt 1000 (kg/m3)
qf 1000 (kg/m3)
g 9.81 (m/s2)
a 1.0 (no units)
1/S 0.0 (no units)
kwhite 1 · 10�10 (m3s/kg)
kgray 5 · 10�12 (m3s/kg)
kc1, white* 9.2 · 10�9 (Pa/s)
kc2, white* 4.6 · 10�9 (Pa/s)
kc3, white* 2.3 · 10�9 (Pa/s)
kc1, gray* 45.9 · 10�9 (Pa/s)
kc2, gray* 22.9 · 10�9 (Pa/s)
kc3, gray* 11.5 · 10�9 (Pa/s)
pc, mannitol �3633 (Pa)
pc, swelling 3633 (Pa)

* Three different values used in Section 3.3 to simulate
tissue swelling due to elevated intracranial pressures.
A.3. Shift recapture

% shift recapture ¼ ð1� shift error
total shift

Þ � 100
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