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The proliferation of specialised workshops associated with the Advances in Neural Information 
Processing series of conferences has been of almost unqualified benefit to the scientific 
community. In keeping with the plurality which has characterised the NIPS community 
throughout its history, well-chosen workshop themes have nurtured extended interdisciplinary 
discussion of issues in neural computation, providing just the sort of intellectual scaffolding 
necessary if the interchange of ideas is to deliver upon its considerable promise. 
 
At this level, the 1999 NIPS Workshop on Advanced Mean Field Methods – organized by 
Manfred Opper and David Saad - was an outstanding success. The workshop was grounded upon 
the developing similarity in the problems confronting statistical physicists, computer scientists 
and statisticians in their exploration of large, coupled, probabilistic systems, and upon a rapidly 
increasing commonality in their approach. While we shall consider the problems and the range of 
approximate solutions later, all contributors were in principle concerned with the accurate 
approximation of quantities derived from multivariate probability distributions over an enormous 
number of random variables. As the random variables typically exhibit some non-trivial 
correlation, direct computation of the desired outcomes is intractable for large-scale problems, 
and the physicists and information scientists share a commitment to replacing the exact joint 
distribution by one which admits some simplification. 
 
Historically, such problems have arisen in attempts to explain the macroscale behaviour of a 
substance in terms of the microscale interactions of a massive number of its constituent 
molecules - in particular through attempts to identify the critical temperatures at which a phase 
transition may occur. Evidently, explicit calculation of the interactions between molecules 
cannot be contemplated on such a scale and physicists have long modeled the mutual influence 
as an effective field, acting independently upon each molecule and thus allowing tractable 
averaging across the system. This formulation is known as the classical or naïve mean field 
theory for the system – the somewhat pejorative label chosen to distinguish the model from the 
more elaborate, higher order approximations which form the bulk of the subject matter of this 
book. 



 
More recently, mean field methods have appeared in the context of probabilistic graphical 
models, described neatly by Michael Jordan as a “general framework for associating joint 
probability distributions with graphs and for exploiting the structure of the graph in the 
computation of marginal probabilities and expectations”. While the calculation of such quantities 
- an aggregation operation over other variables - is straightforward over tree and chain-like 
structures, exact calculations are intractable in the general case, and approximate methods are 
again required. While the naïve mean field approach may be employed, probabilistic graphical 
models differ from the usual physical systems in two key respects - through the focus upon 
microscale outcomes such as the marginal corresponding to a particular mode; and through a 
greater inhomogeneity among the random variables of the system - both of which serve to limit 
the usefulness of the naïve theory. In consequence, and perhaps reflecting the computational 
background of many of the researchers in this area, a number of dynamic programming and 
optimization theoretical influences have been brought to bear, leading to the development of 
belief propagation algorithms and higher order variational approximations to the joint 
distribution.  
 
These developments have coincided with a wave of advanced mean field studies in physics, 
commonly based around the Thouless-Anderson-Palmer or TAP approximation, which provides 
a second order correction to the naïve theory. While superficial mathematical similarities 
between the work of the physicists and information scientists have been apparent for some time, 
it appears that the depth of these linkages has been masked to some degree by disparate 
terminology, notation and even performance criteria. While other questions were posed by the 
workshop organisers, identification of the precise relationship between these independent results 
was a key prerequisite for progress, and this workshop an important step in the right direction.  
 
Happily, the efforts of Opper and Saad were rewarded by an outstanding collection of 
presentations, and as a proceedings volume the book cannot be faulted. In its additional role as a 
self-contained tutorial, the work is less successful, although even here such flaws as there are lie 
more in the realm of missed opportunities than gross deficiencies, and the editors have made an 
admirable attempt to accommodate the novice reader through the inclusion of tutorial material on 
the TAP approaches and variational methods in graphical models. Nevertheless, while previous 
exposure to naïve mean field methods is not essential, the material assumes a fair degree of 
mathematical sophistication, and the title should doubtless be taken as a health warning by those 
without this background.  
 
The difficult task of orienting the non-specialist to the developing convergence of physical and 
information science approaches is superbly handled by  Michael Jordan’s Foreword, and it is 
difficult to imagine a better distillation of the core ideas underlying the book. While Jordan is 
careful to recognize the important contributions from each camp, he nonetheless cannot entirely 
disguise his loyalties - noting that certain approaches “may have appeal to the physicist, 
particularly the physicist contemplating unemployment in the modern ‘information 
economy’…”. More significantly, Professor Jordan provides the key insight that advanced mean 
field methods have undergone a substantial change in job description, from being a front-line 
weapon in the struggle for analytic solutions and the associated “hunt for phase transitions” to a 
position at the core of a new computational methodology. Such a shift in focus presents 



substantial opportunities for the researcher, through the consequent relaxation or abandonment of 
some of the more restrictive of the assumptions traditional in statistical mechanics, and the 
application of optimisation strategies novel in the present domain.  
 
With the stage thus set for integration of the approaches and a focus on the computational 
consequences of each approximation, the subsequent organization of the material is a little 
puzzling, with chapters split broadly according to their field of origin. Following the general 
introduction of chapter 1, chapters 2-9 contain contributions whose roots lie in the statistical 
physics community, and chapters 10-17 those emerging from the information sciences. While 
there is some logic in this view, in that the early chapters share the thread of the TAP 
approximation, the split unnecessarily hinders appreciation of linkages between the approaches. 
Similarly, there are good arguments for relocating the tutorial on variational methods and 
graphical models (chapter 10) to follow the statistical physics tutorials of chapters 2 and 3.  
 
Such quibbles notwithstanding, the structure within each half of the book works well, aside from 
occasional premature assumptions about the reader’s knowledge of graphical models. The  
introduction to the naïve and TAP mean field theories (chapter 2; Opper and Winther) is clear 
and concise, and linked nicely to subsequent treatments through a focus on Ising spin or 
Boltzmann machine models (see for example Hertz, Krogh and Palmer (1991)). Two derivations 
of the naïve theory are presented, each of some importance as a basis for subsequent 
contributions: 
• The variational approach: the intractable joint distribution P is replaced by an approximation   

Q,  drawn from a class of factorisable distributions and chosen so that Q minimises the 
Kullback-Leibler divergence between Q and P. Under the assumption that P is a Boltzmann-
like exponential of some energy function over the spins, the problem reduces to one of 
minimising the variational free energy.  

• The field theoretic approach: expectations involving summation over a large number of 
discrete variables are  replaced by integrations over auxiliary field variables, leading to 
approximations via Laplace or saddle point methods applied to the integrand.  

 
Similarly thorough treatment is provided of the TAP results, Opper and Winther providing two 
alternative derivations – with the latter expansion especially useful in subsequent linkages with 
graphical models: 
• The cavity approach: the approximation for the marginal for a particular variable Si is derived 

through consideration of the joint distribution which results when this spin is deleted from 
the system. The resulting TAP equations differ from the naïve theory through the 
introduction of the Onsager Reaction Term, a correction accounting for the reaction of 
neighbouring spins to the presence of Si.  

• Plefka’s expansion: as in the variational  development of the naïve theory, the problem 
reduces to the minimisation of the variational free energy – only this time Q is not restricted 
to the class of product distributions, but rather is constrained to deliver some fixed vector m 
of expectations of the spin variables. In this light, the Gibbs Free Energy G(m) may be 
identified as the constrained minimum of the variational free energy with respect to Q, with 
minimisation of G with respect to m delivering exact expectations m=<S>. Through an 
elegant perturbation of G(m), the Plefka expansion allows recovery of the naïve theory at 
first order, and the TAP approximation when truncated at second order.  



A number of subsequent chapters consider alternative assumptions about the distribution of 
couplings between the spins, resulting in novel TAP equations for the model systems.  In 
chapters 5 and 6 (Kabashima and Saad; Saad, Kabashima and Vicente) develop a TAP 
framework applicable to both intensively and extensively connected systems and explore its 
application in the context of error-correcting codes. In chapter 7, Opper and Winther provide an 
adaptive TAP approach, in which the Onsager correction is revised in the light of successive 
concrete observations of the interactions.  
  
The cavity method is used in Chapter 8 (Wong, Lee and Luo) in the derivation of a general 
framework for the analysis of batch learning systems, complementing earlier successes by 
physicists in the analysis of on-line learning systems (Saad, 1998).  
 
Jonathan Yedidia’s good-humoured “Idiosyncratic Journey Beyond Mean Field Theory” 
(chapter 3) explores the physicist’s ground with more explicit linkages to graphical models, 
using the vehicle of a pair-wise Markov network of N nodes. Here, the probability distribution is 
comprised of a normalised product of two-parameter ‘compatibilities’ between nodes, and the 
‘evidence’ values for each individual node. In Yedidia’s illustration of a medical diagnosis 
system, the nodes represent symptons and diseases and the ‘compatibilities’ the statistical 
dependencies between them. Given the evidence associated with a particular patient, our task 
might be to infer the probability that the patient has a specific disease. If an approximate value is 
computed, the relevant marginal probability is usually termed a ‘belief’, although the latter is 
similarly constrained.  
 
Within the Markov network, beliefs at a particular node i may be characterised  as though the 
node is in receipt of messages about its appropriate state from all nodes within a local 
neighbourhood, the aggregated messages being combined with the independent evidence 
associated with i.  Similarly, the joint beliefs of two nodes i and j may be described in terms of 
messages from the two surrounding neighbourhoods, combined again with the evidence and the 
compatibility associated with i and j. Algorithms for reasoning within such a framework were 
first presented by Pearl (1988).  
 
Yedidia shows that such probabilistic structures may be re-cast readily within the statistical 
physics framework, and a mean field theory obtained through a variational approximation to the 
Gibbs free energy. Moreover, he reports joint work showing a deep connection – which holds 
for general Markov networks - between the stationarity conditions for the Bethe approximation 
to the Gibbs free energy (Bethe, 1935), and belief propagation. Similar ground is covered by 
Weiss (chapter 15), who makes the important observation that the superiority of belief 
propagation over naïve mean field methods may be due not only to the sophistication of the free 
energy, but also to the effectiveness of the algorithm in avoiding the local minima which plague 
the latter approach. This chapter also treats the – strictly invalid – application of the belief 
propagation algorithms to loopy graphs, a matter addressed through message attenuation in 
chapter 14 (Frey and Koetter).  
 
Saddle-point methods are used to deal with intractable belief networks in chapter 9 (Pineda, 
Resch and Wang) - leading to a novel second order Gaussian approximation – and in chapter 13 
(Barber) - in which the message calculations are represented as one dimensional Fourier 



integrals. This latter representation has substantial computational advantages for directed 
propagation, whose complexity scales exponentially with the number of parents of a node.   
 
A more elaborate discussion of graphical models is provided in chapter 10 (Jaakkola), with 
detailed discussion of more general topologies and the two node compatibilities encountered 
earlier being replaced by potentials defined over each clique. Jaakkola’s tutorial is especially 
valuable, providing a superb introduction to variational approximations in a number of graphical 
contexts, and leading elegantly into the extensions of subsequent chapters. In particular, 
variational methods for Bayesian inference are considered at some length in  chapters 11 
(Ghahramani and Beal) and 12 (Humphreys and Titterington), the former presenting results for 
classes of exponential models, and the latter using recursive methods to reduce the problem’s 
considerable computational burden.  
 
While all papers are of high quality, perhaps the outstanding evidence of the mutual benefit to be 
obtained from this interdisciplinary work is provided by the contribution of Kappen and 
Wiegerinck, (chapter 4) in which an information theoretical approach is used to devise second 
and higher order approximations for graphical models without the need for a free energy – in 
essence without the restriction to Boltzmann-Gibbs probability distributions. There are strong 
linkages between this work and the information geometry approaches of Amari, Ikeda and 
Shimokawa (chapter 16) and the unified variational treatment of Tanaka (chapter 17), and this 
area  promises a valuable framework for further progress.  
 
In summary, Advanced Mean Field Methods is an excellent  collection, providing good value for 
money and a rich vein of material to be mined and mined again. 
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