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In Computerized Tomography (CT), an image must be recovered from its sampled projections in the form of
values of the Radon transform. In this work a method of recovering the image is based on the properties of the
raised-cosine wavelet. This wavelet has a closed form which allows for certain precomputations and avoids
convolution. The rate of convergence of the resulting algorithm to the image density function is found
under suitable hypotheses. This algorithm is then tested on the standard Shepp–Logan image.
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1. INTRODUCTION

One of the many applications of wavelet theory is in computerized tomography (CT) in
which an image must be recovered from its sampled projections in the form of the
Radon transform data. In this article we present a new wavelet based reconstruction
algorithm that is computationally effective while providing a high quality reconstructed
image. The wavelets used are the so called raised-cosine wavelets based on certain
pulses widely used in digital communications and signal processing. These wavelets
and the corresponding scaling function have a simple closed form described by
Walter and Zhang [23].

More generally, we consider ways to reconstruct a function from its samples
and the interplay between wavelets, sampling theory, and the Radon transform. One
of the first (and, probably, the most famous) results of sampling theory was the
Shannon sampling theorem [15] which allows one to reconstruct a bandlimited signal
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from its sampled values. The various extensions of this result such as nonuniform
sampling and derivative sampling [11] have been obtained for both bandlimited and
non-bandlimited signals. Sampling theorems were also shown to hold in wavelet sub-
spaces by Walter [21,22] and Daubechies [5] and later by Aldroubi [1] and Unser et
al. [17,18]. An excellent review of these methods can be found in [19].

A number of wavelet-based formulae have been proposed in the last few years to
invert the Radon transform beginning with the work of Holschneider [10] in 1991
and Kaiser and Streater [13] in 1992. In 1992 Walnut [20] proposed an inversion for-
mula based on the continuous wavelet transform. In 1992 his ideas were used by
DeStefano and Olson [8] who implemented a numerical algorithm that allows one to
reconstruct a local region of the image by using only the local data. In their 1994
paper, Berenstein and Walnut [3] gave formulae that relate the Radon transform and
its inverse to various wavelet transforms. In 1997, in the modified backprojection algor-
ithm, the usual filter was replaced by the wavelet ramp filter to reconstruct the wavelet
coefficients of the object function [2]. In 2000, Donoho [9] used a Meyer type wavelet to
construct special functions, called ridgelets, that give good approximation to the object
functions with singularities along the lines.

These wavelet methods have the advantage that they are faster and in some cases
can be applied with only local data. Most of these approaches use a continuous two-
dimensional wavelet transform. Typically, the density function f ðx, yÞ of the image
cross section is transformed by this wavelet transform to which the Radon transform
is then applied. Since the two transforms commute, this may be approximated by the
wavelet transform of the observation. The Radon transform is then inverted to
obtain an approximation to the wavelet transform of the density function, which in
turn may be used to approximate the density function itself. Discrete versions of this
have also been tried and have usually used the two-dimensional Daubechies [5] or simi-
lar scaling functions and wavelets with compact support.

In this work we adopt a different approach which uses the wavelet approximation
in the Radon transform domain. We also use sampling function as our scaling function
in order to avoid integration. This approach enables us to make a number of one-time
calculations which may then be stored for future calculations.

The work closest to ours in spirit is [2]. In order to reconstruct a local region of
the image, the filtering step is implemented in the Fourier domain by multiplying
the usual filter by the Fourier transform of a two-dimensional wavelet function.
Then the backprojection step follows, and the result is the wavelet transform of the
image function from which f itself can be reconstructed by using the inverse wavelet
transform. The global results obtained there are comparable to ours, but the computa-
tional requirements seem to be greater. However, no systematical analysis has been
made.

This article is organized as follows. Section 2, in addition to the brief introduction to
the subject of CT, contains elements of wavelet theory as well as some definitions and
important results from other sources which are used throughout. In Section 3, we pres-
ent a reconstruction algorithm based on the raised-cosine spectrum function derived by
Walter and Zhang [23]. Related wavelets are bandlimited and, unlike most of the wave-
let families, have a simple closed form. Convergence theorems are proven for both the
projection function and the object function and the rates of convergence are given.
Computer simulations illustrating performance of the proposed algorithm are demon-
strated for the well-known Shepp–Logan ‘‘head phantom.’’
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2. WAVELETS AND COMPUTERIZED TOMOGRAPHY

In this section, we briefly mention some definitions, results, and notations from wavelet
theory with particular emphasis on the raised-cosine wavelets.

2.1 Elements of Wavelet Theory

Wavelets constitute a Riesz basis of L2ðRÞ consisting of translations and dilations of
a single function  ðtÞ called a ‘‘mother wavelet’’:

 m, nðtÞ ¼ 2m=2 ð2mt� nÞ, m, n 2 Z:

In certain cases these functions  m, n are orthonormal as well. The existence of a wave-
let basis is not obvious. One usually begins with a so called scaling function �ðtÞ which is
assumed to be in S r, the Schwartz space of rapidly decreasing Cr – functions on R, i.e.,
functions that satisfy j�ðkÞðtÞj � Cp, kð1þ jtjÞ�p for p ¼ 0, 1, 2, . . . , k ¼ 0, 1, 2, . . . , r,
and any t 2 R.

The construction of � is closely related to the concept of MultiResolutional Analysis
(MRA) of L2ðRÞ, i.e., a nested sequence of closed subspaces Vmf gm2Z such that

(i) � � � � V�1 � V0 � V1 � � � �

(ii) f ðtÞ 2 Vm if and only if f ð2tÞ 2 Vmþ1, m 2 Z

(iii)
T

m Vm ¼ 0,
S

m Vm ¼ L2ðRÞ.

If, in addition, f�ðt� nÞgn2Z is an orthonormal basis of V0, we say that Vmf g is associ-
ated with �. This orthonormality condition is often formulated in terms of �̂�, the
Fourier transform of �:

X
n

j�̂�ð!þ 2�kj2 ¼ 1:

The condition (ii) means that f
ffiffiffi
2

p
�ð2t� nÞg is an orthonormal basis of V1. Therefore,

there exists a sequence ckf g 2 ‘2 such that �ðtÞ ¼
P

k ck�ð2t� kÞ. This is called the
dilation equation.

If �ðt� nÞ
� �

is an orthonormal basis of V0 then the mother wavelet  ðtÞ can be
obtained by

 ðtÞ ¼
X
k

c1�kð�1Þk ð2t� kÞ,

where {ck} are the coefficients of the dilation equation [6].
One of the examples of a scaling function is the Shannon scaling function

�SðtÞ ¼ ðsin�tÞ=�t, which in the frequency domain is given by

�̂�Sð!Þ ¼
1, j!j � �

0, otherwise:

(
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Despite the fact that �S 62 S r due to a slow decay at infinity, it is extremely useful in a
number of applications because of its sampling property:

f ðtÞ ¼
X
n

f ðnÞ
sin�ðt� nÞ

�ðt� nÞ

for any continuous function f 2 L2ðRÞ such that supp f̂f ¼ ½��,��. The formula above
is referred to as the Shannon sampling theorem [15].

Various other approaches have been used to construct a scaling function that meets
all the requirements for an MRA [5,21]. Some have compact support while others are
bandlimited as is �S.

Throughout the article the following definitions and notations from functional analy-
sis are used.

The Fourier transform of a function f 2 L1ð�1,1Þ is defined to be

Fð f Þ ¼ f̂f ð!Þ ¼

Z 1

�1

f ðtÞe�i!t dt, ! 2 R:

For f̂f 2 L1, the inverse Fourier transform is defined as F�1ð f̂f Þ ¼
�̂
ff̂ff ðtÞ ¼ ð1=2�Þ

R1
�1

f̂f ðtÞei!td!: If f , g 2 L2, Parseval’s equality holds: h f , gi ¼ ð1=2�Þh f̂f , ĝgi: A tempered dis-
tribution is an element of the dual space S 0 of the Schwartz space S of rapidly decreasing
infinitely differentiable functions. Convergence in S of a sequence �nf g is defined as
xp�ðqÞn ðxÞ ! 0 uniformly on R for each p, q ¼ 0, 1, 2, . . . : The space S 0 consists of all con-
tinuous linear functionals on S. Since S is closed under the Fourier transform, the
Fourier transform of a tempered distribution T can be defined as follows:

hT̂T , �i ¼ hT , �̂�i for any � 2 S:

It follows that FðS 0Þ � S 0 and, in fact, it can be shown that FðS 0Þ ¼ S 0:
For all � 2 R, the delta function �� 2 S 0 is defined as h��, �i ¼ �ð�Þ for � 2 S: It is easy

to see that Fð��Þ ¼ e�i!� and that F�1ð��Þ ¼ 1=2�ei!�: The Poisson summation formula:
if a function � is such that �ðtÞ ¼ Oð1þ jxjÞ�1�" and �̂�ð!Þ ¼ Oð1þ j!jÞ�1�" for some
" > 0 then

X
k

�̂�ð!þ 2�kÞ ¼
X
n

�ð�nÞei!n:

It follows that � is a sampling function (i.e., �ð0Þ ¼ 1 and �ðnÞ ¼ 0 otherwise for any
n 2 Z) if and only if

P
k �̂�ð!þ 2�kÞ ¼ 1: The periodic delta function is defined as

��ð!Þ ¼
P

k2Z �ð!� 2�kÞ: Since � is the Fourier transform of 1=ð2�Þ, a constant func-
tion, by an extension of the Poisson summation formula to S 0 we obtain ��ð!Þ ¼
ð1=2�Þ

P
n e

i!n in S 0:

2.2 Mathematical Model of Computerized Tomography

The subject of CT deals with the cross-sectional imaging of an object from projection
data collected by illuminating it by X-rays from many different angles. This has been
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one of the most significant developments in medical imaging since the time of Roentgen
(1895), and enables a medical practitioner to examine soft tissues as well as bones.

Two types of projection are possible. The simplest one is a parallel beam projection,
and could be attained by moving the source and the detector along parallel lines on
the opposite sides of an object. Another type is a so called fan-beam projection, and
can be obtained if a single beam source is placed in a fixed position relatively to a
line of the detectors. A fast and efficient algorithm [12] can be applied to convert the
fan-beam projection data into equivalent parallel projections. This enables one to use
a reconstruction algorithm designed for parallel scanning geometry. For this reason
the algorithm presented in this work is developed for parallel projection data.

Let f ðx, yÞ be a two-dimensional density function of the object which is usually called
the object function, or the image function. Then projection data P�ðtÞ are represented
by the line integrals

P�ðtÞ ¼

Z Z
R2

f ðx, yÞ�ðx cos � þ y sin � � tÞ dx dy,

where � is the one-dimensional Dirac delta-function and t ¼ x cos � þ y sin � is the
equation of a line along which the projection has been measured. Mathematically,
this is exactly the Radon transform R� f ðtÞ of the object function. More details on
the theory and applications of the Radon transform can be found in [7]. Thus, the prob-
lem of reconstructing a function from its profile at various angles is a Radon transform
inversion problem.

The most popular inversion formula is based on the Fourier Slice theorem [12]:

R̂R� f ð!Þ ¼ f̂f ð! cos �,! sin �Þ,

where R̂R� f and f̂f denote the Fourier transform of R� f and f, respectively. In other
words, the one-dimensional Fourier transform of the projection function gives the
two-dimensional Fourier transform of the object function along a radial line. If projec-
tions are known at enough angles, the object function can be recovered by using an
approximation to the inverse Fourier transform

f ðx, yÞ ¼
1

ð2�Þ2

Z Z
R2

f̂f ðu, vÞeiðuxþ vyÞ du dv, ð1Þ

where u ¼ ! cos �, v ¼ ! sin � . By using polar coordinates in the frequency domain,
(1) can be rewritten as

f ðx, yÞ ¼
1

ð2�Þ2

Z �

0

Z þ1

�1

R̂R� f ð!Þe
i!ðx cos �þ y sin �Þj!j d! d�, ð2Þ

which is called the backprojection formula. Two integrals in (2) are often separated to
give a filter with transfer function j!j,

Q̂Q�ð!Þ ¼ R̂R� f ð!Þj!j,
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whose inverse Fourier transform is the inner integral in (2) evaluated at t ¼ x cos �þ
y sin �: This is followed by an averaging operator (backprojection) that recovers the
object function,

f ðx, yÞ ¼
1

2�

Z �

0

Q�ðtÞ d�,

In classical implementations, the transfer function j!j is usually multiplied by a
smoothing window Wð!Þ to make inversion of Q̂Q� possible and obtain

Q�ðtÞ ¼ R� f � hð ÞðtÞ,

where h(t) is the inverse Fourier transform of Hð!Þ ¼ j!jWð!Þ and ‘‘�’’ denotes
convolution. One example of an effective filter function is obtained by introducing
a cosine-weighted function into j!j:

Hð!Þ ¼
j!j cosð�!=2!0Þ, j!j � !0

0 otherwise,

(

where !0 is the highest frequency in the projection [4].

2.3 The Raised-Cosine Wavelets

The raised-cosine wavelets are particular cases of the Meyer type wavelets. There are
several different forms but all are bandlimited and the one we use will have cubic poly-
nomial decay in time. But unlike almost all known wavelet families, they have a simple
analytic form. This remarkable property makes them very attractive for applications as
it can reduce or even eliminate some numerical calculations needed otherwise.

The raised-cosine spectrum function is defined by means of its Fourier transform as
follows:

�̂�ð!Þ ¼

1, 0 � j!j � �ð1� �Þ

1

2
1þ cos

1

2�
j!j � �ð1� �Þð Þ

� �� �
, �ð1� �Þ � j!j � �ð1þ �Þ,

0, j!j � �ð1þ �Þ

8>>><
>>>:

ð3Þ

for any 0 < � � 1=3: We shall use the value � ¼ 1=4: Then (3) becomes

�̂�ð!Þ ¼

1, 0 � j!j �
3�

4

1

2
þ
1

2
cos 2j!j �

3�

2

� 	
,

3�

4
� j!j �

5�

4

0, j!j �
5�

4

:

8>>>>>><
>>>>>>:
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The inverse Fourier transform is also easily calculated in closed form. It is

�ðtÞ ¼
2 sin ð3�=4Þtð Þ þ 2 sin ð5�=4Þtð Þ

�tð4� t2Þ
:

The graphs of � and �̂� are shown in Figs. 1 and 2.
This function satisfies the condition that

Xþ1

k¼�1

�̂�ð!þ 2�kÞ ¼ 1, ð4Þ

which is just a frequency-domain form of the fact that � is a sampling function, i.e.,
�ðnÞ ¼ �0, n for any integer value n where �0, n is the Kronecker symbol,

�0, n ¼
1, n ¼ 0

0 otherwise:

8<
:

It should be observed that � is not an orthogonal scaling function, but its translates
do form a Riesz basis of their closed linear span.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

FIGURE 1 Graph of the raised-cosine spectrum function � in the time domain.
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To obtain an orthogonal scaling function we must take the square root in the
frequency domain. One such root is given by

�̂�1ð!Þ ¼

1, 0 � j!j �
3�

4
1

2
1þ ei 2!�ð3�=2Þð Þ

 �

,
3�

4
� j!j �

5�

4

0, j!j >
5�

4

8>>>>><
>>>>>:

:

In the time domain �1 is

�1ðtÞ ¼
sin ð3�=4Þtð Þ þ sin ð5�=4Þtð Þ

�tð2þ tÞ
: ð5Þ

The graph of �1 is shown in Fig. 3; it also shares with �ðtÞ the sampling property
�1ðnÞ ¼ �0, n, but has only quadratic decay.

3. RECONSTRUCTION ALGORITHM

We are now ready to introduce a reconstruction procedure based on the raised-cosine
spectrum function defined above. We assume that the projection function P�ðtÞ ¼
R� f ðtÞ is known and will derive a procedure for recovering f :

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

FIGURE 2 Graph of the raised–cosine spectrum function � in the frequency domain.
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3.1 Procedure

We approximate the projection function P�ðtÞ by the sampling series in � at the scale
of interest m:

P�,mðtÞ ¼
Xþ1

n¼�1

P�ðn2
�mÞ�ð2mt� nÞ: ð6Þ

Then the filtered projection Q�ðtÞ ¼ ð1=2�Þ
Rþ1

�1
P̂P�ð!Þj!je

i!td! can be approximated
by

Q�,mðtÞ ¼
1

2�

Xþ1

n¼�1

P�ðn2
�mÞ

Z þ1

�1

�̂�ð!2�mÞj!jei!ð2
mt�nÞ2�m

d!: ð7Þ

The inner integral in (7) is, in fact, taken only over a finite interval due to the finite sup-
port of �̂�, so that we have

Q�,mðtÞ ¼
1

2�

Xþ1

n¼�1

P�ðn2
�mÞgmð2

mt� nÞ,

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

FIGURE 3 Graph of the raised-cosine scaling sampling function �1 in the time domain.
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where the weight functions gm are given by

gmð2
mt� nÞ ¼

Z ð5�=4Þ2m

�ð5�=4Þ2m
�̂�ð!2�mÞj!jei!ð2

mt�nÞ2�m

d! ¼ 22mþ1

Z 5�=4

0

� cosð��Þ�̂�ð�Þd�, ð8Þ

where � ¼ 2mt� n:
This last integral can be evaluated in closed form; depending on the value of �, we

obtain the following weight coefficients:

2�2mgmð�Þ ¼

17�2

16
�
1

2
� ¼ 0,

3�

16
�
1

2
� ¼ � 2,

1

�2ð�2 � 4Þ

	½cos 5�=4�ð Þð12�2 � 16Þ

þ sin 5�=4�ð Þð5��3 � 20��Þ

þ cos 3�=4�ð Þð12�2 � 16Þ

þsin 3�=4�ð Þð3�3�� 12��Þ
�
� 2=�2

otherwise

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð9Þ

where � ¼ 2mt� n:
After gm has been calculated, an approximation fmðx, yÞ to the object function f ðx, yÞ

can be obtained as follows:

fmðx, yÞ ¼
1

ð2�Þ2

Xþ1

n¼�1

Z �

0

P�ðn2
�mÞgmðx cos � þ y sin �Þ d�: ð10Þ

The formula (10) involves a one-time calculation of the weight coefficients gm(t) as
given by (9). It also avoids both Fourier transforms and convolutions as compared
to the usual reconstruction algorithms which do not.

In practice, the projection function P�ðtÞ has compact support, so that the series
in (10) is only a finite sum. It can be further discretized to obtain

f ðx, yÞ 

1

ð2�Þ2
�

K

XK
i¼1

X
n

P�i ðn2
�mÞgmðx cos �i þ y sin �iÞ,

where K is the number of views and �i are the angles at which projections have been
measured, i ¼ 1, . . . ,K :

Since not all of the values of x cos �i þ y sin �i necessarily correspond to the values of
t for which gmðtÞ in (9) are known, some kind of interpolation must be used. For our
computer simulations, we have used linear interpolation.
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3.2 Convergence Theorems

We now present some convergence results. We begin with the one for the approxima-
tion series in (6).

THEOREM 1 Let P�ðtÞ have compact support and P�ðtÞ 2 H� for some � > 1=2 with
P�ðtÞ
�� ��

�
� C for some constant C. Then P�,mðtÞ ! P�ðtÞ uniformly for � 2 ½0, 2�� and

t2R as m ! 1 at the rate kP�,m � P�k1 ¼ O 2�mð��1=2Þ

 �

:

The proof is given in the appendix.
A couple of remarks would be in place.

1. It should be noticed that the proof of Theorem 1 does not depend on choice of �ðtÞ.
That means that, in fact, any other bandlimited function � satisfying

Pþ1

k¼�1 �̂�ð!þ

2�kÞ ¼ 1 and �̂�ð2�m!Þ ¼ 1 for j!j � !0 for some constant !0 can be used in place
of the raised-cosine spectrum function. For example, � could be chosen to be
equal to �1 in (5). In fact, �̂� can be chosen to be C1 as in Meyer’s original formula-
tion [14]. In this case it does not have a closed form, however.

2. Ideally, real projection data need not be smooth, i.e., P�ðtÞ need not be in H� for
� > 1=2: In fact one would expect that some discontinuities in f ðx, yÞ would lead
to discontinuities in P�ðtÞ. But this is usually not the case with real data since
many averaging operations are involved. Real data should be bandlimited since
no real process allows arbitrarily large frequencies, but it is frequently corrupted
by wideband noise.

Similar result can be obtained for the image function itself approximated by the
series (10).

THEOREM 2 Let P�ðtÞ have compact support and P�ðtÞ 2 H� for some � > 3=2 with
P�ðtÞ
�� ��

�
� C for some constant C. Then the sampling series in (10) converges uniformly

to f ðx, yÞ as m ! 1 for ðx, yÞ 2 R2 at the rate Oð2�m ��ð3=2Þð ÞÞ:

The proof is similar to that of Theorem 1 as is mentioned.

Remark If we are interested in the convergence of P�,mðtÞ to P�ðtÞ but not the rate, we
do not need the hypothesis that P�ðtÞ 2 H� for any �. Rather all we need is that P̂P� 2 L1:
Then we have P�,m ! P� uniformly on R by the dominated convergence theorem.
Similarly, for the uniform convergence of fmðx, yÞ to f ðx, yÞ we need only require that
!P̂P�ð!Þ 2 L1: Both requirements are met in practical situation since f̂f and P̂P� would be
rapidly decreasing.

4. COMPUTER IMPLEMENTATION

Our reconstruction algorithm was tested on the well-known Shepp–Logan ‘‘head
phantom’’ [16] which is a standard test for the CT algorithms. This image model
consists of 10 ellipses with various gray levels inside them (Fig. 4).

The following description of this model can be found in [16]: ‘‘In an attempt to be
consistent with known facts about the human head, the skull in the figure is about
twice as dense as the interior tissue and is thicker at the forehead. The ventricles
filled with spinal fluid (water) are least dense (1.0), while gray matter has density
1.02 and fills the interior of the head except for tumors (1.03) . . ..’’ For this model,
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the range of gray scale values is [0.0, 2.0] and the features we are interested in have
values close to 1.0. It should be noticed that gray levels of these features have very
close values with only a 4% variation inside the skull, the highest point being the
tumor (1.04) between ventricles (1.0). This makes the problem of recovery of the
object function f ðx, yÞ from its projections even more challenging.

Since the Radon transform is linear, analytic formulae can be obtained for the
projection function of the Shepp–Logan image since it is a superposition of gray
levels of 10 ellipses mentioned above.

In order to apply our convergence results, we need to discuss the regularity of the
Shepp–Logan projection function. This may be found by considering an image
consisting of a unit circle with density 1 inside and 0 outside. The projection function
of this object is

P�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
, jtj � 1

0, jtj > 1:

(

Its Fourier transform is given by

P̂P�ð!Þ ¼
ffiffiffi
�

p
�

3

2

� 	
2

j!j
J1ðj!jÞ,

where J1ðxÞ is the Bessel function of order one. Since for large values of x we
can approximate J1ðxÞ by

ffiffiffiffiffiffiffiffiffiffiffi
2=�x

p
cos x� ð3�=4Þð Þ, we obtain P̂P�ð!Þ 
 j!j�ð3=2Þ and,

0 50 100 150 200 250

50

100

150

200

250

FIGURE 4 The actual Shepp–Logan head phantom.
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therefore, P̂P2
�ð!Þð1þ !

2Þ
�

 1=!3�2� for large !: Thus, the projection function of this

circle is in the Sobolev space H� when 3� 2� > 1, i.e., when � < 1. This conclusion can
be extended to ellipses and by superposition to the Shepp–Logan projection function. It
follows that the hypothesis of Theorem 1 � > 1=2ð Þ is satisfied and that of Theorem 2
� > 3=2ð Þ is not. This does not, of course, imply that convergence fails in that theorem
since the conditions are sufficient and not necessary. In fact, in all cases experimental
results were much better than one would expect from these theorems. Given real
data, one would also expect that the images are smoother than for this case since a
real object function would be smoother than the Shepp–Logan image function.

Assume that the projection data were sampled at N evenly spaced points over the
interval ½�1, 1�: Since we are using the sampling approximation (6) with a sampling
interval T ¼ 2�m, this implies that we must have N ¼ 2=T ¼ 2mþ1, or

m ¼ ½log2 N � 1�: ð11Þ

Thus, the scale of interest m is directly related to the number of points at which projec-
tions are known.

In the following we summarize our reconstruction algorithm

1. Filtering For each point tn ¼ nT , n ¼ �ðN=2Þ, � ðN=2Þ þ 1, . . . , ðN=2Þ � 1,
we calculate the corresponding value of the weight function gm(nT ) accordingly
to (9). Note that gm does not depend on the angle at which a projection is measured
except through its argument. Therefore, gm can be evaluated in advance ( i.e., before
the backprojection step is performed). We then generate the corresponding filtered
projection

Q�i ð jTÞ ¼
1

2�

XðN=2Þ�1

n¼�ðN=2Þ

P�i ðn2
�mÞgmð jTÞ, j ¼ �

N

2
, . . . ,

N

2
� 1,

for each angle �i, i ¼ 1, . . . ,K:
2. Backprojection We use discrete approximation to the integral f ðx, yÞ ¼ ð1=2�Þ	R �
0 Q�ðtÞ d�, t ¼ x cos � þ y sin �, to recover the image function:

f ðx, yÞ ¼
1

2�

�

K

XK
i¼1

Q�i ðx cos �i þ y sin �iÞ, ð12Þ

where K is the number of angles �i at which projections are known. Since some of the
values of x cos �i þ y sin �i may not be equal to any of the points jT for which P� was
measured, interpolation is needed. We use linear interpolation, if necessary, to get
these values.

The computational complexity of this algorithm similar to that of the standard
backprojection algorithm [16]. Since the values of the weight functions gm(t) can be
precomputed and stored, it takes N2 multiplications to obtain the filtered
projection Q�i ð jTÞ for all sampling points jT , j ¼ �ðN=2Þ, . . . ,N=2� 1, and each
angle �i, i ¼ 1, . . . ,K: These filtered projections are backprojected accordingly to
(12). Hence, the total complexity is KðN2 þ ClÞ where Cl is the complexity of linear
interpolation used as a part of backprojection step.
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Remark Steps 1 and 2 above are essentially the same ones as in the standard
backprojection algorithm described in the Introduction. This means that the raised-
cosine based algorithm could be implemented on current CT machines and only few
adjustments are needed. However, our algorithm avoids convolution and therefore
should require fewer calculations. In the standard approximation, the integral used
to obtain Q�ðtÞ is merely truncated. This means that Q�ðtÞ is approximated by the
Fourier transform of a discontinuous function which results in a very slow convergence
as t ! �1: In our case the discontinuity is smoothed and should give better
convergence.

We reconstructed the 256	 256 pixel image of the Shepp–Logan phantom from
K ¼ 256 projections with N ¼ 256 points in each projection. Accordingly to (11), the
finest scale of interest is m ¼ 7: The reconstructed image is shown in Fig. 5.

The computer program was done in Cþþ. The weight coefficients gm were calculated
accordingly to (9). In actual implementation, those values would be precomputed and
stored. Linear interpolation was used for the whole sum in (12).

SUMMARY

Our algorithm avoids integration and uses only precomputed coefficients in the filtering
step. This, coupled with the fact that the complexity is no greater than traditional
methods, should give it an advantage over them. The quality of the image in the test
case is as good or better than other methods.
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FIGURE 5 The reconstructed Shepp–Logan image.
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APPENDIX

Proof of Theorem 1 We first estimate the difference between the projection function
P�ðtÞ and its approximating series P�,mðtÞ ¼

Pþ1

n¼�1 P�ðn2
�mÞ�ð2mt� nÞ in the fre-

quency domain. We have

P̂P�,mð!Þ ¼
Xþ1

n¼�1

2�mP�ðn2
�mÞ�̂�ð!2�mÞe�i!n2�m

¼
Xþ1

n¼�1

1

2�

Z þ1

�1

P̂P�ð�Þe
in2�m�d� 2�m�̂�ð!2�mÞe�i!n2�m

¼

Z þ1

�1

P̂P�ð�Þ
1

2�

Xþ1

n¼�1

ein2
�mð��!Þ

" #
2�m�̂�ð!2�mÞ d�,

ð13Þ
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whereweusedP�ðn2
�mÞ ¼ 1=ð2�Þ

Rþ1

�1
P̂P�ð�Þe

in2�m� d�:Butthesum ð1=2�Þ
Pþ1

n¼�1 ein2
�mð��!Þ

is exactly ��ð2�mð!� �ÞÞ, where �� is the periodic � function, �� ¼
P

n2Z �ðxþ 2�nÞ:
This is an element of the dual space S

0

of S: Since P� has compact support, P̂P� is
analytic and in L1ðRÞ: Hence, the integral can be interpreted as a convolution
h��ð2�mð!��ÞÞ, P̂P�i: Therefore, by using the filtering property of �, (13) can be formally
rewritten as

P̂P�,mð!Þ ¼

Z þ1

�1

P̂P�ð�Þ�
�ð2�mð!� �ÞÞ 2�m d� �̂�ð2�m!Þ

¼
Xþ1

k¼�1

P̂P�ð!þ 2mþ1�kÞ�̂�ð2�m!Þ:

ð14Þ

This formula could also be obtained from the Poisson summation formula. Thus, E ¼

P̂P�,m � P̂P� has the form Eð!Þ ¼ P̂P�ð!Þ½�̂�ð2
�m!� 1Þ� þ

P
k 6¼0 P̂P�ð!þ 2mþ1�kÞ�̂�ð2�m!Þ:

Hence, the integral
R þ1

�1
jEð!Þj d! satisfies

Z þ1

�1

jEð!Þjd!¼

Z þ1

�1

jP̂P�,mð!Þ� P̂P�ð!Þjd!

�

Z þ1

�1

jP̂P�ð!Þjj�̂�ð2
�m!Þ�1jd!

þ

Z þ1

�1

�̂�ð2�m!Þ
X
k 6¼0

jP̂P�ð!þ2�k2mÞjd!: ð15Þ

The second integral in (15) is

Z þ1

�1

�̂�ð2�m!Þ
Xk¼þ1

k¼�1

jP̂P�ð!þ 2�k2mÞj � jP̂P�ð!Þj

 !
d!

¼

Z þ1

�1

Xþ1

k¼�1

�̂�ð2�mð!� 2�k2mÞÞjP̂P�ð!Þj � �̂�ð2
�m!ÞjP̂P�ð!Þj

" #
d!

¼

Z þ1

�1

jP̂P�ð!Þjj�̂�ð2
�m!Þ � 1jd!:

ð16Þ

Here we have used the fact that
Pþ1

k¼�1 �̂�ð!þ 2�kÞ ¼ 1:
Since both integrals in (15) are dominated by

Rþ1

�1
jP̂P�ð!Þjj�̂�ð2

�m!Þ � 1jd! and since
�̂�ð2�m!Þ ¼ 1 for j2�m!j � 3�=4, it follows that

Z þ1

�1

jP̂P�,mð!Þ � P̂P�ð!Þjd! � 2

Z �ð3�=4Þ2m

�1

jP̂P�ð!Þjd!þ 2

Z þ1

ð3�=4Þ2m
jP̂P�ð!Þjd!:
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Since P�ðtÞ is in the Sobolev space H�, we have

Z þ1

ð3�=4Þ2m
jP̂P�ð!Þj d! ¼

Z þ1

M

jP̂P�ð!Þj

ð1þ !2Þ
�=2

ð1þ !2Þ
�=2d!

�

Z þ1

M

1

ð1þ !2Þ
� d!

Z þ1

�1

jP̂P�ð!Þj
2ð1þ !2Þ

�d!

� �1=2
� CMð1�2�Þ=2kP�k�,

where M ¼ ð3�=4Þ2m: Similarly, we can obtain the same estimates for the integralR�ð3�=4Þ2m

�1
jP̂P�ð!Þjd!: Thus, the integral

Rþ1

�1
jEð!Þjd! satisfies

Z þ1

�1

jEð!Þjd! � 4CkP�k�ð2
mÞ

ð1�2�Þ=2 3�

4

� 	ð1�2�Þ=2

:

Since the norm kP�k� is uniformly bounded for all � 2 R, we have for � > 1=2

Z þ1

�1

jP̂P�,mð!Þ � P̂P�ð!Þjd! ¼ O 2�m ��ð1=2Þð Þ

 �

:

We obtain

supjP�,mðtÞ � P�ðtÞj �
1

2�

Z þ1

�1

jP̂P�,mð!Þ � P̂P�ð!Þjd! for �, t 2 R,

since P�ðtÞ ¼ 1=2�
Rþ1

�1
P̂P�ð!Þe

i!td!: Thus, the series P�,mðtÞ converges uniformly to
P�ðtÞ as m ! 1 at the rate Oð2�mð��1=2ÞÞ, which completes the proof.

A few modifications of the derivation above with t replaced by x cos � þ y sin � will
produce the proof of Theorem 2.
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